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ABSTRACT

Lasso is a celebrated method for variable selection in linear models, but it faces
challenges when the variables are moderately or strongly correlated. This motivates
alternative approaches such as using a non-convex penalty, adding a ridge regular-
ization, or conducting a post-Lasso thresholding. In this paper, we compare Lasso
with 5 other methods: Elastic net, SCAD, forward selection, thresholded Lasso,
and forward backward selection. We measure their performances theoretically
by the expected Hamming error, assuming that the regression coefficients are iid
drawn from a two-point mixture and that the Gram matrix is block-wise diagonal.
By deriving the rates of convergence of Hamming errors and the phase diagrams,
we obtain useful conclusions about the pros and cons of different methods.

1 INTRODUCTION

Variable selection is one of the core problems in high-dimensional data analysis. Consider a linear
regression, where the response y ∈ Rn and the design matrix X = [x1, . . . , xp] ∈ Rn×p satisfy that

y = Xβ + z, ‖xj‖ = 1, z ∼ N (0, σ2In). (1)

The goal is estimating the support of β (Supp(β)). Lasso (Tibshirani, 1996) is a popular method:

β̂lasso = argminβ
{
‖y −Xβ‖2/2 + λ‖β‖1

}
. (2)

Lasso has good rates of convergence on the Lq-estimation error or prediction error (Bickel et al.,
2009). However, it can be unsatisfactory for variable selection, especially when the columns in the
design matrix are moderately or strongly correlated. Zhao & Yu (2006) showed that an irrepresentable
condition on X is necessary for Lasso to recover Supp(β) with high probability, and such a condition
is restrictive when p is large (Fan & Lv, 2010). Ji & Jin (2012) studied the Hamming error of Lasso
and revealed Lasso’s non-optimality by lower-bounding its Hamming error rate. Many alternative
strategies were proposed for variable selection, such as using non-convex penalties (Fan & Li, 2001;
Zhang, 2010; Shen et al., 2012), adding a ridge regularization (Zou & Hastie, 2005), post-processing
on the Lasso estimator (Zou, 2006; Zhou, 2009), and iterative algorithms (Zhang, 2011; Donoho
et al., 2012). In this paper, our main interest is to theoretically compare these different strategies.

Existing theoretical studies focused on ‘model selection consistency’ (e.g., Fan & Li (2001); Zhao &
Yu (2006); Zou (2006); Meinshausen & Bühlmann (2010); Loh & Wainwright (2017)), which uses
P(Supp(β̂) = Supp(β)) to measure the performance of variable selection. However, for many real
applications, the study of the Hamming error (i.e., total number of false positives and false negatives)
is in urgent need. For example, in genome-wide association studies (GWAS) or Genetic Regulatory
Network, the goal is to identify the genes or SNPs that are truly associated with a given phenotype,
and we hope to find a multiple testing procedure that simultaneously controls the FDR and maximizes
the power (for multiple testing). This problem can be re-cast as minimizing the Hamming error in a
special regression setting (Efron, 2004; Jin, 2012; Sun & Cai, 2007). This motivates us to study the
Hamming errors of variable selection methods, which were rarely considered in the literature.

We adopt the rare and weak signal model (Donoho & Jin, 2004; Arias-Castro et al., 2011; Jin & Ke,
2016), which is often used in theoretical analysis of sparse linear models. Let p be the asymptotic
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parameter. Given constants ϑ ∈ (0, 1) and r > 0, we assume that βj’s are iid generated such that

βj =

{
τp, with probability εp,
0, with probability 1− εp,

where εp = p−ϑ, τp =
√

2r log(p). (3)

As p→∞, ‖β‖0 ≈ p1−ϑ, and a nonzero βj is at the critical order
√

log(p). 1 The two parameters
(ϑ, r) capture the sparsity level and signal strength, respectively. We may generalize (3) to let nonzero
βj’s take different values in [τp,∞), but the current form is more convenient for presentation.

The blockwise covariance structure is frequently observed in real applications. In genetic data, there
may exist strong correlations between nearby genetic markers, but the long-range dependence is
usually negligible; as a result, the sample covariance matrix is approximately blockwise diagonal
(Dehman et al., 2015). In financial data, the sample covariance matrix of stock returns (after common
factors are removed) is also approximately blockwise diagonal, where each block corresponds to an
industry group (Fan et al., 2015). Motivated by these examples, we consider an idealized setting,
where the Gram matrix G = X ′X is block-wise diagonal consisting of 2× 2 blocks:

G = diag(B,B, . . . , B,B0), where B =

[
1 ρ
ρ 1

]
and B0 =

{
B, if p is even,
1, if p is odd.

(4)

This is an idealization of the blockwise covariance structures in real applications. We may generalize
(4) to allow unequal block sizes and unequal off-diagonal entries, but we keep the current form for
convenience of presentation. Model (4) is also closely connected to the random designs in compressed
sensing (Donoho, 2006). Write X = [X1, X2, . . . , Xn]′. Suppose X1, X2, . . . , Xn are iid generated
from N

(
0, n−1Σ), where Σ has the same form as G in (4). In a high-dimensional sparse setting, we

have ‖β‖0 � n� p. Then, G = X ′X ≈ Σ, and due to the blessing of sparsity of β, Gβ ≈ Σβ. As
a result, X ′y (sufficient statistic of β) satisfies that X ′y = Gβ +N (0, G) ≈ Σβ +N (0,Σ), and the
right hand side reduces to Model (4) (Genovese et al., 2012). In Section 3.5, we formally show that
this random design setting is asymptotically equivalent to Model (4).

Now, under model (3) and model (4), we have three parameters (ϑ, r, ρ). They capture the sparsity
level, signal strength and design correlations, respectively. Our main results are the explicit con-
vergence rates of Hamming error, as a function of (ϑ, r, ρ), for different methods. We will study
six methods: (i) Lasso as in (2); (ii) Elastic net (Zou & Hastie, 2005), which adds an additional L2-
penalty to (2), (iii) smoothly clipped absolute deviation (SCAD) (Fan & Li, 2001), which replaces the
L1-penalty by a non-convex penalty, (iv) thresholded Lasso (Zhou, 2009), which further thresholds
the Lasso solution, and two iterative algorithms, (v) forward selection and (vi) forward backward
selection (Huang et al., 2016); see Section 3 for a precise description of each method. To our best
knowledge, our results are the first that directly compare Hamming errors of these methods.

2 A PREVIEW OF MAIN RESULTS AND SOME DISCUSSIONS

For any β̂, its Hamming error is H(β̂, β) =
∑p
j=1 1{β̂j 6= 0, βj = 0}+

∑p
j=1 1{β̂j = 0, βj 6= 0}.

As we shall show, for any of the six methods studied here, there exists a function h(ϑ, r, ρ) ∈ [0, 1]

such that E[H(β̂, β)] = Lpp
1−h(ϑ,r,ρ), where Lp is a multi-log(p) term. (A multi-log(p) term is

such that Lp · pε →∞ and Lp · p−ε → 0 for any ε > 0.) Since the expected number of true relevant
variables is p1−ϑ, we are interested in three cases:

• Exact recovery: h(ϑ, r, ρ) > 1. In this case, the expected Hamming error is o(1) as p→∞.
It follows that model selection consistency holds.

• Almost full recovery: ϑ < h(ϑ, r, ρ) < 1. In this case, the expected Hamming error does
not vanish as p→∞, but it is much smaller than the total number of true relevant variables.
Variable selection is still satisfactory (although model selection consistency no longer holds).

• No recovery: h(ϑ, r, ρ) ≤ ϑ. In this case, the expected Hamming error is comparable with
or much larger than the total number of true relevant variables. Variable selection fails.

1In (1), we assume that each column ofX is standardized to have a unit `2-norm and that the order of nonzero
βj is

√
log(n). Alternatively, many works assume that each column of X is standardized to have an `2-norm of√

n and that the order for nonzero βj is n−1/2
√

log(p). These are two equivalent parameterizations.

2



Published as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

r

= 0.5
Elastic net ( = 0.25)
Lasso
SCAD
Thresholded Lasso
Forward selection
Forward backward selection
Region of no recovery

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

12

14

16

18
= 0.4

Elastic net ( = 0.25)
Lasso
SCAD
Forward selection
Thresholded Lasso
Forward backward selection
Region of no recovery

Figure 1: Phase diagrams of six variable selection methods for a block-wise diagonal design. The
parameters (ϑ, r, ρ) characterize the sparsity, signal strength, and design correlations, respectively.
For each method, we plot the curve r = U(ϑ) which separates Region of Almost Full Recovery and
Region of Exact Recovery (the lower this curve, the better). Explicit forms of U(ϑ) are in Section 3.
On the left panel, the curves for Lasso and SCAD overlap and are displayed as a dashed line. How to
interpret these phase curves are discussed in Section 2.

We call the two-dimensional space (ϑ, r) the phase space. For each fixed ρ, the phase space is divided
into three regions: Region of Exact Recovery (ER), which is the subset {(ϑ, r) : h(ϑ, r, ρ) > 1}, and
Region of Almost Full Recovery (AFR) and Region of No Recovery (NR) defined similarly. This gives
rise to a phase diagram for each method. We denote the curve separating ER region and AFR region
by r = U(ϑ) and the curve separating AFR region and NR region by r = L(ϑ); they are called the
upper and lower phase curves, respectively. The phase diagram and phase curves are convenient
ways to visualize the convergence rates of the Hamming error.

Figure 1 shows the phase curves for the six methods (with explicit expressions in the theorems in
Section 3). These phase curves depend on the correlation parameter ρ. Under our model, for each
diagonal block (j, j+ 1), it holds that E[x′jy|β] = βj + ρβj+1, where βj , βj+1 ∈ {0, τp}. Therefore,
a positive ρ boosts the signal at each individual site (i.e., E[x′jy|β] ≥ βj), while a negative ρ leads
to potential ‘signal cancellation’ (i.e., E[x′jy|β] ≤ βj). This is why the phase curves have different
shapes for positive and negative ρ. In Figure 1, we plot the phase curves for ρ = 0.5 and ρ = −0.4.
For other positive/negative value of ρ, the patterns are similar.

Discussion of SCAD. SCAD is a representative of non-convex penalization methods. There have
been inspiring works that demonstrate the advantages of using a non-convex penalty (e.g., Fan
& Peng (2004); Loh & Wainwright (2017)). Our results support their insights from a different
angle: The phase curve of SCAD is strictly better than that of Lasso, when ϑ < 0.5 and ρ < 0.
Furthermore, our results illustrate where the advantage of SCAD comes from — compared with
Lasso, it handles ‘signal cancellation’ better. To see this, we recall that ‘signal cancellation’ only
happens for ρ < 0. Moreover, under our model (3), the expected number of signal pairs (a signal pair
is a diagonal block {j, j + 1} where both βj and βj+1 are nonzero) is � pε2p = p1−2ϑ. Therefore,
‘signal cancellation’ becomes problematic only when ϑ < 0.5 and ρ < 0 both hold. This explains
why the phase curves of SCAD and Lasso are the same for the other values of ϑ and ρ. We note that
in the previous studies (e.g., Loh & Wainwright (2017)), the advantages of a non-convex penalty in
handling ‘signal cancellation’ are reflected in the weaker conditions of (X,β) for achieving model
selection consistency. Our results support the advantage of using a non-convex penalty by directly
studying the Hamming errors and phase diagrams.

The performance of SCAD can be further improved by adding an entry-wise thresholding on β̂. We
believe that the phase diagrams of thresholded SCAD are better than those of SCAD itself, although
the extremely tedious analysis impedes us from specific results for now. Also, we are cautious about
what to conclude from comparing SCAD and thresholded Lasso. In our settings, Lasso has no model
selection consistency mainly because the signals are too weak (i.e., r is not sufficiently large). In
such settings, thresholded Lasso outperforms SCAD in terms of the Hamming error. However, there
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are cases where Lasso has no model selection consistency no matter how large the signal strength is
(Zhao & Yu, 2006). For those cases, it is possible that SCAD is better than thresholded Lasso (see
Wainwright (2009) for a related study).

Discussion of Elastic net. The phase curve of Elastic net is worse than that of Lasso. As we will
explain in Section 3.1, Elastic net is a ‘bridge’ between Lasso and marginal regression in our case.
Since the phase curve of marginal regression is always worse than that of Lasso for the blockwise
diagonal design, we do not benefit from using Elastic net in the current setting. We must note that
Elastic net is motivated by genetic applications where several correlated variables are competing
as predictors, and where it is implicitly assumed that groups of correlated variables tend to be all
relevant or all irrelevant (Zou & Hastie, 2005). This is not captured by our model (3). Therefore,
our results do not go against the benefits of Elastic net known in the literature, but rather our results
support that the advantages of Elastic net come from ‘group’ appearance of signal variables.

Discussion of thresholded Lasso. Thresholded Lasso is a representative of improving Lasso by
post-processing. There have been inspiring works that demonstrate the advantages of such a post-
processing (van de Geer et al., 2011; Wang et al., 2020; Weinstein et al., 2020). Our results support
these insights from a different angle. It is surprising (and very encouraging) that the improvement
by post-Lasso thresholding is so significant. We note that Lasso is a 1-stage method, which solves
a single optimization to obtain β̂. By comparison, thresholded Lasso is a 2-stage method. Lasso
has only one algorithm parameter λ, while thresholded Lasso has two algorithm parameters λ and
t (the threshold). In Lasso, we control false positives and false negatives with the same algorithm
parameter λ, and it is sometimes hard to find a value of λ that simultaneously controls the two types
of errors well. In thresholded Lasso, the two types of errors can be controlled separately by two
algorithm parameters. This explains why thresholded Lasso enjoys such a big improvement upon
Lasso. It inspires us to modify other 1-stage methods, such as SCAD, by adding a post-processing
step of thresholding. For example, we conjecture that thresholded SCAD also has a strictly better
phase diagram than that of Lasso, even for a positive ρ. On the other hand, thresholding is no free
lunch. It leaves one more tuning parameter to be decided in practice. Our theoretical results are based
on ideal tuning parameters. How to properly choose these tuning parameters in a data-driven way
is an interesting question. Weinstein et al. (2020) proposes a promising approach, where they use
cross-validation to select λ and FDR control by knockoff to select t. We leave it for future work to
study the phase diagrams with data-driven tuning parameters.

Discussion of the two iterative algorithms. We consider two iterative algorithms, forward selection
(‘Forward’) and forward backward selection (‘FB’). The FB algorithm we analyze is a simplified
version in Huang et al. (2016), which has only one backward step (after all the forward steps have
finished) by thresholding the refitted least-squares solution. Our results show that both methods
outperform Lasso, and between these two methods, FB is strictly better than Forward. In the literature,
there are very interesting theoretical works showing the advantages of iterative algorithms for variable
selection (Donoho et al., 2012; Zhang, 2011). Our results support their insights from a different angle.
We discover that, for a wide range of ρ, FB has the best phase diagram among all the six methods.
This is a very encouraging result. Of course, it is as important to note that the performance of an
iterative algorithm tends to be more sensitive to the form of the design, due to its sequential nature.

3 MAIN RESULTS

Consider model (1), (3), and (4), where we set σ2 = 1 without loss of generality. Let E[H(β̂, β)] be
the expected Hamming error, where the expectation is with respect to the randomness of β and z. Let
Lp denote a generic multi-log(p) term such that Lppε →∞ and Lpp−ε → 0 for any ε > 0.
Theorem 1. Under Models (1), (3), and (4), for each of the methods considered in this paper
(Lasso, Elastic net, SCAD, thresholded Lasso, forward selection, forward backward selection, as
well as marginal regression in Section 3.1), there exists a function h(ϑ, r, ρ) such that E[H(β̂, β)] =
Lpp

1−h(ϑ,r,ρ). The explicit expressions of h(ϑ, r, ρ), which may depend on the tuning parameters of
a method, are given in Theorems B.1, C.1, D.1-D.3, F.1, G.1, H.1-H.4 of the supplement.

In the main article, to save space, we only present the expressions of the upper phase curve U(ϑ) =
U(ϑ; ρ) and the lower phase curve L(ϑ) = L(ϑ; ρ) for each method, which are defined as follows:

U(ϑ; ρ) = inf{r > 0 : h(ϑ, r, ρ) > 1}, L(ϑ; ρ) = inf{r > 0 : h(ϑ, r, ρ) > ϑ}. (5)
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Figure 2: The phase diagrams of Elastic net and its comparison with Lasso (notation: η = ρ/(1+µ)).

These two curves describe the phase diagram: The upper phase curve U(ϑ) separates the ER region
and AFR region, and the lower phase curve L(ϑ) separates the AFR region and NR region.

3.1 ELASTIC NET AND LASSO

The Elastic net (Zou & Hastie, 2005) is a method that estimates β by

β̂EN = argminβ
{
‖y −Xβ‖2/2 + λ‖β‖1 + (µ/2)‖β‖2

}
. (6)

Compared with Lasso, it adds an additional L2-penalty to the objective function. Below, we fix µ > 0

and re-parametrize λ =
√

2q log(p), for some constant q > 0. The choice of q affects the exponent,
1− h(ϑ, r, ρ), in the expression of E[H(β̂, β)]. We choose the ideal q that minimizes 1− h(ϑ, r, ρ).
The next theorem is proved in the supplement.

Theorem 2 (Elastic Net). Under Models (1), (3), and (4), let β̂EN be the Elastic net estimator in (6).
Fix µ and write η = ρ/(1 + µ). Let λ =

√
2q log(p) with an ideal choice of q that minimizes the

exponent of E[H(β̂, β)]. The phase curves are given by L(ϑ) = ϑ, and

U(ϑ) =

{
max {h1(ϑ), h2(ϑ)} , when ρ ≥ 0,

max {h1(ϑ), h2(ϑ), h3(ϑ), h4(ϑ)} , when ρ < 0,

where h1(ϑ) = (1 +
√

1− ϑ)2, h2(ϑ) =
( 1−|η|

1−|ρ| +

√
1+η2−2ρη

1−|ρ|
)2

(1 − ϑ), h3(ϑ) = 1
(1−|ρ|)2

(
1 +

√
1+η2−2ρη

1+|η|
√

1− 2ϑ
)2

, and h4(ϑ) = 1+η2−2ρη
(1−2|ρ|+ρη)2

+

(√
1− ϑ+ 1−|η|

1+|η|
√

1− 2ϑ
)2

.

Lasso is a special case with µ = 0. By setting µ = 0 (equivalently, η = ρ) in Theorem 2, we obtain
the phase curves for Lasso. They agree with the results in Ji & Jin (2012) (but Ji & Jin (2012) does
not cover Elastic net).

To see the effect of the L2-penalty, we consider an extreme case where µ→∞. Some elementary
algebra shows that (1 + µ)β̂EN converges to the soft-thresholding of X ′y at the threshold λ. In other
words, as µ→∞, Elastic net converges to marginal screening (i.e., select variables by thresholding
the marginal regression coefficients). At the same time, when µ = 0, (1 + µ)β̂EN equals the Lasso
estimate. Hence, Elastic net serves as a bridge between Lasso and marginal regression. In the setting
here, the phase diagram of marginal regression is inferior to that of Lasso, and so the phase diagram
of Elastic net is also inferior to that of Lasso. See the proposition below and Figure 2:
Proposition 1. In Theorem 2, for each fixed ϑ ∈ (0, 1), as µ → 0, U(ϑ) is monotone decreasing
and converges to ULasso(ϑ), which is the upper phase curve of Lasso; as µ → ∞, U(ϑ) is mono-
tone increasing and converges to UMR(ϑ), which is the upper phase curve of marginal regression.
Furthermore, when ρ ≤ − 1

2 , UMR(θ) =∞ for all 0 < ϑ ≤ 1
2 (i.e. exact recovery is impossible to

achieve no matter how large r is).

3.2 SMOOTHLY CLIPPED ABSOLUTE DEVIATION PENALTY (SCAD)

SCAD (Fan & Li, 2001) is a non-convex penalization method. For any a > 2, it defines a penalty
function qλ(θ) on (0,∞) by qλ(θ) =

∫ θ
0
q′λ(t)dt, where q′λ(θ) = λ

{
I(θ ≤ λ) + (aλ−θ)+

(a−1)λ I(θ > λ)
}

.
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Figure 3: Left: Phase curves of SCAD. Middle and Right: Comparison of SCAD and Lasso.

The resulting penalty function qλ(·) coincides with the L1-penalty in (0, λ] and becomes a constant
in [aλ,∞). Let Qλ(β) =

∑p
j=1 qλ(|βj |). Then, SCAD estimates β by

β̂SCAD = argminβ
{
‖y −Xβ‖2/2 +Qλ(β)

}
. (7)

The following theorem is proved in the supplemental material (see Figure 3, left panel):

Theorem 3 (SCAD). Under Models (1), (3), and (4), let β̂SCAD be the SCAD estimator in (7). Fix
a ∈ (2, 2

1−|ρ| ). Let λ =
√

2q log(p) with an ideal choice of q that minimizes the rates of convergence
of the expected Hamming error. The phase curves are given by L(ϑ) = ϑ, and

U(ϑ) =

{
max {h1(ϑ), h2(ϑ), h3(ϑ)} , when ρ ≥ 0,

max {h1(ϑ), h2(ϑ), h4(ϑ), h5(ϑ)} , when ρ < 0,

where h1(ϑ) = (1 +
√

1− ϑ)2, and h2(ϑ) =
(
1 +

√
1+|ρ|
1−|ρ|

)2
(1−ϑ), h4(ϑ) =

(√
1−2ϑ
1−|ρ|2 + 1

1−|ρ|
)2

,

h3(ϑ) =
(

3+ρ
2(1−ρ2)

√
1+ρ
1−ρ
√

1− ϑ+ 1
2

√
2(1−2ϑ)

1+ρ − (1−ϑ)
(1−ρ)2

)2
, and

h5(ϑ) =


( 5+3|ρ|

1−|ρ|
)
(1− ϑ), if

√
1−2ϑ
1−ϑ ≥

3−4|ρ|−3ρ2

(1−|ρ|)

√
1+|ρ|
5+3|ρ| ,

1
(1−|ρ|)2

(√ 1+|ρ|
1−|ρ|

√
1− ϑ+

√
1−|ρ|
1+|ρ|

√
1− 2ϑ

)2
, if

√
1−2ϑ
1−ϑ ≤

(1+|ρ|)(1−2|ρ|)
1−|ρ| ,

h6(ϑ) other wise,

h6(ϑ) =


√

1− 2ϑ

1− ρ2
+

1−2|ρ|
1−|ρ|

√
1−2ϑ
1−ρ2 +

√[( 1−2|ρ|
1−|ρ|

)2
+ 1−|ρ|

1+|ρ|
]
(1− ϑ)− 1−2ϑ

(1+|ρ|)2

(1− |ρ|)
[( 1−2|ρ|

1−|ρ|
)2

+ 1−|ρ|
1+|ρ|

]


2

.

Note that the phase curves of Lasso are given in Theorem 2 by setting η = ρ. We compare SCAD
with Lasso. When ρ < 0, the upper phase curve in Theorem 3 is strictly lower than that of Lasso (see
Figure 3, middle and right panels). When ρ ≥ 0, the upper phase curve in Theorem 3 is sometimes
higher than that of Lasso. Note that we restrict a < 2

1−|ρ| in Theorem 3. In fact, a larger a may be
preferred for ρ ≥ 0. The next proposition is about using an optimal a.

Proposition 2. In the SCAD estimator, we choose a = a∗ and λ =
√

2q∗ log(p) such that (a∗, q∗) =
(a∗(ϑ, r, ρ), q∗(ϑ, r, ρ)) minimize the rates of convergence of the expected Hamming error among all
choices of (a, q). Let U∗(ϑ) be the resulting upper phase curve for SCAD. Then, U(ϑ) = ULasso(ϑ)
when ρ ≥ 0, and U(ϑ) < ULasso(ϑ) when ρ < 0.

The phase curves of SCAD are insensitive to the choice of a. When a < 0, the optimal a∗ can be any
value in (2, 2

1−|ρ| ). When ρ ≥ 0, there exists a constant c = c(ϑ, ρ) such that the optimal a∗ is any
value in (c,∞). As a → ∞, the SCAD penalty reduces to the L1-penalty. This explains why the
phase curve of SCAD is the same as that of Lasso when ρ ≥ 0.
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Figure 4: Comparison of the phase diagrams of thresholded Lasso and Lasso.

3.3 THRESHOLDED LASSO

Let β̂Lasso be the Lasso estimator in (2). The thresholded Lasso estimator β̂TL is obtained by applying
coordinate-wise hard-thresholding to the Lasso estimator:

β̂TL
j = β̂Lasso · 1{|β̂Lasso| > t}, 1 ≤ j ≤ p. (8)

Theorem 4 (Thresholded Lasso). Under Models (1), (3), and (4), let β̂TL be the thresholded Lasso
estimator in (8). Let λ =

√
2q log(p) and t =

√
2w log(p) with the ideal (q, w) that minimize the

exponent of the expected Hamming error. The phase curves are given by L(ϑ) = ϑ, and

U(ϑ) =

{
max {h1(ϑ), h2(ϑ)} , when ρ ≥ 0,

max {h1(ϑ), h2(ϑ), h3(ϑ)} , when ρ < 0,

where h1(ϑ) = (1 +
√

1− ϑ)2, h2(ϑ) = 4(1−ϑ)
1−ρ2 , and h3(ϑ) =

(
1 + 1+|ρ|

2

√
1−ϑ
1−ρ2 + 1−|ρ|

2

√
1−2ϑ
1−ρ2

)2
.

See Figure 4 for a comparison with Lasso (a special case of t = 0). With the flexibility of using an
optimal t, the phase diagram of thresholded Lasso is always better than that of Lasso.

Theorem 4 also gives other interesting facts about thresholded Lasso. First, the shape of phase curves
is much less affected by the sign of ρ. This differs from Lasso, Elastic net, and SCAD, for which the
shape of phase curves is significantly different for positive and negative ρ. Second, the optimal λ in
thresholded Lasso is considerably smaller than the optimal λ in Lasso (it can be seen from the proofs
of Theorem 4 and Theorem 2). This is because the λ in thresholded Lasso only serves to control false
negatives, but the λ in Lasso is used to simultaneously control false positives and false negatives,
hence, cannot be too small. We observe the same phenomenon in simulations; see Section 4.

3.4 FORWARD SELECTION AND FORWARD BACKWARD SELECTION

Forward selection is a classical textbook method for variable selection. Write X = [x1, x2, . . . , xp],
where xi ∈ Rn for 1 ≤ i ≤ p. For any subset A ⊂ {1, 2, . . . , p}, let P⊥A be the projection onto the
orthogonal complement of the linear space spanned by {xi : i ∈ A}. Given a threshold t > 0, the
forward selection algorithm initializes with S0 = ∅ and r̂0 = y. At the kth iteration, compute

i∗ = argmaxi/∈Sk−1
|x′ir̂k−1|, δ = |x′i∗ r̂k−1|/‖P⊥Sk−1

xi∗‖.

If δ > t, compute Sk = Sk−1 ∪ {i∗} and r̂k = P⊥Sky; otherwise, output β̂forward as the least-squares
estimator restricted to Sk−1. The stopping rule of δ ≤ t is equivalent to measuring the decrease of
the residual sum of squares. The following theorem is proved in the supplemental material:

Theorem 5 (Forward Selection). Under Models (1), (3), and (4), let β̂forward be the estimator from
forward selection. Let t =

√
2q log(p) with the ideal q that minimizes the exponent of the expected

Hamming error. The phase curves are given by L(ϑ) = ϑ, and

U(ϑ) =

{
max {h1(ϑ), h2(ϑ), h3(ϑ)} , when ρ ≥ 0,

max {h1(ϑ), h2(ϑ), h3(ϑ), h4(ϑ)} , when ρ < 0,

with h1(ϑ)=(1+
√

1− ϑ)2, h2(ϑ) = 2(1−ϑ)
1−|ρ| , h3(ϑ) = (1+

√
1−2ϑ)2

1−ρ2 , h4(ϑ) =
(√

1−2ϑ
2(1−|ρ|) + 1

1−|ρ|
)2

.
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Figure 5: The phase diagrams of forward selection and forward backward selection.

Forward backward selection (FB) modifies forward selection by allowing to drop variables. We use
the FB algorithm in Huang et al. (2016), where the backward step is conducted after all the forward
steps are finished. For a threshold v > 0, it applies entry-wise thresholding on β̂forward:

β̂FB
j = β̂forward

j · 1{|β̂forward
j | > v}, 1 ≤ j ≤ p. (9)

Theorem 6 (Forward Backward Selection). Under Models (1), (3), and (4), let β̂FB be the estimator
from forward selection. Let t =

√
2q log(p) and v =

√
2u log(p) with the ideal (q, u) that minimize

the exponent of the expected Hamming error. When ρ ≥ 0, the phase curves are given by L(ϑ) = ϑ,
and

U(ϑ) = max {h1(ϑ), h2(ϑ), h∗3(ϑ)} ,

where h1(ϑ) and h2(ϑ) are the same as in Theorem 5 and h∗3(ϑ) = (
√

1−ϑ+
√

1−2ϑ)2

1−ρ2 . When ρ < 0,

U(ϑ) ≤ max {g1(ϑ), g2(ϑ), g3(ϑ), g4(ϑ)} ,

where g1(ϑ) = (vmin(ϑ) +
√

1− ϑ)2, g2(ϑ) = 2(1−ϑ)
1−|ρ| , g3(ϑ) =

(√
1−2ϑ
1−ρ2 + vmin(ϑ)

)2
, g4(ϑ) =(√

1−2ϑ
2(1−|ρ|) + tmin(ϑ)

1−|ρ|
)2

, vmin(ϑ) = max
{

1,
√

1−ϑ
1−ρ2

}
, and tmin(ϑ) = max

{√
2

2 ,
vmin(ϑ)

1+|ρ|/
√

1−ρ2

}
.

Theorem 6 gives U(ϑ) for ρ ≥ 0 and an upper bound of it for ρ < 0. Combining it with Theorems 2
and 5, we conclude that the upper phase curve of FB is always better than those of Lasso and forward
selection (for ρ < 0, the upper bound here is already better than U(ϑ) for the other two methods).

We remark that we did obtain the exact phase curve for ρ < 0 in the proof of Theorem 6. It is just too
complicated and space-consuming to present it in the main text. However, given specific values of
(ϑ, ρ), we can always plot the exact phase curve using the (complicated) formulas in the supplement.
In Figures 1 and 5, the phase curves of FB are indeed the exact ones.

3.5 CONNECTION TO THE RANDOM DESIGN MODEL

Consider the random design as mentioned in Section 1. The minimax Hamming error isH∗(ϑ, r, ρ) =

inf β̂ E[H(β̂, β)], where the infimum is taken over all methods β̂ and the expectation is with respect
to the randomness of (X,β, z). We can define H∗(ϑ, r, ρ) in the same way for our current model
(4). The minimax Hamming error is related to the statistical limit of the model setting, but not any
specific method. The next theorem shows that, when n � sp = p1−ϑ (we allow both p ≤ n and
p > n), the convergence rate of the minimax Hamming error is the same under two models.
Theorem 7. Under Models (1) and (3), suppose X is independent of (β, z) and its rows are iid
generated from N (0, n−1Σ), with Σ having the same form as G in (4). Suppose n = pω, with
ω > 1−ϑ (note: this allows ω < 1, which corresponds to n� p). There exists a number h∗∗(ϑ, r, ρ)
such that the minimax Hamming error satisfies that H∗(ϑ, r, ρ) = Lpp

1−h∗∗(ϑ,r,ρ). Furthermore, if
we instead have X ′X = Σ (i.e., model (4)), then it also holds that H∗(ϑ, r, ρ) = Lpp

1−h∗∗(ϑ,r,ρ).

4 SIMULATIONS

In Experiments 1-3, (n, p) = (1000, 300). In Experiment 4, (n, p) = (500, 1000).
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Experiment 1 (block-wise diagonal designs). We generate (X,β) as in (3)-(4). For each method,
we select the ideal tuning parameters that minimize the average Hamming error over 50 repetitions.
The averaged Hamming errors and its standard deviations under the ideal tuning parameters over 500
repetitions are reported below. The results are consistent with the theoretical phase diagrams (see
Figure 1). E.g., thresholded Lasso and forward backward selection are the two methods that perform
the best; Lasso is more unsatisfactory when ρ < 0; SCAD improves Lasso when ρ < 0.

ρ ϑ r Lasso ThresLasso ElasticNet SCAD Forward FoBackward
0.5 0.1 1.5 11.57 (3.59) 10.48 (3.34) 11.57 (3.31) 11.72 (3.33) 14.88 (4.12) 13.35 (3.90)
0.5 0.1 4 1.00 (1.00) 0.42 (0.65) 1.03 (1.00) 1.00 (0.96) 0.66 (0.84) 0.51 (0.73)
-0.5 0.1 1.5 35.62 (5.09) 15.62 (4.06) 35.48 (5.64) 25.87 (5.04) 19.48 (4.61) 14.82 (3.82)

Table 1: Experiment 1 (block-diagonal designs). (n, p) = (1000, 300).

Experiment 2 (general designs). In the Toeplitz design, we let (X ′X)i,j = 0.7|i−j| and set (ϑ, r) =
(0.1, 2.5). In the factor model design, we let X ′X = BB′ − diag(BB′) + Ip, where entries of
B ∈ Rp×2 are iid from Unif(0, 0.6), and set (ϑ, r) = (0.1, 1.5). Same as in Experiment 1, we use
the ideal tuning parameters. The averaged Hamming errors and its standard deviations are reported
below. The Toeplitz design is a setting where each variable is only highly correlated with a few other
variables. The factor model design is a setting where a variable is (weakly) correlated with all the
other variables. The results are quite similar to those in Experiment 1. This confirms that the insight
gained in the study of the block-wise diagonal design continues to apply to more general designs.

design Lasso ThresLasso ElasticNet SCAD Forward FoBackward
Toeplitz 47.15 (6.32) 22.02 (5.31) 47.40 (6.41) 24.61 (5.70) 30.77 (6.18) 22.93 (5.44)

Factor model 21.14 (4.52) 15.90 (3.87) 21.20 (4.45) 19.68 (4.23) 20.04 (4.34) 16.13 (3.76)

Table 2: Experiment 2 (general designs). (n, p) = (1000, 300).

Experiment 3 (tuning parameters). Fix (ϑ, r) = (0.1, 1.5) and ρ ∈ {±0.5} in the block-wise
diagonal design. We study the effect of tuning parameters in Lasso, thresholded Lasso (ThreshLasso),
forward selection (ForwardSelect), and forward backward selection (FB). In (a)-(b), we show the
heatmap of averaged Hamming error (over 50 repetitions) of ThreshLasso for a grid of (t, λ); when
t = 0, it reduces to Lasso. In (c)-(d), we show the Hamming error of FB for a grid of (v, t); when
v = 0, it reduces to ForwardSelect. Cyan points are theoretically optimal tuning parameters (formulas
are in proofs of theorems). Red points are empirically optimal tuning parameters that minimize the
averaged Hamming error. The theoretical tuning parameter values are quite close to the empirically
optimal ones. Moreover, the optimal λ in ThreshLasso is smaller than the optimal λ in Lasso.
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Figure 6: Experiment 3 (effects of tuning parameters). In all plots, cyan points are computed from the
formulas in our theory, and red points are the empirically best tuning parameters (they minimize the
average Hamming error over 500 repetitions). In (a)-(b), the cyan/red points with t = 0 correspond
to Lasso, and the other two are for thresholded Lasso. In (c)-(d), the cyan/red points with t = 0
correspond to forward selection, and the other two are for forward backward selection.

Experiment 4 (p > n and random designs). Fix (n, p, ϑ, r) = (500, 1000, 0.5, 1.5). We simulate
data from the random design setting in Theorem 7. We study the average Hamming error over 500
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repetitions (tuning parameters are set in the same way as in Experiment 1). See Table 3. We have
some similar observations as before: e.g., ThreshLasso and FoBackward are still the best two,

ρ ϑ r Lasso ThresLasso ElasticNet SCAD Forward FoBackward
0.5 0.5 1.5 16.02 (5.52) 9.83 (4.08) 13.92 (5.12) 15.98 (6.28) 11.74 (5.55) 9.84 (4.93)
-0.5 0.5 1.5 18.49 (6.03) 10.50 (4.23) 15.18 (5.64) 18.12 (6.00) 12.00 (5.67) 10.41 (5.03)

Table 3: Experiment 4 (p > n and random designs).

5 CONCLUSION

Most papers on variable selection focus on one method and study its properties in a relatively broad
setting. In contrast, we focus on a relatively narrow setting but study a variety of different methods.
Our motivation is to facilitate a direct comparison of main-stream approaches for variable selection.
Although the model we use seems idealized, by varying the parameters, it already accommodates
many different combinations of sparsity level, signal strength, and design correlation level. Under
this model, we derive tractable forms of the Hamming error and phase diagram for each method, and
we make notable discoveries out of these theoretical results.
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A SKETCH OF THE PROOF IDEAS

We use a similar proof idea for every main theorem, which we explain as follows. To obtain the phase
diagram, the key is deriving the rate of convergence of the expected Hamming error E[H(β̂, β)]. Let

FPp =

p∑
j=1

P(βj = 0, β̂j 6= 0), and FNp =

p∑
j=1

P(βj = τp, β̂j = 0). (10)

By definition,
E[H(β̂, β)] = FPp + FNp.

Suppose j is in the diagonal block {j, j + 1} of the Gram matrix G. For most methods (except for
forward selection and forward backward selection, which we discuss separately), it is easy to see that
β̂j does not depend on any other βi with i /∈ {j, j + 1}. It follows that

P(βj = 0, β̂j 6= 0) = P(βj = 0, βj+1 = 0, β̂j 6= 0) + P(βj = 0, βj+1 = τp, β̂j 6= 0)

= (1− εp)2 P
(
β̂j 6= 0

∣∣βj = 0, βj+1 = 0
)

+ (1− εp)εp · P
(
β̂j 6= 0

∣∣βj = 0, βj+1 = τp
)

= Lp P00(β̂j 6= 0) + Lpp
−ϑ P01(β̂j 6= 0),

where P00 is the conditional probability conditioning on (βj , βj+1) = (0, 0) and P01 is the conditional
probability conditioning on (βj , βj+1) = (0, τp). Similarly, we can derive

P(βj = τp, β̂j = 0) = Lpp
−ϑ P10(β̂j = 0) + Lpp

−2ϑ P11(β̂j = 0),

where P10 is the conditional probability conditioning on (βj , βj+1) = (τp, 0) and P11 is the condi-
tional probability conditioning on (βj , βj+1) = (τp, τp). When p is even, by symmetry in this design,
the above expressions do not change with j. When p is odd, this is true except for j = p; however,
this single j has a negligible effect on the expected Hamming error. We thus have

E[H(β̂, β)] = Lpp · P00(β̂j 6= 0) + Lpp
1−ϑ · P01(β̂j 6= 0)

+Lpp
1−ϑ · P10(β̂j = 0) + Lpp

1−2ϑ · P11(β̂j = 0). (11)

It remains to study the probabilities in (11). Let ỹj = x′jy/
√

2 log(p) and ỹj+1 = x′j+1y/
√

2 log(p).
For most methods considered in this paper, β̂j is determined by (ỹj , ỹj+1) only. Define

R = {(h1, h2) ∈ R2 : (ỹj , ỹj+1) = (h1, h2) implies that β̂j 6= 0}. (12)

Write ỹ = (ỹ1, ỹ2)′. Then, we can re-write (11) as

E[H(β̂, β)] = Lpp · P00(ỹ ∈ R) + Lpp
1−ϑ · P01(ỹ ∈ R)

+Lpp
1−ϑ · P10(ỹ /∈ R) + Lpp

1−2ϑ · P11(ỹ /∈ R). (13)

In the settings of interest in this paper, conditioning on each realization of (βj , βj+1), it can be shown
that

ỹ ∼ N2

(
µ,

1

2 log(p)
Σ
)
, for some fixed µ ∈ R2 and Σ ∈ R2×2.

