## Discussion on "Multiscale Change Point Inference"

Jiashun Jin and Tracy Ke

Carnegie Mellon University and Princeton University

October 30, 2013

We congratulate the authors on a very interesting paper. The paper sheds lights on a problem of great interest, and the theory and methods developed are potentially useful in many applications.

In [5], we have investigated the problem from the variable selection perspective. Consider a linear model

$$Y = X\beta + z, \qquad X = X_{n,n}, \qquad z \sim N(0, I_n), \tag{1}$$

where  $X(i,j) = 1\{j \geq i\}$ ,  $1 \leq i,j \leq n$ , and  $\beta$  is a sparse vector, containing a small fraction of nonzeros (i.e., "jumps"). In effect,  $X\beta$  is a block-wise constant vector, so (1) is a change-point model. We are interested in identifying all jumps.

Fixing  $\theta \in (0,1)$  and r > 0 and letting  $\epsilon_n = n^{-\theta}$ ,  $\tau_n = \sqrt{2r \log(n)}$ , we consider a "Rare and Weak" setting where

$$\beta_j \stackrel{iid}{\sim} (1 - \epsilon_n)\nu_0 + \epsilon_n \nu_{\tau_n}, \quad (\nu_a: \text{ point mass at } a).$$
 (2)

See [5] for more general case and see [1, 3, 5] for the subtlety of model (2). The minimax Hamming selection error is then

$$\operatorname{Hamm}_{n}^{*}(\vartheta, r) = \inf_{\hat{\beta}} \left[ \sum_{j=1}^{n} P\left\{ \operatorname{sgn}(\hat{\beta}_{j}) \neq \operatorname{sgn}(\beta_{j}) \right\} \right].$$

We showed in [5] that

$$\operatorname{Hamm}_{n}^{*}(\vartheta, r) = \begin{cases} L_{n} \cdot n^{(1-\vartheta-r/4)} + o(1), & r/\vartheta \le 6 + 2\sqrt{10}, \\ L_{n} \cdot n^{(1-3\vartheta-(r/2-\vartheta)^{2}/(2r))} + o(1), & r/\vartheta > 6 + 2\sqrt{10}, \end{cases}$$

where  $L_n$  is a generic multi-log(n) term. This implies a watershed phenomenon (also found in [1, 3, 2, 4], but in different settings), which can be captured by so-called  $Phase\ Diagram$ ; see Figure 1.

Moreover, we developed in [5] a procedure called CASE which achieves the minimax rate above. CASE is a two-stage Screen and Clean method, where at the heart is multivariate  $\chi^2$ -screening guided by a sparse graph, constructed based on the matrix X.

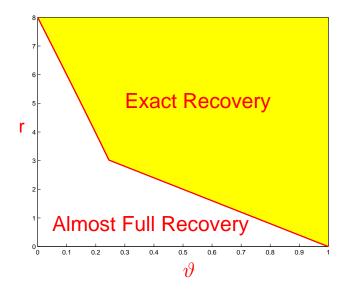


Figure 1: Phase Diagram for change-point model. In the two-dimensional phase space  $\{(\vartheta,r): 0 < \vartheta < 1, r > 0\}$ , the curve  $r = \rho_0(\vartheta)$  separates the phase space into two sub-regions, where  $\rho_0(\vartheta) = \max\{4(1-\vartheta), (4-10\vartheta) + 2\sqrt{[(2-5\vartheta)^2-\vartheta^2]_+}\}$ . For  $(\vartheta,r)$  in the interior of the region above the curve, it is possible to identify all jumps (say, by using CASE) with high probability. For  $(\vartheta,r)$  in the interior of the region below the curve,  $1 \ll \operatorname{Hamm}_n(\vartheta,r)^* \ll n\epsilon_n$ , and it is impossible to identify all jumps, but it is possible to identify most of them (say, by using CASE).

## References

- [1] Donoho D, Jin, J (2004) Higher criticism for detecting sparse heterogeneous mixtures. *Ann. Statist.* **32**, 962–994.
- [2] Donoho D, Tsaig Y (2008) Fast solutions of  $\ell^1$ -norm minimization problems when the solution may be sparse. *IEEE Trans. Inform. Theor.* **54**(11), 4789–4812.
- [3] Jin J (2009) Impossibility of successful classification when useful features are rare and weak. *Proc. Nat. Acad. Sci.* **106**(22), 8859–8864.
- [4] Ingster YI, Pouet C, Tsybakov AB (2009) Sparse classification boundaries. *Phil. Trans. R. Soc. A* **367**, 4427–4448.
- [5] Ke T, Jin J, Fan J (2013) Covariance Assisted Screening and Estimation. arXiv:1205.4645.