For any x ∈ R2 and S ⊂ R2, define

d2
Σ(x, S) = inf

v∈S

{
(x− v)′Σ−1(x− v)

}
. (14)

We apply Lemma 6.1 in Ke et al. (2020) to get that, as p→∞, (Lp denotes a multi-log(p) term; see
Section 3 or the notations below)

P(ỹ ∈ R) = Lpp
−d2

Σ(µ,R), P(ỹ /∈ R) = Lpp
−d2

Σ(µ,Rc). (15)

Combining (15) with (13), we can get the rate of convergence of the expected Hamming error, if we
calculate the following quantities:

• The setR (we call it “rejection region”). The rejection region depends on the definition of
the method and the choice of tuning parameters.
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• The distances dΣ(µ,R) and dΣ(µ,Rc). Note that (µ,Σ) depend on the realization of
(βj , βj+1). Therefore, we need to calculate (µ,Σ) for each of the four possible realizations.

In the remaining of this supplemental material, we prove Theorems 2-6 and Proposition 1-2. For each
theorem, the proof can be divided into three parts:

(a) Derive the rejection regionR.

(b) Apply (13)-(15) to calculate the rate of convergence of E[H(β̂, β)].

(c) Calculate the phase diagram based on the result from (b).

Throughout the proof, we use Lp to denote a generic multi-log(p) term, which satisfies that Lppε →
∞ and Lpp−ε → 0 for any ε > 0. We also frequently use the notation:

Definition 1. For ρ ∈ (−1, 1) and u, v ∈ R2, define dρ(u, v) > 0 by d2
ρ(u, v) = (u1− v1)2 + (u2−

v2)2 − 2ρ(u1 − v1)(u2 − v2).

In our proofs, we also frequently calculate the infimum of d2
ρ(u, v), for v a line in R2. The following

lemma is very useful. Its proof is elementary and thus omitted.
Lemma A.1. Fix ρ ∈ (−1, 1). Given real numbers A,B,C such that AB 6= 0, consider a con-
strained optimization over x = (x1, x2) that minimizes d2

ρ(x, (0, 0)) = x2
1 + x2

2 − 2ρx1x2 subject to

the constraint Ax1 + Bx2 + C = 0. The solution is x∗1 = −C(A+ρB)
A2+B2+2ρAB and x∗2 = −C(B+ρA)

A2+B2+2ρAB ,
and the objective function evaluated at x∗ = (x∗1, x

∗
2) is

d2
ρ(x
∗, (0, 0)′) =

C2(1− ρ2)

A2 +B2 + 2ρAB
.

B PROOF OF THEOREM 2 (ELASTIC NET)

As described in Section A, our proof has three parts: (a) deriving the rejection region, (b) obtaining
the rate of convergence of E[H(β̂, β)], and (c) calculating the phase diagram.

Part 1: Deriving the rejection region. Recall that the rejection region R is as defined in (12).
Write h1 = x′jy/

√
2 log(p), h2 = x′j+1y/

√
2 log(p), and λ =

√
2q log(p). Consider a bivariate

Elastic net problem, where (b̂1, b̂2) minimizes

L(b) ≡ 1

2
b′
[
1 ρ
ρ 1

]
b+ b′h+

√
q‖b‖1 +

1

2
µ‖b‖2. (16)

It is seen that (β̂j , β̂j+1) =
√

2 log(p)(b̂1, b̂2). Hence,R consists of all values of h such that b̂1 6= 0.

Fix ρ ≥ 0. The next lemma gives the explicit solution to (16) in the case of h1 > |h2|. It is proved in
Section B.1.
Lemma B.1 (Solution path of Elastic net). Consider the optimization in (16). Suppose h1 > |h2| ≥ 0.
Write η = ρ/(1 + µ).

• When
√
q ≥ h1, we have b̂1 = b̂2 = 0.

• If h2 ≥ ηh1, when h2−ηh1

1−η ≤ √q < h1, we have b̂1 =
h1−
√
q

1+µ , and b̂2 = 0;

When
√
q < h2−ηh1

1−η , we have

b̂1 =

h1−
√
q

1+µ − η
h2−
√
q

1+µ

1− η2
, b̂2 =

h2−
√
q

1+µ − η
h1−
√
q

1+µ

1− η2
;

• if h2 < ηh1, when −h2+ηh1

1+η ≤ √q < h1, we have b̂1 =
h1−
√
q

1+µ , and b̂2 = 0;

14
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When
√
q < −h2+ηh1

1+η , we have

b̂1 =

h1−
√
q

1+µ − η
h2+
√
q

1+µ

1− η2
, b̂2 =

h2+
√
q

1+µ − η
h1−
√
q

1+µ

1− η2
.

We now use Lemma B.1 to deriveR. Partition R2 into 4 non-overlapping regions:

M1 = {(h1, h2) : h1 > |h2|}, M2 = {(h1, h2) : h1 < −|h2|},
M3 = {(h1, h2) : h2 > |h1|}, M4 = {(h1, h2) : h2 < −|h1|}.

First, we deriveR∩M1. By Lemma B.1, as
√
q decreases from∞ to 0, b̂1 is initially zero and then

becomes positive when
√
q hits h1 (second bullet point of this lemma). Then, if we further decrease

√
q, the value of b̂1 is always increasing (third bullet point of this lemma) and remains positive.

Therefore,
√
q < h1 is the sufficient and necessary condition for b̂1 to be nonzero. It follows that

R∩M1 = M1 ∩ {(h1, h2) : h1 >
√
q}.

Second, we considerR∩M2. Note that (h1, h2) ∈ R ∩M2 if and only if (−h1,−h2) ∈ R ∩M1.
Additionally, if we simultaneously flip the sign of (h1, h2, b1, b2), the objective in (16) is unchanged.
It follows that

R∩M2 = {(h1, h2) : (−h1,−h2) ∈ R ∩M1}.
Next, we derive R ∩M3. Note that (h1, h2) ∈ M3 if and only if (h2, h1) ∈ M1. Moreover, if we
swap (h1, b1) with (h2, b2), the objective in (16) is unchanged. Hence, we can obtain R ∩M3 as
follows: We first find the collection of (h1, h2) ∈ R ∩M1 such that b̂2 6= 0, and then switch the two
coordinates h1 and h2 to getR∩M3. To this end, by Lemma B.1, for (h1, h2) ∈ R∩M1, b̂2 6= 0 if
either h2 − ηh1 >

√
q(1− η) or h2 − ηh1 < −

√
q(1 + η). It follows that, for (h1, h2) ∈ R ∩M3,

b̂1 6= 0 if either h1 − ηh2 >
√
q(1− η) or h1 − ηh2 < −

√
q(1 + η). It implies that

R∩M3 = M3 ∩
(
{(h1, h2) : h1 − ηh2 >

√
q(1− η)} ∪ {(h1, h2) : h1 − ηh2 < −

√
q(1 + η)}

)
.

Last, we obtainR∩M4 by

R∩M4 = {(h1, h2) : (−h1,−h2) ∈ R ∩M3}.

Combining the above results gives

R = {(h1, h2) : h1 − ηh2 >
√
q(1− η), h1 >

√
q}

∪ {(h1, h2) : h1 − ηh2 >
√
q(1 + η)} ∪ {(h1, h2) : h1 − ηh2 < −

√
q(1 + η)}

∪ {(h1, h2) : h1 − ηh2 < −
√
q(1− η), h1 < −

√
q}. (17)

See Figure 7 for a visualization of the rejection region (recall that η = ρ/(1 + µ)).

Figure 7 only depicts the rejection region for ρ ≥ 0. For ρ < 0, we can similarly draw the rejection
region, but it is not necessary for the proof of this theorem. In Part 2, we will see that, by carefully
utilizing the symmetry in our problem, we can derive the rate of convergence of the Hamming error
for ρ < 0 without deriving the rejection region directly.

Part 2. Analyzing the Hamming error. We aim to use (13)-(15) to derive the rate of convergence
of E[H(β̂, β)]. Recall that ỹ1 = x′jy/

√
2 log(p) and ỹ2 = x′j+1y/

√
2 log(p). It is easy to see that

ỹ ∼ N2(µ, 1
2 log(p)Σ), where the covariance matrix Σ is the 2× 2 matrix with 1 in the diagonal and

ρ in the off-diagonal, and the vector µ is equal to

µ00 =

[
0
0

]
, µ01 =

[
ρ
√
r√
r

]
, µ10 =

[ √
r

ρ
√
r

]
, µ11 =

[
(1 + ρ)

√
r

(1 + ρ)
√
r

]
,

when (βj , βj+1) takes the value of (0, 0), (0, τp), (τp, 0), and (τp, τp), respectively. By (13)-(15),
E[H(β̂, β)] = FPp + FNp, where

FPp = Lpp
1−d2

Σ(µ00,R) + Lpp
1−ϑ−d2

Σ(µ01,R),

FNp = Lpp
1−ϑ−d2

Σ(µ10,Rc) + Lpp
1−2ϑ−d2

Σ(µ11,Rc). (18)
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Figure 7: The rejection region of Elastic net for ρ ≥ 0.

It suffices to calculate dΣ(µ00,R), dΣ(µ01,R), dΣ(µ10,Rc), and dΣ(µ11,Rc).

First, consider the case of ρ ≥ 0. The expression ofR is given explicitly in (17). By the definition in
(14) and Definition 1, for any S ⊂ R2 and µ /∈ S,

d2
Σ(µ, S) =

1

1− ρ2
inf
ξ∈S

d2
ρ(µ, ξ). (19)

If S can be expressed as the interaction and union of finitely many half-planes, then the point ξ∗ that
attains the infimum must be on the boundary line of one of these half-planes. We thus only need to
calculate:

(i) infξ∈L d
2
ρ(µ, ξ) for the boundary line L of each half-plane in the definition of S (with

verification that the tangent point on L is achievable on the boundary);

(ii) d2
ρ(µ, ζ) for each point ζ that is a vertex of S (i.e., the intersection of two boundary lines).

For (i), we apply the formula given in Lemma A.1. For (ii), we apply Definition 1 directly. These
calculations give a finite collection of values. In (i), the ξ∗ that attains the infimum may not belong to
S; if that happens, we delete it from the collection. Finally, infξ∈S d

2
ρ(µ, ξ) is the minimum of the

values in this collection.

Since R and Rc can be expressed via the interaction and union of finitely many half-planes, we
follow the above routine to calculate the desired quantities. Take dΣ(µ01,R) for example. Recall that
µ01 = (ρ

√
r,
√
r). By (19), it suffices to calculate infξ∈R d

2
ρ(µ01, ξ). The regionR has 6 boundary

lines, but since ρ ≥ 0, the infimum can only be attained in either of three cases:

• on the line L1 : h1 − ηh2 =
√
q(1− η);

• on the line L2 : h1 =
√
q;

• on the the vertex v∗ = (
√
q,
√
q)′, which is an intersection of L1 ∩ L2.

Let x = (x1, x2)′ = (h1− ρ
√
r, h2−

√
r)′. We can re-write L1 as a line L′1 for x, which expression

is x1− ηx2 = (1− η)
√
q− (ρ− η)

√
r. Similarly, we can re-write L2 as a line L′2: x1 =

√
q− ρ

√
r.
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We apply Lemma A.1 to get

inf
ξ∈L1

d2
ρ(µ01, ξ) = inf

x∈L′1
d2
ρ(x, (0, 0)′) =

[
(1− η)

√
q − (ρ− η)

√
r
]2

(1− ρ2)

1 + η2 − 2ρη
,

inf
ξ∈L2

d2
ρ(µ01, ξ) = inf

x∈L′2
d2
ρ(x, (0, 0)′) = (

√
q − ρ

√
r)2(1− ρ2),

d2
ρ(µ01, v

∗) = d2
ρ

(
(
√
q,
√
q)′, (ρ

√
r,
√
r)′
)

≡ (
√
q − ρ

√
r)2 + (

√
q −
√
r)2 − 2ρ(

√
q − ρ

√
r)(
√
q −
√
r)2.

The value of infξ∈R d
2
ρ(µ01, ξ) is the minimum of the above three values. In fact, the distance dρ

is related to the size of an ellipsoid that centers at (ρ
√
r,
√
r)′ and hits the boundary of R. As

√
r

increases from zero, the center of this ellipsoid moves upwards on the line of h1 = ρh2. Consequently,
the minimum of the above three values is initially (i) infξ∈L2 d

2
ρ(µ01, ξ) when

√
r is appropriately

small, then (ii) d2
ρ(µ01, v

∗) when
√
r is moderately large, and finally (iii) infξ∈L1 d

2
ρ(µ01, ξ) when√

r is sufficiently large; see Figure 7. We now figure out the range of
√
r for each of the three cases.

Recall that v∗ = (
√
q,
√
q)′. Let ξ∗ = (ξ∗1 , ξ

∗
2)′ be the vector that attains infξ∈L2 d

2
ρ(µ01, ξ). We

have an explicit expression of ξ∗ from Lemma A.1. By equating it with v∗, we can solve the critical
value of

√
r at which case (i) transits to case (ii):

√
q = v∗2 = ξ∗2 =

√
r + ρ(

√
q − ρ

√
r) =⇒

√
r =

√
q

1 + ρ
.

Similarly, let ξ̃∗ = (ξ̃∗1 , ξ̃
∗
2)′ be the vector that attains infξ∈L1 d

2
ρ(µ01, ξ). By equating ξ̃∗ with v∗, we

can solve the critical value of
√
r at which case (ii) transits to case (iii):

√
q = v∗2 = ξ̃∗2 =

√
r +

[
(1− η)

√
q − (ρ− η)

√
r
]
(ρ− η)

1 + η2 − 2ρη
=⇒

√
r =

1 + η

1 + ρ

√
q.

We combine the above results to get

inf
ξ∈R

d2
ρ(µ01, ξ) =


(1− ρ2)(

√
q − ρ

√
r)2

+, if
√
r ≤ 1

1+ρ

√
q,

d2
ρ

(
(
√
q,
√
q)′, (ρ

√
r,
√
r)′
)
, if 1

1+ρ

√
q <
√
r ≤ 1+η

1+ρ

√
q,

(1−ρ2)
1+η2−2ρη [(1− η)

√
q − (ρ− η)

√
r]2+, if

√
r > 1+η

1+ρq.

(20)

Recall that η = ρ/(1 + µ) is a shorthand notation. We plug (20) into (19), and then we insert it into
(18). This gives the second term in FPp. We can follow the same routine to derive every term in FPp
and FNp. We omit the details but summarize the results in Theorem 8 below.

Next, consider the case of ρ < 0. We re-parametrize the linear model by replacing (xj+1, βj+1) with
(−xj+1,−βj+1). After this re-parametrization, the (j, j + 1) block of the Gram matrix is a 2 × 2
matrix Σ whose off-diagonal entries are −ρ = |ρ|. The rejection region is defined by the solution
path of (16) associated with |ρ| > 0. This allows us to use the expression in (17) directly with a
simple replacement of ρ by |ρ|. There is no need to re-calculate the rejection region for a negative ρ.

Let ỹ1 = x′jy/
√

2 log(p) and ỹ2 = x′j+1y/
√

2 log(p). We still have ỹ ∼ N2(µ, 1
2 log(p)Σ). How-

ever, the four realizations of (βj , βj+1) become (0, 0), (0,−τp), (τp, 0), and (τp,−τp). Therefore,
the mean vectors µ have changed to

µ00 =

[
0
0

]
, µ01 =

[
−|ρ|
√
r

−
√
r

]
, µ10 =

[
−
√
r

−|ρ|
√
r

]
, µ11 =

[
(1− |ρ|)

√
r

−(1− |ρ|)
√
r

]
.

Similar to (18), it suffices to calculate dΣ(µ00,R), dΣ(µ01,R), dΣ(µ10,Rc), and dΣ(µ11,Rc).
Here R is the same as in Figure 7, but the locations of the µ vectors have changed. Since R is
centrosymmetric, dΣ(µ00,R), dΣ(µ01,R), and dΣ(µ10,Rc) are actually the same as before. We
only need to re-calculate d2

Σ(µ11,Rc). The calculation routine is the same as that for (20). We omit
the details but present the results directly in the theorem below.

To summarize, in this part, we have proved the following theorem:
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Theorem 8. Suppose the conditions of Theorem 2 hold. Let λ =
√

2q log(p) in Elastic net. Write
η = ρ/(1 + µ). As p→∞,

FPp = Lpp
1−min

{
q, ϑ+f1(

√
r,
√
q)
}
, FNp = Lpp

1−min
{
ϑ+f2(

√
r,
√
q), 2ϑ+f3(

√
r,
√
q)
}
,

where (below, d2
|ρ|(u, v) is as in Definition 1)

f1(
√
r,
√
q) =


(
√
q − |ρ|

√
r)2

+, if
√
r ≤ 1

1+|ρ|
√
q,

1
1−ρ2 · d2

|ρ|
(
(
√
q,
√
q)′, (|ρ|

√
r,
√
r)′
)
, if 1

1+|ρ|
√
q <
√
r ≤ 1+|η|

1+|ρ|
√
q,

[(1−|η|)√q−(|ρ|−|η|)
√
r]2+

1+η2−2|ρ||η| , if
√
r ≥ 1+|η|

1+|ρ|
√
q,

f2(
√
r,
√
q) = min

{
(
√
r −√q)2

+,
[(1− ρη)

√
r − (1− |η|)√q]2+

1 + η2 − 2ρη

}
,

f3(
√
r,
√
q) =

(1− η)2[(1 + ρ)
√
r −√q]2+

1 + η2 − 2ρη
.

Part 3. Calculating the phase diagram. By Theorem 8, the Hamming error is FPp + FNp =

Lpp
1−h(q;ϑ,r), where

h(q;ϑ, r) = min
{

min
{
q, ϑ+ f1(

√
r,
√
q)
}
, min

{
ϑ+ f2(

√
r,
√
q), 2ϑ+ f3(

√
r,
√
q)
}}
. (21)

To calculate the phase diagram, we need to find q∗ that maximizes h(q;ϑ, r) and then investigate the
conditions on (r, ϑ) such that h(q∗;ϑ, r) > 1 or ϑ < h(q∗;ϑ, r) < 1 or h(q∗;ϑ, r) ≤ ϑ.

We first prove that r = ϑ is the boundary between the Regions of Almost Full Recovery and No
Recovery, i.e., the boundary separating ϑ < h(q∗;ϑ, r) < 1 and h(q∗;ϑ, r) ≤ ϑ.

When r < ϑ, we need to show h(q;ϑ, r) ≤ ϑ, ∀ q. If q ≤ ϑ, then h(q;ϑ, r) ≤ q ≤ ϑ. If
q > ϑ, then we look at f2(

√
r,
√
q): Now we have 0 ≤ f2(

√
r,
√
q) ≤ (

√
r − √q)2

+ = 0. Thus
h(q;ϑ, r) ≤ ϑ+ f2(

√
r,
√
q) = ϑ.

When r > ϑ, we can always find suitable q to make h(q∗;ϑ, r) ≥ h(q;ϑ, r) > ϑ. It is left for
later discussion whether h(q∗;ϑ, r) is greater than 1. In fact, such q can be any value satisfying
max{ϑ, ( |ρ|−|η|1−|η| )2r} < q < r, which always exists because |ρ|−|η|1−|η| < 1. Since r > q, we know
f2(
√
r,
√
q) and f3(

√
r,
√
q) are strictly positive from their definition; since (1− |η|)√q > (|ρ| −

|η|)
√
r, we also know f1(

√
r,
√
q) > 0. Since all four components of h(q;ϑ, r) in (21) is greater

than ϑ, we have the desired result.

To sum up the discussion so far, we have shown that r = ϑ is the curve separating the regions of
ϑ < h(q∗;ϑ, r) < 1 and h(q∗;ϑ, r) ≤ ϑ.

For the rest of Part 3, we try to find the boundary between h(q∗;ϑ, r) > 1 and ϑ < h(q∗;ϑ, r) < 1.

We need an important fact about such boundary, not only for the proof of Elastic net but also for all
other methods. Recall the definition of FPp and FNp in (18), and we actually have the general form

FPp = Lpp
1−min

{
d2

Σ(µ00,R), ϑ+d2
Σ(µ01,R)

}
, FNp = Lpp

1−min
{
ϑ+d2

Σ(µ10,Rc), 2ϑ+d2
Σ(µ11,Rc)

}
,

and

h(q;ϑ, r) = min
{

min
{
d2

Σ(µ00,R), ϑ+d2
Σ(µ01,R)

}
, min

{
ϑ+d2

Σ(µ10,R), 2ϑ+d2
Σ(µ11,R)

}}
.

As an important fact, we always have the following relationship at the boundary:

min
{
d2

Σ(µ00,R), ϑ+ d2
Σ(µ01,R)

}
= min

{
ϑ+ d2

Σ(µ10,R), 2ϑ+ d2
Σ(µ11,R)

}
= 1 (22)

This is because: First, at the boundary r = r(ϑ) , we must always have h(q∗;ϑ, r(ϑ)) = 1; otherwise,
since h(q;ϑ, r) is continuous in (q, r) for fixed ϑ, it would contradict the definition of the boundary
itself. Second, the exponents of FPp and FNp has to be equal. This is because if we change the tuning
parameters for fixed (ϑ, r), it can only enlarge or shrink the rejection regionR, and thus the effects
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on FPp and FNp would always be in the opposite directions. As a result, if the exponents of FPp
and FNp are not equal at the boundary, we can change the tuning parameters to make h(q;ϑ, r) > 1.

With the important fact, we can proceed our discussion. By the definition of h(q;ϑ, r) in (21), it gives
us 2× 2 = 4 cases respectively for ρ > 0 and ρ < 0. We discuss them one by one and summarise
the results when the full phase curves are complete. For brevity, we also denote λ′ =

√
q for the rest

of Part 3.

When ρ > 0, we have four cases.

First, if λ′2 = ϑ+ f2(
√
r, λ′) = 1 and ϑ+ f1(

√
r, λ′) ≥ 1, 2ϑ+ f4(

√
r, λ′) ≥ 1: we have λ′ = 1.

From ϑ+ f2(
√
r, λ′) = 1, we know

√
r = max

{
1 +
√

1− ϑ,
√

1 + η2 − 2ρη

1− ρη
√

1− ϑ+
1− η
1− ρη

}
.

We also know from ϑ+ f1(
√
r, λ′) ≥ 1, that since

√
r > λ′ = 1,

√
r ≤ 1−η

ρ−η −
√

1+η2−2ρη

ρ−η
√

1− ϑ;

from 2ϑ+ f4(
√
r, λ′) ≥ 1, that

√
r ≥
√

1+η2−2ρη

(1−η)(1+ρ)

√
1− 2ϑ+ 1

1+ρ .

After roughly interpreting the requirements, we make two points: (i) we always have√
1 + η2 − 2ρη

1− ρη
√

1− ϑ+
1− η
1− ρη

≥
√

1 + η2 − 2ρη

(1− η)(1 + ρ)

√
1− 2ϑ+

1

1 + ρ
(23)

and thus the requirement from 2ϑ + f4(
√
r, λ′) ≥ 1 is loose. This can be proven by showing

1−η
1−ρη ≥

1
1+ρ and

√
1+η2−2ρη

1−ρη ≥
√

1+η2−2ρη

(1−η)(1+ρ) respectively. (ii) Actually, we can eliminate the

curve
√
r =

√
1+η2−2ρη

1−ρη
√

1− ϑ + 1−η
1−ρη from this step, without using the requirement from 2ϑ +

f4(
√
r, λ′) ≥ 1. (As a result, the same proof holds for the corresponding case of ρ < 0.) This is

because if we put together
√

1+η2−2ρη

1−ρη
√

1− ϑ+ 1−η
1−ρη > 1 +

√
1− ϑ√

1+η2−2ρη

1−ρη
√

1− ϑ+ 1−η
1−ρη ≤

1−η
ρ−η −

√
1+η2−2ρη

ρ−η
√

1− ϑ

we will have no solution. To be more specific, the first inequality gives us
√

1− ϑ >
η(1−ρ)√

1+η2−2ρη−1+ρη
, and the second equation will eventually give us

√
1− ϑ ≤ (1+η)(1−ρ)

(1+ρ)
√

1+η2−2ρη
.

However, the upper and lower bounds on
√

1− ϑ admits no solution, because we can prove
η(1−ρ)√

1+η2−2ρη−1+ρη
≥ (1+η)(1−ρ)

(1+ρ)
√

1+η2−2ρη
jusy by simplifying it for a few steps.

To sum up, the first case gives us
√
r = 1 +

√
1− ϑ with the requirement

√
r ≤ 1−η

ρ−η −√
1+η2−2ρη

ρ−η
√

1− ϑ.

Second, if q = 2ϑ+ f4(
√
r, λ′) = 1 and ϑ+ f1(

√
r, λ′) ≥ 1, ϑ+ f2(

√
r, λ′) ≥ 1, we will need

√
r =

√
1 + η2 − 2ρη

(1− η)(1 + ρ)

√
1− 2ϑ+

1

1 + ρ

while requiring
√
r ≥ max

{
1 +
√

1− ϑ,
√

1+η2−2ρη

1−ρη
√

1− ϑ+ 1−η
1−ρη

}
. We know this is impossi-

ble from Equation (23). No curve is produced in this case.

Third, if ϑ + f1(
√
r, λ′) = ϑ + f2(

√
r, λ′) = 1, and λ′ ≥ 1, 2ϑ + f3(

√
r, λ′) ≥ 1, we will know

from ϑ+ f2(
√
r, λ′) = 1 that

√
r = max

{
λ′ +

√
1− ϑ,

√
1 + η2 − 2ρη

1− ρη
√

1− ϑ+ λ′
1− η
1− ρη

}
.

We can use the same method as in the first point of the first case to show that 2ϑ+ f3(
√
r, λ′) ≥ 1 is

loose with λ′ ≥ 1 .
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Now the curve seems to have two choices, but the latter one is actually impossible. When
√
r =√

1+η2−2ρη

1−ρη
√

1− ϑ+ λ′ 1−η
1−ρη , we have{√

r = λ′ 1−ηρ−η −
√

1+η2−2ρη

ρ−η
√

1− ϑ =

√
1+η2−2ρη

1−ρη
√

1− ϑ+ λ′ 1−η
1−ρη

λ′ ≥ 1

which implies λ′ =
(1+ρ)

√
1+η2−2ρη

√
1−ϑ

(1−ρ)(1+η) ≥ 1. We can eliminate this case now, without considering

the requirement of 2ϑ+f3(
√
r, λ′) ≥ 1, because with such λ′ ≥ 1,

√
1+η2−2ρη

1−ρη
√

1− ϑ+λ′ 1−η
1−ρη ≥

λ′ +
√

1− ϑ cannot hold. To see this, we can compare
√

1+η2−2ρη

1−ρη
√

1− ϑ + λ′ 1−η
1−ρη ; cancelling

out “
√

1− ϑ”, we have√
1 + η2 − 2ρη

1− ρη
− 1 ≥ η(1− ρ)

1− ρη
· (1 + ρ)

√
1 + η2 − 2ρη

(1− ρ)(1 + η)

Simplifying this for a few steps, and we will arrive at “
√

1 + η2 − 2ρη ≥ 1 + η” which gives a
contradiction.

We can only have one case, where λ′ +
√

1− ϑ is greater:{√
r = λ′ 1−ηρ−η −

√
1+η2−2ρη

ρ−η
√

1− ϑ = λ′ +
√

1− ϑ
λ′ ≥ 1

To sum up, the third case gives us the curve
√
r =

[
1−η
1−ρ +

√
1+η2−2ρη

1−ρ

]√
1− ϑ with the require-

ment λ′ =

[
ρ−η
1−ρ +

√
1+η2−2ρη

1−ρ

]√
1− ϑ ≥ 1.

Fourth, if ϑ + f2(
√
r, λ′) = 2ϑ + f3(

√
r, λ′) = 1 and λ′ ≥ 1, ϑ + f1(

√
r, λ′) ≥ 1, we have the

same contradiction as the second case, that√
1 + η2 − 2ρη

(1− η)(1 + ρ)

√
1− 2ϑ+

λ′

1 + ρ
≥
√

1 + η2 − 2ρη

1− ρη
√

1− ϑ+ λ′
1− η
1− ρη

cannot hold.

Summarising the cases of positive correlation,, we have two curves:
√
r = 1 +

√
1− ϑ

√
r =

[
1− η
1− ρ

+

√
1 + η2 − 2ρη

1− ρ

]
√

1− ϑ

and the intersection point of the two curves is exactly at
[
ρ−η
1−ρ +

√
1+η2−2ρη

1−ρ

]√
1− ϑ = 1 so the

two curves can be summarised as taking the maximum.

When ρ < 0, we also have four cases.

First, if λ′2 = ϑ+ f2(
√
r, λ′) = 1 and ϑ+ f1(

√
r, λ′) ≥ 1, 2ϑ+ f4(

√
r, λ′) ≥ 1: We already know

from the same proof when the correlation is positive, that
√
r = 1 +

√
1− ϑ is the only admissible

curve. Now we additionally need it to satisfy
√
r ≥

√
1+η2−2ρη

(1+|η|)(1−|ρ|)
√

1− 2ϑ+ 1
1−|ρ| .

Second, if λ′2 = 2ϑ+ f4(
√
r, λ′) = 1 and ϑ+ f1(

√
r, λ′) ≥ 1, ϑ+ f2(

√
r, λ′) ≥ 1, we will need

√
r =

√
1+η2−2ρη

(1+|η|)(1−|ρ|)
√

1− 2ϑ+ 1
1−|ρ| and we need

√
r ≥ 1 +

√
1− ϑ from ϑ+ f2(

√
r, λ′) ≥ 1.

To sum up the first two cases, they give us

√
r = max

{
1 +
√

1− ϑ,
√

1 + η2 − 2ρη

(1 + |η|)(1− |ρ|)
√

1− 2ϑ+
1

1− |ρ|

}
.
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and we need
√
r ≤ 1−|η|

|ρ|−|η| −
√

1+η2−2ρη

|ρ|−|η|
√

1− ϑ from ϑ+ f1(
√
r, λ′) ≥ 1.

Third, if ϑ + f1(
√
r, λ′) = ϑ + f2(

√
r, λ′) = 1, and λ′ ≥ 1, 2ϑ + f3(

√
r, λ′) ≥ 1, we

already know from the same proof when the correlation is positive, that we have only one

curve
√
r =

[
1−|η|
1−|ρ| +

√
1+η2−2ρη

1−|ρ|

]√
1− ϑ. Now we only need to update the requirement from

2ϑ+ f3(
√
r, λ′) ≥ 1, which is

√
r ≥

√
1 + η2 − 2ρη

(1 + |η|)(1− |ρ|)
√

1− 2ϑ+
λ′

1− |ρ|

Plug in λ′ =

[
|ρ|−|η|
1−|ρ| +

√
1+η2−2ρη

1−|ρ|

]√
1− ϑ, it is equivalent to[

1− |η|
1− |ρ|

+

√
1 + η2 − 2ρη

1− |ρ|

]
√

1− ϑ ≥
√

1 + η2 − 2ρη

1− 2|ρ|+ ρη

[√
1− ϑ+

1− |η|
1 + |η|

√
1− 2ϑ

]
where the RHS is another curve which will show up in the next case.

Fourth, if ϑ+ f2(
√
r, λ′) = 2ϑ+ f3(

√
r, λ′) = 1 and λ′ ≥ 1, ϑ+ f1(

√
r, λ′) ≥ 1, we will have the

most tedious case.

It can be implied by ϑ+ f2(
√
r, λ′) = 2ϑ+ f3(

√
r, λ′) = 1 that

λ′
(

1− |η|
|ρ| − |η|

− 1

1− |ρ|

)
=
√

1− ϑ
√

1 + η2 − 2ηρ

|ρ| − |η|
+
√

1− 2ϑ

√
1 + η2 − 2ηρ

(1 + |η|)(1− |ρ|)
When 1 + ρη− 2|ρ| ≤ 0, the equation admits no solution, because the coefficient of λ′ is not positive.
In this case, if we look back at the curve in the second case FP1 = FN2, we will notice that√

1 + η2 − 2ρη

(1 + |η|)(1− |ρ|)
√

1− 2ϑ+
1

1− |ρ|
≤ 1− |η|
|ρ| − |η|

−
√

1 + η2 − 2ρη

|ρ| − |η|
√

1− ϑ

has no solution either. As a result, when 1 + ρη− 2|ρ| ≤ 0, there is simply no Exact Recovery region
in ϑ ∈ (0, 1

2 ).

When 1 + ρη − 2|ρ| > 0, we can proceed to solve for λ′ and then
√
r:

λ′ =

√
1 + η2 − 2ρη

1− 2|ρ|+ ρη

[
(1− |ρ|)

√
1− ϑ+

|ρ| − |η|
1 + |η|

√
1− 2ϑ

]
√
r =

√
1 + η2 − 2ρη

1− 2|ρ|+ ρη

[√
1− ϑ+

1− |η|
1 + |η|

√
1− 2ϑ

]
For all the requirements from λ′ ≥ 1 and ϑ + f1(

√
r, λ′) ≥ 1, we actually need λ′ ≥ 1 and

√
r ≥ max

{
λ′ +

√
1− ϑ,

√
1+η2−2ρη

1−ρη
√

1− ϑ+ λ′ 1−|η|1−ρη

}
.

The requirement λ′ ≥ 1 is actually√
1 + η2 − 2ρη

1− 2|ρ|+ ρη

[√
1− ϑ+

1− |η|
1 + |η|

√
1− 2ϑ

]
≥
√

1 + η2 − 2ρη

(1 + |η|)(1− |ρ|)
√

1− 2ϑ+
1

1− |ρ|
and
√
r ≥ λ′ +

√
1− ϑ is actually√

1 + η2 − 2ρη

1− 2|ρ|+ ρη

[√
1− ϑ+

1− |η|
1 + |η|

√
1− 2ϑ

]
≥

[
1− |η|
1− |ρ|

+

√
1 + η2 − 2ρη

1− |ρ|

]
√

1− ϑ.

So we can already conclude, that the diagram is

√
r = max

{
1 +
√

1− ϑ,

[
1− |η|
1− |ρ|

+

√
1 + η2 − 2ρη

1− |ρ|

]
√

1− ϑ,√
1 + η2 − 2ρη

(1 + |η|)(1− |ρ|)
√

1− 2ϑ+
1

1− |ρ|
,

√
1 + η2 − 2ρη

(1− 2|ρ|+ ρη)+

[√
1− ϑ+

1− |η|
1 + |η|

√
1− 2ϑ

]}
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However, we are left with one last constraint
√

1+η2−2ρη

1−2|ρ|+ρη

[√
1− ϑ+ 1−|η|

1+|η|
√

1− 2ϑ
]
≥

√
1+η2−2ρη

1−ρη
√

1− ϑ + λ′ 1−|η|1−ρη . It is actually loose, but the proof may be tedious (and unimpor-
tant). We just need to prove that when 1− 2|ρ|+ ρη > 0 and

λ′ =

√
1 + η2 − 2ρη

1− 2|ρ|+ ρη

[
(1− |ρ|)

√
1− ϑ+

|ρ| − |η|
1 + |η|

√
1− 2ϑ

]
≥ 1,

we always have λ′ +
√

1− ϑ ≥
√

1+η2−2ρη

1−ρη
√

1− ϑ+ λ′ 1−|η|1−ρη , which is equivalent to

(1− |ρ|)
√

1 + η2 − 2ρη

1− 2|ρ|+ ρη

√
1− ϑ+

|ρ| − |η|
1 + |η|

√
1 + η2 − 2ρη

1− 2|ρ|+ ρη

√
1− 2ϑ ≥

√
1 + η2 − 2ρη − (1− ρη)

|η|(1− |ρ|)
√

1− ϑ

We first look at one sufficient condition,
√

1+η2−2ρη−(1−ρη)

|η|(1−|ρ|) ≤ 1 By simplifying this inequality, we

get
√

1 + η2 − 2ρη ≤ 1+|η|−2ρη. The RHS is positive, because: (i) If |ρ| ≤ 0.5, 1+|η|(1−2|ρ|) >
0; (ii) If |ρ| > 0.5, recall 1 − 2|ρ| + ρη > 0 =⇒ |η| ≥ 2|ρ|−1

|ρ| =⇒ 1 + |η|(1 − 2|ρ|) ≥

1 − (2|ρ|−1)2

|ρ| ≥ 0 for |ρ| ≥ 0.5. Then we can equare both sides and proceed, and finally getting
ηρ ≤ 1

2 .

As a result, when ρη ≤ 1
2 , we already have a sufficient condition for what we want to prove. When

ρη > 1
2 , we look at another sufficient condition:

We only need to prove another sufficient condition, by looking at the coefficients of
√

1− ϑ,

(1− |ρ|)
√

1 + η2 − 2ρη

1− 2|ρ|+ ρη
≥
√

1 + η2 − 2ρη − (1− ρη)

η(1− |ρ|)
which is equivalent to verifying

(1− |η| − 2|ρ|+ 3ηρ− |η|ρ2)
√

1 + η2 − 2ρη ≤ (1− ρη)(1− 2|ρ|+ ρη)

It is elementary mathematics that (RHS − LHS) is always positive as a function of (|ρ|, |η|) under
ρη ≥ 1

2 , 1− 2|ρ|+ ρη > 0 and 0 < |η| < |ρ|.
Summarising the cases of negative correlation: The diagram is

√
r = max

{
1 +
√

1− ϑ,

[
1− |η|
1− |ρ|

+

√
1 + η2 − 2ρη

1− |ρ|

]
√

1− ϑ,√
1 + η2 − 2ρη

(1 + |η|)(1− |ρ|)
√

1− 2ϑ+
1

1− |ρ|
,

√
1 + η2 − 2ρη

(1− 2|ρ|+ ρη)+

[√
1− ϑ+

1− |η|
1 + |η|

√
1− 2ϑ

]}
B.1 PROOF OF LEMMA B.1

Recall the optimization in (16); the solution b = (b1, b2) has to set the sub-gradient of the objective
function to zero. As a result, the equation of the sub-gradient for b = (b1, b2) is:[

1 ρ
ρ 1

] [
b1
b2

]
+
√
q

[
sgn(b1)
sgn(b2)

]
+ µ

[
b1
b2

]
=

[
h1

h2

]
Now we begin to find out the solution path. Fixing µ, we decrease

√
q from a sufficiently large value

to see when the variables enter the model. We assume h1 > 0 and 0 < |h2| < h1. Other cases can be
computed in a similar way.

Stage 1: When
√
q is so large that neither of (xj , xj+1) is in the model[

1 ρ
ρ 1

] [
0
0

]
+
√
q

[
sgn(0)
sgn(0)

]
+ µ

[
0
0

]
=

[
h1

h2

]
,

it requires
√
q ≥ √q1 = max{|h1|, |h2|} = h1.

Stage 2: When
√
q crosses

√
q1 = h1, we assert that variable xj has to enter the model, while xj+1

does not. This is because:
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• b1 has to be positive. If it is negative, we have b1 −
√
q + µ · 2b1 = h1, which implies b1

has the same sign as h1 +
√
q > 0, which is a contradition.

• b2 cannot enter the model at this point. Otherwise, we have (1 + µ)b2 +
√
q sgn(b2) = h2,

for |h2| <
√
q < h1. Considering the sign of b2, we have a contradition.

So b1 has to enter the model as a positive number. Now the equation is[
1 ρ
ρ 1

] [
b1
0

]
+
√
q

[
1

sgn(0)

]
+ µ

[
b1
0

]
=

[
h1

h2

]
Thus b1 =

h1−
√
q

1+µ and ρb1 +
√
q sgn(0) = h2. Since sgn(0) ∈ [−1, 1], we need

|h2 −
ρ

1 + µ
h1 +

ρ

1 + µ

√
q| ≤ √q (24)

By discussing the sign of the content of the absolute value as
√
q decreases, we have the following

two cases:

Stage 3, Case 1: When h2 > ηh1 (recall we define η = ρ
1+µ as a shorthand), and

√
q crosses

√
q2 = h2−ηh1

1−η , then xj+1 enters the model and b2 is positive. This is because Equation (24) is now

h2 − ηh1 + η
√
q ≤ √q; as

√
q =
√
q2 = h2−ηh1

1−η , the sub-gradient of |b2| is taking the value of
1 ∈ sgn(0), so b2 has to enter the model as a positive number.

In this case, we solve [
1 ρ
ρ 1

] [
b1
b2

]
+
√
q

[
1
1

]
+ µ

[
b1
b2

]
=

[
h1

h2

]
and get

b1 =

h1−
√
q

1+µ − η
h2−
√
q

1+µ

1− η2
, b2 =

h2−
√
q

1+µ − η
h1−
√
q

1+µ

1− η2
.

Stage 3, Case 2: When h2 < ηh1, and
√
q crosses

√
q2 = ηh1−h2

1+η , xj+1 enters the model and b2 is
negative. This is because reviewing Equation 24, we always have h2 − ηh1 + η

√
q <
√
q, and thus

when
√
q is small enough to make |h2 − ηh1 + η

√
q| = √q, it has to be −h2 + ηh1 − η

√
q =
√
q.

As a result, when
√
q crosses

√
q2 = ηh1−h2

1+η , b2 enters the model as a negative number. Solving[
1 ρ
ρ 1

] [
b1
b2

]
+
√
q

[
1
−1

]
+ µ

[
b1
b2

]
=

[
h1

h2

]
we have

b1 =

h1−
√
q

1+µ − η
h2+
√
q

1+µ

1− η2
, b2 =

h2+
√
q

1+µ − η
h1−
√
q

1+µ

1− η2
.

C PROOF OF PROPOSITION 1 (MARGINAL REGRESSION)

Proposition 1 is about the connection of Elastic net to Lasso and marginal regression.

To prove the assertion about Lasso, we only need to quote the results from the Corollary 4.2 of Ke
et al. (2020) on the phase curves of Lasso. In fact, the phase curves of Lasso can be exactly obtained
by setting µ = 0 in Theorem 2. As µ decreases from some positive value to zero, the curves in
Theorem 2 just converges downwards to the phase curves of Lasso.

To prove the assertion about marginal regression, we need to fully study the variable selection method
based on marginal regression, which we will be devoted to for the rest of this section.

Definition 2. Marginal regression refers to the variable selection method which ranks all the
variabels according to {|X ′y|j : j ∈ [p]} and sets some cutoff point t for the ranking. Then the
variables {j ∈ [p] : |X ′y|j > t} is selected.
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Soft-thresholded marginal regression behaves the same as Definition 2 in terms of variable selection.

Remark 1. If we focus on (1 + µ)β̂EN, then Lasso and soft-thresholded marginal regression are
just two limits of µ = 0 and µ =∞, in terms of the solution and its path, the shape of the rejection
region, and phase curves.

As described in Section A, our proof still consists of three parts: (a) deriving the rejection region, (b)
obtaining the rate of convergence of E[H(β̂, β)], and (c) calculating the phase diagram.

Part 1: Deriving the rejection region. According to Definition 2, the variable selection based on
marginal regression can be decomposed to every correlated pair of variables, (xj , xj+1). It directly
thresholds (x′jy, x

′
j+1y) with t, and if we divide (x′jy, x

′
j+1y, t) with

√
2 log(p), it is equivalent to

thresholding h1 = x′jy/
√

2 log(p), h2 = x′j+1y/
√

2 log(p) with t′ = t/
√

2 log(p).

The solution path of marginal regression is very straight forward, so we present it in Lemma 1 without
proof.

Lemma 1 (the solution path of marginal regression). The definition of (h1, h2, b̂1, b̂2) follows from
that of Lemma B.1, and we still assume h1 > |h2| ≥ 0. The solution path of marginal regression
defined in 2 can be describes as:

1. When t′ ≥ h1, we have b̂1 = b̂2 = 0.

2. When |h2| ≤ t′ < h1, we have b̂1 6= 0 and b̂2 = 0.

3. When t < |h2|, we have b̂1 6= 0 and b̂2 6= 0.

We now use Lemma 1 to derive the rejection regionR of marginal regression. Recall thatR is the
set of h = (h1, h2)′ such that b̂1 6= 0. In fact, the same procedure of Elastic net can be copied here,
except that the specific behavior of the variable selection method is different. Lemma 1 tells us it is
just

R = {(h1, h2) : h1 > t′} ∪ {(h1, h2) : h1 < −t′} (25)

Part 2. Analyzing the Hamming error. The first steps of analysing Elastic net applies here as
well, and we just need to compute dΣ(µ00,R), dΣ(µ01,R), dΣ(µ10,Rc), and dΣ(µ11,Rc) given
the different shape ofR. Then we can compute

FPp = Lpp
1−min

{
d2

Σ(µ00,R), ϑ+d2
Σ(µ01,R)

}
, FNp = Lpp

1−min
{
ϑ+d2

Σ(µ10,Rc), 2ϑ+d2
Σ(µ11,Rc)

}
.

Finally E[H(β̂, β)] = FPp + FNp = Lpp
1−h(t′;ϑ,r).

Theorem 9. Under the conditions of Theorem 2, let t = t′
√

2 log(p) in marginal regression defined
in 2. As p→∞,

FPp = Lp · p1−min{t′2, ϑ+(t′−|ρ|
√
r)2

+}

FNp = Lp · p1−min{ϑ+(
√
r−t′)2

+, 2ϑ+[(1+ρ)
√
r−t′]2+}

Part 3. Calculating the phase diagram. By Theorem 9, the Hamming error is FPp + FNp =

Lpp
1−h(t′;ϑ,r), where

h(t′;ϑ, r) = min
{

min
{
t′2, ϑ+(t′−|ρ|

√
r)2

+

}
, min

{
ϑ+(
√
r− t′)2

+, 2ϑ+[(1+ρ)
√
r− t′]2+

}}
.

(26)

The first steps of the proof of Elastic net can also be applied directly. We still try to find t′∗ that
maximizes h(t′;ϑ, r) and then investigate the conditions on (r, ϑ) such that h(t′∗;ϑ, r) > 1 or
ϑ < h(t′∗;ϑ, r) < 1 or h(t′∗;ϑ, r) ≤ ϑ.

We can still prove that r = ϑ is the boundary between the Regions of Almost Full Recovery and
No Recovery, i.e., the boundary separating ϑ < h(q∗;ϑ, r) < 1 and h(q∗;ϑ, r) ≤ ϑ. The proof just
needs slight modification to the proof of Elastic net.
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For the rest of Part 3, we try to find the boundary between the Regions of Exact Recovery and Almost
Full Recovery, i.e., the boundary separating h(t′∗;ϑ, r) > 1 and ϑ < h(t′∗;ϑ, r) < 1. We can still
leverage the important fact that Equation 22 holds at the boundary:

min
{
t′2, ϑ+ (t′ − |ρ|

√
r)2

+

}
= min

{
ϑ+ (

√
r − t′)2

+, 2ϑ+ [(1 + ρ)
√
r − t′]2+

}
= 1

The above equation still gives us 2× 2 = 4 cases respectively for ρ > 0 and ρ < 0. We discuss them
one by one and summarise the results when the full phase curves are complete.

When ρ > 0, we set out to prove the final phase diagram is

√
r = max

{
1 +
√

1− ϑ, 2

1− ρ
√

1− ϑ
}

First, if t′2 = ϑ+ (
√
r − t′)2

+ = 1 and ϑ+ (t′ − |ρ|
√
r)2

+ ≥ 1, 2ϑ+ [(1 + ρ)
√
r − t′]2+ ≥ 1, then

t′ = 1 and
√
r = 1 +

√
1− ϑ.

We also need to meet two requirements:
√
r ≤ 1−

√
1−ϑ
ρ from ϑ + (t′ − |ρ|

√
r)2

+ ≥ 1 and
√
r ≥

1+
√

1−2ϑ
1+ρ from 2ϑ+ [(1 + ρ)

√
r − t′]2+ ≥ 1. The second requirement is not restrictive, and the first

one is equivalent to
√

1− ϑ ≤ 1−ρ
1+ρ .

Second, if t′2 = 2ϑ+[(1+ρ)
√
r−t′]2+ = 1 and ϑ+(

√
r−t′)2

+ ≥ 1, ϑ+(t′−|ρ|
√
r)2

+ ≥ 1, then we
have no admissible curve. This is because

√
r = 1+

√
1−2ϑ

1+ρ and it is required that
√
r ≥ 1 +

√
1− ϑ

by ϑ+ (
√
r − t′)2

+ ≥ 1. It gives us no admissible
√
r.

Summarising the first two cases, we have only one curve
√
r = 1 +

√
1− ϑ under the constraint√

1− ϑ ≤ 1−ρ
1+ρ .

Third, if ϑ + (t′ − |ρ|
√
r)2

+ = ϑ + (
√
r − t′)2

+ = 1, and t′ ≥ 1, 2ϑ + [(1 + ρ)
√
r − t′]2+ ≥ 1, the

equality gives us
√
r = 2

1−ρ
√

1− ϑ and t′ = 1+ρ
1−ρ
√

1− ϑ. We are also required to have t′ ≥ 1 and
√
r ≥

√
1−2ϑ
1+ρ +

√
1−ϑ

1−ρ (not restrictive).

Fourth, if ϑ + (t′ − |ρ|
√
r)2

+ = 2ϑ + [(1 + ρ)
√
r − t′]2+ = 1, and t′ ≥ 1, ϑ + (

√
r − t′)2

+ ≥ 1,
then we have no admissible curve. In fact, the equality gives us

√
r = t′−

√
1−ϑ
ρ = t′+

√
1−2ϑ

1+ρ ,
t′ = ρ

√
1− 2ϑ+ (1 + ρ)

√
1− ϑ. We are also required to have

√
r ≥ t′ +

√
1− ϑ⇔

√
1− 2ϑ ≥

1+ρ
1−ρ
√

1− ϑ, which gives a contradition.

Summarising the last two cases, we have only one curve
√
r = 2

1−ρ
√

1− ϑ under the constraint√
1− ϑ ≥ 1−ρ

1+ρ .

Summarising the cases of positive correlation, we have proven the phase diagram is
√
r =

max
{

1 +
√

1− ϑ, 2
1−ρ
√

1− ϑ
}

.

When ρ < 0, we then prove that the phase diagram is

√
r = max

{
1 +
√

1− ϑ, 2

1− |ρ|
√

1− ϑ,
√

1− ϑ+
√

1− 2ϑ

1− 2|ρ|
,

1 +
√

1− 2ϑ

1− |ρ|

}
First, if t′2 = ϑ+ (

√
r − t′)2

+ = 1 and ϑ+ (t′ − |ρ|
√
r)2

+ ≥ 1, 2ϑ+ [(1− |ρ|)
√
r − t′]2+ ≥ 1, then

t′ = 1 and
√
r = 1 +

√
1− ϑ.

We also have two requirements,
√
r ≤ 1−

√
1−ϑ
|ρ| and

√
r ≥ 1+

√
1−2ϑ

1−|ρ| . We have studied the first one

when ρ > 0, and know it is 1 +
√

1− ϑ ≥ 2
1−|ρ|

√
1− ϑ. The RHS of the second requirement is

actually a new curve we will see later.

Second, if t′2 = 2ϑ+ [(1− |ρ|)
√
r− t′]2+ = 1 and ϑ+ (t′ − |ρ|

√
r)2

+ ≥ 1, ϑ+ (
√
r− t′)2

+ ≥ 1, we
have

√
r = 1+

√
1−2ϑ

1−|ρ| and
√
r ≤ 1−

√
1−ϑ
|ρ| ,

√
r ≥ 1 +

√
1− ϑ..
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Summarising the first two cases, we have
√
r = max

{
1 +
√

1− ϑ, 1+
√

1−2ϑ
1−|ρ|

}
and we need

√
r ≤

1−
√

1−ϑ
|ρ| .

Third, if ϑ + (t′ − |ρ|
√
r)2

+ = ϑ + (
√
r − t′)2

+ = 1 and t′ ≥ 1, 2ϑ + [(1 − |ρ|)
√
r − t′]2+ ≥ 1,

then
√
r = 2

1−|ρ|
√

1− ϑ, and the two other requirements are t′ = 1+|ρ|
1−|ρ|

√
1− ϑ ≥ 1 and

√
r ≥

√
1−2ϑ

1−|ρ| + 1+|ρ|
(1−|ρ|)2

√
1− ϑ.

In the next case, we will get another curve
√
r =

√
1−ϑ+

√
1−2ϑ

1−2|ρ| . In the above inequalities, the last

one corresponds to 2
1−|ρ|

√
1− ϑ ≥

√
1−ϑ+

√
1−2ϑ

1−2|ρ| . t′ = 1+|ρ|
1−|ρ|

√
1− ϑ ≥ 1 in the above inequalities

is just 1 +
√

1− ϑ ≤ 2
1−|ρ|

√
1− ϑ.

Fourth, if ϑ+ (t′ − |ρ|
√
r)2

+ = 2ϑ+ [(1− |ρ|)
√
r− t′]2+ = 1 and t′ ≥ 1, ϑ+ (

√
r− t′)2

+ ≥ 1, then
we know from the equality that

√
r =

t′ −
√

1− ϑ
|ρ|

=
t′ +
√

1− 2ϑ

1− |ρ|

and we will get this when we solve for t′:

t′

|ρ|
− t′

1− |ρ|
=

√
1− 2ϑ

1− |ρ|
+

√
1− ϑ
|ρ|

.

If |ρ| ≥ 1
2 , this equation admits no positive solution for t′. Recall that in the first and second cases,

we also needed
√
r ≤ 1−

√
1−ϑ
|ρ| and

√
r ≥ 1+

√
1−2ϑ

1−|ρ| in the cases of FP1 being tight. When |ρ| ≥ 1
2 ,

1+
√

1−2ϑ
1−|ρ| ≤ 1−

√
1−ϑ
|ρ| has no solution either, so there cannot be any curve in the interval 0 < ϑ < 1

2 .

if |ρ| < 1
2 , we can proceed to have the two requirements:{

t′ = 1
1−2|ρ|

[
|ρ|
√

1− 2ϑ+ (1− |ρ|)
√

1− ϑ
]
≥ 1

√
r =

√
1−ϑ+

√
1−2ϑ

1−2|ρ| ≥ |ρ|
1−2|ρ|

√
1− 2ϑ+ 2−3|ρ|

1−2|ρ|
√

1− ϑ

In the above inequalities,
√
r =

√
1−ϑ+

√
1−2ϑ

1−2|ρ| ≥ |ρ|
1−2|ρ|

√
1− 2ϑ + 2−3|ρ|

1−2|ρ|
√

1− ϑ is equivalent

to
√

1−ϑ+
√

1−2ϑ
1−2|ρ| ≥ 2

1−|ρ|
√

1− ϑ. The requirement on t′ is equivalent to
√
r =

√
1−ϑ+

√
1−2ϑ

1−2|ρ| ≥
1+
√

1−2ϑ
1−|ρ| .

Summarising the cases of negative correlation: The final phase diagram is

√
r = max

{
1 +
√

1− ϑ, 2

1− |ρ|
√

1− ϑ,
√

1− ϑ+
√

1− 2ϑ

1− 2|ρ|
,

1 +
√

1− 2ϑ

1− |ρ|

}
When ρ ≤ − 1

2 ,
√
r has no finite value for ϑ ∈ (0, 1/2), and we do not have Region of Exact Recovery

or h(t′;ϑ, r) > 1 at all.

D PROOF OF THEOREM 3 (SCAD)

As described in Section A, our proof for SCAD still consists of three parts: (a) deriving the rejection
region, (b) obtaining the rate of convergence of E[H(β̂, β)], and (c) calculating the phase diagram.

Before starting, we first recall the definition of SCAD. An alternative way to write the derivative of
the penalty function is:

q′(θ) =


λ · sgn(θ) if |θ| < λ
aλ−θ
a−1 · sgn(θ) if λ < |θ| < aλ

0 if |θ| > aλ

(27)

for θ ∈ R, a > 2λ > 0.
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Part 1: Deriving the rejection region. Just like the first steps of Elastic net, we define
h = (h1, h2)′ ∈ R2 where h1 = x′jy/

√
2 log(p), h2 = x′j+1y/

√
2 log(p); λ = λ′

√
2 log(p);

(β̂j , β̂j+1) =
√

2 log(p)(b̂1, b̂2) are the entries of the estimator β̂SCAD corresponding to (xj , xj+1).

The estimator of SCAD is β̂SCAD = argminβ
{
‖y −Xβ‖2/2 +Qλ(β)

}
. Like Elastic net, it can

be decomposed into bivariate sub-problems of each pair of correlated variables. By dividing the
bivariate sub-problem of (xj , xj+1) by

√
2 log(p), we have

L(b) ≡ 1

2
b′
[

1 ρ
ρ′ 1

]
b+ b′h+ λ′(q′(b1) + q′(b2)) (28)

and the minimizer of the optimization (28) is (b̂1, b̂2). The next lemma proves the solution to (28)
when h1 > |h2|, and it is proven in Section D.1.

Lemma 2 (the solution path of SCAD). Consider the optimization in (28). Suppose h1 > |h2|, and
suppose ρ ≥ 0.

• When λ′ ≥ λ′1 = max {|h1|, |h2|}, b̂1 = b̂2 = 0.

• If (ρ− 1
a )h1 < h2 <

{
(ρ+ 1

a )h1 if a > 2
1−ρ

1+ρ
2 h1 if a ≤ 2

1−ρ
,

1. When λ′ < λ′1 and λ′ ≥ |h2 − ρh1|, b̂1 6= 0 and b̂2 = 0.

2. When λ′ < |h2 − ρh1|, b̂1 6= 0 and b̂2 6= 0.

• If a > 2
1−ρ and (ρ+ 1

a )h1 < h2 <
1+ρ

2 h1:

1. When λ′ < λ′1 and λ′ ≥ (a−2)h2−ρ(a−1)h1

a−2−aρ , b̂1 6= 0 and b̂2 = 0.

2. When λ′ < (a−2)h2−ρ(a−1)h1

a−2−aρ , b̂1 6= 0 and b̂2 6= 0.

• If h2 < (ρ− 1
a )h1, ∀ a:

1. When λ′ < λ′1 and λ′ ≥ ρ(a−1)h1−(a−2)h2

a+aρ−2 , b̂1 6= 0 and b̂1 = 0.

2. When λ′ < ρ(a−1)h1−(a−2)h2

a+aρ−2 , b̂1 6= 0 and b̂2 6= 0.

• If h2 ≤ −1+ρ
2 h1 or h2 ≥ 1+ρ

2 h1:

1. When λ′ < λ′1 and λ′ ≥ λ′(2)
2 = |h2−ρh1|

1−ρ , b̂1 6= 0 and b̂1 = 0.

2. When λ′ < λ
′(2)
2 , b̂1 6= 0 and b̂2 6= 0.

We did not require ρ ≥ 0 in the solution path of Elastic net, but here ρ ≥ 0 is needed to cut down
unnecessary discussion. The proof of Elastic net has shown that the solution path of h1 > |h2| and
ρ ≥ 0 is enough to draw the whole rejection region.

Still requiring ρ > 0, the rejection region looks different for a > 2
1−ρ and a ≤ 2

1−ρ . The first steps
are the same as those of Elastic net, and we only present the rejection region here:
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When a ≥ 2
1−ρ :

R = {(h1, h2) : h1 − ρh2 > λ′(1− ρ), h1 > λ′, h1 −
|ρ|(a− 1)

a− 2
h2 > λ′(1− aρ

a− 2
)}

∪ {(h1, h2) : h1 − ρh2 > λ′, h2 > aλ′} ∪ {(h1, h2) : h1 − ρh2 > λ′(1 + ρ)}

∪ {(h1, h2) : h1 −
ρ(a− 1)

a− 2
h2 > λ′(1 +

aρ

a− 2
), h1 − ρh2 > λ′}

∪ {(h1, h2) : −h1 + ρh2 > λ′(1− ρ), h1 < −λ′, −h1 +
|ρ|(a− 1)

a− 2
h2 > λ′(1− aρ

a− 2
)}

∪ {(h1, h2) : −h1 + ρh2 > λ′, h2 < −aλ′} ∪ {(h1, h2) : −h1 + ρh2 > λ′(1 + ρ)}

∪ {(h1, h2) : −h1 +
ρ(a− 1)

a− 2
h2 > λ′(1 +

aρ

a− 2
),−h1 + ρh2 > λ′} (29)

When a ≤ 2
1−ρ :

R = {(h1, h2) : h1 − ρh2 > λ′(1− ρ), h1 > λ′, h1 >
1 + ρ

2
h2}

∪ {(h1, h2) : h1 − ρh2 > λ′, h2 >
2λ′

1− ρ
} ∪ {(h1, h2) : h1 − ρh2 > λ′(1 + ρ)}

∪ {(h1, h2) : h1 −
ρ(a− 1)

a− 2
h2 > λ′(1 +

aρ

a− 2
), h1 − ρh2 > λ′}

∪ {(h1, h2) : −h1 + ρh2 > λ′(1− ρ), h1 < −λ′, h1 <
1 + ρ

2
h2}

∪ {(h1, h2) : −h1 + ρh2 > λ′, h2 < −
2λ′

1− ρ
} ∪ {(h1, h2) : −h1 + ρh2 > λ′(1 + ρ)}

∪ {(h1, h2) : −h1 +
ρ(a− 1)

a− 2
h2 > λ′(1 +

aρ

a− 2
),−h1 + ρh2 > λ′}

(30)

When ρ < 0, we apply the same sign-flipping technique in the proof of Elastic net and still use the
rejection region of positive correlation. Such technique requires considering one more case for ρ < 0,
which is the elliptical distance from the center µ11 = ((1− |ρ|)

√
r,−(1− |ρ|)

√
r) to Rc (plotted

with positive correlation |ρ| > 0).

Part 2. Analyzing the Hamming error. we allow ρ ∈ (−1, 1) from now on. The analysis of
Hamming error follows the same procedure as that of Elastic net. It is only the shape ofR which is
different. For a ≥ 2

1−|ρ| and a ≤ 2
1−|ρ| , we respectively present a theorem for the Hamming error

rate.

Theorem 10. Suppose the conditions of Theorem 3 hold. Let λ = λ′
√

2 log(p) in SCAD. Define a few
important points in the rejection region (as noted in Figure 8): A(λ′, λ′), B((1+ |ρ|)λ′, 2λ′), C((1+
a|ρ|)λ′, aλ′), D((1− |ρ|)λ′,−2λ′). As p→∞,

FPp = Lpp
1−min

{
λ′2, ϑ+f1(

√
r,λ′)

}
, FNp = Lpp

1−min
{
ϑ+f2(

√
r,λ′), 2ϑ+f3(

√
r,λ′)

}
,
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where (below, d2
|ρ|(u, v) is as in Definition 1)

f1(
√
r, λ′) =



(λ′ − |ρ|
√
r)2 if

√
r ≤ λ′

1+|ρ|
1

1−|ρ|2 d
2
|ρ|(A, (|ρ|

√
r,
√
r)) if λ′

1+|ρ| ≤
√
r ≤ λ′

1−|ρ|
1+|ρ|λ

′2 if λ′ ≤
√
r ≤ 2λ′

min{ λ′2

1−ρ2 ,
1

1−ρ2 d
2(B, (|ρ|

√
r,
√
r))} if 2λ′ ≤

√
r ≤ λ′

[
2 + |ρ|−ρ2

(a−2)(1+|ρ|)

]
min

{
λ′2

1−ρ2 ,

[
λ′(1− a|ρ|a−2 )+

|ρ|
√
r

a−2

]2
1+

ρ2(a−1)2

(a−2)2
− 2ρ2(a−1)

a−2

}
if
√
r ≥ λ′

[
2 + |ρ|−ρ2

(a−2)(1+|ρ|)

]

f2(
√
r, λ′) =


min


(
√
r − λ′)2

+
1

1−ρ2

[
(1− ρ2)

√
r − (1− |ρ|)λ′

]
1

1+
ρ2(a−1)2

(a−2)2
− 2ρ2(a−1)

a−2

[
λ′
(

1− a|ρ|
a−2

)
−
√
r ·
(

1− ρ2(a−1)
a−2

)]2 if
√
r ≤ a(a−2)(1−ρ2)+|ρ|

|ρ|(a−1)(1−ρ2) λ′

1
1−ρ2 d

2
|ρ|(C, (

√
r, |ρ|
√
r)) if a(a−2)(1−ρ2)+|ρ|

|ρ|(a−1)(1−ρ2) λ′ ≤
√
r ≤ aλ′

|ρ|
1

1−ρ2

[
(1− ρ2)

√
r − λ′

]2
if
√
r ≥ aλ′

|ρ|

The definition of f3(
√
r, λ′) is different for different signs of ρ. When ρ > 0:

f3(
√
r, λ′) =

1

1− ρ2
·

min

{[
(1− ρ2)

√
r − (1− ρ)λ′

]2
+

h(
√
r, λ′)

if
√
r ≤ aλ′

1+ρ[
(1− ρ2)

√
r − λ′

]2
if
√
r ≥ aλ′

1+ρ

where

h(
√
r, λ′) =


(1−ρ2)

1+
ρ2(a−1)2

(a−2)2
− 2ρ2(a−1)

a−2

[
λ′
(

1− aρ
a−2

)
− (1 + ρ)

√
r ·
(

1− ρ(a−1)
a−2

)]2
if
√
r ≤ λ′

1+ρ ·
a(a−2)(1−ρ2)+ρ

(a−2)(1−ρ2)+ρ−ρ2

d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) if

√
r ≥ λ′

1+ρ ·
a(a−2)(1−ρ2)+ρ

(a−2)(1−ρ2)+ρ−ρ2

When ρ < 0,

f3(
√
r, λ′) =

1

1− ρ2
·


[
(1− ρ2)

√
r − (1 + |ρ|)λ′

]2
if
√
r ≤ 2λ′

1−|ρ|

min

{[
(1− ρ2)

√
r − λ′

]2
k(λ′, a)

if
√
r ≥ 2λ′

1−|ρ|

where

k(λ′, a) =


d2 (D, ((1− |ρ|)

√
r,−(1− |ρ|)

√
r)) if 2λ′

1−|ρ| ≤
√
r ≤ λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
(1−ρ2)

1+
ρ2(a−1)2

(a−2)2
− 2ρ2(a−1)

a−2

[
−λ′

(
1 + a|ρ|

a−2

)
+ (1− |ρ|)

√
r ·
(

1 + |ρ|(a−1)
a−2

)]2
if
√
r ≥ λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
Proof of Theorem 10. See the rejection region in Figure 8 for a visualization of the rejection region.

The ellipsoid centered at the point µ00: Easy to see the rate is Lp · p1−λ′2 .

The ellipsoid centered at the point µ01 : We set out to find out f1(
√
r, λ′). Similar to Lasso,

we have: (i) When
√
r ≤ λ′

1+|ρ| , f1(
√
r, λ′) = (λ′ − |ρ|

√
r)2. (ii) When λ′

1+|ρ| ≤
√
r ≤ λ′,

f1(
√
r, λ′) = 1

1−ρ2 d
2(A, (|ρ|

√
r,
√
r)). The pointA is noted in Figure 8. (iii) When λ′ ≤

√
r ≤ 2λ′,

f1(
√
r, λ′) = 1−|ρ|

1+|ρ|λ
′2.

Then we need to investigate the green segment in Figure 8. When the ellipsoid is tangent to the green
segment on the right side (i.e. BC), and the tangent point is above Point B, then using Lemma A.1,

√
r +
− |ρ|a−2

[
λ′
(

1− a|ρ|
a−2

)
+
√
r · |ρ|a−2

]
1 + ρ2(a−1)2

(a−2)2 − 2ρ2(a−1)
a−2

≥ 2λ′
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䈀

䌀

䐀

Figure 8: When a > 2
1−|ρ| , the rejection region looks like this

which implies
√
r ≥ λ′

[
2 + |ρ|−ρ2

(a−2)(1+|ρ|)

]
When

√
r ≥ λ′

[
2 + |ρ|−ρ2

(a−2)(1+ρ)

]
, the ellipsoid either intersects with the green line segment BC, or

the red segment beyond C. However, we need to eliminate the possibility of the ellipsoid having a
smaller radius when tangent to the segments on the left.

We will see that the line segments on the left can indeed be eliminated. This is because when the
ellipsoid is tangent to both the green lines on the left and right,

(1− ρ2)
[
λ′(1− a|ρ|

a−2 ) + |ρ|
√
r

a−2

]2
1 + ρ2(a−1)2

(a−2)2 − 2ρ2(a−1)
a−2

=
(1− ρ2)

[
−λ′(1 + a|ρ|

a−2 ) + |ρ|
√
r

a−2

]2
1 + ρ2(a−1)2

(a−2)2 − 2ρ2(a−1)
a−2

=⇒ λ′(1− a|ρ|
a− 2

) +
|ρ|
√
r

a− 2
= λ′(1 +

a|ρ|
a− 2

)− |ρ|
√
r

a− 2
=⇒

√
r = aλ
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As a result, when
√
r ≤ aλ, we can ignore the possibility of the ellipsoid intersecting the green or

red segments on the left side. When
√
r ≥ aλ, the right side still has the smaller distance.

when 2λ′ ≤
√
r ≤ λ′

[
2 + |ρ|−ρ2

(a−2)(1+|ρ|)

]
, f1(
√
r, λ′) = 1

1−ρ2 d
2(B, (|ρ|

√
r,
√
r)). The point B is

noted in Figure 8.

when
√
r ≥ λ′

[
2 + |ρ|−ρ2

(a−2)(1+|ρ|)

]
,

f1(
√
r, λ′) =

1

1− ρ2
min

λ′2,
(1− ρ2)

[
λ′(1− a|ρ|

a−2 ) + |ρ|
√
r

a−2

]2
1 + ρ2(a−1)2

(a−2)2 − 2ρ2(a−1)
a−2

 .

The ellipsoid centered at the µ10: We only explain one tricky point: When the tangent point to the
segment BC is precisely Point C,

|ρ|
√
r +
− |ρ|a−2

[
λ′
(

1− a|ρ|
a−2

)
−
√
r ·
(

1− ρ2(a−1)
a−2

)]
1 + ρ2(a−1)2

(a−2)2 − 2ρ2(a−1)
a−2

= aλ′

then
√
r = a(a−2)(1−ρ2)+|ρ|

|ρ|(a−1)(1−ρ2) .

The ellipsoid centered at µ11 = ((1 + ρ)
√
r, (1 + ρ)

√
r), when ρ > 0 : We still explain only one

important point: When the ellipsoid is tangent to the green segment precisely at Point C,

(1 + ρ)
√
r +
− ρ
a−2

[
λ′
(

1− aρ
a−2

)
− (1 + ρ)

√
r ·
(

1− ρ(a−1)
a−2

)]
1 + ρ2(a−1)2

(a−2)2 − 2ρ2(a−1)
a−2

= aλ′

then (1 + ρ)
√
r = a(a−2)(1−ρ2)+ρ

(a−2)(1−ρ2)+ρ−ρ2λ
′.

The ellipsoid centered at µ11 = ((1− |ρ|)
√
r,−(1− |ρ|)

√
r), when ρ < 0 : We explain one

important point: when the ellipsoid is tangent to the green segment at the Point D. Now we have

−(1− |ρ|)
√
r +
− |ρ|a−2

[
λ′
(

1 + a|ρ|
a−2

)
− (1− |ρ|)

√
r ·
(

1 + |ρ|(a−1)
a−2

)]
1 + ρ2(a−1)2

(a−2)2 − 2ρ2(a−1)
a−2

= −2λ′

then (1− |ρ|)
√
r = λ′

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
.

Note that even when 2λ′

1−|ρ| ≤
√
r ≤ λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
, and the ellipsoid intersects

with the rejection region at Point D, it may be tangent to the red segment without being tangent to the
green segment. This is especially true when a < 2 + |ρ|

1−|ρ| (but this only happens when a < 2
1−|ρ| ,

the next section.)

Theorem 11. Suppose the conditions of Theorem 3 hold. Let λ = λ′
√

2 log(p) in SCAD. De-
fine a few important points (as noted in the rejection region in Figure 9): A(λ′, λ′), B((1 +

|ρ|)λ′, 2λ′), C( 1+|ρ|
1−|ρ|λ

′, 2λ′

1−|ρ| ), D((1− |ρ|)λ′,−2λ′). As p→∞,

FPp = Lpp
1−min

{
λ′2, ϑ+f1(

√
r,λ′)

}
, FNp = Lpp

1−min
{
ϑ+f2(

√
r,λ′), 2ϑ+f3(

√
r,λ′)

}
,
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where (below, d2
|ρ|(u, v) is as in Definition 1)

f1(
√
r, λ′) =



(λ′ − |ρ|
√
r)2 if

√
r ≤ λ′

1+|ρ|
1

1−ρ2 d
2(A, (|ρ|

√
r,
√
r)) if λ′

1+|ρ| ≤
√
r ≤ λ′

1−|ρ|
1+|ρ|λ

′2 if λ′ ≤
√
r ≤ 2λ′

min
{

λ′2

1−ρ2 ,
1

1−ρ2 d
2(B, (|ρ|

√
r,
√
r))
}

if 2λ′ ≤
√
r ≤ 5+3|ρ|

2+2|ρ|λ
′

min
{

λ′2

1−ρ2 ,
(1−|ρ|)r
(5+3|ρ|)

}
if
√
r ≥ 5+3|ρ|

2+2|ρ|λ
′

f2(
√
r, λ′) =


min


(
√
r − λ′)2

+
1

1−ρ2

[
(1− ρ2)

√
r − (1− |ρ|)λ′

]2
(1−|ρ|)(2+|ρ|)2

5+3|ρ| r

if
√
r ≤ 5+3|ρ|

(1−|ρ|)(1+|ρ|)2λ
′

1
1−ρ2 d

2(C, (
√
r, |ρ|
√
r)) if 5+3|ρ|

(1−|ρ|)(1+|ρ|)2λ
′ ≤
√
r ≤ 2λ′

|ρ|(1−|ρ|)
1

1−ρ2

[
(1− ρ2)

√
r − λ′

]2
if
√
r ≥ 2λ′

|ρ|(1−|ρ|)

The definition of f3(
√
r, λ′) is different for different signs of ρ. When ρ > 0:

f3(
√
r, λ′) =

1

1− ρ2
·

min

{[
(1− ρ2)

√
r − (1− ρ)λ′

]2
+

h(
√
r, λ′)

if
√
r ≤ 2λ′

1−ρ2[
(1− ρ2)

√
r − λ′

]2
if
√
r ≥ 2λ′

1−ρ2

where

h(
√
r, λ′) =

{
(1−ρ2)2(1+ρ)

5+3ρ r if
√
r ≤ λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ)

d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) if

√
r ≥ λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ)

When ρ < 0,

f3(
√
r, λ′) =

1

1− ρ2
·


[
(1− ρ2)

√
r − (1 + |ρ|)λ′

]2
if
√
r ≤ 2λ′

1−|ρ|

min

{[
(1− ρ2)

√
r − λ′

]2
k(λ′, a)

if
√
r ≥ 2λ′

1−|ρ|

where

k(λ′, a) =


d2 (D, ((1− |ρ|)

√
r,−(1− |ρ|)

√
r)) if 2λ′

1−|ρ| ≤
√
r ≤ λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
(1−ρ2)

1+
ρ2(a−1)2

(a−2)2
− 2ρ2(a−1)

a−2

[
−λ′

(
1 + a|ρ|

a−2

)
+ (1− |ρ|)

√
r ·
(

1 + |ρ|(a−1)
a−2

)]2
if
√
r ≥ λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
Proof of Theorem 11. See the different rejection region in Figure 9.

The ellipsoid centered at µ00: The rate is Lp · p1−λ′2

The ellipsoid centered at µ01: Still similar to Lasso, we have

• when
√
r ≤ λ′

1+|ρ| , f1(
√
r, λ′) = (λ′ − |ρ|

√
r)2.

• when λ′

1+|ρ| ≤
√
r ≤ λ′, f1(

√
r, λ′) = 1

1−ρ2 d
2(A, (|ρ|

√
r,
√
r)). The point A has been

defined in Theorem 11 and noted in Figure 9.

• when λ′ ≤
√
r ≤ 2λ′, f1(

√
r, λ′) = λ′2.

Then we need to investigate the green segment in Figure 9. When the ellipsoid is tangent to the green
segment on the right side (i.e. BC), and the tangent point is above Point B, then using Lemma A.1,

√
r −

1
4 (1− |ρ|)2

√
r

1 + ( 1+|ρ|
2 )2 − |ρ|(1 + |ρ|)

≥ 2λ′
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䄀

䈀

䌀

䐀

Figure 9: When a ≤ 2
1−|ρ| , the rejection region looks like this

which implies
√
r ≥ 5+3|ρ|

2+2|ρ|λ
′.

When
√
r ≥ 5+3|ρ|

2+2|ρ|λ
′, the ellipsoid either intersects with the green line segment BC, or the red

segment beyond C. However, we need to eliminate the possibility of the ellipsoid having a smaller
radius when tangent to the segments on the left.

Actually, we will see that the line segments on the left can indeed be eliminated, without doing
any computation. The case of a ≤ 2

1−|ρ| is a degenerate case, as we have |ρ|(a−1)
a−2 ≥ 1+|ρ|

2 . when
a ≤ 2

1−|ρ| . From the computation in the a > 2
1−|ρ| counterpart, the green and red segments on the

left sides can be ignored.

So we can continue the discussion and present the rest two cases:

• when 2λ′ ≤
√
r ≤ 5+3|ρ|

2+2|ρ|λ
′, rate = d2(B, (|ρ|

√
r,
√
r)). The point B is noted in Figure 9.
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• when
√
r ≥ 5+3|ρ|

2+2|ρ|λ
′,

rate = min

{
λ′2,

(1− |ρ|2)(1− |ρ|)r
(5 + 3|ρ|)

}
The ellipsoid centered at µ10 : Only one special point needs to be investigated. When the tangent
point to the segment BC is precisely Point C

(
1+|ρ|
1−|ρ|λ

′, 2λ′

1−|ρ|

)
,

|ρ|
√
r +
− 1−|ρ|

2

[
|ρ|(1+|ρ|)

2 − 1
]√

r

1 + ( 1+|ρ|
2 )2 − |ρ|(1 + |ρ|)

=
2λ′

1− |ρ|

then
√
r = 5+3|ρ|

(1−|ρ|)(1+|ρ|)2λ
′.

The ellipsoid centered at µ11 = ((1 + ρ)
√
r, (1 + ρ)

√
r), when ρ > 0. We explain one special point:

When the ellipsoid is tangent to the green segment precisely at Point C,

(1 + ρ)
√
r +

(1−ρ)(1−ρ2)
4

√
r

1 + ( 1+ρ
2 )2 − ρ(1 + ρ)

=
2λ′

1− ρ

then
√
r = 5+3ρ

(1−ρ2)(3+ρ)λ
′.

The ellipsoid centered at µ11 = ((1− |ρ|)
√
r,−(1− |ρ|)

√
r), only when ρ < 0: This case is

identical to the counterpart proof for a ≥ 2
1−|ρ| , and nothing needs to be changed.

Part 3. Calculating the phase diagram, for a ≤ 2
1−|ρ| . The boundary between the Regions of

Almost Full Recovery and No Recovery is still r = ϑ, and it can be proven in the same manner as
that of Elastic net. For the rest of this part, we focus on the boundary between Exact Recovery and
Almost Full Recovery.

We focus on the case of a < 2
1−|ρ| , because: First, the phase diagram of SCAD when a < 2

1−|ρ|
is worse than Lasso’s diagram when ρ > 0, and becomes the same as Lasso when a is sufficiently
larger than 2

1−ρ . When ρ < 0, the phase diagram is better than that of Lasso when a ≤ 2
1−|ρ| , and

numerical results show that when a > 2
1−|ρ| , the diagram is monotonically moving upwards towards

Lasso’s diagram when a is increasing. Second, when a < 2
1−|ρ| , Theorem 11 does not depend on

a in its most part, and is much easier to compute. To sum up, the case of a > 2
1−|ρ| is much more

tedious in computation but less informative.

We start from the case of ρ > 0. Before diving into the proof, we give an overall account for the
diagram:

1. The diagram is the same as that of Lasso, only except that when ρ < 0.179, there is a tiny
difference in a small neighborhood of ϑ = 0, slightly worse than Lasso. See equation (32)

2. As long as a < 2
1−ρ , the phase diagram does not depend on the specific value of a.

Then we move on to the proof, which has four cases just like the proof of Elastic net.

First, λ′2 = ϑ + f2(
√
r, λ′) = 1 and ϑ + f1(

√
r, λ′) ≥ 1,2ϑ + f3(

√
r, λ′) ≥ 1: We know λ′ = 1.

From the definitin of f2(
√
r, λ′), we know

√
r ≥ 1 +

√
1− ϑ > 1.

Then we start our discussion on the conditional expression of f2(
√
r, λ′). (Note that numerically,

minρ
5+3ρ

(1−ρ)(1+ρ)2 = 4.848.)

If 1 − ϑ = 1
1−ρ2 d

2(C, (ρ
√
r,
√
r)): As we know d2(C, (ρ

√
r,
√
r)) ≥ (1−ρ2)(1−ρ)(2+ρ)2

5+3ρ r, so
√
r ≤
√

1− ϑ
√

5+3ρ
(1−ρ)(2+ρ)2 , which contradicts the pre-condition that

√
r ≥ 5+3ρ

(1−ρ)(1+ρ)2 . We have

no curve in this case. If 1− ϑ = 1
1−ρ2 [(1− ρ2)

√
r − 1]2, then

√
r =

√
1−ϑ
1−ρ2 + 1

1−ρ2 . This again

contradicts the pre-condition that
√
r ≥ 2

ρ(1−ρ) . We have no curve in this case.
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As a result, we can only have 1 <
√
r < 5+3ρ

(1−ρ)(1+ρ)2 and one of the following three:

√
r = 1 +

√
1− ϑ

√
r =

√
1− ϑ
1− ρ2

+
1

1 + ρ

√
r =
√

1− ϑ

√
5 + 3ρ

(1− ρ)(2 + ρ)2

We then discuss the three curves one by one, starting from the last one.

1.
√
r =
√

1− ϑ
√

5+3ρ
(1−ρ)(2+ρ)2 . We need to look at FP2 to eliminate this curve.

When 1 ≤
√
r ≤ 2, we have

√
1− ϑ ≤

√
1−ρ
1+ρ . In FN1, for the last term to be the

minimum among the three

min


(1− ρ2)(

√
r − λ′)2

+[
(1− ρ2)

√
r − (1− ρ)λ′

]2
(1−ρ2)(1−ρ)(2+ρ)2

5+3ρ r

,

we need
√

1− ϑ
√

5+3ρ
(1−ρ)(2+ρ)2 ≥

√
1−ϑ
1−ρ2 + 1

1+ρ , which implies

√
1− ρ
1 + ρ

[√
5 + 3ρ

(1− ρ)(2 + ρ)2
− 1√

1− ρ2

]
≥ 1

1 + ρ
.

Simplify this for a few steps and we can see the contradiction.
When

√
r ≥ 5+3ρ

2+2ρ , we can see the contradiction by simplifying this inequality itself.

When 2 <
√
r < 5+3ρ

2+2ρ , by looking at

√
1− ϑ

√
5 + 3ρ

(1− ρ)(2 + ρ)2
≤ 5 + 3ρ

2 + 2ρ

√
1− ϑ

√
5 + 3ρ

(1− ρ)(2 + ρ)2
≥ 1

1 + ρ
+

√
1− ϑ
1− ρ2

we can see that no ρ ∈ (0, 1) can admit a possible
√

1− ϑ.

2.
√
r = 1

1+ρ +
√

1−ϑ
1−ρ2 . We need to look at FP2 to eliminate this curve.

We already have
√
r ≥ 1; when 1 <

√
r ≤ 2, from the rate of FP2, we have 1− ϑ ≤ 1−ρ

1+ρ .

However, In FN1, for the middle term to be the minimum among the three

min


(1− ρ2)(

√
r − λ′)2

+[
(1− ρ2)

√
r − (1− ρ)λ′

]2
(1−ρ2)(1−ρ)(2+ρ)2

5+3ρ r

,

we need
1

1 + ρ
+

√
1− ϑ
1− ρ2

> 1 +
√

1− ϑ.

The upper and lower bound of
√

1− ϑ would render this case impossible.
When 2 <

√
r ≤ 5+3ρ

2+2ρ , using the expression of (34), we need

ρ2r − 2(1 + ρ)
√
r + 4 ≥ 0
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in which we use
√
r to express

√
1− ϑ. By letting

√
r = 2 or 5+3ρ

2+2ρ , we can see they are
both negative, so we have a contradiction.
When

√
r > 5+3ρ

2+2ρ , we have

1

1 + ρ
+

√
1− ϑ
1− ρ2

>
5 + 3ρ

2 + 2ρ√
5 + 3ρ

1− ρ
√

1− ϑ ≤ 1

1 + ρ
+

√
1− ϑ
1− ρ2

and the upper bound on
√

1− ϑ is even smaller than the lower bound. Contradiction.

Now we are only left with
√
r = 1 +

√
1− ϑ. We need it to meet the following requirements:

1 +
√

1− ϑ ≥ 1
1+p +

√
1−ϑ
1−ρ2 for it to be the smallest among the three

1 +
√

1− ϑ ≥
√

1− ϑ
√

5+3ρ
(1−ρ)(2+ρ)2 for it to be the smallest among the three

1 +
√

1− ϑ ≤ 5+3ρ
(1−ρ)(1+ρ)2 pre-condition; not restrictive

ϑ > 2ρ
1+ρ for ϑ+ f1(

√
r, λ′) ≥ 1

2ϑ+ f3(
√
r, λ′) ≥ 1

Among the first 4 requirements, the fourth one is can imply all of the rest. Then we look at FN2, and
show it is always o(1) when ϑ > 2ρ

1+ρ . When ρ > 1
3 , ϑ > 1

2 ; when ρ < 1
3 , we discuss as follows:

• When
√
r ≤ λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) ,

For the first term, we need 1 +
√

1− ϑ >
√

1−2ϑ
1−ρ2 + 1

1+ρ so that the exponent is negative.

(LHS −RHS) is increasing in ϑ, and verifying ϑ = 2ρ
1+ρ is enough.

For the next term, we need
√

5+3ρ
(1−ρ2)(1+ρ)

√
1− 2ϑ ≤ 1 +

√
1− ϑ. Now we need to verify

ϑ = max{ 2ρ
1+ρ , 1−

(
5+3ρ

(1−ρ2)(ρ+3) − 1
)2

}, and it still holds.

As long as k ≤ 2, k
√

1− ϑ −
√

1− 2ϑ is increasing in ϑ.
√

(1−ρ2)(1+ρ)
5+3ρ ≤ 0.454167

numerically.

• When
√
r ≥ 2λ′

1−ρ2 : impossible, because
√
r = 1 +

√
1− ϑ.

• When λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) ≤
√
r ≤ 2λ′

1−ρ2 : We know

d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) ≥ max

{
(1− ρ2)2(1 + ρ)

5 + 3ρ
r,
[
(1− ρ2)

√
r − λ′

]2}
So a sufficient condition is√

1− 2ϑ

1− ρ2
+

1

1− ρ2
≤ 1 +

√
1− ϑ

with ϑ = 2ρ
1+ρ . When ρ ≤ 1

3 , this holds.

To conclude, we have verified that FP1 = FN1 can only admit
√
r = 1 +

√
1− ϑ, for ϑ > 2ρ

1+ρ ;
and this curve indeed meets all the requirements.

Second, if ϑ+ f1(
√
r, λ′) = ϑ+ f2(

√
r, λ′) = 1, and λ′ ≥ 1, 2ϑ+ f3(

√
r, λ′) ≥ 1, we also need to

discuss along the conditional expression of f1(
√
r, λ′).

When λ′ ≤
√
r ≤ 2λ′ in FP2, now we have λ′ =

√
1+ρ
1−ρ
√

1− ϑ. Because we want λ′ ≥ 1, all we

need is to require λ′ > 1, which implies ϑ < 2ρ
1+ρ .
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Since minρ
5+3ρ

(1−ρ)(1+ρ)2 = 4.848, we only need to consider the first case in conditional expression of
f2(
√
r, λ′). This gives us three possible curves:

√
r = (1 +

√
1 + ρ

1− ρ
)
√

1− ϑ

√
r = 2

√
1− ϑ
1− ρ2

√
r =

√
5 + 3ρ

(1− ρ)(2 + ρ)2

√
1− ϑ

Actually, ∀ ρ ∈ (0, 1), 1 +
√

1+ρ
1−ρ > max

{
2√

1−ρ2
,
√

5+3ρ
(1−ρ)(2+ρ)2

}
, which means that in the

expression of f2 when

min


(
√
r − λ′)2

+
1

1−ρ2

[
(1− ρ2)

√
r − (1− ρ)λ′

]2
(1−ρ)(2+ρ)2

5+3ρ r

,

neither of the last two lines cannot produce a curve and be the minimum at the same time.

So we are only left with
√
r = (1 +

√
1+ρ
1−ρ )
√

1− ϑ. When ϑ < 2ρ
1+ρ , we already have λ′ ≥ 1,

ϑ+f1(
√
r, λ′) ≥ 1 and ϑ+f2(

√
r, λ′) ≥ 1, and we are left to verify 2ϑ+f3(

√
r, λ′) ≥ 1. Actually,

this does not always hold when ρ is very small, in which case we need one more curve.

When ρ ≥ 0.197,
√
r ≤ λ′ · 5+3ρ

(1−ρ2)(3+ρ) always holds, and we only need to consider the first case.
We need  (1 +

√
1+ρ
1−ρ )
√

1− ϑ ≥ 1
1+ρ

√
1+ρ
1−ρ
√

1− ϑ+
√

1−2ϑ
1−ρ2

(1 +
√

1+ρ
1−ρ )
√

1− ϑ ≥
√

1− 2ϑ
√

5+3ρ
(1+ρ)(1−ρ2)

The first one always holds for ρ ∈ (0, 1). We can separate ϑ and ρ into two sides of the inequality
and see this. The second one always holds for ρ ≥ 0.183. We can separate ϑ and ρ into two sides of
the inequality and see this.

As a result, when ρ > 0.197, FN2 = o(1).

When 0.183 ≤ ρ < 0.197,
√
r is always in the second case, and FN2 = o(1) still holds, because

d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) ≥ (1−ρ2)2(1+ρ)

5+3ρ r.

When ρ < 0.183, we need to look at the expression of d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)).

d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) = 2(1− ρ)(1 + ρ)2r − 2(1 + ρ)(3 + ρ)λ′

√
r +

5 + 3ρ

1− ρ
λ′2 (31)

In our case, we want d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) ≥ (1− ρ2)(1− 2ϑ) which is

2(1 + ρ)

(
1 +

√
1 + ρ

1− ρ

)2

− 2(3 + ρ)

1− ρ

√
1 + ρ

1− ρ

(
1 +

√
1 + ρ

1− ρ

)
+

3ρ+ 5

(1− ρ)3
≥ 1− 2ϑ

1− ϑ
.

There is no simpler form even if we further break this down.

When ρ > 0.179, the LHS is always greater than 1, and not restrictive to ϑ. When ρ < 0.179,
this imposes a lower bound on ϑ; when ϑ is very small, there will be another curve above

√
r =

(1 +
√

1+ρ
1−ρ )
√

1− ϑ.

To sum up, now we have
√
r = max

{
1 +
√

1− ϑ, (1 +
√

1+ρ
1−ρ )
√

1− ϑ
}

, but when ρ < 0.179, we
seem to need one more curve which is unknown for now.
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When
√
r ≥ 5+3ρ

2+2ρλ
′ in f1(

√
r, λ′), if λ′2 ≤ (1−ρ2)(1−ρ)r

5+3ρ , then we need λ2 = (1−ϑ)(1−ρ2), which

contradicts λ > 1 (for FP1). So we must have λ′2 > (1−ρ2)(1−ρ)r
5+3ρ , and

√
r =

√
5+3ρ
1−ρ
√

1− ϑ.

However, this curve
√
r =

√
5+3ρ
1−ρ
√

1− ϑ is always greater than the
√
r = (1 +

√
1+ρ
1−ρ )
√

1− ϑ

we have computed. By requiring
√
r ≥ 5+3ρ

2+2ρλ
′, we have 1 < λ′ ≤ 2(1+ρ)

√
1−ϑ√

5+3ρ
√

1−ρ . Notice that
√

1− ϑ ≥
√

(5+3ρ)(1−ρ)
2(1+ρ) is a strictly tighter requirement than ϑ < 2ρ

1+ρ . As a result, even if this
curve exists, it is not part of the boundary in the phase diagram.

When 2λ′ <
√
r < 5+3ρ

2+2ρλ
′, λ′2 cannot be smaller than d2(B, (ρ

√
r,
√
r)); otherwise λ′2 = (1 −

ρ2)(1− ϑ) which contradicts λ′ > 1 in FP1.

Then we need the following things:

2λ′ <
√
r < 5+3ρ

2+2ρλ
′

d2(B, (ρ
√
r,
√
r)) = (1− ρ2)(1− ϑ)

λ′ ≥ 1

2ϑ+ f3(
√
r, λ′) ≥ 1√

r ≥ λ′ +
√

1− ϑ
√
r ≥

√
1−ϑ
1−ρ2 + λ′

1+ρ
√
r ≥

√
5+3ρ

(1−ρ)(2+ρ)2

√
1− ϑ

and one of the last three inequalities must attain equality.

If
√
r = λ′ +

√
1− ϑ, then

√
r > 2λ′ would imply λ′ <

√
1− ϑ, contradicting λ′ > 1.

If
√
r =

√
1−ϑ
1−ρ2 + λ′

1+ρ , we need to look at the expression of d2(B, (ρ
√
r,
√
r)) computed in (34).

We let λ∗ = 1√
1−ϑλ

′, and
√
r =

√
1−ϑ
1−ρ2 + λ∗

√
1−ϑ

1+ρ . Now we have 2+4ρ+3ρ2

(1+ρ)2 λ∗2− 2(1+2ρ)

(1+ρ)
√

1−ρ2
λ∗+

ρ2

1−ρ2 = 0. However,
√
r > 2λ′ =⇒ λ∗ <

1 + ρ

1 + 2ρ

1√
1− ρ2

√
r <

5 + 3ρ

2 + 2ρ
λ′ =⇒ λ∗ >

2

3

1√
1− ρ2

Plug such lower bound and upper bound into the quadratic equation, and the values are negative at
both the upper and lower bounds. Thus we know that it has no solution for λ′ at all.

If
√
r =

√
5+3ρ

(1−ρ)(2+ρ)2

√
1− ϑ, then we have the following two requirements:

√
r ≥

√
1−ϑ
1−ρ2 + λ′

1+ρ =⇒ λ′ ≤ (1 + ρ)

[√
5+3ρ

(1−ρ)(2+ρ)2 − 1√
1−ρ2

]√
1− ϑ

√
r ≤ 5+3ρ

2+2ρλ
′ =⇒ λ′ ≥ 2(1+ρ)

5+3ρ

√
5+3ρ

(1−ρ)(2+ρ)2

√
1− ϑ

and the upper bound is smaller than the lower bound, contradiction.

Tp sum up the second case, we have
√
r = max

{
1 +
√

1− ϑ, (1 +
√

1+ρ
1−ρ )
√

1− ϑ
}

, but when
ρ < 0.179, we seem to need one more curve which is unknown for now.

Third, if λ′2 = 2ϑ+f3(
√
r, λ′) = 1 and ϑ+f1(

√
r, λ′) ≥ 1, ϑ+f2(

√
r, λ′) ≥ 1, we will eventually

have now curve in this case. We start from some basic requirements:

Now we have λ′ = 1. When λ′ = 1 is fixed, the exponents of FP and FN are all decreasing in
√
r.

For FN1, we thus need

√
r ≥ max

{
1 +
√

1− ϑ,

√
1− ϑ
1− ρ2

+
1

1 + ρ
,

√
5 + 3ρ

(1− ρ)(2 + ρ)2

√
1− ϑ

}
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Even if we finally find an admissible curve with λ′2 = 2ϑ+ f3(
√
r, λ′) = 1, it cannot be lower than√

r = 1 +
√

1− ϑ, so we can require ϑ < 2ρ
1+ρ .

Now we look at ϑ + f1(
√
r, λ′) ≥ 1. If

√
r ≤ 2, then ϑ < 2ρ

1+ρ gives us a contradiction. Thus√
r ≥ 2. We still need FPtwo ≥ additionally to

√
r ≥ 2.

Then we discuss the conditional expression of f3(
√
r, λ′) one by one.

When
√
r ≥ 2λ′

1−ρ2 ,
√
r =

√
1−2ϑ
1−ρ2 + 1

1−ρ2 which contradicts
√
r ≥ 2λ′

1−ρ2 .

When λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) ≤
√
r < 2λ′

1−ρ2 , we have

d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) = (1− ρ2)(1− 2ϑ)

d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) ≥ (1− ρ2)2(1 + ρ)

5 + 3ρ
r

and thus
√
r ≤

√
5+3ρ

(1+ρ)2(1−ρ)
√

1− 2ϑ.

For ϑ+ f1(
√
r, λ′) ≥ 1, we look at the conditional expression of f1, which now can only take one of

the last two cases.

• if it is the last case, then we need
√
r ≥

√
5+3ρ
1−ρ
√

1− ϑ, which does not hold.

• if it is the fourth case, then we need

d2(B, (ρ
√
r,
√
r)) ≥ (1− ρ2)(1− ϑ).

We already have the expression of d2(B, (ρ
√
r,
√
r)) in (34), and the expression of

d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) in (31):

r − 4
√
r +

5 + 3ρ

1 + ρ
≥ 1− ϑ

r − 3 + ρ

1− ρ2

√
r +

5 + 3ρ

2(1− ρ2)2
=

1− 2ϑ

2(1 + ρ)

=⇒ 1− 2ϑ

2(1 + ρ)
+

3 + ρ

1− ρ2

√
r − 5 + 3ρ

2(1− ρ2)2
− 4
√
r +

5 + 3ρ

1 + ρ
≥ 1− ϑ

=⇒ 1

2(1 + ρ)
+

3 + ρ

1− ρ2

√
r − 5 + 3ρ

2(1− ρ2)2
− 4
√
r +

5 + 3ρ

1 + ρ
≥ 1− ρ

1 + ρ
ϑ

It turns out that when we regard
√
r as an independent variable, and let it vary in the interval

(2, 2.5) as in FP2, we always have, ∀ ρ ∈ (0, 1),

1

2(1 + ρ)
+

3 + ρ

1− ρ2

√
r − 5 + 3ρ

2(1− ρ2)2
− 4
√
r +

5 + 3ρ

1 + ρ
< 1− ρ

1 + ρ

so we have a contradiction.

To sum up, no curve in this case.

When
√
r ≤ λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) , if
[
(1− ρ2)

√
r − (1− ρ)λ′

]2
+
≤ (1−ρ2)2(1+ρ)

5+3ρ r, then we

have
√
r =

√
1−2ϑ
1−ρ2 + 1

1+ρ , which contradicts
√
r ≥

√
1−ϑ
1−ρ2 + 1

1+ρ required by FN1. If[
(1− ρ2)

√
r − (1− ρ)λ′

]2
+
> (1−ρ2)2(1+ρ)

5+3ρ r, then we have
√
r =

√
5+3ρ

(1+ρ)2(1−ρ)
√

1− 2ϑ. This is
a tedious case.

• Upper bound on ϑ:
√
r ≥ 2, which implies ϑ ≤ min

{
2ρ

1+ρ ,
1
2 −

2(1+ρ)2(1−ρ)
5+3ρ

}
.

• Lower bound on ϑ: Even if the curve is admissible, it only makes a difference if it is smaller

than (1 +
√

1+ρ
1−ρ )
√

1− ϑ. This gives us
√

1−2ϑ
1−ϑ <

(
1 +

√
1+ρ
1−ρ

)√
(1+ρ)2(1−ρ)

5+3ρ =: φ(ρ).

Also,
√
r ≤ 5+3ρ

(2+2ρ) implies ϑ ≥ 1
2 −

1
8 (5 + 3ρ)(1− ρ).

39



Published as a conference paper at ICLR 2022

We then examine ϑ+ f1(
√
r, λ′).

• When
√
r ≥ 5+3ρ

2+2ρλ
′ ≥ 5+3ρ

2+2ρ , we easily have a contradiction because
√
r =√

5+3ρ
(1+ρ)2(1−ρ)

√
1− 2ϑ.

• When
√
r < 5+3ρ

2+2ρλ
′, we need to look at d2(B, (ρ

√
r,
√
r)). It now becomes

√
r − 2 ≥√

2ρ
1+ρ − ϑ. The derivative of (LHS −RHS) w.r.t. ϑ is

1

2
√

2ρ
1+ρ − ϑ

1−

√
2(5 + 3ρ)

(1 + ρ)2(1− ρ)

√√√√ 2ρ
1+ρ − ϑ

1
2 − ϑ


from which we can see (LHS −RHS) is either increasing, decreasing, or first-decreasing-
then-increasing. If we evaluate (LHS −RHS) at the smallest and largest ϑ and they are
both negative (∀ρ), then we have a contradiction.

– When ρ ≥ 0.183, φ(ρ) > 1. The (LHS − RHS) is below 0 at both max{0, 1
2 −

1
8 (1− ρ)(5 + 3ρ)} and min

{
2ρ

1+ρ ,
1
2 −

2(1+ρ)2(1−ρ)
5+3ρ

}
, for all 0.183 ≤ ρ ≤ 1.

– When ρ < 0.183, 0 < φ(ρ) < 1, and it poses a lower bound on ϑ.
* When ρ ≤ 0.091, the lower bound is greater than the upper bound, so this case

does not exist for any ϑ.
* When ρ ∈ (0.091, 0.183), we can verify that the (LHS−RHS) is below 0 at both

max{0, 1
2 −

1
8 (1− ρ)(5 + 3ρ)} and min

{
2ρ

1+ρ ,
1
2 −

2(1+ρ)2(1−ρ)
5+3ρ , 1−φ2(ρ)

2−φ2(ρ)

}
.

We finally know that FP1 = FN2 gives nothing.

Fourth, if ϑ+ f1(
√
r, λ′) = 2ϑ+ f3(

√
r, λ′) = 1 and λ′ ≥ 1, ϑ+ f2(

√
r, λ′) ≥ 1, we will get the

last curve.

From ϑ + f2(
√
r, λ′) ≥ 1, we know

√
r ≥ λ′, so we start from the case λ′ ≤

√
r ≤ 2λ′ in

f1(
√
r, λ′).

When λ′ ≤
√
r ≤ 2λ′ in f1(

√
r, λ′), we have λ′ =

√
1+ρ
1−ρ
√

1− ϑ. If
√
r ≤ λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) in

f3(
√
r, λ′), we could have either of the following two,

√
r =

1√
1− ρ2

(√
1− ϑ+

√
1− 2ϑ

)
√
r =

√
5 + 3ρ

(1 + ρ)2(1− ρ)

√
1− 2ϑ

When it is the former, for ϑ+ f2(
√
r, λ′) ≥ 1, we need

√
r ≥ (1 +

√
1+ρ
1−ρ )
√

1− ϑ, which implies√
1−2ϑ
1−ϑ ≥ ρ+

√
1− ρ2 > 1, which is impossible.

When it is the latter, for ϑ + f2(
√
r, λ′) ≥ 1, we need

√
r ≥ (1 +

√
1+ρ
1−ρ )
√

1− ϑ, which im-

plies
√

1−2ϑ
1−ϑ ≥

√
(1+ρ)2(1−ρ)

5+3ρ

(
1 +

√
1+ρ
1−ρ

)
. Also,

√
r ≤ λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) implies
√

1−2ϑ
1−ϑ ≤√

(5+3ρ)(1+ρ)

(1−ρ)(3+ρ) . However, now either the lower bound
√

(1+ρ)2(1−ρ)
5+3ρ

(
1 +

√
1+ρ
1−ρ

)
> 1 ≥

√
1−2ϑ
1−ϑ ,

or the upper bound is smaller than the lower bound.

If λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) ≤
√
r ≤ 2λ′

1−ρ2 in f3(
√
r, λ′), we need to solve a quadratic function of

√
r, i.e.

d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) = (1− ρ2)(1− 2ϑ). The expression of the LHS is already in (31).

Then we have

√
r =

3 + ρ

2(1− ρ2)

√
1 + ρ

1− ρ
√

1− ϑ+
1

2

√
2(1− 2ϑ)

1 + ρ
− (1− ϑ)

(1− ρ)2
. (32)
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We take the larger root, because when
√
r takes the smaller one, the ellipsoid is actually still tangent

to the green line segment in Figure 9. Thus the smaller root should be discarded.

Of course, we also list all the requirements it must meet. They are loose only except the first one.
√
r ≥ (1 +

√
1+ρ
1−ρ )
√

1− ϑ
ϑ ≤ 2ρ

1+ρ

5+3ρ
(1−ρ2)(3+ρ)

√
1+ρ
1−ρ
√

1− ϑ ≤
√
r ≤ 2

√
1+ρ
1−ρ
√

1− ϑ

When
√
r ≥ 5+3ρ

2+2ρλ
′ in f1(

√
r, λ′), We know from FP2 that

√
r =

√
5+3ρ
1−ρ
√

1− ϑ. ( Because we

need λ′ ≥ 1 for FP1, the other term is not possible.) If
√
r ≤ λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) in f3(
√
r, λ′), it is

only possible that
√
r =

√
1−2ϑ
1−ρ2 + λ′

1+ρ . However, FN1 = o(1) requires that
√
r ≥

√
1−ϑ
1−ρ2 + λ′

1+ρ ,

so this case is not possible. If
√
r ≥ 2λ′

1−ρ2 in f3(
√
r, λ′), we have

√
r =

√
1−2ϑ
1−ρ2 + λ′

1−ρ2 . Because
√
r ≥ 2

(√
r −

√
1−2ϑ
1−ρ2

)
, we have

√
r ≤ 2

√
1−2ϑ
1−ρ2 =⇒ λ′ ≤

√
(1− 2ϑ)(1− ρ2), which

contradicts λ′ > 1. If λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) <
√
r < 2λ′

1−ρ2 in f3(
√
r, λ′), we know that

(1− ρ2)(1− 2ϑ) = d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) ≥ (1− ρ2)2(1 + ρ)

5 + 3ρ
r

and thus
√
r ≤

√
5+3ρ

(1−ρ)(1+ρ)2

√
1− 2ϑ which contradicts

√
r =

√
5+3ρ
1−ρ
√

1− ϑ.

When
√
r ∈ (2λ′, 5+3ρ

2+2ρλ
′) in f1(

√
r, λ′):

If
√
r ≤ λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) in f3(
√
r, λ′), and

√
r =

√
1−2ϑ
1−ρ2 + λ′

1+ρ , we have a contradiction. This is

because FN1 = o(1) requires that
√
r ≥

√
1−ϑ
1−ρ2 + λ′

1+ρ , so this case is not possible.

If
√
r ≤ λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) in f3(
√
r, λ′), and

√
r =

√
5+3ρ

(1+ρ)2(1−ρ)
√

1− 2ϑ, this turns out a very

tedious case because we generally need to work with (ϑ, λ′, ρ) at the same time. For completeness,
we include a rigorous proof anyway.

Briefly speaking, we let λ∗ = 1√
1−ϑλ

′. Because all we need is

d2(B, (ρ
√
r,
√
r)) = (1− ρ2)(1− ϑ) (ϑ+ f1(

√
r, λ′) ≥ 1)

√
r =

√
5+3ρ

(1+ρ)2(1−ρ)
√

1− 2ϑ (2ϑ+ f3(
√
r, λ′) ≥ 1)

λ′ ≥ 1√
r ≥ λ′ +

√
1− ϑ (ϑ+ f2(

√
r, λ′) ≥ 1)

√
r ≥

√
1−ϑ
1−ρ2 + λ′

1+ρ (ϑ+ f2(
√
r, λ′) ≥ 1)

√
r ≥

√
5+3ρ

(1−ρ)(2+ρ)2

√
1− ϑ (ϑ+ f2(

√
r, λ′) ≥ 1)

2λ′ ≤
√
r ≤ 5+3ρ

2+2ρλ
′ (ϑ+ f1(

√
r, λ′) ≥ 1)

√
r ≤ 5+3ρ

(1−ρ2)(3+ρ)λ
′ (2ϑ+ f3(

√
r, λ′) ≥ 1)

by cleaning this up, we have, letting x =
√

1−2ϑ
1−ϑ ,

q(x)
def
= 5+3ρ

(1+ρ)2(1−ρ)x
2 − 4

√
5+3ρ

(1+ρ)2(1−ρ)λ
∗x+

(
5+3ρ
1+ρ

)
(λ∗)2 − 1 = 0

λ∗ ≥ 1

x ≥ max

{
(1+ρ)2(1−ρ)

5+3ρ

(
λ∗

1+ρ + 1√
1−ρ2

)
, 1+ρ

2+ρ , 2λ∗
√

(1+ρ)2(1−ρ)
5+3ρ

}
x ≤ min

{
1, λ

∗

2

√
(5 + 3ρ)(1− ρ), λ∗

3+ρ

√
5+3ρ
1−ρ

} (33)
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If we want some admissible x to exist, we need the upper bound to be greater than the lower bound in
the last two inequalities. This will give us B(ρ) ≤ λ∗ ≤ B(ρ). (The expressions of B(ρ) and B(ρ)
can be explicitly written, but are omitted for brevity.)

• For some ρ ∈ (0, 1) and λ∗ ∈ [B(ρ), B(ρ)], we try to plot q(x) at a suitable x. If q(x) < 0
always holds, then x has no solution, and this case is eliminated.

• q(x) is a quadratic function of x. Its axis of symmetry is 2λ∗
√

(1+ρ)2(1−ρ)
5+3ρ , which we

already know is smaller than x. Thus q(x) is increasing in admissible x, and we only need

to evaluate q(x) at the maximum x: x = min
{

1, λ
∗

2

√
(5 + 3ρ)(1− ρ), λ∗

3+ρ

√
5+3ρ
1−ρ

}
.

• Now we are left to prove a bivariate function is below zero, which can be easily verified
given all the requirements on λ′ and ∀ ρ > 0.

When
√
r ≥ 2λ′

1−ρ2 in f3(
√
r, λ′) , we have

√
r =

√
1−2ϑ
1−ρ2 + λ′

1−ρ2 . Because
√
r ≥ 2

(√
r −

√
1−2ϑ
1−ρ2

)
,

we have
√
r ≤ 2

√
1−2ϑ
1−ρ2 =⇒ λ′ ≤

√
(1− 2ϑ)(1− ρ2), which contradicts λ′ > 1.

When λ′

1+ρ ·
5+3ρ

(1−ρ)(3+ρ) <
√
r < 2λ′

1−ρ2 in f3(
√
r, λ′), we have

d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) = (1− ρ2)(1− 2ϑ)

d2(B, (ρ
√
r,
√
r)) = (1− ρ2)(1− ϑ).

This is an even more tedious case, and we eliminate this case as follows: We first list all of the
requirements we have:

d2(B, (ρ
√
r,
√
r)) = (1− ρ2)(1− ϑ) (ϑ+ f1(

√
r, λ′) ≥ 1)

d2(C, ((1 + ρ)
√
r, (1 + ρ)

√
r)) = (1− ρ2)(1− 2ϑ) (2ϑ+ f3(

√
r, λ′) ≥ 1)

λ′ ≥ 1

2λ′ ≤
√
r ≤ 5+3ρ

2+2ρλ
′ (ϑ+ f1(

√
r, λ′) ≥ 1)

√
r ≥ max

{√
1−ϑ
1−ρ2 + λ′

1+ρ ,
√

5+3ρ
(1−ρ)(2+ρ)2

√
1− ϑ

}
(ϑ+ f2(

√
r, λ′) ≥ 1)

√
r ≥ 5+3ρ

(1−ρ2)(3+ρ)λ
′ (ϑ+ f1(

√
r, λ′) ≥ 1)

Define x =
√

r
1−ϑ and λ∗ = 1√

1−ϑλ
′. We know the upper and lower bounds of x, from the last three

inequalities:

max

{
5 + 3ρ

(1− ρ2)(3 + ρ)
λ∗, 2λ∗,

1√
1− ρ2

+
λ∗

1 + ρ
,

√
5 + 3ρ

(1− ρ)(2 + ρ)2

}
≤ x ≤ 5 + 3ρ

2 + 2ρ
λ∗.

For admissible x to exist, we need ρ ≤ 0.415 and λ∗ ≥ max

{
2

3
√

1−ρ2
, 2(1+ρ)

(2+ρ)
√

(5+3ρ)(1−ρ)

}
.

Then we want to know the upper and lower bounds of λ∗ given ρ ≤ 0.415. In terms of the upper

bound, we know from d2(B, (ρ
√
r,
√
r)) = (1 − ρ2)(1 − ϑ) ≥ (1 − ρ)2λ′2 that λ∗ ≤

√
1+ρ
1−ρ . To

sum up,

max

{
1,

2

3
√

1− ρ2
,

2(1 + ρ)

(2 + ρ)
√

(5 + 3ρ)(1− ρ)

}
≤ λ∗ ≤

√
1 + ρ

1− ρ
.

Having the upper and lower bound on λ′, we look at the first two quadratic functions, and we know
that {

x2 − 4xλ∗ + 5+3ρ
1+ρ λ

∗2 = 1

2(1 + ρ)x2 − 2(3+ρ)
1−ρ xλ∗ + 5+3ρ

(1−ρ)2(1+ρ)λ
∗2 = 1−2ϑ

1−ϑ ≤ 1

The LHS of the second quadratic equation, as a function of x, has the axis of symmetry at 3+ρ
2(1−ρ2)λ

∗ >
5+3ρ
2+2ρλ

∗, so it is decreasing in x (fixing λ∗).
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We look closer at x2 − 4xλ∗ + 5+3ρ
1+ρ λ

∗2 = 1, which gives x = 2λ∗ +
√

1− 1−ρ
1+ρλ

∗2 ≤ 2λ∗ +√
1− 1−ρ

1+ρλ
∗.

Let y = min
{

5+3ρ
2+2ρλ

∗, 2λ∗ +
√

1− 1−ρ
1+ρλ

∗
}

be an upper bound on x. Both terms in y are increasing

in λ∗ ≤
√

1+ρ
1−ρ , while x has no such monoticity.

2(1 + ρ)x2 − 2(3 + ρ)

1− ρ
xλ∗ +

5 + 3ρ

(1− ρ)2(1 + ρ)
λ∗2 ≥ 2(1 + ρ)y2 − 2(3 + ρ)

1− ρ
yλ∗ +

5 + 3ρ

(1− ρ)2(1 + ρ)
λ∗2

The RHS of the above line, viewed as a function of λ∗ and fixing y, is also decreasing in λ∗, because
the axis of symmetry

(1− ρ2)(3 + ρ)

5 + 3ρ
y =

(1− ρ2)(3 + ρ)

5 + 3ρ
min

{
5 + 3ρ

2 + 2ρ
λ∗, 2λ∗ +

√
1− 1− ρ

1 + ρ
λ∗
}
≥ λ∗.

(The above line can be proven for λ∗ <
√

1+ρ
1−ρ and ρ < 0.415 as we have required.)

Thus, as a whole, dRHS(y(λ∗),λ∗)
dλ∗ = ∂RHS(y,λ∗)

∂y · ∂y∂λ∗ + ∂RHS(y,λ∗)
∂λ∗ ≤ 0. So theRHS is decreasing

in λ∗.

When we let λ∗ =
√

1+ρ
1−ρ which is the maximum, the RHS is a univariate function of ρ ∈ (0, 0.415),

which is always greater than 1. It cannot be equal to 1−2ϑ
1−ϑ , and now we have a contradiction.

We then look at the case of ρ < 0. Before diving into the proof, we first re-iterate the phase curves
in Theorem 3 in an equivalent way. As the proof is tedious, the simplified form of the diagram in
Theorem 3 may not be recognizable, so we describes the diagram in an equivalent way in Theorem 12
again, making it more consistent with what we will see in the proof.

To ease the notation, we recall in Theorem 3 we defined

√
h6(ϑ) =

√
1− 2ϑ

1− ρ2
+

1−2|ρ|
1−|ρ|

√
1−2ϑ
1−ρ2 +

√[(
1−2|ρ|
1−|ρ|

)2

+ 1−|ρ|
1+|ρ|

]
(1− ϑ)− 1−2ϑ

(1+|ρ|)2

(1− |ρ|)
[(

1−2|ρ|
1−|ρ|

)2

+ 1−|ρ|
1+|ρ|

]
Theorem 12 (Re-iterating Theorem 3 in an equivalent way for ρ < 0). For ρ < 0 and a < 2

1−|ρ| ,
the half of the phase diagram of SCAD when ϑ ∈ [ 1

2 , 1) is the same as that of Lasso and SCAD for
positive ρ. When ϑ < 1

2 , from left to right:

When |ρ| ≥ 0.535 (approximately),
√
r = max

{√
5+3|ρ|
1−|ρ|

√
1− ϑ,

√
1−2ϑ
1−ρ2 + 1

1−|ρ|

}
.

When 1
2 ≤ |ρ| < 0.535,

√
r =


√

5+3|ρ|
1−|ρ|

√
1− ϑ if

√
1−2ϑ
1−ϑ ≥

(
1− 2(1+|ρ|)

(1−|ρ|)(5+3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|)√

h6(ϑ) if
√

1−2ϑ
1−ϑ <

(
1− 2(1+|ρ|)

(1−|ρ|)(5+3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|)

When 0.3965 ≤ |ρ| < 1
2 ,

√
r =


√

5+3|ρ|
1−|ρ|

√
1− ϑ if

√
1−2ϑ
1−ϑ ≥

(
1− 2(1+|ρ|)

(1−|ρ|)(5+3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|)√

h6(ϑ) if
√

1−2ϑ
1−ϑ <

(
1− 2(1+|ρ|)

(1−|ρ|)(5+3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|) and

√
1−2ϑ
1−ϑ > (1+|ρ|)(1−2|ρ|)

1−|ρ|√
1−2ϑ
1−|ρ|2 +

√
1+|ρ|
1−|ρ|

√
1−ϑ

1−|ρ| if
√

1−2ϑ
1−ϑ ≤

(1+|ρ|)(1−2|ρ|)
1−|ρ|
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When 1
3 ≤ |ρ| < 0.3965,

√
r =



√
5+3|ρ|
1−|ρ|

√
1− ϑ if

√
1−2ϑ
1−ϑ ≥

(
1− 2(1+|ρ|)

(1−|ρ|)(5+3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|)√

h6(ϑ) if
√

1−2ϑ
1−ϑ <

(
1− 2(1+|ρ|)

(1−|ρ|)(5+3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|) and

√
1−2ϑ
1−ϑ > (1+|ρ|)(1−2|ρ|)

1−|ρ|√
1−2ϑ
1−|ρ|2 +

√
1+|ρ|
1−|ρ|

√
1−ϑ

1−|ρ| if
√

1−2ϑ
1−ϑ ≤

(1+|ρ|)(1−2|ρ|)
1−|ρ| and

√
1−2ϑ
1−ϑ ≥

√
1− |ρ|2 − |ρ|(1+|ρ|)

(1−|ρ|)(
1 +

√
1+|ρ|
1−|ρ|

)√
1− ϑ if

√
1−2ϑ
1−ϑ <

√
1− |ρ|2 − |ρ|(1+|ρ|)

(1−|ρ|)

When 0.311 ≤ |ρ| < 1
3 ,

√
r =



√
5+3|ρ|
1−|ρ|

√
1− ϑ if

√
1−2ϑ
1−ϑ ≥

(
1− 2(1+|ρ|)

(1−|ρ|)(5+3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|)√

h6(ϑ) if
√

1−2ϑ
1−ϑ <

(
1− 2(1+|ρ|)

(1−|ρ|)(5+3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|) and

√
1−2ϑ
1−ϑ > (1+|ρ|)(1−2|ρ|)

1−|ρ|√
1−2ϑ
1−|ρ|2 +

√
1+|ρ|
1−|ρ|

√
1−ϑ

1−|ρ| if
√

1−2ϑ
1−ϑ ≤

(1+|ρ|)(1−2|ρ|)
1−|ρ| and

√
1−2ϑ
1−ϑ ≥

√
1− |ρ|2 − |ρ|(1+|ρ|)

(1−|ρ|)

max{
(

1 +
√

1+|ρ|
1−|ρ|

)√
1− ϑ, 1 +

√
1− ϑ} if

√
1−2ϑ
1−ϑ <

√
1− |ρ|2 − |ρ|(1+|ρ|)

(1−|ρ|)

When 0.28832 ≤ |ρ| < 0.311,

√
r =


√
h6(ϑ) if

√
1−2ϑ
1−ϑ > (1+|ρ|)(1−2|ρ|)

1−|ρ|√
1−2ϑ
1−|ρ|2 +

√
1+|ρ|
1−|ρ|

√
1−ϑ

1−|ρ| if
√

1−2ϑ
1−ϑ ≤

(1+|ρ|)(1−2|ρ|)
1−|ρ| and

√
1−2ϑ
1−ϑ ≥

√
1− |ρ|2 − |ρ|(1+|ρ|)

(1−|ρ|)

max{
(

1 +
√

1+|ρ|
1−|ρ|

)√
1− ϑ, 1 +

√
1− ϑ} if

√
1−2ϑ
1−ϑ <

√
1− |ρ|2 − |ρ|(1+|ρ|)

(1−|ρ|)

When 0 ≤ |ρ| < 0.28832,

√
r =


√
h6(ϑ) if

√
1−2ϑ
1−ϑ > (1+|ρ|)(1−2|ρ|)

1−|ρ|√
1−2ϑ
1−|ρ|2 +

√
1+|ρ|
1−|ρ|

√
1−ϑ

1−|ρ| if
√

1−2ϑ
1−ϑ ≤

(1+|ρ|)(1−2|ρ|)
1−|ρ| and

√
1−2ϑ
1−ϑ ≥

√
1− |ρ|2 − |ρ|(1+|ρ|)

(1−|ρ|)

max{
√

1−2ϑ
1−|ρ|2 + 1

1−|ρ| , 1 +
√

1− ϑ} if
√

1−2ϑ
1−ϑ <

√
1− |ρ|2 − |ρ|(1+|ρ|)

(1−|ρ|)

Wo note two things additionally: First, the exact computation of the numerical results (e.g. “0.28832”)
are covered in the rest of the proof. Second,(

1− 2(1 + |ρ|)
(1− |ρ|)(5 + 3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|) ≡ 3− 4|ρ| − 3ρ2

(1− |ρ|)

√
1 + |ρ|
5 + 3|ρ|

always holds, and the shorter RHS is shown in Theorem 3.

Before proving Theorem 12 (and Theorem 3 at the same time). we put two important results here.

• In f1(
√
r, λ′) (recall Theorem 11), when 2λ′ <

√
r < 5+3|ρ|

2+2|ρ|λ
′,

d2(B, (|ρ|
√
r,
√
r)) = (1− |ρ|2)

[
r − 4

√
rλ′ +

5 + 3|ρ|
1 + |ρ|

λ′2
]
. (34)

• In f3(
√
r, λ′), when

√
r ≥ 2λ′

1−|ρ| ,

d2
(
D,
(
(1− |ρ|)

√
r,−(1− |ρ|)

√
r
))

= (1− |ρ|2)

[
2(1− |ρ|)r − 2(3− |ρ|)λ′

√
r +

5− 3|ρ|
1− |ρ|

λ′2
]

(35)

Then we move on to the proof, which has four sections: FP1 = FN1, FP2 = FN1, FP1 = FN2,
FP2 = FN2.
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First, if λ′2 = ϑ+ f2(
√
r, λ′) = 1 and ϑ+ f1(

√
r, λ′) ≥ 1, 2ϑ+ f3(

√
r, λ′) ≥ 1, we will prove that√

r = 1 +
√

1− ϑ is part of the diagram with the conditionϑ ≥
2|ρ|

1+|ρ|

1 +
√

1− ϑ ≥
√

1−2ϑ
1−ρ2 + 1

1−|ρ|

When ϑ > 1
2 , the second condition can be ignored. Even when ϑ ≤ 1

2 , the second condition is
restrictive (stronger than the first one) only when |ρ| < 0.28832 approximately. (LHS − RHS is
increasing in ϑ.)

We know λ′ = 1 and
√
r > 1. From the previous discussion in the case of positive correlation, we

already know that only one curve is possible, which is
√
r = 1 +

√
1− ϑ

We still need it to meet the following requirements:

1 +
√

1− ϑ ≥ 1
1+|ρ| +

√
1−ϑ
1−ρ2 for it to be the smallest among the three in f2

1 +
√

1− ϑ ≥
√

1− ϑ
√

5+3|ρ|
(1−|ρ|)(2+|ρ|)2 for it to be the smallest among the three in f2

1 +
√

1− ϑ ≤ 5+3|ρ|
(1−|ρ|)(1+|ρ|)2 pre-condition in f2; not restrictive

ϑ > 2|ρ|
1+|ρ| for ϑ+ f1(

√
r, λ′) ≥ 1

2ϑ+ f3(
√
r, λ′) ≥ 1

Among the first 4 requiremenrs, the fourth one can imply the rest. Finally, we look at 2ϑ +
f3(
√
r, λ′) ≥ 1.

When ϑ ≥ 1
2 , we naturally have 2ϑ+ f3(

√
r, λ′) ≥ 1. When |ρ| ≥ 1

3 , ϑ > 2|ρ|
1+|ρ| ≥

1
2 always holds,

and no more discussion is needed. When |ρ| < 1
3 , we proceed to the following discussion.

For |ρ| < 1
3 , since

√
r = 1 +

√
1− ϑ ≤ 2 < 2λ′

1−|ρ| , we need 1 +
√

1− ϑ ≥
√

1−2ϑ
1−ρ2 + 1

1−|ρ| .

Second, if ϑ+f1(
√
r, λ′) = ϑ+f2(

√
r, λ′) = 1 and λ′ ≥ 1, 2ϑ+f3(

√
r, λ′) ≥ 1, we will prove that

we can have one curve at most,
√
r =

(
1 +

√
1+|ρ|
1−|ρ|

)√
1− ϑ, and it exists in the interval: (Define

ψ(|ρ|) def
=
√

1− ρ2
(

1− |ρ|
1−|ρ|

√
1+|ρ|
1−|ρ|

)
.)

• When 0.28832 ≤ |ρ| ≤ 0.3965, the curve exists in the interval
[

1−ψ(|ρ|)2

2−ψ(|ρ|)2 ,
2|ρ|

1+|ρ|

)
.

• When |ρ| < 0.28832, the curve does not exist.

• When |ρ| > 0.3965, the curve exists in the interval [ 1
2 ,

2|ρ|
1+|ρ| ).

We discuss the conditional expression of f1(
√
r, λ′) to prove such result:

When λ′ ≤
√
r ≤ 2λ′ in f1(

√
r, λ′), we have λ′ =

√
1+|ρ|
1−|ρ|

√
1− ϑ. Because we want λ′ > 1, it

implies ϑ < 2|ρ|
1+|ρ| .

We have discussed and eliminated several curves in the case of positive correlation in the case of

positive correlation, so now we are only left with one curve:
√
r =

(
1 +

√
1+|ρ|
1−|ρ|

)√
1− ϑ and we

only need to additionally verify 2ϑ+ f3(
√
r, λ′) ≥ 1.

Since ϑ < 2|ρ|
1+|ρ| , when |ρ| > 1

3 , FN2 = o(1) naturally holds for ϑ ∈ [ 1
2 ,

2|ρ|
1+|ρ| ). We only need to

discuss ϑ ∈ (0, 1
2 ); when |ρ| ≤ 1

3 , we need to verify FN2 = o(1) for all ϑ ≤ [0, 2|ρ|
1+|ρ| ).

Now it can be verified that
√
r ≤ 2

1−|ρ|λ
′ always holds, so we need(

1 +

√
1 + |ρ|
1− |ρ|

)
√

1− ϑ ≥

√
1− 2ϑ

1− ρ2
+

1

1− |ρ|

√
1 + |ρ|
1− |ρ|

√
1− ϑ
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which implies

ψ(|ρ|) =
√

1− ρ2

(
1− |ρ|

1− |ρ|

√
1 + |ρ|
1− |ρ|

)
≥
√

1− 2ϑ

1− ϑ
. (36)

By taking a close look at the function of |ρ| on the LHS:

• When 1
3 < |ρ| < 0.3965 (approximately), ψ(|ρ|) is positive and smaller than 1. If we define

ψ(|ρ|) def
=
√

1− ρ2
(

1− |ρ|
1−|ρ|

√
1+|ρ|
1−|ρ|

)
, then the curve

√
r =

(
1 +

√
1+|ρ|
1−|ρ|

)√
1− ϑ

exists in the interval
[

1−ψ(|ρ|)2

2−ψ(|ρ|)2 ,
2|ρ|

1+|ρ|

)
.

• When |ρ| ≥ 0.3965, ψ(|ρ|) is negative. The curve
√
r =

(
1 +

√
1+|ρ|
1−|ρ|

)√
1− ϑ exists

only in the interval [ 1
2 ,

2|ρ|
1+|ρ| ).

• When 0.28832 ≤ |ρ| ≤ 1
3 , the curve

√
r =

(
1 +

√
1+|ρ|
1−|ρ|

)√
1− ϑ exists in the interval[

1−ψ(|ρ|)2

2−ψ(|ρ|)2 ,
2|ρ|

1+|ρ|

)
.

• When |ρ| < 0.28832, this curve does not exist at all, because on the RHS of the inequal-

ity (36), the smallest value it can take is
√

1−2(2|ρ|)/(1+|ρ|)
1−(2|ρ|)/(1+|ρ|) . When |ρ| < 0.28832, even this

smallest value is greater than the LHS, so the inequality cannot hold.

When
√
r ≥ 5+3|ρ|

2+2|ρ|λ
′ in FP2, or when 2λ′ <

√
r < 5+3|ρ|

2+2|ρ|λ
′, the same proof for positive correlation

can be used to eliminate these cases.

To sum up the whole case of ϑ+ f1(
√
r, λ′) = ϑ+ f2(

√
r, λ′) = 1: We can have one curve at most,

√
r =

(
1 +

√
1+|ρ|
1−|ρ|

)√
1− ϑ, which exists in the interval mentioned above.

Now we are left with the third and fourth cases, both requiring 2ϑ + f3(
√
r, λ′) = 1. We assume

ϑ ≤ 1
2 from now on, because the different definition of f3(

√
r, λ′) makes no difference when ϑ ≥ 1

2 ,
and the proof for ρ > 0 can be copied.

Third, if λ′2 = 2ϑ+ f3(
√
r, λ′) = 1 and ϑ+ f1(

√
r, λ′) ≥ 1, ϑ+ f2(

√
r, λ′) ≥ 1, since λ′ = 1 is

fixed, all of (f1(
√
r, λ′), f2(

√
r, λ′), f3(

√
r, λ′)) are increasing in

√
r. As a result, the requirement

from ϑ+ f2(
√
r, λ′) ≥ 1 is just

√
r ≥ max

{
1 +
√

1− ϑ,

√
1− ϑ
1− ρ2

+
1

1 + |ρ|
,

√
5 + 3|ρ|

(1− |ρ|)(2 + |ρ|)2

√
1− ϑ

}
(37)

When
√
r ≤ 2λ′

1−|ρ| in f3(
√
r, λ′), we have

√
r =

√
1−2ϑ
1−|ρ|2 + 1

1−|ρ| , and we will see this curve does

not exist in the diagram. We need to look at ϑ+ f1(
√
r, λ′) ≥ 1:

If
√
r ≤ 2 in f1(

√
r, λ′), then we can limit |ρ| < 1

2 because we have assumed ϑ < 1
2 , and now we

need 2|ρ|
1+|ρ| ≤ ϑ <

1
2 ,

• When 0.28832 ≤ |ρ| ≤ 1
2 , this case does not exist. This is because we also need

√
r =√

1−2ϑ
1−|ρ|2 + 1

1−|ρ| ≥ 1 +
√

1− ϑ. But we already know from the start of the first case, that

ϑ ≥ 2|ρ|
1+|ρ| implies 1 +

√
1− ϑ ≥

√
1−2ϑ
1−|ρ|2 + 1

1−|ρ| .

• When |ρ| < 0.28832, this case indeed exists, though it is visually only a tiny segment. The
curve exists in the interval defined byϑ ≥

2|ρ|
1+|ρ|√

r =
√

1−2ϑ
1−|ρ|2 + 1

1−|ρ| ≥ 1 +
√

1− ϑ
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in which the second line is an upper bound. (Actually, ϑ ≥ 2|ρ|
1+|ρ| =⇒

√
1−2ϑ
1−|ρ|2 + 1

1−|ρ| ≤
2)
In terms of (37) (the requirements of ϑ + f2(

√
r, λ′)), we still need to verify

√
r ≥

max
{√

1−ϑ
1−|ρ|2 + 1

1+|ρ| ,
√

5+3|ρ|
(1−|ρ|)(2+|ρ|)2

√
1− ϑ

}
. Using

√
1− ϑ ≤

√
r − 1 to replace

√
1− ϑ, we will find both of these are much weaker than

√
r ≤ 2 and not restrictive.

If
√
r ≥ 5+3|ρ|

2+2|ρ| in f1(
√
r, λ′), then, in terms of ϑ+ f1(

√
r, λ′) ≥ 1, we are required to have

√
r ≥ 5+3|ρ|

2+2|ρ|
√
r ≥

√
5+3|ρ|
1−|ρ|

√
1− ϑ

Now, by using 1
2

√
r ≥ 5+3|ρ|

2(2+2|ρ|) and 1
2

√
r ≥ 1

2

√
5+3|ρ|
1−|ρ|

√
1− ϑ, we can easily verify that the

requirements of ϑ+f2(
√
r, λ′) ≥ 1 in (37) all holds. So we only need to focus on ϑ+f1(

√
r, λ′) ≥ 1.

We further argue that
√
r ≥

√
5+3|ρ|
1−|ρ|

√
1− ϑ implies

√
r ≥ 5+3|ρ|

2+2|ρ| .

• If
√

5+3|ρ|
1−|ρ|

√
1− ϑ < 5+3|ρ|

2+2|ρ| , this condition itself imposes a lower bound on ϑ. Since ϑ < 1
2 ,

we actually need |ρ| ≤ 0.3798 for such lower bound to be smaller than 1
2 . However, when

|ρ| is too small,
√
r ≥

√
5+3|ρ|
1−|ρ|

√
1− ϑ admits no solution at all. Namely,

√
(5 + 3|ρ|)(1 + |ρ|)

√
1− ϑ−

√
1− 2ϑ ≤

√
1− |ρ|2
1− |ρ|

admits no solution. The LHS is not monotone, but its minimum in ϑ ∈ (0, 1
2 ) is taken at

ϑ =
(5 + 3|ρ|)(1 + |ρ|)− 4

2(5 + 3|ρ|)(1 + |ρ|)− 4
.

At this point, the LHS is greater than the RHS, so it admits no solution.

• Since
√

5+3|ρ|
1−|ρ|

√
1− ϑ ≥ 5+3|ρ|

2+2|ρ| , we have
√
r ≥

√
5+3|ρ|
1−|ρ|

√
1− ϑ =⇒

√
r ≥ 5+3|ρ|

2+2|ρ| .

As a result,
√
r =

√
1−2ϑ
1−|ρ|2 + 1

1−|ρ| makes part of the boundary when it is greater than√
5+3|ρ|
1−|ρ|

√
1− ϑ. We will see later, that the latter is also part of the boundary, when it is greater than√

1−2ϑ
1−|ρ|2 + 1

1−|ρ| .

If 2 <
√
r < 5+3|ρ|

2+2|ρ| in f1(
√
r, λ′) , then in terms of ϑ + f1(

√
r, λ′) ≥ 1, we need

d2(B, (|ρ|
√
r,
√
r)) ≥ (1 − |ρ|2)(1 − ϑ). Because 2 <

√
1−2ϑ
1−|ρ|2 + 1

1−|ρ| <
5+3|ρ|
2+2|ρ| , we need

|ρ| ≤ 0.535; otherwise no solution for ϑ.

We now need to use (34). When ϑ ≥ 2|ρ|
1+|ρ| , d

2(B, (|ρ|
√
r,
√
r)) ≥ (1 − ρ2)(1 − ϑ) always

holds. However, ϑ ≥ 2|ρ|
1+|ρ| also makes

√
r < 2, which contradicts

√
r ≥ 2. When ϑ < 2|ρ|

1+|ρ| ,

d2(B, (|ρ|
√
r,
√
r)) ≥ (1− ρ2)(1− ϑ) implies

√
r ≥ 2 +

√
2|ρ|

1+|ρ| − ϑ. which is

√
1− ρ2

√
2|ρ|

1 + |ρ|
− ϑ−

√
1− 2ϑ ≤ (

1

1− |ρ|
− 2)

√
1− ρ2.

We take a close look at the LHS, as a function of ϑ.

• Using the lower bound of ϑ implied by
√

1−2ϑ
1−ρ2 + 1

1−|ρ| <
5+3|ρ|
2+2|ρ| , the LHS is greater than

the RHS.
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• Using the upper bound of ϑ implied by
√

1−2ϑ
1−ρ2 + 1

1−|ρ| > 2, the LHS is greater than the
RHS.

• The LHS is either increasing in ϑ, or decreasing in ϑ, or first-increasing-then-decreasing.
Since LHS > RHS holds at both ends of the interval, it holds for all ϑ. Now we have a
contradition.

When
√
r > 2λ′

1−|ρ| in f3(
√
r, λ′), this case produces no curve in the diagram, but there is no easy

way to eliminate this case. We still need to use some tedious calculation.

If the smallest term is
[
(1− ρ2)

√
r − λ′

]2
in f3(

√
r, λ′), then we have

√
r =

√
1−2ϑ
1−ρ2 + 1

1−ρ2 which

contradicts
√
r ≥ 2

1−|ρ| .

If 2−|ρ|
1−|ρ| < a < 2

1−|ρ| , we recall the form of k(λ′, a):

k(λ′, a) =


d2 (D, ((1− |ρ|)

√
r,−(1− |ρ|)

√
r)) if 2λ′

1−|ρ| ≤
√
r ≤ λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
(1−ρ2)

1+
ρ2(a−1)2

(a−2)2
− 2ρ2(a−1)

a−2

[
−λ′

(
1 + a|ρ|

a−2

)
+ (1− |ρ|)

√
r ·
(

1 + |ρ|(a−1)
a−2

)]2
if
√
r ≥ λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
• When

√
r ≥ λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
, the expression of

√
r is

√
r =

1 + a|ρ|
a−2 +

√
1− 2ϑ

√
1 + ρ2(a−1)2

(a−2)2 − 2ρ2(a−1)
a−2

(1− |ρ|)(1 + |ρ|(a−1)
a−2 )

and actually
√
r < λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
, which gives a contradiction. To prove

this, we take ϑ = 0, and re-arrange the terms:√
1 +

ρ2(a− 1)2

(a− 2)2
− 2ρ2(a− 1)

a− 2
< 1 + |ρ|+

|ρ|(1 + |ρ|(a−1)
a−2 )

(a− 2)(1− |ρ|)− |ρ|

=
ρ2 + (a− 2)2(1− ρ2)

(a− 2)2(1− |ρ|)− |ρ|(a− 2)

⇔ (a− 2)2 + ρ2(a− 1)2 − 2ρ2(a− 1)(a− 2) <

[
ρ2 + (a− 2)2(1− ρ2)

]2
[(a− 2)(1− |ρ|)− |ρ|]2

Multiply each side with [(a− 2)(1− |ρ|)− |ρ|]2, and we have a polynomial. We can then
factorize LHS−RHS and get−2(a−2)(a−1)|ρ|(1−|ρ|)

[
ρ2 + (1− ρ2)(a− 2)2

]
< 0.

• When
√
r < λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
, we calculate the distance related to Point

D and eventually get 2(1 − |ρ|)
√
r − 2(3 − |ρ|)

√
r + 5−3|ρ|

1−|ρ| = 1 − 2ϑ which implies
√
r = 3−|ρ|

2(1−|ρ|) + 1
2

√
1− 4ϑ

1−|ρ| . This expression is not too complicated, and we can easily

verify
√
r < 2

1−|ρ| which gives us a contradition.

If a ≤ 2−|ρ|
1−|ρ| , we still have

√
r = 3−|ρ|

2(1−|ρ|) + 1
2

√
1− 4ϑ

1−|ρ| <
2

1−|ρ| like the case above, which is still
a contradiction.

Fourth, if ϑ+ f1(
√
r, λ′) = 2ϑ+ f3(

√
r, λ′) = 1 and λ′ ≥ 1, ϑ+ f2(

√
r, λ′) ≥ 1, then:

For ϑ+ f2(
√
r, λ′) ≥ 1: When λ′ is fixed, the exponents of FP and FN are all decreasing in

√
r.

We thus need

√
r ≥ max

{
λ′ +

√
1− ϑ,

√
1− ϑ
1− ρ2

+
λ′

1 + |ρ|
,

√
5 + 3|ρ|

(1− |ρ|)(2 + |ρ|)2

√
1− ϑ

}
(38)
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When
√
r ≤ 2λ′

1−|ρ| in 2ϑ+ f3(
√
r, λ′) ≥ 1, for f1(

√
r, λ′):

If λ′ ≤
√
r ≤ 2λ′ in f1(

√
r, λ′), we have λ′ =

√
1+|ρ|
1−|ρ|

√
1− ϑ, and thus ϑ ≤ 2|ρ|

1+|ρ| and
√
r =

√
1−2ϑ
1−|ρ|2 + 1

1−|ρ|

√
1+|ρ|
1−|ρ|

√
1− ϑ. Since

√
r ≤ 2λ′, we need both |ρ| < 1

2 and
√

1−2ϑ
1−ϑ ≤

(1+|ρ|)(1−2|ρ|)
1−|ρ| . When we come to verify the conditions in (38), the first one still dominates the others.

As a result, the curve
√
r =

√
1− 2ϑ

1− |ρ|2
+

1

1− |ρ|

√
1 + |ρ|
1− |ρ|

√
1− ϑ.

exists under the following conditions:
|ρ| < 1

2√
1−2ϑ
1−ϑ ≤

(1+|ρ|)(1−2|ρ|)
1−|ρ|√

1−2ϑ
1−ϑ ≥

√
1− |ρ|2 − |ρ|(1+|ρ|)

(1−|ρ|)

(The last one implies ϑ ≤ 2|ρ|
1+|ρ| .)

If
√
r ≥ 5+3|ρ|

2+2|ρ| in f1(
√
r, λ′) , we have

√
r =

√
5+3|ρ|
1−|ρ|

√
1− ϑ and λ′ is computed with

√
r =√

1−2ϑ
1−|ρ|2 + λ′

1−|ρ| .

Now,
√
r =

√
5+3|ρ|
1−|ρ|

√
1− ϑ ≥ 5+3|ρ|

2+2|ρ| requires√
1− 2ϑ

1− ϑ
≥
(

1− 2(1 + |ρ|)
(1− |ρ|)(5 + 3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|). (39)

and ϑ + f2(
√
r, λ′) ≥ 1 requires

√
1−2ϑ
1−ϑ ≥

1+|ρ|
1−|ρ|

(
1− 2|ρ|

√
5+3|ρ|
1+|ρ|

)
and

√
1−2ϑ
1−ϑ ≥

√
1−ρ2

1−|ρ| −
|ρ|

1−|ρ|

√
(5 + 3|ρ|)(1 + |ρ|). The conditions required by ϑ+f2(

√
r, λ′) ≥ 1 are actually even weaker

than
√
r ≥ 5+3|ρ|

2+2|ρ| . λ
′ ≥ 1 requires

√
5+3|ρ|
1−|ρ|

√
1− ϑ ≥

√
1−2ϑ
1−ρ2 + 1

1−|ρ| .

• When |ρ| ≥ 0.535, the RHS of√
1− 2ϑ

1− ϑ
≥
(

1− 2(1 + |ρ|)
(1− |ρ|)(5 + 3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|).

is negative, thus not restrictive.

Taking the requirement
√

5+3|ρ|
1−|ρ|

√
1− ϑ ≥

√
1−2ϑ
1−ρ2 + 1

1−|ρ| into account, now the boundary
consists of

max

{√
5 + 3|ρ|
1− |ρ|

√
1− ϑ,

√
1− 2ϑ

1− ρ2
+

1

1− |ρ|

}
.

• When |ρ| < 0.535:
√

5+3|ρ|
1−|ρ|

√
1− ϑ ≥

√
1−2ϑ
1−ρ2 + 1

1−|ρ| is not restrictive, because it can be
re-written as √

(5 + 3|ρ|)(1 + |ρ|)
√

1− ϑ−
√

1− 2ϑ ≥
√

1− ρ2

1− |ρ|
which always holds, because we have shown the minimum of the LHS is taken at

ϑ =
(5 + 3|ρ|)(1 + |ρ|)− 4

2(5 + 3|ρ|)(1 + |ρ|)− 4
,

and the minimum can be verified to be greater than the RHS. Thus√
5 + 3|ρ|
1− |ρ|

√
1− ϑ ≥

√
1− 2ϑ

1− ρ2
+

1

1− |ρ|
.

is not restrictive. We only need requirement (39).
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If 2λ′ <
√
r < 5+3|ρ|

2+2|ρ|λ
′ in f1(

√
r, λ′), this case is very tedious. We present the closed form of λ′

and
√
r:

λ′ =

[(
1− 2|ρ|
1− |ρ|

)2

+
1− |ρ|
1 + |ρ|

]−1

·

1− 2|ρ|
1− |ρ|

√
1− 2ϑ

1− ρ2
+

√√√√[(1− 2|ρ|
1− |ρ|

)2

+
1− |ρ|
1 + |ρ|

]
(1− ϑ)− 1− 2ϑ

(1 + |ρ|)2


√
r =

√
1− 2ϑ

1− ρ2
+

λ′

1− |ρ|
= 2λ′ +

√
1− ϑ− 1− |ρ|

1 + |ρ|
λ′2

In terms of the requirements from 2λ′ <
√
r < 5+3|ρ|

2+2|ρ|λ
′: First,

√
r > 2λ′ will give us

either |ρ| ≥ 1

2
or

(
|ρ| < 1

2
and

√
1− 2ϑ

1− ϑ
>

(1 + |ρ|)(1− 2|ρ|)
1− |ρ|

)

Second,
√
r < 5+3|ρ|

2+2|ρ|λ
′ will give us

|ρ| < 0.535 (the same numerical value which appreared before)

and

√
1− 2ϑ

1− ϑ
<

(
1− 2(1 + |ρ|)

(1− |ρ|)(5 + 3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|).

In terms of other requirements, we show that they are can be implied by the two conditions we have
just arrived at.

We first look at the requirement λ′ ≥ 1. We need
√

1−2ϑ
1−ϑ ≤ (1 + |ρ|)

√(
1−2|ρ|
1−|ρ|

)2

+ 1−|ρ|
1+|ρ| to

make the content of the square root positive, but this is implied by
√
r ≤ 5+3|ρ|

2+2|ρ|λ
′. Then λ′ ≥ 1 is

equivalent to: (let x =
√

1−2ϑ
1−ϑ )

1− 2|ρ|
1− |ρ|

√
1− 2ϑ

1− ρ2
+

√√√√[(1− 2|ρ|
1− |ρ|

)2

+
1− |ρ|
1 + |ρ|

]
(1− ϑ)− 1− 2ϑ

(1 + |ρ|)2
≥
(

1− 2|ρ|
1− |ρ|

)2

+
1− |ρ|
1 + |ρ|

⇔ 1√
2− x2

1− 2|ρ|
1− |ρ|

x√
1− ρ2

+

√√√√[(1− 2|ρ|
1− |ρ|

)2

+
1− |ρ|
1 + |ρ|

]
− x2

(1 + |ρ|)2

 ≥ (1− 2|ρ|
1− |ρ|

)2

+
1− |ρ|
1 + |ρ|

for max

{
0,

(1 + |ρ|)(1− 2|ρ|)
1− |ρ|

}
≤ x ≤ min

{
1,

(
1− 2(1 + |ρ|)

(1− |ρ|)(5 + 3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|)

}
and |ρ| < 0.535

It always holds, because we can verify the graph of (LHS−RHS) as a bi-variate function of (|ρ|, x)
is always above zero.

We then look at the requirement
√
r ≤ 2λ′

1−|ρ| : This is equivalent to

1− 2ϑ

1− ϑ
≤

(
1−2|ρ|
1−|ρ|

)2

+ 1−|ρ|
1+|ρ|(

1−|ρ|
1+|ρ|−

2|ρ|(1−2|ρ|)
(1−|ρ|)2

)2

1−ρ2 + 1
(1+|ρ|)2

which is always weaker than
√

1−2ϑ
1−ϑ ≤ min

{
1,
(

1− 2(1+|ρ|)
(1−|ρ|)(5+3|ρ|)

)√
(5 + 3|ρ|)(1 + |ρ|)

}
.

We finally look at the requirement from ϑ+ f2(
√
r, λ′) ≥ 1, or equivalently (38). First, we need to

verify
√
r ≥ λ′ +

√
1− ϑ. Since

√
r =

√
1−2ϑ
1−ρ2 + λ′

1−|ρ| , this is equivalent to
√

1−2ϑ
1−ρ2 + |ρ|

1−|ρ|λ
′ ≥
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√
1− ϑ. It naturally holds if |ρ| ≤ 0.5, because λ′ ≥ 1. When 0.5 < |ρ| < 0.535, still letting

x =
√

1−2ϑ
1−ϑ , we have √

1− 2ϑ

1− ρ2
+
|ρ|

1− |ρ|
λ′ ≥

√
1− ϑ

⇔ x√
1− ρ2

+
|ρ|λ′

(1− |ρ|)
√

2− x2 ≥ 1

⇐ x√
1− ρ2

+
|ρ|

(1− |ρ|)
√

2− x2 ≥ 1

The LHS is either increasing in x ∈ (0, 1), or first-increasing-then-decreasing. When x = 0 or 1, the
inequality holds for 0.5 < |ρ| < 0.535, so it always holds.

We still need to verify
√
r ≥ max

{√
1−ϑ
1−ρ2 + λ′

1+|ρ| ,
√

5+3|ρ|
(1−|ρ|)(2+|ρ|)2

√
1− ϑ

}
. With

√
1− ϑ ≤

√
r − λ′, we can get rid of

√
1− ϑ and arrange either of the requirements as an inequality between√

r and λ′. Such an inequality will be weaker than
√
r ≤ 5+3|ρ|

2+2|ρ|λ
′.

When
√
r > 2λ′

1−|ρ| in f3(
√
r, λ′), we will see this case does not produce any curve in the diagram.

We still need to discuss two cases in terms of f1(
√
r, λ′):

If
√
r ≥ 5+3|ρ|

2+2|ρ|λ
′ in f1(

√
r, λ′): We have

√
r =

√
5+3|ρ|
1−|ρ|

√
1− ϑ. Because

√
r > 2λ′

1−|ρ| , we have

λ′ <
1

2

√
(5 + 3|ρ|)(1− |ρ|)

√
1− ϑ

To admit a solution for λ′ ≥ 1, we need |ρ| < 1
3 so that the RHS is large enough.

• When
√
r =

√
1−2ϑ
1−ρ2 + λ′

1−ρ2 , λ′ = (1 − ρ2)
(√

5+3|ρ|
1−|ρ|

√
1− ϑ−

√
1−2ϑ
1−ρ2

)
. Combining

this with λ′ < 1
2

√
(5 + 3|ρ|)(1− |ρ|)

√
1− ϑ, we can get a requirement for x =

√
1−2ϑ
1−ϑ :

x >
√

(5 + 3|ρ|)(1 + |ρ|)− 1

2

√
5 + 3|ρ|
1 + |ρ|

but the RHS is always greater than 1. Thus we have a contradition.

• When
√
r = 3−|ρ|

2(1−|ρ|)λ
′ + 1

2

√
2(1−2ϑ)

1−|ρ| −
1+|ρ|
1−|ρ|λ

′2: We temporarily ignore the relationship

between λ′ and ϑ, and the λ′ which maximizes
√
r = 3−|ρ|

2(1−|ρ|)λ
′ + 1

2

√
2(1−2ϑ)

1−|ρ| −
1+|ρ|
1−|ρ|λ

′2

is λ′ =
√

2(3−|ρ|)2(1−2ϑ)
(3−|ρ|)2(1+|ρ|)+(1−|ρ|)(1+|ρ|)2 . Even with the maximizer λ′, we still have

3− |ρ|
2(1− |ρ|)

λ′ +
1

2

√
2(1− 2ϑ)

1− |ρ|
− 1 + |ρ|

1− |ρ|
λ′2 <

√
5 + 3|ρ|
1− |ρ|

√
1− ϑ

for |ρ| < 1
3 . Thus we have no solution for λ′.

• When 2−|ρ|
1−|ρ| < a < 2

1−|ρ| and
√
r ≥ λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
, the contradiction

comes from the fact that

√
r =

√
5 + 3|ρ|
1− |ρ|

√
1− ϑ < λ′

1− |ρ|

[
2 +

|ρ|+ ρ2

(a− 2)(1− ρ2)− (|ρ|+ ρ2)

]
for any 2−|ρ|

1−|ρ| < a < 2
1−|ρ| , |ρ| <

1
3 and λ′ ≥ 1.

If 2λ′

1−|ρ| <
√
r < 5+3|ρ|

2+2|ρ|λ
′ in f1(

√
r, λ′): For this case to exist, we need 2

1−|ρ| <
5+3|ρ|
2+2|ρ| , which

requires |ρ| < 0.1547. Solving d2(B, (|ρ|
√
r,
√
r)) = (1 − ρ2)(1 − ϑ) in FP2, we have

√
r =

2λ′ +
√

1− ϑ− 1−|ρ|
1+|ρ|λ

′2
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• When
√
r =

√
1−2ϑ
1−ρ2 + λ′

1−ρ2 , we need
√

1−2ϑ
1−ρ2 + λ′

1−ρ2 >
2

1−|ρ|λ
′ which contradicts λ′ ≥ 1

when |ρ| < 0.1547.
• When d2 (D, ((1− |ρ|)

√
r,−(1− |ρ|)

√
r)), the (

√
r, λ′) pair are given by

√
r = 2λ′ +

√
1− ϑ− 1−|ρ|

1+|ρ|λ
′2

√
r = 3−|ρ|

2(1−|ρ|)λ
′ + 1

2

√
2(1−2ϑ)

1−|ρ| −
1+|ρ|
1−|ρ|λ

′2

which implies 1−3|ρ|
2(1−|ρ|)λ

′ +
√

1− ϑ− 1−|ρ|
1+|ρ|λ

′2 = 1
2

√
2(1−2ϑ)

1−|ρ| −
1+|ρ|
1−|ρ|λ

′2.

However, the above equation has no solution for λ′, because the LHS is always greater than
the RHS. We look at (LHS −RHS) from now on, and prove it is positive:
Let λ∗ = λ′√

1−ϑ , and λ∗ ≥ 1 as well. Then

(LHS −RHS)√
1− ϑ

=
1− 3|ρ|

2(1− |ρ|)
λ∗ +

√
1− 1− |ρ|

1 + |ρ|
λ∗2 − 1

2

√
2

1− |ρ|
1− 2ϑ

1− ϑ
− 1 + |ρ|

1− |ρ|
λ∗2

≥ 1− 3|ρ|
2(1− |ρ|)

λ∗ +

√
1− 1− |ρ|

1 + |ρ|
λ∗2 − 1

2

√
2

1− |ρ|
− 1 + |ρ|

1− |ρ|
λ∗2

Thus we only need to prove

1− 3|ρ|
2(1− |ρ|)

λ∗ +

√
1− 1− |ρ|

1 + |ρ|
λ∗2 >

1

2

√
2

1− |ρ|
− 1 + |ρ|

1− |ρ|
λ∗2

From the content of the square roots, we can see that λ∗ ≤
√

1+|ρ|
1−|ρ| .

Square both sides, and ignore the cross term on the LHS, and we can actually prove a
stronger result,(

1− 3|ρ|
2(1− |ρ|)

)2

λ∗2 +

(
1− 1− |ρ|

1 + |ρ|
λ∗2
)
≥ 1

2(1− |ρ|)
− 1 + |ρ|

4(1− |ρ|)
λ∗2.

We only need to verify the two ends, λ∗ = 1 and λ∗ =
√

1+|ρ|
1−|ρ| , to see that this inequality

holds for 0 < |ρ| < 0.1547.

• When 2−|ρ|
1−|ρ| < a < 2

1−|ρ| and
√
r ≥ λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
:

λ′

1−|ρ|

[
2 + |ρ|+ρ2

(a−2)(1−ρ2)−(|ρ|+ρ2)

]
is at least 3λ′

1−|ρ| , which is still greater than
√
r = 2λ′ +√

1− ϑ− 1−|ρ|
1+|ρ|λ

′2.

We have finished discussing the last case. To sum up the whole phase diagram, it is exactly Theo-
rem 12.

D.1 PROOF OF LEMMA 2

(We have assumed ρ > 0 in Lemma 2.)

Recall optimization 28 and our assumption b1 > |h2|. The equation of the sub-gradient for b =
(b1, b2)′ is: [

1 ρ
ρ 1

] [
b1
b2

]
+

[
q′(b1)
q′(b2)

]
=

[
h1

h2

]
. (40)

When λ′ is sufficiently large, neither of (b1, b2) is nonzero. We investigate the process of decreasing
λ′ from∞, and discuss the major stages along the way.

Stage 1: When λ′ is large, both (bj , bj+1) are zero, and SCAD behaves like Lasso. When λ′ is large,
Equation (40) becomes λ′ · sgn(0) = h1, λ

′ · sgn(0) = h2 and so we need

λ′ ≥ λ′1 = max{|h1|, |h2|}. (41)
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Stage 2: When λ′ crosses λ′1 = max {|h1|, |h2|}, since we have assumed h1 > |h2| ≥ 0, b1 becomes
positive. To see this, consider λ′ in a very small interval (λ′1 − δ, λ′1) = (|h1| − δ, |h1|):[

1 ρ
ρ 1

] [
b1
0

]
+

[
λ′ · sgn(b1)
λ′ · sgn 0

]
=

[
h1

h2

]
.

Now we have b1 = h1 − λ′ · sgn(b1). From this equation, we know b1 has the same sign as h1, so b1
enters the model as a positive number. On the other hand, b2 cannot enter the model before b1, or
we have a contradiction. This is because we would have b2 = h2 − λ′ · sgn(b2), but the signs of the
LHS and RHS can never agree.

Now that b1 is positive, for the above system of equations to admit a solution, we also need

|h2 + ρλ′ − ρh1| < λ′ (42)

Stage 3: When λ′ continues to decrease, we have two possible cases when the solution path enters the
next stage. First, b1 continues to increase and becomes larger than λ′; then its gradient will change
according to the definition of SCAD (see (27)), while b2 = 0 all along. Second, b2 enters the model
before b1 gets larger than λ′.

We start from the first case mentioned above. In this case, at the next critical point λ′ = λ′2, we would
have b1 = λ′ while b2 = 0 still. Then[

1 ρ
ρ 1

] [
λ′

0

]
+

[
λ′

λ′ · sgn 0

]
=

[
h1

h2

]
.

Then we have λ′(1)
2 = 1

2h1.

For this equation to admit a solution, we need |h2 − ρλ′2| = |h2 − 1
2ρh1| < λ′2 = 1

2h1 which is

−1 + ρ

2
h1 < h2 <

1 + ρ

2
h1. (43)

With this constraint (43) and λ′ ∈ [λ
′(1)
2 , λ′1], we can also go back to check the Condition (42) in the

previous stage, and we can see it holds.

We then consider the next case in which b2 enters the model first. This case is essentially Lasso. We
solve [

1 ρ
ρ 1

] [
b1
b2

]
+

[
λ′

λ′ · sgn(b2)

]
=

[
h1

h2

]
.

when λ′ ∈ (λ
′(2)
2 − δ, λ′(2)

2 ). We then have two cases, depending on the sign of b2 when it enters the
model. If b2 enters the model as a positive number, then eventually we have

0 < ρh1 < h2 < h1, and λ′ < λ′2 =
h2 − ρh1

1− ρ
If b2 enters the model as a negative number, then eventually we have

−h1 < h2 < ρh1, and λ′ < λ′2 =
ρh1 − h2

1 + ρ
.

With these constraints and λ′ ∈ [λ′(2), λ′1], we can also go back to check the Condition (42) in the
previous stage. It holds, and we omit the details for brevity.

We have discussed the two cases in the third stage, and we need to decide which one actually happens.
When h2 ≥ 1+ρ

2 h1 or h2 ≤ −1+ρ
2 h1, requirement 43 is not met, and thus the second case is the case

that happens. The subset of rejection region when h2 ≥ 1+ρ
2 h1 or h2 ≤ −1+ρ

2 h1 is the same as that
of Lasso. Now both b1 and b2 are nonzero, and we need not discuss any further.

When −1+ρ
2 h1 < h2 <

1+ρ
2 h1, we can verify that

λ
′(1)
2 =

1

2
h1 > λ

′(2)
2 =

h2 − ρh1

1− ρ
when h2 ≥ ρh1

λ
′(1)
2 =

1

2
h1 > λ

′(2)
2 =

ρh1 − h2

1 + ρ
when h2 < ρh1
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So b1 becomes larger than λ′ before b2 enters the model.

Stage 3: When (h1, h2) satisfies −1+ρ
2 h1 < h2 <

1+ρ
2 h1 in the last stage, we stil need to find out

when b2 enters the model after b1 becomes greater than λ′. When λ′ < λ
′(1)
2 = 1

2h1 we still have
two possible cases to discuss: First, b1 continues to grow larger than (aλ′), making the expression of
q′(b1) different again, while b2 is still at zero. Second, b2 enters the model before b1 hits (aλ′).

Before the discussion of the two cases, we look at the system of equations when λ′ ∈ (λ′2 − δ, λ′2)
for a very small δ. [

1 ρ
ρ 1

] [
b1
0

]
+

[
aλ′−b1
a−1

λ′ · sgn(0)

]
=

[
h1

h2

]
.

The solution of b1 is b1 = (a−1)h1−aλ′
a−2 and the sub-gradient for b2 requires

|h2 − ρb1| < λ′ (44)

We start from the first case in which b1 reaches (aλ) first. At the point λ′ = λ
′(1)
3 , we have b1 = aλ′

and [
1 ρ
ρ 1

] [
aλ′

0

]
+

[
0

λ′ · sgn(0)

]
=

[
h1

h2

]
.

Thus λ′(1)
3 = h1

a . In terms of the sub-gradient sgn(0) , we need |h2 − ρh1| < h1

a , and thus
(ρ− 1

a )h1 < h2 < (ρ+ 1
a )h1. Compare the above equation with Equation 43, and we get

(ρ− 1

a
)h1 < h2 < min

{
(ρ+

1

a
)h1,

1 + ρ

2
h1

}
=

{
(ρ+ 1

a )h1 if a > 2
1−ρ

1+ρ
2 h1 if a ≤ 2

1−ρ
(45)

Then we consider the second case in which b2 enters the model first. We look at the condition 44 to
find λ′(2)

3 , because condition 44 would become tight at λ = λ
′(2)
3 . It requires

−λ′ + ρ(a− 1)h1 − aρλ′

a− 2
< h2 < λ′ +

ρ(a− 1)h1 − aρλ′

a− 2

The left half of the inequality is equivalent to (We have implicitly used ρ > 0.)

λ′ >
ρ(a− 1)h1 − (a− 2)h2

a+ aρ− 2

The right half of the inequality is

(a− 2)h2 − ρ(a− 1)h1 < (a− 2− aρ)λ′. (46)

It turns out that we still need to discuss whether a > 2
1−ρ :

When a > 2
1−ρ , a− 2− aρ > 0 and requirement (46) is restrictive. We have

λ′ > λ
′(2)
3 = max

{
(a− 2)h2 − ρ(a− 1)h1

a− 2− aρ
,
ρ(a− 1)h1 − (a− 2)h2

a+ aρ− 2

}
.

Of course only one of the two terms will be positive, and it involves the discussion of whether
(a− 2)h2 > ρ(a− 1)h1 or not.

When a ≤ 2
1−ρ , we can prove requirement (46) always holds without any requirement. To see this, just

plug λ′ = λ′2 = h1

2 into requirement (46), and we will see (a−2)h2−ρ(a−1)h1 ≤ (a−2−aρ)λ′2 < 0

because it is equivalent to h2 <
1+ρ

2 h1. In other words, requirement (46) is not restrictive, and we
only need the left half:

λ′ > λ
′(2)
3 =

ρ(a− 1)h1 − (a− 2)h2

a+ aρ− 2
.

Finally, we need to decide how to choose between the two cases:
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• When a > 2
1−ρ and (ρ− 1

a )h1 < h2 < (ρ+ 1
a )h1, we should choose λ′(1)

3 = h1

a . This is

because now h1

a > max
{

(a−2)h2−ρ(a−1)h1

a−2−aρ , ρ(a−1)h1−(a−2)h2

a+aρ−2

}
always holds.

• When a ≤ 2
1−ρ and (ρ − 1

a )h1 < h2 <
1+ρ

2 h1, we should choose λ′(1)
3 = h1

a . This is

because now h1

a > ρ(a−1)h1−(a−2)h2

a+aρ−2 always holds.

• When a > 2
1−ρ and h2 > (ρ+ 1

a )h1, we should choose λ′(2)
3 = (a−2)h2−ρ(a−1)h1

a−2−aρ > 0.

• When h2 < (ρ− 1
a )h1, for arbitrary a, we should choose λ′(2)

3 = ρ(a−1)h1−(a−2)h2

a+aρ−2 > 0.

In the discussion above, if the Condition (45) is met and λ′ < λ
′(1)
3 = h1

a , we still have not seen b2 in
the model when b1 hits aλ′, and we need to discuss further.

Stage 4: When λ′ fall below λ
′(1)
3 , b1 is greater than aλ′. Now the system of equations:[
1 ρ
ρ 1

] [
b1
0

]
+

[
0

λ′ · sgn(0)

]
=

[
h1

h2

]
.

Now we have b1 = h1, and λ′ > |h2−ρh1|. Thus we know λ′4 = |h2−ρh1|. (The sign of (h2−ρh1)
is not determined yet.) When λ′ fall below λ′4, b2 inevitably enters the model.

E PROOF OF PROPOSITION 2 (COMPARING SCAD AND LASSO)

Proposition 2 makes two assertions, the first about positive ρ and the second about negative ρ. We
prove them respectively.

When ρ < 0, it would be obvious that the diagram of SCAD is lower than the diagram of Lasso.
Reviewing the diagram of Lasso in the main text, it is the maximum of four curves:

ULasso(ϑ) =

{
max {h1(ϑ), h∗2(ϑ)} , when ρ ≥ 0,

max {h1(ϑ), h∗2(ϑ), h∗3(ϑ), h∗4(ϑ)} , when ρ < 0,
(47)

where h1(ϑ) = (1 +
√

1− ϑ)2, h∗2(ϑ) =
(
1 +

√
1+|ρ|
1−|ρ|

)2
(1 − ϑ), h∗3(ϑ) = 1

(1−|ρ|)2

(
1 +√

1−|ρ|
1+|ρ|

√
1− 2ϑ

)2
, and h∗4(ϑ) = 1

(1−|ρ|)2

(√ 1+|ρ|
1−|ρ|

√
1− ϑ+

√
1−|ρ|
1+|ρ|

√
1− 2ϑ

)2
.

In terms of SCAD, h1(ϑ) = (1 +
√

1− ϑ)2, h∗2(ϑ) =
(
1 +

√
1+|ρ|
1−|ρ|

)2
(1 − ϑ) and h∗3(ϑ) =

1
(1−|ρ|)2

(
1 +

√
1−|ρ|
1+|ρ|

√
1− 2ϑ

)2
are also present in Theorem 3. (The notation of the corresponding

curve of h∗3(ϑ) is different, h∗3(ϑ) =
(

1
1−ρ +

√
1−2ϑ
1−ρ2

)
.) The only different curve is the last one; we

compare only the last curve below:

hLasso(ϑ) =
1

(1− |ρ|)2

(√1 + |ρ|
1− |ρ|

√
1− ϑ+

√
1− |ρ|
1 + |ρ|

√
1− 2ϑ

)2

hSCAD(ϑ) =


(

5+3|ρ|
1−|ρ|

)
(1− ϑ), if

√
1−2ϑ
1−ϑ ≥

3−4|ρ|−3ρ2

(1−|ρ|)

√
1+|ρ|
5+3|ρ|

1
(1−|ρ|)2

(√
1+|ρ|
1−|ρ|

√
1− ϑ+

√
1−|ρ|
1+|ρ|

√
1− 2ϑ

)2

, if
√

1−2ϑ
1−ϑ ≤

(1+|ρ|)(1−2|ρ|)
1−|ρ|

h6(ϑ) other wise

≤ min

{(
5 + 3|ρ|
1− |ρ|

)
(1− ϑ),

1

(1− |ρ|)2

(√1 + |ρ|
1− |ρ|

√
1− ϑ+

√
1− |ρ|
1 + |ρ|

√
1− 2ϑ

)2}
≤ hLasso(ϑ)

Thus the assertion when ρ < 0 is proven.

When ρ > 0, from the details proof in Section D, we know that when a ≤ 2
1−ρ , the diagram of SCAD

is the same as that of Lasso except when ρ < 0.179 in a tiny neighborhood of ϑ = 0. See Figure 10
for an example.
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Figure 10: The phase diagram when 0 ≤ ρ < 0.179 with the newly added curve.

When a > 2
1−ρ and increases, the penalty function of SCAD converges to that of Lasso and so does

the rejection region. Eventually the tiny corner will vanish, and the diagram of SCAD with optimal
(a∗, λ∗) and ρ > 0 will be the same as Lasso.

F PROOF OF THEOREM 4 (THRESHOLDED LASSO)

As described in Section A, our proof has three parts: (a) deriving the rejection region, (b) obtaining
the rate of convergence of E[H(β̂, β)], and (c) calculating the phase diagram.

Part 1: Deriving the rejection region. Recall that the rejection regionR is as defined in (12). Still
use the scaled version of (λ, t, x′jy, x

′
j+1y): Define h1 = x′jy/

√
2 log(p), h2 = x′j+1y/

√
2 log(p),

λ′ = λ/
√

2 log(p) and t′ = t/
√

2 log(p). Consider Lasso decomposed into bivariate sub-problems,
and for (xj , xj+1), (b̂1, b̂2) minimizes

L(b) ≡ 1

2
b′
[

1 ρ
ρ′ 1

]
b+ b′h+ λ′‖b‖1 (48)

It is seen that (β̂j , β̂j+1) =
√

2 log(p)(b̂1, b̂2). Thresholded Lasso applies threshold t to (β̂j , β̂j+1),
which is equivalent to thresholding (b̂1, b̂2) with t′.

Fix ρ ≥ 0. The next lemma gives the explicit solution to (16) in the case of h1 > |h2|. It is proved in
Section F.1.

Lemma 3. Consider the variable selection method by solving the optimization 48 and then thresh-
olding the solution with t′; if (b̂1) (or (b̂2)) survives the thresholding, then variable xj (or xj+1) is
selected. Suppose h1 > |h2| and ρ ≥ 0, then

• When λ′ > h1, neither of (xj , xj+1) is selected.

• If h1 ≥ λ′ and ρh1 − λ′(+ρ) ≤ h2 ≤ ρh1 + λ′(1− ρ), then: When h1 ≤ λ′ + t′, neither
of (xj , xj+1) is selected. When h1 > λ′ + t′, only xj is selected.

• If h1 ≥ λ′ and h2 > ρh1 + λ′(1− ρ), then

1. When h1 < ρh2 + λ′(1− ρ) + t′(1− ρ2), neither of (xj , xj+1) is selected.
2. When h1 ≥ ρh2 + λ′(1 − ρ) + t′(1 − ρ2) and h2 ≤ ρh1 + λ′(1 − ρ) + t′(1 − ρ2),

only xj is selected.
3. When h2 > ρh1 + λ′(1− ρ) + t′(1− ρ2), both (xj , xj+1) are selected.

• If h1 ≥ λ′ and h2 < ρh1 − λ′(1 + ρ), then
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1. When h1 < ρh2 + λ′(1 + ρ) + t′(1− ρ2), neither of (xj , xj+1) is selected.

2. When h1 ≥ ρh2 + λ′(1 + ρ) + t′(1 − ρ2) and h2 ≤ ρh1 + λ′(1 + ρ) + t′(1 − ρ2),
only xj is selected.

3. When h2 > ρh1 + λ′(1 + ρ) + t′(1− ρ2), both (xj , xj+1) are selected.

Following similar reasoning to that of Elastic net, we can use Lemma 3 to write explicitely the
rejection regionR, which is the region in R2 where the value of (h1, h2) implies xj will get selected
eventually. The rejection region of Thresholded Lasso and ρ > 0 is

R = {(h1, h2) : h1 > ρh2 + λ′(1− ρ) + t(1− ρ2), h1 > λ′ +′ t′}
∪ {(h1, h2) : h1 > ρh2 + λ′(1 + ρ) + t′(1− ρ2)} ∪ {(h1, h2) : h1 < ρh2 − λ′(1 + ρ)− t′(1− ρ2)}
∪ {(h1, h2) : h1 < ρh2 − λ′(1− ρ)− t(1− ρ2), h1 < −λ′ −′ t′}. (49)

See Figure 7 for a visualization of the rejection region.

= 0.5, = 1.5, t = 1

0
+ t

h2 = h1

h1

h2

h2 = h1 + (1 )

h2 = h1 (1 + )

h2 = h1

h1 = h2

h2 = h1 + (1 ) + t(1 2)

h1 = h2 + (1 ) + t(1 2)

h2 = h1 (1 + ) t(1 2)

h1 = h2 + (1 + ) + t(1 2)

A

B

Figure 11: The rejection region of Thresholded Lasso for ρ ≥ 0.

Part 2. Analyzing the Hamming error. The discussion of Elastic net can be applied here as well,
and we present Theorem 13 directly.

Theorem 13. Suppose the conditions of Theorem 4 hold. Let λ′ = λ/
√

2 log(p) and t′ =

t/
√

2 log(p) in Thresholded Lasso. The correlation ρ ∈ (−1, 1). As p→∞,

FPp = Lpp
1−min

{
f1(
√
r,λ′,t′), ϑ+f2(

√
r,λ′,t′)

}
, FNp = Lpp

1−min
{
ϑ+f3(

√
r,λ′,t′), 2ϑ+f4(

√
r,λ′,t′)

}
,
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where (below, d2
|ρ|(u, v) is as in Definition 1)

f1(
√
r, λ′, t′) = min

{ 1

1− ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2
, (λ′ + t′)2

}

f2(
√
r, λ′, t′) =


(λ′ + t′ − |ρ|

√
r)2 if

√
r ≤ λ′(1−|ρ|)

1−ρ2

d2
|ρ|((λ

′ + t′, λ′ + |ρ|t′), (|ρ|
√
r,
√
r)) if

√
r ∈ (λ

′(1−|ρ|)
1−ρ2 , λ′ + |ρ|t′)

1
1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
if
√
r ≥ λ′ + |ρ|t′

f3(
√
r, λ′, t′) = min

{
(
√
r − λ′ − t′)2

+,
1

1− ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2}
,

f4(
√
r, λ′, t′) =

1

1− ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− ρ)

]2
Remark 2. When ρ > 0 in Theorem 13, we notice that f3(

√
r, λ′, t′) ≤ f4(

√
r, λ′, t′), and thus

FNp can be simplified:
FNp = Lpp

1−ϑ−f3(
√
r,λ′,t′).

When ρ < 0, such simplification is not available.

The proof of Theorem 13 is easy given the simple rejection region shown in Figure 11, and we omit
it for brevity.

Part 3. Calculating the phase diagram. The boundary line between Almost Full Recovery and
No Recovery is still r = ϑ, and the proof is similar to that of Elastic net. The rest of this part
calculates the curve between Almost Full Recovery and Exact Recovery.

In such calculation, thresholded Lasso has two tuning parameters, (λ′, t′), and thus we need one more
equality additional to the important fact noted in the Part 3 of Elastic net. In other words, we not only
need

min
{
f1(
√
r, λ′, t′), ϑ+ f2(

√
r, λ′, t′)

}
= min

{
ϑ+ f3(

√
r, λ′, t′), 2ϑ+ f4(

√
r, λ′, t′)

}
= 1

but also need one more equation. This gives us more than 4 cases for other methods. (For brevity, we
use fi (i = 1, 2, 3, 4) as shorthand of fi(

√
r, λ′, t′) for the rest of this part.)

For the rest of this section, we use a clearer way to discuss all the cases; that is, we discuss each
possible curve and find out whether they can be present in some interval of ϑ.

We first talk about ρ > 0: In this case, since we always need ϑ+ f3 ≥ 1, we much have
√
r ≥ λ′+ t′.

As a result, for ϑ+f2 ≥ 1, it can only be ϑ+ 1
1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2 ≥ 1 since
√
r ≥ λ′+t′.

Also, according to Remark 2, we can ignore the requirement 2ϑ+ f4 ≥ 1 for ρ ≥ 0.

First, we study the curve
√
r = 2

√
1−ϑ
1−ρ2 , which is the curve given by letting

ϑ+
1

1− ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= ϑ+

1

1− ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 1

in f2 and f3. We also need ϑ+ f1, ϑ+ f3 ≥ 1 and one more equality. One possible case is

1
1−ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2 ≥ 1

(λ′ + t′)2 ≥ 1

ϑ+ 1
1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= 1

ϑ+ (
√
r − λ′ − t′)2

+ = 1

ϑ+ 1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 1

which gives λ′ = 1+ρ
ρ

(
1√

1−ρ2
− 1

)√
1− ϑ and t′ =

√
1+ϑ
1−ρ2 − 1

ρ

(
1√

1−ρ2
− 1

)√
1− ϑ. In

this case, t′ ≥ 0 always holds; (λ′ + t′)2 ≥ 1 =⇒ 1
1−ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2 ≥ 1, and

(λ′ + t′)2 ≥ 1 is equivalent to
√
r = 2

√
1−ϑ
1−ρ2 ≥ 1 +

√
1− ϑ. This is a sufficient condition for this

curve to show up in the diagram.
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Second, we study the curve
√
r = 1+

√
1− ϑ, which is given by (λ′+t′)2 = ϑ+(

√
r−λ′−t′)2

+ = 1.
We also need f1, ϑ + f2, ϑ + f3 ≥ 1 and one more equality. Depending on which requirement to
take equality, we discuss two possible cases:

If 1
1−ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2
= 1, and ϑ + 1

1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2 ≥ 1, ϑ +

1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2 ≥ 1, then we will get λ′ =

√
1−ρ2−(1−ρ2)

ρ(1+ρ) and

t′ =
(1+ρ)−

√
1−ρ2

ρ(1+ρ) . From the two inequality requirements, we get

√
1− ϑ ≤ min

{
−
√

1− ρ2 + 2ρ+ 2

(1 + ρ)2

√
1− ρ2,

1− ρ
1 + ρ

}
=

1− ρ
1 + ρ

If ϑ+ 1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 1 and 1

1−ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2 ≥
1, ϑ + 1

1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2 ≥ 1, then we will get λ′ = 1+ρ
ρ

(
1√

1−ρ2
− 1

)√
1− ϑ,

t′ = 1− λ′. From t′ ≥ 0 and the two inequality requirements, we get

1− ρ
1 + ρ

≤
√

1− ϑ ≤ min


(

2√
1− ρ2

− 1

)−1

,
ρ

1 + ρ

(
1√

1− ρ2
− 1

)−1
 =

(
2√

1− ρ2
− 1

)−1

Taking the intersection of the first two cases, we already know that
√
r = 1 +

√
1− ϑ exists as

long as
√
r = 1 +

√
1− ϑ ≥ 2

√
1−ϑ
1−ρ2 . There is one more case left, but the interval of ϑ for

√
r = 1 +

√
1− ϑ to exist will be a subset of what we already have, so we omit it.

Now we already seem to have the whole phase curve, but the tricky part of thresholded Lasso having
two tunable parameters is that we might have multiple curves for the same ϑ, and we need to take the
minimum across all the curves. Thus we need to continue discussing all the other curves. For ρ > 0,
we have three more to go.

Third, we study the curve
√
r =

2
√

1−ρ2−(1+ρ)

(1−ρ)
√

1−ρ2

√
1− ϑ+ 1√

1−ρ2
, given by

1

1− ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2
= ϑ+(

√
r−λ′−t′)2

+ = ϑ+
1

1− ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 1.

Now we have λ′ = 1+ρ
ρ

(
1√

1−ρ2
− 1

)√
1− ϑ and t′ = 1√

1−ρ2
− 1+ρ

ρ(1−ρ)

(
1√

1−ρ2
− 1

)√
1− ϑ.

From t′ ≥ 0 and f1, ϑ+ ϑ+ f2 ≥ 1, we get

√
1− ϑ ≤ min


[

(1 + ρ)2

ρ
√

1− ρ2

(
1√

1− ρ2
− 1

)]−1

,
1− ρ
1 + ρ

,

(
2− 2

√
1− ρ2

1− ρ
+

1 + ρ

1− ρ

)−1
 =

1− ρ
1 + ρ

As we can see, when
√

1− ϑ ≤ 1−ρ
1+ρ , now we have 2 curves, both of which seem to be the boundary.

We must take the lower one then.

Fourth, we study the curve
√
r =

(
1 + 1+ρ

2
√

1−ρ2

)√
1− ϑ+ 1−ρ

2
√

1−ρ2
given by

1

1− ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2
= ϑ+

1

1− ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= ϑ+(

√
r−λ′−t′)2

+ = 1.

Now we have λ′ = 1
2ρ

(
1−
√

1− ϑ
)√

1− ρ2 and t′ = 1

2ρ
√

1−ρ2

[
(1 + ρ)

√
1− ϑ− (1− ρ)

]
.

From t′ ≥ 0 and f1, ϑ+ f3 ≥ 1, we need

max

{
1− ρ
1 + ρ

,
2
√

1− ρ2 − (1− ρ)

1 + ρ

}
≤
√

1− ϑ ≤ 1− ρ
2
·
(

3− ρ
2
−
√

1− ρ2

)−1
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This gives us an empty set, because actually

1− ρ
2
·
(

3− ρ
2
−
√

1− ρ2

)−1

<
2
√

1− ρ2 − (1− ρ)

1 + ρ
.

Fifth, we study the curve
√
r =

√
1−ϑ
1−ρ2 +

2ρ+2−
√

1−ρ2

(1+ρ)2 given by

1

1− ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2
= (λ′+t′)2 = ϑ+

1

1− ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 1.

We get λ′ =

√
1−ρ2−(1−ρ2)

ρ(1+ρ) and t′ =
(1+ρ)−

√
1−ρ2

ρ(1+ρ) . From ϑ+ f2, ϑ+ f3 ≥ 1, we get

1− ρ
1 + ρ

≤
√

1− ϑ ≤ 2
√

1− ρ2 − (1− ρ)

1 + ρ

Summarising all the five curves when ρ > 0: We will elimiate the third and fifth curve. For the third
curve, when

√
1− ϑ ≤ 1−ρ

1+ρ , it is always larger than the other curve
√
r = 1 +

√
1− ϑ. In other

words, when
√

1− ϑ ≤ 1−ρ
1+ρ , we always have

√
r =

2
√

1− ρ2 − (1 + ρ)

(1− ρ)
√

1− ρ2

√
1− ϑ+

1√
1− ρ2

≥
√

1− ϑ+ 1

In fact, (LHS −RHS) takes its minimum at
√

1− ϑ = 1−ρ
1+ρ , which is exactly zero.

For the fifth curve, when 1−ρ
1+ρ ≤

√
1− ϑ ≤ 2

√
1−ρ2−(1−ρ)

1+ρ , we have

√
r =

√
1− ϑ
1− ρ2

+
2ρ+ 2−

√
1− ρ2

(1 + ρ)2
≥ max

{
1 +
√

1− ϑ, 2

√
1− ϑ
1− ρ2

}

which can be verified using 1−ρ
1+ρ ≤

√
1− ϑ ≤ 2

√
1−ρ2−(1−ρ)

1+ρ in a similar manner. To sum up, for
ρ ≥ 0, the phase curve of thresholded Lasso is

√
r = max

{
1 +
√

1− ϑ, 2

√
1− ϑ
1− ρ2

}
.

We then talk about ρ < 0 , which now requires additionally 2ϑ+ f4 ≥ 1, or

2ϑ+
[
(1− ρ2)

√
r − λ′(1 + |ρ|)− (1− ρ2)t′

]2
+
≥ 1.

When ϑ ≥ 1
2 , this newly added requirement has no effects, and the right half (ϑ ≥ 1

2 ) of the phase
diagram should be the same as that of ρ ≥ 0. As a result, we can limit ourselve to consider ϑ ≤ 1

2 .

Also note that we used to ignore 2ϑ+ f4 ≥ 1 for ρ ≥ 0 because it is not restrictive; now we have
added it, and it is the only difference between the cases of ρ ≥ 0 and ρ < 0 (because f1, ϑ+ f2, g3

only rely on |ρ|). As a result, we only need to discuss this additional requirement; since we have
eliminated three curves when ρ > 0, there is no need to discuss them again.

First, we study the curve
√
r = 2

√
1−ϑ
1−ρ2 , which is the curve given by letting

ϑ+
1

1− ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= ϑ+

1

1− ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 1

in ϑ+ f2 and ϑ+ f3. We also need f1, ϑ+ f3, 2ϑ+ f4 ≥ 1 and one more quality. When ρ > 0, we
used to consider only one case, but now we need to discuss all four cases and take the union to get
the interval of ϑ, because each case has different (λ′, t′) and lead to different intervals of ϑ.
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If ϑ + 1
1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= ϑ + (

√
r − λ′ − t′)2

+ = ϑ +
1

1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 1, and ϑ + f1, 2ϑ + f4 ≥ 1, this is the

case we covered when ρ ≥ 0. Then 2ϑ + 1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1 + |ρ|)

]2 ≥ 1

implies
√

1−2ϑ
1−ϑ ≤

2
√

1−ρ2−(1+|ρ|)
1−|ρ| and other requirements imply

√
1− ϑ

(
2√

1−ρ2
− 1

)
> 1. (The

first constraint implies ϑ ≥ some value, and the second one implies ϑ ≤ some value.) The overall
requirements are:

√
1− ϑ

(
2√

1− ρ2
− 1

)
> 1, and

√
1− 2ϑ

1− ϑ
≤ 2

√
1− ρ2 − (1 + |ρ|)

1− |ρ|

If 1
1−ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2
= ϑ + 1

1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= ϑ +

1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 1, and other terms are greater than one, then

we have λ′ = 1−ρ2

2|ρ| ·
1−
√

1−ϑ√
1−ρ2

, t′ = 1√
1−ρ2

− λ′

1−|ρ| . In this case, t′ ≥ 0 and f1, ϑ+ f3, 2ϑ+ f4 ≥ 1

implies

√
1− ϑ ≥ max

{
1− |ρ|
1 + |ρ|

,
2
√

1− ρ2 − (1− |ρ|)
1 + |ρ|

,
1− |ρ|

(3− |ρ|)− 2
√

1− ρ2

}
=

2
√

1− ρ2 − (1− |ρ|)
1 + |ρ|

If (λ′ + t′)2 = ϑ + 1
1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= ϑ +

1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 1 and other terms are greater than one,

then we have λ′ = 1+|ρ|
|ρ|

(
1−

√
1−ϑ
1−ρ2

)
and t′ = 1 − λ′. In this case, λ′ ≥ 0 and t′ ≥ 0 implies

√
1−ρ2

1+|ρ| ≤
√

1− ϑ ≤
√

1− ρ2, which is weaker than the requirements from f1, ϑ+ f3 and 2ϑ+ f4:(
2√

1− ρ2
− 1

)−1

≤
√

1− ϑ ≤ 2
√

1− ρ2 − (1− |ρ|)
1 + |ρ|

, and
2
√

1− ρ2

1− |ρ|
+
√

1− 2ϑ ≤ 3− |ρ|
1− |ρ|

√
1− ϑ

If ϑ + 1
1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= ϑ + 1

1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
=

2ϑ+ 1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1 + |ρ|)

]2
= 1 and other terms are greater than one, then

we have λ′ = 1−ρ2

2|ρ|
1√

1−ρ2

(√
1− ϑ−

√
1− 2ϑ

)
and t′ =

√
1−ϑ
1−ρ2 − λ′

1+|ρ| . In this case, λ′ ≥ 0 and

t′ ≥ 0 implies
√

1−2ϑ
1−ϑ ≥ 1− 2|ρ|

1−|ρ| , which is still weaker than the requirements from f1, ϑ+ f3 ≥ 1:√
1− 2ϑ

1− ϑ
≥ 2

√
1− ρ2 − (1 + |ρ|)

1− |ρ|
, and

2
√

1− ρ2

1− |ρ|
+
√

1− 2ϑ ≤ 3− |ρ|
1− |ρ|

√
1− ϑ

Taking the union over all the four cases of curve
√
r = 2

√
1−ϑ
1−ρ2 , it exists for ϑ satisfying

√
1− ϑ ≥(

2√
1−ρ2

− 1

)−1

and 2
√

1−ρ2

1−|ρ| +
√

1− 2ϑ ≤ 3−|ρ|
1−|ρ|

√
1− ϑ, which is equivalent to

√
r = 2

√
1− ϑ
1− ρ2

≥ max

{
1 +
√

1− ϑ, 1 +
1 + |ρ|

2

√
1− ϑ
1− ρ2

+
1− |ρ|

2

√
1− 2ϑ

1− ρ2

}

Second, we study the curve
√
r = 1+

√
1− ϑ, which is given by (λ′+t′)2 = ϑ+(

√
r−λ′−t′)2

+ = 1.
We also need f1, ϑ+ f2, ϑ+ f3 ≥ 1 and one more equality. When ρ ≥ 0, we have discussed two
cases; now we discuss the two old cases with the additional requirement 2ϑ + f4 ≥ 1, and two
additional cases.
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If 1
1−ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2
= (λ′ + t′)2 = ϑ + (

√
r − λ′ − t′)2

+ = 1 and other terms
are greater than one, we have already considered this in a previous section. Now we only add the
requirement 2ϑ+ 1

1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1 + |ρ|)

]2 ≥ 1. The final requirement on ϑ

is
√

1− ϑ ≤ 1−|ρ|
1+|ρ| and (1−

√
1− ρ2) +

√
1− 2ϑ ≤

√
1− ρ2

√
1− ϑ.

If (λ′ + t′)2 = ϑ + (
√
r − λ′ − t′)2

+ = ϑ + 1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 1

and other terms are greater than one, we have already considered this in a previous section. Now
we only add the requirement 2ϑ + 1

1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1 + |ρ|)

]2 ≥ 1. The final

requirement on ϑ is 1−|ρ|
1+|ρ| ≤

√
1− ϑ ≤

(
2√

1−ρ2
− 1

)−1

and
√

1−2ϑ
1−ϑ ≤

2
√

1−ρ2−(1+|ρ|)
1−|ρ|

If ϑ+ 1
1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= (λ′ + t′)2 = ϑ+ (

√
r − λ′ − t′)2

+ = 1 and other terms

are greater than one, this is a new case, and we have λ′ = 1+|ρ|
|ρ|

(
1−

√
1−ϑ
1−ρ2

)
, t′ = 1 − λ′.

λ′, t′ ≥ 0 requires
√

1−ρ2

1+|ρ| ≤
√

1− ϑ ≤
√

1− ρ2, and the requirements from f1, ϑ+ f3, 2ϑ+ f4 ≥

1 are
√

1− ϑ ≤ min

{
2
√

1−ρ2−(1−|ρ|)
1+|ρ| ,

(
2√

1−ρ2
− 1

)−1
}

and 1+|ρ|
1−|ρ|

√
1− ρ2 +

√
1− 2ϑ ≤(

1+|ρ|
1−|ρ| +

√
1− ρ2

)√
1− ϑ. Taking the intersection, the overall requirement on ϑ is√

1− ρ2

1 + |ρ|
≤
√

1− ϑ ≤

(
2√

1− ρ2
− 1

)−1

and
1 + |ρ|
1− |ρ|

√
1− ρ2+

√
1− 2ϑ ≤

(
1 + |ρ|
1− |ρ|

+
√

1− ρ2

)√
1− ϑ

If (λ′ + t′)2 = ϑ + (
√
r − λ′ − t′)2

+ = 2ϑ + 1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1 + |ρ|)

]2
= 1

and other terms are greater than one, then we have λ′ = 1−|ρ|
|ρ|

(√
1− ϑ−

√
1−2ϑ
1−ρ2

)
, t′ = 1 − λ′.

The requirements from λ′, t′ ≥ 0 and f1, ϑ+ f2, ϑ+ f3 ≥ 1 are:√
1− 2ϑ

1− ϑ
≤ 2

√
1− ρ2 − (1 + |ρ|)

1− |ρ|
|ρ|
√

1− ρ2

1− |ρ|
+
√

1− 2ϑ ≥
√

1− ρ2 ·
√

1− ϑ

(1−
√

1− ρ2) +
√

1− 2ϑ ≤
√

1− ρ2 ·
√

1− ϑ
1 + |ρ|
1− |ρ|

√
1− ρ2 +

√
1− 2ϑ ≥

(
1 + |ρ|
1− |ρ|

+
√

1− ρ2

)√
1− ϑ

Taking intersection, the first and the last can imply the other two, so the final requirements are just
the first and the last one.

Taking the union over all the four cases of
√
r = 1 +

√
1− ϑ, we have

√
1− ϑ ≤

(
2√

1−ρ2
− 1

)−1

and
√

1−2ϑ
1−ϑ ≤

2
√

1−ρ2−(1+|ρ|)
1−|ρ| , which is equivalent to

√
r = 1 +

√
1− ϑ ≥ max

{
2

√
1− ϑ
1− ρ2

, 1 +
1 + |ρ|

2

√
1− ϑ
1− ρ2

+
1− |ρ|

2

√
1− 2ϑ

1− ρ2

}

Third, we study the curve
√
r =

√
1−2ϑ
1−ρ2 + 1√

1−ρ2
given by 1

1−ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2
=

2ϑ + 1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1 + |ρ|)

]2
= 1. We need one more equality constraint

and other terms greater than one. We will see this curve does not exist for ant ϑ at all.

If the additional equality is (λ′ + t′)2 = 1, then we have λ′ =

√
1−ρ2−(1−ρ2)

|ρ|(1+|ρ|) and t′ =

(1+|ρ|)−
√

1−ρ2

|ρ|(1+|ρ|) . However, this case admits no ϑ, because ϑ+ 1
1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2 ≥ 1
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requires
√

1− ϑ ≤ 2
√

1−ρ2−(1−|ρ|)
1+|ρ| and ϑ + (

√
r − λ′ − t′)2

+ ≥ 1 requires (1 −
√

1− ρ2) +
√

1− 2ϑ ≥
√

1− ρ2 ·
√

1− ϑ; these two requirements have no intersection.

If the additional equality is ϑ + 1
1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= 1, then we have λ′ =

1−ρ2

2|ρ|
1√

1−ρ2

(
1−
√

1− ϑ
)

and t′ = 1√
1−ρ2

− λ′

1−|ρ| . However, this case admits no ϑ, because

t′ ≥ 0 requires
√

1− ϑ > 1−|ρ|
1+|ρ| and ϑ + 1

1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2 ≥ 1

requires 1 +
√

1− 2ϑ ≥ 2
√

1− ϑ; these two requirements have no intersection.

If the additional equality is ϑ + (
√
r − λ′ − t′)2

+ = 1, then λ′ = 1−|ρ|
|ρ|

(√
1− ϑ−

√
1−2ϑ
1−ρ2

)
and

t′ = 1√
1−ρ2
− λ′

1−|ρ| . However, this case admits no ϑ, because (λ′+t′)2 ≥ 2 requires (1−
√

1− ρ2)+
√

1− 2ϑ ≥
√

1− ρ2
√

1− ϑ and ϑ+ 1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2 ≥ 1 requires√
1−2ϑ
1−ϑ ≤

2
√

1−ρ2−(1+|ρ|)
1−|ρ| ; these two requirements have no intersection.

If the additional equality is ϑ + 1
1−ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 1, then λ′ =

1−ρ2

2|ρ|
1√

1−ρ2

(√
1− ϑ−

√
1− 2ϑ

)
and t′ = 1√

1−ρ2
− λ′

1−|ρ| . However, this case admits no ϑ,

because t′ ≥ 0, (λ′ + t′)2 ≥ 1 and ϑ+ 1
1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2 ≥ 1 respectively requires

2|ρ|
1 + |ρ|

+
√

1− 2ϑ ≥
√

1− ϑ

2(1−
√

1− ρ2)

1 + |ρ|
+
√

1− 2ϑ ≥
√

1− ϑ

1 +
√

1− 2ϑ ≥ 2
√

1− ϑ

These three requirements admit no ϑ ∈ (0, 1).

To sum up, the third surve does not show up in the phase diagram.

Fourth, we study the curve
√
r =

√
1−2ϑ
1−ρ2 +

2(1−|ρ|)−
√

(1−ϑ)(1−ρ2)

(1−|ρ|)2 given by

(λ′+t′)2 = ϑ+
1

1− ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= 2ϑ+

1

1− ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1 + |ρ|)

]2
= 1.

We have λ′ = 1+|ρ|
|ρ|

(
1−

√
1−ϑ
1−ρ2

)
and t′ = 1 − λ′. λ′, t′ ≥ 0 requires

√
1−ρ2

1+|ρ| ≤
√

1− ϑ ≤√
1− ρ2, and we also need the requirements from f1, ϑ+ f3 ≥ 1. The overall requirement on ϑ is:

2
√

1− ρ2 − (1− |ρ|)
1 + |ρ|

≤
√

1− ϑ ≤
√

1− ρ2

1 + |ρ|
1− |ρ|

√
1− ρ2 +

√
1− 2ϑ ≥

(
1 + |ρ|
1− |ρ|

+
√

1− ρ2

)√
1− ϑ

2
√

1− ρ2

1− |ρ|
+
√

1− 2ϑ ≥ 3− |ρ|
1− |ρ|

√
1− ϑ

This is also an empty set, and this curve can never be present in the phase diagram.

To prove this, we note that φ(ϑ) =
2
√

1−ρ2

1−|ρ| +
√

1− 2ϑ− 3−|ρ|
1−|ρ|

√
1− ϑ is a “first increasing, then

decreasing” function of ϑ ∈ [0, 1
2 ]. When |ρ| ≥ 1+2

√
2

7 , the maximum of 2
√

1−ρ2

1−|ρ| +
√

1− 2ϑ −
3−|ρ|
1−|ρ|

√
1− ϑ is not positive, and does not admit a curve. When |ρ| < 1+2

√
2

7 , we add the requirement

of
√

1− ϑ ≥ 2
√

1−ρ2−(1−|ρ|)
1+|ρ| , even the largest ϑ is still on the left side of the peak of the maximum

point of φ(ϑ) and still makes it negative.
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Fifth, we study the curve
√
r =

(
2

1+|ρ| + 1√
1−ρ2

)√
1− ϑ− 1−|ρ|

1+|ρ|

√
1−2ϑ
1−ρ2 , which is given by

ϑ+
1

1− ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2
= ϑ+(

√
r−λ′−t′)2

+ = 2ϑ+
1

1− ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1 + |ρ|)

]2
= 1.

Now we have λ′ = 1−|ρ|
|ρ|

(√
1− ϑ−

√
1−2ϑ
1−ρ2

)
and t′ = 1√

1−ρ2
− λ′

1−|ρ| . The requirements of

λ′, t′ ≥ 0 and f1, ϑ+ f3 ≥ 0 are√
1− ρ2 − |ρ|(1 + |ρ|)

1− |ρ|
≤
√

1− 2ϑ

1− ϑ
≤ 2

√
1− ρ2 − (1 + |ρ|)

1− |ρ|
1 + |ρ|

2
+
√

1− 2ϑ ≤
(

1 + |ρ|
2

+
√

1− ρ2

)√
1− ϑ

1 + |ρ|
1− |ρ|

√
1− ρ2 +

√
1− 2ϑ ≤

(
1 + |ρ|
1− |ρ|

+
√

1− ρ2

)√
1− ϑ

This may not be an empty set. However, even when it is not an empty set, the curve is actually either
greater than

√
r = 1 +

√
1− ϑ or

√
r = 2

√
1−ϑ
1−ρ2 . To see this:

• In terms of the existence of
√
r = 1 +

√
1− ϑ and

√
r = 2

√
1−ϑ
1−ρ2 : When 1−|ρ|

1+|ρ| ≤
√

1− ϑ ≤
(

2√
1−ρ2

− 1

)−1

and
√

1−2ϑ
1−ϑ ≤

2
√

1−ρ2−(1+|ρ|)
1−|ρ| , we have proven that

√
r =

1 +
√

1− ϑ is one segment of the phase diagram. When
√

1− ϑ ≥
(

2√
1−ρ2

− 1

)−1

and√
1−2ϑ
1−ϑ ≤

2
√

1−ρ2−(1+|ρ|)
1−|ρ| , we have proven that

√
r = 2

√
1−ϑ
1−ρ2 is one segment of the

phase diagram. We can prove that√
1− ρ2 − |ρ|(1 + |ρ|)

1− |ρ|
≤
√

1− 2ϑ

1− ϑ
≤ 2

√
1− ρ2 − (1 + |ρ|)

1− |ρ|

=⇒


either 1−|ρ|

1+|ρ| ≤
√

1− ϑ ≤
(

2√
1−ρ2

− 1

)−1

and
√

1−2ϑ
1−ϑ ≤

2
√

1−ρ2−(1+|ρ|)
1−|ρ|

or
√

1− ϑ ≥
(

2√
1−ρ2

− 1

)−1

and
√

1−2ϑ
1−ϑ ≤

2
√

1−ρ2−(1+|ρ|)
1−|ρ|

so one of
√
r = 1 +

√
1− ϑ and

√
r = 2

√
1−ϑ
1−ρ2 exists as long as the fifth curve exists.

• In the latter case, it is greater than
√
r = 2

√
1−ϑ
1−ρ2 which exists in the same region. (can be

easily verified)

• In the former case, we can assume |ρ| ≤ 3 − 2
√

2 because we need
√

1− ϑ ≥ 1−|ρ|
1+|ρ| to

hold for some ϑ ∈ (0, 1
2 ). Using |ρ| ≤ 3 − 2

√
2, we can prove

√
1−2ϑ
1−ϑ ≥

√
1− ρ2 −

|ρ|(1+|ρ|)
1−|ρ| =⇒

√
1− ϑ ≥ 1−|ρ|

1+|ρ| . Now we can easily verify the curve is greater than
√
r = 1 +

√
1− ϑ which exists in the same region

As a result, this curve does not play a part in the final phase diagram either.

Sixth, we study the curve
√
r = 1 + 1+|ρ|

2

√
1−ϑ
1−ρ2 + 1−|ρ|

2

√
1−2ϑ
1−ρ2 , given by

(λ′+t′)2 = ϑ+
1

1− ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1− |ρ|)

]2
= 2ϑ+

1

1− ρ2

[
(1− ρ2)

√
r − t′(1− ρ2)− λ′(1 + |ρ|)

]2
= 1

We get λ′ = 1−ρ2

2|ρ|
1√

1−ρ2

(√
1− ϑ−

√
1− 2ϑ

)
and t′ = 1 − λ′. The requirements from t′ ≥ 0,

1
1−ρ2

[
(1 + |ρ|)λ′ + (1− ρ2)t′

]2 ≥ 1, ϑ + 1
1−ρ2

[
λ′(1− |ρ|) + t′(1− ρ2)

]2 ≥ 1 and ϑ + (
√
r −
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λ′ − t′)2
+ ≥ 1 are respectively

2|ρ|√
1− ρ2

+
√

1− 2ϑ ≥
√

1− ϑ

2(1−
√

1− ρ2)

1 + |ρ|
+
√

1− 2ϑ ≤
√

1− ϑ

2
√

1− ρ2

1− |ρ|
+
√

1− 2ϑ ≥ 3− |ρ|
1− |ρ|

√
1− ϑ√

1− 2ϑ

1− ϑ
≥ 2

√
1− ρ2 − (1 + |ρ|)

1− |ρ|

Taking the intersection, the last two inequalities can imply the rest, and it is equivalent to

√
r = 1 +

1 + |ρ|
2

√
1− ϑ
1− ρ2

+
1− |ρ|

2

√
1− 2ϑ

1− ρ2
≥ max

{
1 +
√

1− ϑ, 2

√
1− ϑ
1− ρ2

}
.

Now we have studied all the curves for ρ < 0. To sum up, the phase curve is

√
r = max

{
1 +
√

1− ϑ, 2

√
1− ϑ
1− ρ2

, 1 +
1 + |ρ|

2

√
1− ϑ
1− ρ2

+
1− |ρ|

2

√
1− 2ϑ

1− ρ2

}

F.1 PROOF OF LEMMA 3

Recall the optimization in (16); the solution b = (b1, b2) has to set the sub-gradient of the objective
function to zero. As a result, the equation of the sub-gradient for b = (b1, b2) is:[

1 ρ
ρ 1

] [
b1
b2

]
+ λ′

[
sgn(b1)
sgn(b2)

]
=

[
h1

h2

]
Now we begin to find out the solution path. Thresholded Lasso has two steps: First, we run Lasso
to select variables from (xj , xj+1); second, a thresholding step with t = t′

√
2 log(p) is further

performed, and the surviving variables of the two steps are the finally selected ones. Also note that
we have required ρ ≥ 0.

First, we study the behavior of Lasso, and decrease λ′ from a sufficiently large value to see when the
variables enter the model. We assume h1 > 0 and 0 < |h2| < h1.

The procedure is just setting µ = 0 in the proof of Lemma B.1, and we summarise the results below:

• When λ′ ≥ h1, we have b̂1 = b̂2 = 0.

• If h2 ≥ ρh1, when h2−ρh1

1−ρ ≤ λ′ < h1, we have b̂1 = h1 − λ′, and b̂2 = 0;

When λ′ < h2−ρh1

1−ρ , we have

b̂1 =
(h1 − ρh2)− (1− ρ)λ′

1− ρ2
, b̂2 =

(h2 − ρh1)− (1− ρ)λ′

1− ρ2
;

• if h2 < ρh1, when −h2+ρh1

1+ρ ≤ λ′ < h1, we have b̂1 = h1 − λ′, and b̂2 = 0;

When λ′ < −h2+ρh1

1+ρ , we have

b̂1 =
(h1 − ρh2)− (1 + ρ)λ′

1− ρ2
, b̂2 =

(h2 − ρh1) + (1 + ρ)λ′

1− ρ2
.

When λ′ ≥ h1, for any t′, we have b̂1 = b̂2 = 0.
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For h2 ≥ ρh1, when h2−ρh1

1−ρ ≤ λ′ < h1, if h1 ≤ λ′ + t′, then we still selected neither of (xj , xj+1)

in the end. If h1 > λ′ + t′, then we will select only xj . When λ′ < h2−ρh1

1−ρ , we have b̂1 > b̂2 > 0

and it depends on whether t ≥ b̂1, b̂2 ≤ t < b1 or b̂2 > t how (xj , xj+1) are selected in the end.

For h2 < ρh1, when −h2+ρh1

1+ρ ≤ λ′ < h1, if h1 ≤ λ′+ t′, then we still selected neither of (xj , xj+1)

in the end. If h1 > λ′+ t′, then we will select only xj . When λ′ < −h2+ρh1

1−ρ , we have b̂1 > −b̂2 > 0

and it depends on whether t ≥ b̂1, −b̂2 ≤ t < b1 or −b̂2 > t how (xj , xj+1) are selected in the end.

G PROOF OF THEOREM 5 (FORWARD SELECTION)

The proof for Forward Selection still consists of three parts: (a) deriving the rejection region, (b)
obtaining the rate of convergence of E[H(β̂, β)], and (c) calculating the phase diagram.

For Forward Selection, we first write X = [x1, x2, . . . , xp], where xi ∈ Rn for 1 ≤ i ≤ p. For any
subset A ⊂ {1, 2, . . . , p}, let P⊥A be the projection onto the orthogonal complement of the linear
space spanned by {xi : i ∈ A}. Before the first part, we formally define Forward Selection in
Algorithm 1.

Algorithm 1 forward selection

1: Input X and y (generated with our own setting.)
2: Fix t > 0.
3: Initialize S(0) = ∅, β̂(0) = 0, r̂(0) = y.
4: Initialize k = 0.
5: while true do . forward step
6: k ← k + 1
7: r̂(k−1) ← P⊥k−1y . r̂(k−1) is the residual of the OLS fit of Y onto XS(k−1) .
8: i∗ ← arg maxi/∈S(k−1) |x′ir̂(k−1)|
9: δ+ ← |xi∗ r̂(k−1)|

‖P⊥k−1xi∗‖
. the forward gain, equivalent to the decrease in the loss function.

10: if δ+ ≤ t then
11: Break.
12: end if
13: S(k) ← S(k−1) ∪ {i∗} . Note this step is after checking δ+ ≤ t
14: end while
15: k ← k − 1

. Because the kth variable hasn’t been added when the “while” loop is broken.
16: β̂ = β̂ols(S(k)) . S(k) is the set of selected variables.

Remark 3. The stopping rule is equivalent to measuring the decrease in the residual sum of squares.
To see this, suppose i ∈ {1, 2, . . . , p} is enrolled at step k, ans S(k) = S(k−1) ∪ {i}. Then
||y − XS(k) β̂ols(S(k))||2 = ||P⊥k y||2 and ||y − XS(k−1) β̂ols(S(k−1))||2 = ||P⊥k−1y||2. By adding
variable i into S(k−1), the decrease ||P⊥k−1y||2 − ||P⊥k y||2 is equal to the squared norm of the

projection of P⊥k−1y onto the direction of P⊥k−1xi, which is
(
|xir̂(k−1)|
‖P⊥k−1xi‖

)2

where r̂(k−1) = P⊥k−1y.

Part 1: Deriving the rejection region. Forward selection is a sequential method, and we first
need to show it can be decomposed into bivariate sub-problems. The main reason is that whether
some variable xj is selected in the end only depends on (xj , xj+1), and has nothing to do with other
variables, or the number of steps k. We still use (xj , xj+1) to denote an arbitrary pair of correlated
variables:

In terms of forward gain, whenever xj+1 is not in Ŝ(k−1) for arbitrary k, P⊥k−1xj = xj , and
|x′j r̂

(k−1)|
‖P⊥k−1xj‖

= |x′jy| = |h1|
√

2 log(p). When xj+1 is already in Ŝ(k−1) for arbitrary k, P⊥k−1xj =

xj − ρxj+1, and
|x′j r̂

(k−1)|
‖P⊥k−1xj‖

=
|(x′j−ρx

′
j+1)y|√

1−ρ2
= |h1−ρh2|√

1−ρ2

√
2 log(p).

66



Published as a conference paper at ICLR 2022

In terms of the entry rule (“i∗ ← arg maxi/∈S(k−1) |x′ir̂(k−1)|” in Algorithm 1), since x′j r̂
(k−1) =

x′jP
⊥
k−1y, it is still x′jy or (x′jy − ρxj+1y) depending on whether xj+1 ∈ S(k−1). It has nothing to

do with specific k or other variables than (xj , xj+1).

As a result, Algorithm 1 under the block-wise diagonal design can be viewed as many bivariate
sub-problems going on simultaneously for each pair of correlated variables. In each “while” loop,
variables from different pairs may be enrolled, but (i) the order of (xj , xj+1) does not depend on k
or other variables, and (ii) the bivariate problem must have terminated when the whole algorithm
terminates, and the result of the bivariate problem does not depend on k or other variables.

Of course, we have assumed that Algorithm 1 will always terminate in finite steps, which is true,
because each bivariate sub-problem always terminates as we will see in the proof of Lemma G.1.

Working on a bivariate problem, we can scale everything down by
√

2 log(p) and define t′ =

t/
√

2 log(p). Then the solution path can be described in Lemma G.1.

Lemma G.1 (Solution path of Forward Selection). Consider the bivariate problem of running
Algorithm 1 with y and (xj , xj+1). Suppose h1 > |h2| ≥ 0, and ρ > 0.

• When t′ ≥ h1, none of (xj , xj+1) will get selected when the algorithm ends.

• If −h1 < h2 ≤ (ρ −
√

1− ρ2)h1, when t′ < h1, both (xj , xj+1) will get selected when
the algorithm ends.

• If (ρ−
√

1− ρ2)h1 < h2 < h1, when t ∈
[
|h2−ρh1|√

1−ρ2
, h1

)
, only xj is in the model before

the algorithm ends.

• If (ρ−
√

1− ρ2)h1 < h2 < h1, when t < |h2−ρh1|√
1−ρ2

, both (xj , xj+1) will get selected when

the algorithm ends.

Proof of Lemma G.1. Note that we have required ρ > 0 to avoid unnecessary discussion. Since
h1 > |h2|, at any step k when neither of (xj , xj+1) is in the model, we have |x′j r̂k−1| = |h1| >
|x′j+1r̂k−1| = |h2|. As a result, if t ≥ h1, then the algorithm will terminate without selecting either
of (xj , xj+1). If t > h1, it will select xj at some step and proceed to the next “while” loop.

After xj has been selected, if h2 ≥ (ρ +
√

1− ρ2)h1 or h2 ≤ (ρ −
√

1− ρ2)h1, we have
|x′j+1r̂

(k−1)|
‖P⊥k−1xj+1‖

= |h2−ρh1|√
1−ρ2

≥ h1 > t, and xj+1 will be selected at some later step. However, since

ρ > 0, we have ρ +
√

1− ρ2 > 1, so we can have
|x′j+1r̂

(k−1)|
‖P⊥k−1xj+1‖

= |h2−ρh1|√
1−ρ2

≥ h1 only when

h2 ≥ (ρ−
√

1− ρ2)h1.

If (ρ−
√

1− ρ2)h1 < h2 < h1, we have |h2−ρh1|√
1−ρ2

< h1. When t < |h2−ρh1|√
1−ρ2

, both of the variables

will be selected; when t ∈
[
|h2−ρh1|√

1−ρ2
, h1

)
, only xj will be selected.

We use Lemma G.1 to write down the rejection region, as in Figure 12, still for ρ > 0.

R = {(h1, h2) : h1 − ρh2 > t′
√

1− ρ2, h1 >
t′
√

1− ρ2

1− ρ
}

∪ {(h1, h2) : h1 > t′, h1 > h2} ∪ {(h1, h2) : h2 < −t, h1 − ρh2 > t′
√

1− ρ2}

∪ {(h1, h2) : −h1 + ρh2 > t′
√

1− ρ2, h1 < −
t′
√

1− ρ2

1− ρ
}

∪ {(h1, h2) : h1 < −t′, h1 < h2} ∪ {(h1, h2) : h2 > t, −h1 + ρh2 > t′
√

1− ρ2} (50)

67



Published as a conference paper at ICLR 2022

= 0.5, t = 1.5
t

0

h2 = h1

h2 = h1

h1

h2

h2 = ( 1 2 )h1

h2 = h1 + t 1 2

h2 = h1 t 1 2

h2 = h1

h1 = h2
h1 = h2 + t 1 2

h1 = h2 + t 1 2

A

B(t 1 2

1 , t 1 2

1 )

C

Figure 12: the rejection region of forward selection (ρ ≥ 0)

Part 2. Analyzing the Hamming error.
Theorem 14. Suppose the conditions of Theorem 5 holds. Let t′ = t/

√
2 log(p) and h1 =

x′jy/
√

2 log(p), h2 = x′j+1y/
√

2 log(p). As p→∞,

FPp = Lpp
1−min

{
t′2, ϑ+f1(

√
r,t′)
}
, FNp = Lpp

1−min
{
ϑ+f2(

√
r,t′), 2ϑ+f3(

√
r,t′)
}
,

where (below, d2
|ρ|(u, v) is as in Definition 1),

f1(
√
r, t′) =


(t′ − |ρ|

√
r)2 if

√
r ≤ t′

1+|ρ|
1

1−ρ2 d
2
|ρ|((t

′, t′), (|ρ|
√
r,
√
r)) if t′

1+|ρ| <
√
r ≤ 2t′

1+|ρ|
min

{
1
2 (1− |ρ|)r, t′2

}
if
√
r > 2t′

1+|ρ|

f2(
√
r, t′) =


min

{
(
√
r − t′)2

+,
1
2 (1− |ρ|)r

}
if
√
r ≤ 2t′√

1−ρ2

min
{

(
√
r − t′)2

+,
1

1−ρ2 d
2
|ρ|(B, (

√
r, |ρ|
√
r))
}

if 2t′√
1−ρ2

<
√
r ≤ t′

√
1−ρ2

|ρ|(1−|ρ|)[√
1− ρ2

√
r − t′

]2
if
√
r >

t′
√

1−ρ2

|ρ|(1−|ρ|)

The definition of f3(
√
r, t′) depends on the sign of ρ. When ρ > 0,

f3(
√
r, t′) =

[√
1− ρ2

√
r − t

]2
When ρ < 0,

f3(
√
r, t′) = min

{[√
1− ρ2

√
r − t

]2
, d2
|ρ|(C, ((1− |ρ|)

√
r,−(1− |ρ|)

√
r))

}
= min

{[√
1− ρ2

√
r − t

]2
,

2

1− |ρ|
[
(1− |ρ|)

√
r − t

]2}
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The calculation of the elliptical distances are easy given Lemma A.1.

Part 3. Calculating the phase diagram. The computation of the boundary between Alomst Full
Recovery and No Recovery is almost the same for every method, so we omit the details and conclude
that such boundary is r = ϑ.

Then we set out to calculate the boundary between Alomst Full Recovery and Exact Recovery. As
usual, we have four cases respectively for ρ > 0 and ρ < 0. However, unlike previous methods,
forward selection is very easy, so we combine ρ > 0 and ρ < 0 in our discussion and use |rho| all
along.

When ρ > 0, the phase curve is

√
r = max

{
1 +
√

1− ϑ,

√
2(1− ϑ)

1− ρ
,

√
1− 2ϑ

1− ρ2
+

1√
1− ρ2

}
.

When ρ < 0, the phase curve is

√
r = max

{
1 +
√

1− ϑ,

√
2(1− ϑ)

1− |ρ|
,

√
1− 2ϑ

1− ρ2
+

1√
1− ρ2

,

√
1− 2ϑ

2(1− |ρ|)
+

1

1− |ρ|

}

First, if t′2 = ϑ + f2(
√
r, t′) = 1 and ϑ + f1(

√
r, t′) ≥ 1, 2ϑ + f3(

√
r, t′) ≥ 1, we discuss the

conditional expression of f2(
√
r, t′):

When
√
r ≤ 2t′√

1−ρ2
in f3(

√
r, t′): Now

√
r = max

{
1 +
√

1− ϑ,
√

2(1−ϑ)
1−|ρ|

}
. We need the

following requirements: First,
√
r ≤ 2t′√

1−ρ2
= 2√

1−ρ2
itself. It is not restrictive, because 1 +

√
1− ϑ ≤ 2 ≤ 2√

1−ρ2
and

√
2(1−ϑ)
1−|ρ| ≤

√
2

1−|ρ| ≤
2√

1−ρ2
. Second, ϑ+ f2(

√
r, t′) ≥ 1, which is

still not restrictive. When
√
r ≥ 2t′

1+|ρ| , we know FP2 = o(1) from
√
r ≥

√
2(1−ϑ)
1−|ρ| and t′ = 1.When

1 <
√
r < 2t′

1+|ρ| , we know FP2 = o(1) from d2(B, (
√
r, |ρ|
√
r)) ≥ 1

2 (1 + |ρ|)(1− |ρ|)2r. Third,

2ϑ+ f3(
√
r, t′) ≥ 1, which requires

√
r ≥

√
1−2ϑ
1−ρ2 + 1√

1−ρ2
when the correlation is positive, and

√
r ≥ max

{√
1−2ϑ
1−ρ2 + 1√

1−ρ2
,
√

1−2ϑ
2(1−|ρ|) + 1

1−|ρ|

}
. when the correlation is negative.

When 2t′√
1−ρ2

<
√
r ≤ t′

√
1−ρ2

|ρ|(1−|ρ|) in f3(
√
r, t′): If (1 − ϑ)(1 − ρ2) = d2(B, (

√
r, |ρ|
√
r)), then

since d2(B, (
√
r, |ρ|
√
r)) ≥ 1

2 (1 + |ρ|)(1−|ρ|)2r, we have
√
r ≤

√
2(1−ϑ)
1−|ρ| . However, we also need

√
r > 2√

1−ρ2
, which gives a contradiction. This case does not exist. If

√
r = 1 +

√
1− ϑ, then it

also contradicts
√
r > 2√

1−ρ2
.

When
√
r >

t′
√

1−ρ2

|ρ|(1−|ρ|) in f3(
√
r, t′):

√
r =

√
1−ϑ
1−ρ2 + 1√

1−ρ2
. It cannot meet the requirement

√
r >

t′
√

1−ρ2

|ρ|(1−|ρ|) , so this case does not exist.

To sum up, the first case gives

√
r = max

{
1 +
√

1− ϑ,

√
2(1− ϑ)

1− |ρ|

}
.

which exists in the region:

•
(

1
2 , 1
]
∪ {ϑ ≤ 1

2 :
√
r ≥

√
1−2ϑ
1−ρ2 + 1√

1−ρ2
} for ρ > 0 .

•
(

1
2 , 1
]
∪
{
ϑ ≤ 1

2 :
√
r ≥ max

{√
1−2ϑ
1−ρ2 + 1√

1−ρ2
,
√

1−2ϑ
2(1−|ρ|) + 1

1−|ρ|

}}
for ρ < 0 .
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Second, if ϑ+ f1(
√
r, t′) = ϑ+ f2(

√
r, t′) = 1 and t′ ≥ 1, 2ϑ+ f3(

√
r, t′) ≥ 1, then we will get

nothing in this case. To see this, we first list a few requirements:

• We know that t′ ≥ 1;

• We know from ϑ+ f2(
√
r, t′) = 1 that

√
r ≥ max

{
t′ +
√

1− ϑ,
√

2(1−ϑ)
1−|ρ|

}
;

• We know from 2ϑ+ f3(
√
r, t′) ≥ 1 that, when ϑ ≤ 1

2 , we need

–
√
r ≥

√
1−2ϑ
1−ρ2 + t′√

1−ρ2
for positive correlation;

–
√
r ≥ max

{√
1−2ϑ
1−ρ2 + t′√

1−ρ2
,
√

1−2ϑ
2(1−|ρ|) + t′

1−|ρ|

}
for negative correlation.

From these requirements, even if this case does admit some curve, it can only be higher than the one
in the previous first case, and exist in a smaller region.

Third, if t′2 = 2ϑ+ f3(
√
r, t′) = 1 and ϑ+ f1(

√
r, t′) ≥ 1, ϑ+ f2(

√
r, t′) ≥ 1, then:

When the correlation is positive, we have only one possible curve
√
r =

√
1−2ϑ
1−ρ2 + 1√

1−ρ2
. From

ϑ + f2(
√
r, t′) ≥ 1, we get the requirement

√
r ≥ max

{
1 +
√

1− ϑ,
√

2(1−ϑ)
1−ρ

}
. For ϑ +

f1(
√
r, t′) ≥ 1, since we already have

√
r ≥

√
2(1−ϑ)

1−ρ , we know ϑ + f1(
√
r, t′) ≥ 1 always

holds.

When the correlation is negative, we have
√
r = max

{√
1−2ϑ
1−ρ2 + 1√

1−ρ2
,
√

1−2ϑ
2(1−|ρ|) + 1

1−|ρ|

}
.

From ϑ + f2(
√
r, t′) ≥ 1, we get the requirement

√
r ≥ max

{
1 +
√

1− ϑ,
√

2(1−ϑ)
1−|ρ|

}
. For

ϑ+ f1(
√
r, t′) ≥ 1, since we already have

√
r ≥

√
2(1−ϑ)
1−|ρ| , we know FP2 = o(1) always holds.

Fourth, if ϑ + f1(
√
r, t′) = 2ϑ + f3(

√
r, t′) = 1 and t′ ≥ 1, ϑ + f2(

√
r, t′) ≥ 1, then we will get

nothing from this case. To see this, we still list a few requirement:

• We know that t′ ≥ 1.

• From ϑ+ f2(
√
r, t′) ≥ 1, we know that

√
r ≥ max

{
t′ +
√

1− ϑ,
√

2(1−ϑ)
1−|ρ|

}
.

• From 2ϑ + f3(
√
r, t′) = 1, we know that

√
r =

√
1−2ϑ
1−ρ2 + t′√

1−ρ2
for ρ > 0 and

√
r =

max

{√
1−2ϑ
1−ρ2 + t′√

1−ρ2
,
√

1−2ϑ
2(1−|ρ|) + t′

1−|ρ|

}
for ρ < 0.

Even if this case admits any curve, that curve would be above the curve in the previous third case,
and exist within a smaller region of ϑ.

To sum up, we have the following results:

• Phae diagram when the correlation is positive:

√
r = max

{
1 +
√

1− ϑ,

√
2(1− ϑ)

1− ρ
,

√
1− 2ϑ

1− ρ2
+

1√
1− ρ2

}
.

• Phae diagram when the correlation is negative:

√
r = max

{
1 +
√

1− ϑ,

√
2(1− ϑ)

1− |ρ|
,

√
1− 2ϑ

1− ρ2
+

1√
1− ρ2

,

√
1− 2ϑ

2(1− |ρ|)
+

1

1− |ρ|

}
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H PROOF OF THEOREM 6 (FORWARD BACKWARD SELECTION)

The proof for Forward Selection still has three tasks: (a) deriving the rejection region, (b) obtaining
the rate of convergence of E[H(β̂, β)], and (c) calculating the phase diagram. However, as we will see
later, forward backward selection has six cases, each of which has a different shape of the rejection
region. After deriving the rejection region, we consider the E[H(β̂, β)] and phase curves of the six
cases one by one, and summarise the results at the end.

Defore deriving the rejection region in the first part, we need some clarification about the definition
of the forward backward selection we have investigated. More precisely, we have simplified the
backward step into one thresholding step after the forward selection algorithm, so it is more precisely
“thresholded forward selection”.

The reason why we have not used a sequential algorithm with alternating forward and backward steps,
like FoBa defined in Zhang (2011), is not compuational simplicity, but to avoid degeneration. We
explain briefly why any sequential algorithm with alternating forward and backward steps will either
have nonfunctional backward steps, or be unable to terminate at a finite step.

To see this, we review the setting of Lemma G.1 about the solution path of forward selection, in which
h1 > |h2| and we only consider a bivariate problem. Using the same argument, some version of FoBa
can also be decomposed into bivariate subproblems, and it is equivalent to running the algorithm only
on y and (xj , xj+1).

In brief, in such a bivariate problem with h1 > |h2|, if either or both of (xj , xj+1) ever get selected
and then deleted at some backward step, then they will be selected back again because they still meet
the requirements for a variable to get enrolled. When h1 > |h2|, the case of deleting xj while leaving
xj+1 still in the model cannot happen, because no deletion rule based on (x′jy, x

′
j+1y) can delete xj

without touching xj+1. As a result, the algorithm cannot terminate at a finite step.

If the algorithm termininates at a finite step, then the backward step much have not deleted any of
(xj , xj+1), and such algorithm performs the same as forward selection.

We have explained the degeneration of Foba (Zhang, 2011), but we still want to implement some
kind of backward step additional to forward selection, because the problem with forward selection is
inability to correct the mistakes made in the early steps. Thus it is natural to use one thresholding
step at the end.

Part 1: Deriving the rejection region. We first work on the solution path, and then compute the
rejection region. The forward selection part has been discussed before, and we recall the results in
Lemma G.1 (re-iterated in an equivalent way):

1. When t ≥ h1, neither is selected.

2. When t < h1, and ρh1 − t
√

1− ρ2 ≤ h2 ≤ ρh1 + t
√

1− ρ2, only xj is selected.

3. When t < h1, and

{
either h2 > ρh1 + t

√
1− ρ2

or − h1 < h2 < ρh1 − t
√

1− ρ2
, both xj and xj+1 are selected.

Now this is followed by a thresholding step. Before using v to threshold the results, we note that:

1. When xj+1 is not selected, β̂j = h1;

2. When both (xj , xj+1) are selected, β̂j = h1−ρh2

1−ρ2 and β̂j+1 = h2−ρh1

1−ρ2 .

When the thresholding is performed, we can naturally describe the solution path of thresholded
forward selection as:

Lemma 4. Consider the bivariate problem of running Algorithm 1 with y and (xj , xj+1), followed
by thresholding (β̂j , β̂j+1) with v. Define h1 = x′jy/

√
2 log(p), h2 = x′j+1y/

√
2 log(p) and

t′ = t/
√

2 log(p), v′ = v/
√

2 log(p). Suppose h1 > |h2| ≥ 0, and ρ > 0. Then

• When t′ ≥ h1, neither is selected.
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• When t′ < h1 and ρh1 − t′
√

1− ρ2 ≤ h2 ≤ ρh1 + t′
√

1− ρ2,

– If v′ ≥ h1, neither is selected.
– If v′ < h1, only xj is selected.

• When t′ < h1, and

{
either h2 > ρh1 + t′

√
1− ρ2

or − h1 < h2 < ρh1 − t′
√

1− ρ2
,

– If h2 > ρh1 + t′
√

1− ρ2, and h2 − ρh1 > v′(1− ρ2), both (xj , xj+1) are selected.

– If h2 > ρh1 + t′
√

1− ρ2, and h2−ρh1 ≤ v′(1−ρ2) < h1−ρh2, only xj is selected.

– If h2 > ρh1 + t′
√

1− ρ2, and h1 − ρh2 ≤ v′(1− ρ2), neither is selected.

– If h2 < ρh1 − t′
√

1− ρ2, and ρh1 − h2 > v′(1− ρ2), both (xj , xj+1) are selected.

– If h2 < ρh1− t′
√

1− ρ2, and ρh1−h2 ≤ v′(1−ρ2) < h1−ρh2, only xj is selected.

– If h2 < ρh1 − t′
√

1− ρ2, and h1 − ρh2 ≤ v′(1− ρ2), neither is selected.

The rejection region can be complicated, and it has many cases visually. See Figure 13.

R = {(h1, h2) : h1 − ρh2 > max{t′
√

1− ρ2, v′(1− ρ2)}, h2 > ρh1 + t
√

1− ρ2}

∪ {(h1, h2) : h1 > max{t′, v′}, h2 ≤ ρh1 + t
√

1− ρ2, h2 ≥ ρh1 − t
√

1− ρ2}

∪ {(h1, h2) : h1 > h2, h1 > max{t′, v′}, h2 > ρh1 − t
√

1− ρ2}

∪ {(h1, h2) : h1 > t′, h2 ≤ ρh1 − t
√

1− ρ2, h1 − ρh2 > v′(1− ρ2)}

∪ {(h1, h2) : h2 < −t, h1 − ρh2 > max{t′
√

1− ρ2, v′(1− ρ2)}}

∪ {(h1, h2) : −h1 + ρh2 > max{t′
√

1− ρ2, v′(1− ρ2)}, h2 < ρh1 − t
√

1− ρ2}

∪ {(h1, h2) : h1 < −max{t′, v′}, h2 ≥ ρh1 − t
√

1− ρ2, h2 ≤ ρh1 + t
√

1− ρ2}

∪ {(h1, h2) : h1 < h2, h1 > max{t′, v′}, h2 < ρh1 + t
√

1− ρ2}

∪ {(h1, h2) : h1 < −t′, h2 ≥ ρh1 + t
√

1− ρ2, −h1 + ρh2 > v′(1− ρ2)}

∪ {(h1, h2) : h2 > t, −h1 + ρh2 > max{t′
√

1− ρ2, v′(1− ρ2)}} (51)

Due to the many cases of thresholded forward selection, we structure the rest of the proof in a different
way: We discuss the six cases shown in Figure 13 in the next six parts, and summarise the results for
ρ ≥ 0 and ρ < 0 respectively, at the end of the proof. In other words, each of the six cases has its
phase curves, and we take the minimum of all the curves to be the final phase curve.

Case 1: When v′ ≤ t′. From the rejection region defined in Equation (51), and Figure 13a, we
know that thresholding does not have any effects in this case. Everything can be copied from forward
selection:

The curve between Almost Full Recovery and No Recovery is r = ϑ. The curve between Almost
Full Recovery and Exact Recovery is: When ρ ≥ 0,

√
r = max

{
1 +
√

1− ϑ,

√
2(1− ϑ)

1− ρ
,

√
1− 2ϑ

1− ρ2
+

1√
1− ρ2

}
. (52)

When ρ < 0,

√
r = max

{
1 +
√

1− ϑ,

√
2(1− ϑ)

1− |ρ|
,

√
1− 2ϑ

1− ρ2
+

1√
1− ρ2

,

√
1− 2ϑ

2(1− |ρ|)
+

1

1− |ρ|

}
. (53)

Case 2: When t′ ≤ v′ ≤ t′√
1−ρ2

.

72



Published as a conference paper at ICLR 2022

= 0.7, t = 1.5, v t

t

0

h2 = h1

h2 = h1

h1

h2

h2 = ( 1 2 )h1

h2 = h1 + t 1 2

h2 = h1 t 1 2

h2 = h1

h1 = h2
h1 = h2 + t 1 2

h1 = h2 + t 1 2

A

B(t 1 2

1 , t 1 2

1 )

C

(a) When v′ ≤ t′

= 0.7, t = 1.5, t < v t
1 2

t v

0

h2 = h1

h2 = h1

h1

h2

h2 = ( 1 2 )h1
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h2 = h1 t 1 2
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B

C
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= 0.7, t = 1.5, t
1 2

v (1 +
1 2

)t

t v

0

h2 = h1

h2 = h1

h1

h2

h2 = ( 1 2 )h1

h2 = h1 + t 1 2

h2 = h1 t 1 2

h2 = h1

h1 = h2
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A

B

C

D
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(c) When t′√
1−ρ2

< v′ ≤ t′
(
1 + ρ√

1−ρ2

)

= 0.7, t = 1.5, (1 +
1 2

)t v 1 2

1 t

t v

0

h2 = h1

h1

h2

h2 = ( 1 2 )h1

h2 = h1 + t 1 2

h2 = h1 t 1 2

h2 = h1

h1 = h2
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)
≤ v′ ≤ t′

√
1−ρ2

1−ρ

= 0.7, t = 1.5, 1 2

1 t v t
1

t v

0

h2 = h1

h1

h2
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h1 = h2
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(e) When t′
√

1−ρ2

1−ρ ≤ v′ ≤ t′

1−ρ

= 0.7, t = 1.5, v > t
1

t v

0

h2 = h1

h1

h2

h2 = ( 1 2 )h1

h2 = h1 + t 1 2

h2 = h1 t 1 2

h2 = h1

h1 = h2 + v(1 2)

A

D

h1 = h2 + v(1 2)

(f) When v′ > t′

1−ρ

Figure 13: The rejection region of thresholded forward selection has many cases (ρ ≥ 0).
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Theorem 15 (The Hamming error rate When t′ ≤ v′ ≤ t′√
1−ρ2

). Suppose the conditions of

Theorem 6 holds. Let h1 = x′jy/
√

2 log(p), h2 = x′j+1y/
√

2 log(p) and v′ = v/
√

2 log(p),
t′ = t/

√
2 log(p). We require t′ ≤ v′ ≤ t′√

1−ρ2
. As p→∞,

FPp = Lpp
1−min

{
min{v′2,2t′2}, ϑ+f1(

√
r,t′,v′)

}
, FNp = Lpp

1−min
{
ϑ+f2(

√
r,t′,v′), 2ϑ+f3(

√
r,t′,v′)

}
,

where (below, d2
|ρ|(u, v) is as in Definition 1),

f1(
√
r, t′, v′) =


(v′ − |ρ|

√
r)2 if

√
r ≤ v′

1+|ρ|
1

1−ρ2 d
2
|ρ|((v

′, v′), (|ρ|
√
r,
√
r)) if v′

1+|ρ| <
√
r ≤ 2v′

1+|ρ|
min

{
1
2 (1− |ρ|)r, t′2

}
if
√
r > 2v′

1+|ρ|

f2(
√
r, t′, v′) =


min

{
(
√
r − t′)2

+,
1
2 (1− |ρ|)r

}
if
√
r ≤ 2t′√

1−ρ2

min
{

(
√
r − t′)2

+,
1

1−ρ2 d
2
|ρ|(B, (

√
r, |ρ|
√
r))
}

if 2t′√
1−ρ2

<
√
r ≤ t′

√
1−ρ2

|ρ|(1−|ρ|)[√
1− ρ2

√
r − t′

]2
if
√
r >

t′
√

1−ρ2

|ρ|(1−|ρ|)

The definition of f3(
√
r, t′) depends on the sign of ρ. When ρ > 0,

f3(
√
r, t′) =

[√
1− ρ2

√
r − t

]2
When ρ < 0,

f3(
√
r, t′) = min

{[√
1− ρ2

√
r − t

]2
, d2
|ρ|(C, ((1− |ρ|)

√
r,−(1− |ρ|)

√
r))

}
= min

{[√
1− ρ2

√
r − t

]2
,

2

1− |ρ|
[
(1− |ρ|)

√
r − t

]2}
Remark 4. The proof of Theorem 15 is easy, but we need to emphasize one thing: For FP1, whose
ellipsoid is centered at (0, 0), it may be tangent to h1 = v′ at (v′, |ρ|v′); or, it may intersect the
rejection region at the corner (t, t(ρ−

√
1− ρ2)).

Theorem 16 (The phase diagram when t ≤ v ≤ t√
1−ρ2

). Suppose the conditions of Theorem 6

holds. The boundary between Exact Recovery and and Almost Full Recovery is Equation 54 when
the correlation is positive, and Equation 55 when the correlation is negative. When ρ ≥ 0,

√
r = max

{
1 +
√

1− ϑ,

√
2(1− ϑ)

1− ρ
,

√
1− 2ϑ

1− ρ2
+

√
1− ϑ
1− ρ2

}
. (54)

When ρ < 0,

√
r = max

{
1 +
√

1− ϑ,

√
2(1− ϑ)

1− |ρ|
,

√
1− 2ϑ

1− ρ2
+

√
1− ϑ
1− ρ2

,√
1− 2ϑ

2(1− |ρ|)
+

√
1− ϑ

1− |ρ|
,

√
1− 2ϑ

2(1− |ρ|)
+

√
1− ρ2

1− |ρ|

}
. (55)

Proof of Theorem 16. Like the proof of forward selection and other methods, We still
discuss the 2 × 2 = 4 cases. For brevity, we use f1, f2, f3 as shorthand of
f1(
√
r, t′, v′), f2(

√
r, t′, v′), f3(

√
r, t′, v′).

First, if min(v′2, 2t′2) = ϑ + f2 = 1, we have
√
r = max

{
v′ +

√
1− ϑ,

√
2(1−ϑ)
1−|ρ|

}
. To ensure

ϑ + f1 ≥ 1, we need t′ ≥
√

1− ϑ. For f2, it need to meet the requirement
√
r ≤ 2t′√

1−ρ2
. This is

not restrictive, because:{
t′ ≥
√

1− ϑ
1 ≤ v′ ≤ t′√

1−ρ2
=⇒ t′ ≥ v′

√
1− ρ2 =⇒ 2t′ ≥

√
1− ϑ+ v′

√
1− ρ2.

74



Published as a conference paper at ICLR 2022

(For the conditional expression of f2,
√
r ≤ 2t′√

1−ρ2
is the only possibility here; to see this, we

can just refer to the same part of proof for forward selection.) Finally, 2ϑ + f4 ≥ 1 requires
√
r ≥

√
1−2ϑ
1−ρ2 + t′√

1−ρ2
when ρ ≥ 0, and

√
r ≥ max

{√
1−2ϑ
1−ρ2 + t′√

1−ρ2
,
√

1−2ϑ
2(1−|ρ|) + t′

1−|ρ|

}
when ρ ≤ 0.

In the above discussion, the (v′, t′) refers to any admissible t′ in this case, so we
choose v′min = 1 and t′min = min

{√
1− ϑ,

√
1− ρ2,

√
2

2

}
. To sum up,

√
r =

max
{
v′min +

√
1− ϑ,

√
2(1−ϑ)
1−|ρ|

}
, and we require

√
r ≥

√
1−2ϑ
1−ρ2 +

t′min√
1−ρ2

when ρ ≥ 0, and

√
r ≥ max

{√
1−2ϑ
1−ρ2 +

t′min√
1−ρ2

,
√

1−2ϑ
2(1−|ρ|) +

t′min

1−|ρ|

}
when ρ ≤ 0.

Second, if ϑ+f1 = ϑ+f2 = 1, this case will not give us any curve. We first need v′ ≥ 1 and t′ ≥
√

2
2 ,

and
√
r = max

{
v′ +

√
1− ϑ,

√
2(1−ϑ)

1−ρ

}
. For ϑ + f1 ≥ 1, we already have

√
r ≥

√
2(1−ϑ)

1−ρ , so

we only need t′ ≥
√

1− ϑ. The requirement from 2ϑ+ f3 ≥ 1 is still the same as that of the first
case.

We notice that even if this case admits any curve, it is strictly above the curve yielded by FP1 = FN1,
and it exists in a smaller interval of ϑ. As a result, we need not discuss this case any further.

Third, if min
{
v′2, 2t′2

}
= ϑ + f2 = 1, then we immdiately have v′ ≥ 1, t′ ≥

√
2

2 , and we can
limit ourselves to consider ϑ ≤ 1

2 . From ϑ + f1 ≥ 1 and ϑ + f2 ≥ 1, we have the requirement
√
r ≥ max

{
v′ +

√
1− ϑ,

√
2(1−ϑ)

1−ρ

}
and t′ ≥

√
1− ϑ. Also, since v′ ≤ t′/

√
1− ρ2, we need

t′ ≥
√

1− ρ2.

When ρ ≥ 0, we have
√
r =

√
1−2ϑ
1−ρ2 + t′√

1−ρ2
; when ρ < 0, we have

√
r =

max

{√
1−2ϑ
1−ρ2 + t′√

1−ρ2
,
√

1−2ϑ
2(1−ρ) + t′

1−ρ

}
. Just like the first case, we can take v′min = 1 and

t′min = min
{√

1− ϑ,
√

1− ρ2,
√

2
2

}
in the expression of

√
r.

Fourth, if ϑ + f1 = 2ϑ + f3 = 1, this case does not give any curve. The discussion is exactly the
same as the second case: even if this case gives us any curve, it would be strictly above the curve in
the third case.

To sum up, define v′min = 1 and t′min = min
{√

1− ϑ,
√

1− ρ2,
√

2
2

}
: When ρ ≥ 0:

√
r = max

{
v′min +

√
1− ϑ,

√
2(1− ϑ)

1− |ρ|
,

√
1− 2ϑ

1− ρ2
+

t′min√
1− ρ2

}

and add
√

1−2ϑ
2(1−ρ) +

t′min

1−ρ into the maximum when ρ < 0.

We can simplify the expression of the curve above, by deleting a few curves in the maximum:

• the curve
√
r =

√
1−2ϑ
1−ρ2 +

√
2/2√
1−ρ2

is always below other curves, and can be omitted.

This is because when ϑ ≤ 1
2 ,
√

1− ϑ ≥
√

2
2 , which implies

√
r =

√
1−2ϑ
1−ρ2 +

√
2/2√
1−ρ2

≤√
1−2ϑ
1−ρ2 +

√
1−ϑ√
1−ρ2

.

• for the same reason, the curve
√
r =

√
1−2ϑ

2(1−ρ) +
√

2/2
1−ρ is also always below other curves,

and can be omitted.
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• the curve
√
r =

√
1−2ϑ
1−ρ2 +

√
1−ρ2√
1−ρ2

is always below other curves, and can be omitted.

– When ρ ≥
√

2
2 ,
√

1− ρ2 ≤
√

1− ϑ for all ϑ ≤ 1
2 . Thus

√
1−2ϑ
1−ρ2 +

√
1−ρ2√
1−ρ2

≤√
1−2ϑ
1−ρ2 +

√
1−ϑ√
1−ρ2

– When ρ ≥
√

2
2 : If ϑ ≤ ρ2, we still have

√
1−2ϑ
1−ρ2 +

√
1−ρ2√
1−ρ2

≤
√

1−2ϑ
1−ρ2 +

√
1−ϑ√
1−ρ2

. If

ρ2 < ϑ ≤ 1
2 , it can be verified that

√
1−2ϑ
1−ρ2 +

√
1−ρ2√
1−ρ2

≤ 1 +
√

1− ϑ.

Now we have arrived at the conclusion of Theorem 16.

Case 3: When t′√
1−ρ2

≤ v′ ≤ t′(1 + |ρ|√
1−ρ2

).

Theorem 17 (The Hamming error rate When t′√
1−ρ2

≤ v′ ≤ t′(1+ |ρ|√
1−ρ2

) ). Suppose the conditions

of Theorem 6 holds. Let h1 = x′jy/
√

2 log(p), h2 = x′j+1y/
√

2 log(p) and v′ = v/
√

2 log(p),

t′ = t/
√

2 log(p). As shorthand notation, define the points A(v′, v′), B(
t′
√

1−ρ2

1−|ρ| ,
t′
√

1−ρ2

1−|ρ| ), and

D(v′ + ρt′√
1−ρ2

, ρv′ + t′√
1−ρ2

) as marked in Figure 13c. We require t′/
√

1− ρ2 ≤ v′ ≤ t′(1 +

|ρ|/
√

1− ρ2). As p→∞,

FPp = Lpp
1−min

{
min{v′2,2t′2}, ϑ+f1(

√
r,t′,v′)

}
, FNp = Lpp

1−min
{
ϑ+f2(

√
r,t′,v′), 2ϑ+f3(

√
r,t′,v′)

}
,

where (below, d2
|ρ|(u, v) is as in Definition 1),

f1(
√
r, t′, v′) =


(v′ − |ρ|

√
r)2 if

√
r ≤ v′

1+ρ
1

1−ρ2 d
2
|ρ|(A, (|ρ|

√
r,
√
r)) if v′

1+ρ <
√
r ≤ 2v′

1+ρ

min
{
k(v′, t′), v′2(1− ρ2)

}
if
√
r > 2v′

1+ρ

where k(v′, t′) is defined like:

k(v′, t′)
def
=


1
2 (1− |ρ|)r if 2v′

1+|ρ| ≤
√
r ≤ 2t′√

1−ρ2

1
1−ρ2 d

2
|ρ| (B, (|ρ|

√
r,
√
r)) if 2t′√

1−ρ2
≤
√
r ≤ t

√
1−ρ2

|ρ|(1−|ρ|)[√
1− ρ2

√
r − t′

]2
if
√
r ≥ t

√
1−ρ2

|ρ|(1−|ρ|)

f2(
√
r, t′, v′) =



min
{

(
√
r − v′)2

+,
1
2 (1− |ρ|)r, t′2

}
if
√
r ≤ v′ + |ρ| t′√

1−ρ2

min{(
√
r − v′)2

+,
1
2 (1− |ρ|)r, 1

1−ρ2 d
2
|ρ|(D, (

√
r, |ρ|
√
r))}

if v′ + |ρ| t′√
1−ρ2

≤
√
r ≤ min{

√
r2(v′, t′), v′ + t′

|ρ|
√

1−ρ2
}

min
{

(
√
r − v′)2

+,
1

1−ρ2 d
2
|ρ|(D, (

√
r, |ρ|
√
r))
}

if min{√r2, v
′ + t′

|ρ|
√

1−ρ2
} ≤
√
r ≤ v′ + t′

|ρ|
√

1−ρ2

(1− ρ2) [
√
r − v′]2 if

√
r ≥ v′ + t′

|ρ|
√

1−ρ2

where r2 = r2(v′, t′) is the larger root of the quadratic equation

1

1− ρ2
d2
|ρ|(D, (

√
r, |ρ|
√
r)) =

1

2
(1− |ρ|)r

⇔ 1 + |ρ|
2

r − 2

(
v′ +

|ρ|t′√
1− ρ2

)
√
r+

(
v′2 +

t′2

1− ρ2
+

2|ρ|v′t′√
1− ρ2

)
= 0 (56)
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and the explicitely form of r2(v′, t′) is

√
r2(v′, t′) =

1

1 + |ρ|

2

(
v′ +

|ρ|t′√
1− ρ2

)
+

√√√√2(1− |ρ|)

(
v′ − t′√

1− ρ2

)(
v′ + (1 + 2|ρ|) t′√

1− ρ2

) .
The definition of f3(

√
r, t′) depends on the sign of ρ. When ρ > 0,

f3(
√
r, t′) =

[√
1− ρ2

√
r − t

]2
When ρ < 0,

f3(
√
r, t′) = min

{[√
1− ρ2

√
r − t

]2
, d2
|ρ|(C, ((1− |ρ|)

√
r,−(1− |ρ|)

√
r))

}
= min

{[√
1− ρ2

√
r − t

]2
,

2

1− |ρ|
[
(1− |ρ|)

√
r − t

]2}

Proof of Theorem 17. We explain one detail, about why
√
r2(v′, t′) is introduced in f2(

√
r, t′, v′),

which corresponds to the ellipsoid centered at µ10 = (
√
r, |ρ|
√
r). Recall that the point D as noted

in in Figure 13c has cooredinate xD = v′ + |ρ|t′√
1−ρ2

, yD = |ρ|v′ + t′√
1−ρ2

. Suppose ρ ≥ 0, as the

case of ρ < 0 can be obtained with symmetry.

When
√
r ≤ xD = v′ + ρt′√

1−ρ2
, the ellipsoid can be tangent to any one among the three line

segments: (i) h1 = v′, (ii) h2 = h1 or (iii) h2 = ρh1 + t′
√

1− ρ2.

When ρ
√
r ≥ yD = ρv′ + t′√

1−ρ2
, the ellipsoid can either be tangent to the red line h1 = ρh2 +

v′(1− ρ2), or the blue line h1 = v′ in Figure 13c.

When v′ + ρt′√
1−ρ2

≤
√
r ≤ v′ + t′

ρ
√

1−ρ2
, thing are more tricky:

• The ellipsoid can possibly be tangent to h1 = v′, or it may intersect point D and rotate
around it.

• However, it is uncertain whether we should include the segment h2 = h1 into the form of
the Hamming error. This is because when

√
r is large, the ellipsoid is at the upper right side

of point D, where h2 = h1 does not form the boundary of the rejection region. If we still
include it, the final phase diagram will be worse than it actually is.

• To exclude h2 = h1 when it is unwanted, we require
√
r >

√
r2(v′, t′).

• The place of
√
r2(v′, t′) is exchangable to the symmetric axis of the quadratic equation (56),

which is 2
1+ρv

′ + 2ρt′

(1+ρ)
√

1−ρ2
.

√
r2(v′, t′) can be greater than v′ + t′

ρ
√

1−ρ2
, so it is taken minimum with v′ + t′

ρ
√

1−ρ2
in the

definition of f2.

Before moving on to the phase diagram, we first introduce two terms to simplify notation:

Definition 3. Define v′min and t′min, both as functions of ϑ and ρ. v′min = max

{
1,
√

1−ϑ
1−ρ2 ,

√
2/2√
1−ρ2

}
and t′min = max

{
√

2
2 ,

max{1,
√

1−ϑ
1−ρ2

}

1+|ρ|/
√

1−ρ2

}
.

Figure 14 gives an explanation of how v′min and t′min are defined.
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Figure 14: the definition of v′min and t′min

Theorem 18 (The phase diagram when t′√
1−ρ2

≤ v′ ≤ t′(1 + |ρ|√
1−ρ2

) ). Suppose the conditions

of Theorem 6 holds. The boundary between Exact Recovery and and Almost Full Recovery is
Equation 54 when the correlation is positive, and Equation 55 when the correlation is negative. When
ρ ≥ 0,

√
r = max

{
v′min +

√
1− ϑ,

√
2(1− ϑ)

1− |ρ|
,

√
1− 2ϑ

1− ρ2
+ v′min

}
(57)

When the actual correlation is negative,

√
r = max

{
v′min +

√
1− ϑ,

√
2(1− ϑ)

1− |ρ|
,

√
1− 2ϑ

1− ρ2
+ v′min,

√
1− 2ϑ

2(1− |ρ|)
+

t′min

1− |ρ|

}
. (58)

Proof of Theorem 18. We start by considering the case of ρ ≥ 0. The other case of ρ < 0 can be
prove in a very similar way by adding one more curve. In the discussion below, we do not work with
|ρ|, but ρ ≥ 0 itself.

In this particular proof, we do not limit ourselves to discuss the four cases as usual. Instead, we just
think about the conditions for min{v′2, 2t′2}, ϑ+ f1, ϑ+ f2, 2ϑ+ f3 ≥ 1, and take the smallest

√
r

possible. Also, remember the important fact that at least two of these requirements should be tight.

For fixed (v′, t′), the necessary and sufficient condition for min{v′2, 2t′2} ≥ 1 is v′ ≥ 1 and t′ ≥
√

2
2 .

The necessary and sufficient condition for 2ϑ+f3 ≥ 0 is
√
r ≥

√
1−2ϑ
1−ρ2 +v′. (If ρ < 0, the condition

should be
√
r ≥ max

{√
1−2ϑ
1−ρ2 + v′,

√
1−ϑ
1−ρ2

}
.) From ϑ+ f2 ≥ 1, we know a necessary condition,

√
r ≥ v′ +

√
1− ϑ. From the discussion above, we already know

√
r ≥ max

{
v′ +

√
1− ϑ,

√
1− 2ϑ

1− ρ2
+ v′

}

In terms of admissible (v′, t′), we already have v′ ≥ 1 and t′ ≥
√

2
2 . Additionally, note that

f1(
√
r, t′, v′) as a function of

√
r takes its maximum when f1 = (1 − ρ2)v′2, so ϑ + f1 ≥ 1

implies v′ ≥
√

1−ϑ
1−ρ2 . Under the conditions v′ ≥ max{1,

√
1−ϑ
1−ρ2 }, t′ ≥

√
2

2 , and t′√
1−ρ2

≤ v′ ≤

t′(1 + |ρ|√
1−ρ2

), the smallest admissible (v′, t′) are precisely defined by Definition 3 as (v′min, t
′
min).

We consider the two cases: ρ ≤ 0.576 and ρ ≥ 0.576. The point 0.576 is important, because when
ρ ≤ 0.576, since v′min ≥ max

{
1,
√

1−ϑ
1−ρ2

}
, we can prove

√
r ≥ max

{
v′min +

√
1− ϑ,

√
1− 2ϑ

1− ρ2
+ v′min

}
≥

√
2(1− ϑ)

1− ρ
.
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Since now
√
r ≥

√
2(1−ϑ)

1−ρ is already implied by other necessary conditions, we only need to

check the sufficiency of
√
r = max

{
v′min +

√
1− ϑ,

√
1−2ϑ
1−ρ2 + v′min

}
to prove Theorem 18 for

0 ≤ ρ < 0.576.

When 0 ≤ ρ ≤ 0.576, we already have min{v′2, 2t2} ≥ 1, 2ϑ + f3 ≥ 1 and
√
r ≥

√
2(1−ϑ)

1−ρ . we
need to check ϑ+ f1 ≥ 1 and ϑ+ f2 ≥ 1.

For ϑ+ f1 ≥ 1, because 1
1−ρ2 d

2
|ρ|(A, (|ρ|

√
r,
√
r)) ≥ 1

2 (1− ρ)r and 1
1−ρ2 d

2
|ρ|(B, (|ρ|

√
r,
√
r)) ≥

1
2 (1 − ρ)r, we only need to check

√
r ≥

√
1−ϑ
1−ρ2 + t′√

1−ρ2
when

√
r ≥ t

√
1−ρ2

ρ(1−ρ) . Since t′ ≥
v′

1+ ρ√
1−ρ2

≥
√

1−ϑ
ρ+
√

1−ρ2
≥ ρ
√

1− ϑ for all ρ ≤
√

2
2 , we have t′ ≥ ρ

√
1− ϑ, and now actually

t
√

1−ρ2

ρ(1−ρ) ≥
√

1−ϑ
1−ρ2 + t′√

1−ρ2
, so this case is not restrictive at all.

For ϑ+ f2 ≥ 1, when
√
r ≤

√
r2(v′, t′), it is sufficient to have

√
r ≥

√
2(1−ϑ)

1−ρ . We only need to
check the rest two cases in which

√
r is large:

• When
√
r2(v′, t′) ≤

√
r ≤ v′ + t′

ρ
√

1−ρ2
, we need d2(D, (

√
r, ρ
√
r)) ≥ (1− ρ2)(1− ϑ).

This trivially holds, because
√
r ≥

√
r2(v′, t′). From Equation (56):

r − 2

(
v′ +

ρt′√
1− ρ2

)
√
r +

(
v′2 +

t′2

1− ρ2
+

2ρv′t′√
1− ρ2

)
≥ 1− ρ

2
r ≥ 1− ϑ

whose last inequality is because
√
r ≥

√
2(1−ϑ)

1−ρ .

• When
√
r ≥ v′ + t′

ρ
√

1−ρ2
, we need

√
r ≥

√
1−ϑ
1−ρ2 + v′. Since t′ ≥ ρ

√
1− ϑ, it trivially

holds.

We have proved Theorem 18 for ρ ≤ 0.576. Now we move on to the next case of ρ > 0.576.

For ρ > 0.576, our task is to prove it is necessary and sufficient to have
√
r ≥

√
2(1−ϑ)

1−ρ . Reviewing

Theorem 18, as long as
√
r ≤

√
r2(v′, t′) and

√
r ≤ 2t′√

1−ρ2 for fixed admissible (v′, t′), then
√
r ≥

√
2(1−ϑ)

1−ρ is also sufficient for
√
r. In other words, we could simply set

√
r = max

{
v′min +

√
1− ϑ,

√
2(1− ϑ)

1− ρ
,

√
1− 2ϑ

1− ρ2
+ v′min

}
.

We are left to eliminate other cases, i.e.
√
r ≤

√
r2(v′, t′) or

√
r ≤ 2t′√

1−ρ2 for fixed admissible
(v′, t′). They can either be impossible, or only produce a curve greater than the one in Equation 57.
The rest of the proof focuses on the elimination of other cases.

To prepare for such work, we take a closer look at the definition of f2. We point out that when

v′ ≥
√

2(1+ρ)−1

ρ · t√
1−ρ2

, the case of{
(
√
r − v′)2

+
1

1−ρ2 d
2
|ρ|(D, (

√
r, ρ
√
r))

if min{
√
r2, v

′ +
t′

|ρ|
√

1− ρ2
} ≤
√
r ≤ v′ + t′

|ρ|
√

1− ρ2

does not exist, and the degenerated f2 is just

f2(
√
r, t′, v′) =


min{(

√
r − v′)2

+,
1
2 (1− ρ)r, t′2} if

√
r ≤ v′ + ρ t′√

1−ρ2

min{(
√
r − v′)2

+,
1
2 (1− ρ)r, 1

1−ρ2 d
2
|ρ|(D, (

√
r, ρ
√
r))} if v′ + ρ t′√

1−ρ2
≤
√
r ≤ v′ + t′

ρ
√

1−ρ2

(1− ρ2) [
√
r − v′]2 if

√
r ≥ v′ + t′

ρ
√

1−ρ2
.
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When v′ <
√

2(1+ρ)−1

ρ · t√
1−ρ2

, the case of{
(1− ρ2)(

√
r − v′)2

+

d2(D, (
√
r, ρ
√
r))

if
√
r2(v′, t′) ≤

√
r ≤ v′ + t′

ρ
√

1− ρ2

in f2 does exist.

Now we are ready to eliminate the unwanted cases.

When the case of 2t′√
1−ρ2

≤
√
r ≤ t

√
1−ρ2

ρ(1−ρ) in ϑ + f1 ≥ 1 is tight and active, we have
√
r =

(1+ρ)t′√
1−ρ2

−
√

1− ϑ− t′2. There is one important fact: v′+ t′

ρ
√

1−ρ2
≥ 2

1+ρv
′+ 2ρt′

(1+ρ)
√

1−ρ2
≥ 2t′√

1−ρ2
.

The middle term is the symmetric axis of Equation (56), and can be used exchangably with
√
r2(v′, t′)

as we have noted in the proof of Theorem 17.

• If
√
r ≤ v′ + t′

ρ
√

1−ρ2
, we need d2

|ρ|(D, (
√
r, ρ
√
r)) ≥ (1 − ρ2)(1 − ϑ), i.e.

√
r ≥

v′ + ρt′√
1−ρ2

+
√

1− ϑ− t′2, which gives a contradiction.

• If
√
r > v′ + t′

ρ
√

1−ρ2
, because d2

|ρ|(D, (
√
r, ρ
√
r)) ≥ (1− ρ2)2 [

√
r − v′]2, it is the same

contradiction.

When the case of
√
r >

t
√

1−ρ2

ρ(1−ρ) in ϑ+ f1 ≥ 1 is tight and active, we have
√
r =

√
1−ϑ
1−ρ2 + t′√

1−ρ2
.

Then we discuss the conditional expression of f2 in ϑ+ f2 ≥ 1; given the intractability of
√
r2(ϑ, ρ),

we work with the alternative 2
1+ρv

′ + 2ρt′

(1+ρ)
√

1−ρ2
instead.

• When
√
r ≥ v′ + t′

ρ
√

1−ρ2
in f2, we need

√
r ≥

√
1−ϑ
1−ρ2 + v′ which gives a contradiction.

• When 2
1+ρv

′+ 2ρt′

(1+ρ)
√

1−ρ2
≤
√
r < v′+ t′

ρ
√

1−ρ2
in f2, we actually cannot have

√
1−ϑ
1−ρ2 +

t′√
1−ρ2

≥ 2
1+ρv

′ + 2ρt′

(1+ρ)
√

1−ρ2
, because it means

(√
1−ϑ
1−ρ2 − v′

)
+ 1−ρ

1+ρ
t′√
1−ρ2

≥ 1−ρ
1+ρv

′.

When the case of
√
r ≥ v′ + t′

ρ
√

1−ρ2
in FN1 is tight and active, we have

√
r =

√
1−ϑ
1−ρ2 + v′min.

This case does not have any problem or contradiction itself. However, with v′ ≥ max{1,
√

1−ϑ
1−ρ2 },

it is too large, much larger than
√
r = max

{
v′min +

√
1− ϑ,

√
2(1−ϑ)

1−ρ ,
√

1−2ϑ
1−ρ2 + v′min

}
whose

sufficiency has been proven.

When v ≥
√

2(1+ρ)−1

ρ · t√
1−ρ2

, there is no more cases in f2, and our discussion is finished. When

v <

√
2(1+ρ)−1

ρ · t√
1−ρ2

, we need to look at the last case of
√
r2(v′, t′) ≤

√
r ≤ v′ + t′

ρ
√

1−ρ2
in

FN1. If this case is tight and active, we have
√
r = v′ + ρt′√

1−ρ2
+
√

1− ϑ− t′2.

• It can be verified that
√
r2(v′, t′) ≥ t

√
1−ρ2

ρ(1−ρ) , which is equivalent to

−1 + ρ

2
v′2 +

2v′t′√
1− ρ2

(
1 +

1− ρ3

2ρ

)
≥ t′2

1− ρ2

[
3

2
+

1

ρ
− ρ

2
− ρ2 − (1− ρ2)2

4ρ2

]
(RHS − LHS) is decreasing in t′

v′ , and the inequality holds as t′

v′ =
ρ
√

1−ρ2√
2(1+ρ)−1

.
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• As a result, we need to verify v′ + ρt′√
1−ρ2

+
√

1− ϑ− t′2 ≥
√

1−ϑ
1−ρ2 + t′√

1−ρ2
im-

plied by ϑ + f1 ≥ 1. This would give us a contradiction, because actually v′ +
ρt′√
1−ρ2

+ 1.02 ·
√

1− ϑ− t′2 ≤
√

1−ϑ
1−ρ2 + t′√

1−ρ2
. In fact, We only need to prove[√

2(1+ρ)−1

ρ + ρ− 1

]
t′√
1−ρ2

+ 1.02 ·
√

1− ϑ− t′2 ≤
√

1−ϑ
1−ρ2 . The coefficient 1.02 as to

make the LHS decreasing in t′ for ρ ≥ 0.576. Taking t = ρ
√

1−ϑ√
2(1+ρ)−1

proves the inequality.

So far our discussion is finally finished, and we have proven the phase curve to be

√
r = max

{
v′min +

√
1− ϑ,

√
2(1− ϑ)

1− ρ
,

√
1− 2ϑ

1− ρ2
+ v′min

}
.

where v′min is defined in Defition 3.

Reviewing the proof for ρ ≥ 0, we notice that 2ϑ+ f3(
√
r, t′v′) ≥ 1 is only used at the very start of

the proof, and does not change the bulk of the discussion. It can be proved with vitually the same
proof, that when ρ < 0, the phase curve is

√
r = max

{
v′min +

√
1− ϑ,

√
2(1− ϑ)

1− |ρ|
,

√
1− 2ϑ

1− ρ2
+ v′min,

√
1− 2ϑ

2(1− |ρ|)
+

t′min

1− |ρ|

}
.

Summarising the first three cases: When ρ ≥ 0, among the first three cases, we can take the minimum
over Equation (52),(54),(57). In fact, the minimum is just Equation (54), which is

√
r = max

{
1 +
√

1− ϑ,

√
2(1− ϑ)

1− ρ
,

√
1− 2ϑ

1− ρ2
+

√
1− ϑ
1− ρ2

}
. (59)

When ρ < 0, we also take the minimum over Equation (53),(55),(58). In fact, in the region ϑ ∈ ( 1
2 , 1),

Equation (55) is the minimum, but when ϑ ≤ 1
2 , Equation (58) is the minimum. As a result, we have

an upper bound on the final phase curve, which can be expressed as:

√
r = max

{
v′min +

√
1− ϑ,

√
2(1− ϑ)

1− |ρ|
,

√
1− 2ϑ

1− ρ2
+ v′min,

√
1− 2ϑ

2(1− |ρ|)
+

t′min

1− |ρ|

}
. (60)

where we define v′min = max{1,
√

1−ϑ
1−ρ2 } and t′min = max

{√
2

2 ,
v′min

1+|ρ|/
√

1−ρ2

}
.

Remark 5. Equation (59) and (60) is the result we presented as Theorem 6 in the main text.

When ρ ≥ 0, since we used to define v′min = max

{
1,
√

1−ϑ
1−ρ2 ,

√
2/2√
1−ρ2

}
in the third case, Equa-

tion (58) is strictly above Equation (55).

When ρ < 0, in Equation (58), we used to define v′min = max

{
1,
√

1−ϑ
1−ρ2 ,

√
2/2√
1−ρ2

}
. When ϑ ≤ 1

2 ,

it is equivalent to v′min = max{1,
√

1−ϑ
1−ρ2 }, which agrees with Equation (60) for ϑ ≤ 1

2 and ρ ≤ 0.

When ρ < 0 and ϑ > 1
2 , Equation (58) is not the minimum among the three, mainly

because
√

2/2√
1−ρ2

> 1 for |ρ| >
√

2
2 . The lowest phase curve for ϑ > 1

2 and ρ ∈

(−1, 1) should be max{1 +
√

1− ϑ,
√

2(1−ϑ)
1−|ρ| }, but we can also write it equivalently as

max
{

max{1,
√

1−ϑ
1−ρ2 }+

√
1− ϑ,

√
2(1−ϑ)
1−|ρ|

}
, because 1 +

√
1− ϑ ≥

√
2(1−ϑ)
1−|ρ| and ϑ > 1

2 to-

gether imply
√

1−ϑ
1−ρ2 ≤ 1.
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The last three cases: We are still left to discuss the rest three cases: (i) t′(1 + |ρ|√
1−ρ2

) ≤ v′ ≤

t′
√

1−ρ2

1−|ρ| , (ii) t
′
√

1−ρ2

1−|ρ| ≤ v
′ ≤ t′

1−|ρ| , (iii) v′ ≥ t′

1−|ρ| .

When ρ ≥ 0, we can prove that Equation (59) is already the best, and there is no need to discuss the rest
three cases for ρ ≥ 0. This is because in Figure 13d, 13e and 13f, we need v′ ≥ max

{
1,
√

1−ϑ
1−ρ2

}
.

We also need at least that
√
r ≥ v′ +

√
1− ϑ,

√
r ≥

√
2(1−ϑ)

1−ρ and
√
r ≥

√
1−2ϑ
1−ρ2 + v′, so it cannot

be any better than Equation (59).

When ρ < 0, the optimal phase curve for ϑ ≤ 1
2 may still be one of the last three cases, but the

discussion is too difficult. Even the expression of the phase curves is very complicated. We present
the phase curves of the rest three cases without proof:

Case 4. When t′
(

1 + |ρ|√
1−ρ2

)
≤ v′ ≤ t′

√
1−ρ2

1−|ρ| , the phase curve is

√
r = max

{
v′min +

√
1− ϑ,

√
2(1− ϑ)

1− |ρ|
,

√
1− 2ϑ

1− ρ2
+ v′min(ϑ),

√
1− 2ϑ

2(1− |ρ|)
+
t′min(ϑ)

1− |ρ|

}
.

(61)

and the definition of (v′min, t
′
min) is specific to this case.

vmin(ϑ) = max

{
1,

√
1− ϑ
1− ρ2

,

√
2

2

(
1 +

|ρ|√
1− ρ2

)}
, tmin(ϑ) = max

{
1− |ρ|√
1− ρ2

vmin(ϑ), f(|ρ|), g(ϑ)

}
where

f(|ρ|) =


√

1−ρ2

2−ρ2 if |ρ| ≤ (
√

5− 1)/2
1

1+|ρ| if (
√

5− 1)/2 ≤ |ρ| ≤ 1
3

[
−2 + (19 + 3

√
33)1/3 + (19− 3

√
33)1/3

]
|ρ|√

1+(1+|ρ|)2−2(1+|ρ|)
√

1−ρ2
if |ρ| ≥ 1

3

[
−2 + (19 + 3

√
33)1/3 + (19− 3

√
33)1/3

]
and

g(ϑ) =

{
g1(ϑ) ϑ ≥ ϑ∗
g2(ϑ) ϑ < ϑ∗

where ϑ∗, g1(ϑ) and g2(ϑ) are respectively the roots of ϑ of the following three equations:

ϑ = ϑ∗ :
|ρ|

1− |ρ|
+

√
1− 2ϑ

2(1− |ρ|)
− 1 + ρ2√

1− ρ2
−
√

1− ϑ− ρ2 = 0

t = g1(ϑ) : t

(
1

1− |ρ|
− 2|ρ|√

1− ρ2

)
+

√
1− 2ϑ

2(1− |ρ|)
−
√

1− t2 −
√

1− ϑ− t2 = 0

t = g2(ϑ) : t

(
1

1− |ρ|
− |ρ|√

1− ρ2

)
+

√
1− 2ϑ

2(1− |ρ|)
− 1√

1− ρ2
−
√

1− ϑ− t2 = 0

All three equations can be solved easily with bi-section methods.

Case 5. When t′
√

1−ρ2

1−|ρ| ≤ v′ ≤ t′

1−|ρ| : We first define vmin(ϑ) =

max

{
1,
√

1−ϑ
1−ρ2 ,

√
1−ρ2

1−|ρ| · f(|ρ|),
}

in which f(|ρ|) has the same definition from Case 4.

When |ρ| ≤
√

2
2 , the boundary is

√
r = max

{
vmin(ϑ) +

√
1− ϑ, h1(ϑ)

}
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where h1(ϑ) = min

{
Slope(ϑ) ·

√
1− ϑ, h2(ϑ), max

{√
1−2ϑ

2(1−|ρ|) + g1(ϑ)
1−|ρ| ,

1+2|ρ|√
2−ρ2

+
√

1− ϑ− 1−ρ2

2−ρ2

}}
,

in which

Slope(ϑ) = 1 +

√
1− ρ2

1− |ρ|
· t∗, where t∗ ∈ (0, 1) solves

|ρ|t√
1− ρ2

+
√

1− t2 = 1,

and

h2(ϑ) =


√

1−2ϑ
1−ρ2 + 1√

1−ρ2
if ϑ ≤ 1− 1

ρ2(1+|ρ|)2

1+2|ρ|
(1+|ρ|)

√
1−ρ2

+
√

1− ϑ− 1
(1+|ρ|)2 if ϑ > 1− 1

ρ2(1+|ρ|)2

and g1(ϑ) is the same one in Case 4.

We define a numerical special numerical value for |ρ|: |ρ| = 0.7544. It is the value which makes
√
r = 1+2|ρ|

(1+|ρ|)
√

1−ρ2
+
√

1− ϑ− 1
(1+|ρ|)2 and

√
r =

(
1 +

√
1−ρ2

1−|ρ|

)√
1− ϑ intersect at ϑ = 1

2 .

When
√

2
2 < |ρ| ≤ 0.7544, the boundary is

√
r = max

{
vmin(ϑ) +

√
1− ϑ, h3(ϑ)

}
,

where the definiton of vmin is unchanged; h3(ϑ) = min

{(
1 +

√
1−ρ2

1−|ρ|

)√
1− ϑ, h2(ϑ)

}
.

When |ρ| > 0.7544, the boundary is:

√
r =

max

{
vmin(ϑ) +

√
1− ϑ,

(
1 +

√
1−ρ2

1−|ρ|

)
(1− ϑ)

}
if ϑ ≤ 1

2

h2(ϑ) if ϑ > 1
2

Case 6. When v′ ≥ t′

1−|ρ|

√
r = max

{
√

1− ϑ+
1√

1− ρ2
,

√
1− 2ϑ

1− ρ2
+

1√
1− ρ2

, h(ϑ)

}
where the curve h(ϑ) is defined as

h(ϑ) =


√

1−ϑ
1−ρ2 + 1√

1−ρ2
if ϑ ≤ 1− 1−|ρ|

ρ2(1+|ρ|)

1√
1−ρ2

+ |ρ|
1+|ρ| +

√
1− ϑ− 1−|ρ|

1+|ρ| if ϑ > 1− 1−|ρ|
ρ2(1+|ρ|) .

To sum up all the six cases, the lowest phase curve over the six cases in given in Equation (59)
when ρ ≥ 0. When ρ < 0, the optimal curve is too complicated, but an upper bound is given by
Equation (60).

I PROOF OF THEOREM 7

The key is to analyze the random-design setting and show that its minimax rate of Hamming error is
only determined by E[X ′X] = Σ. Then, when we switch to the fixed-design case of X ′X = Σ, the
same minimax rate holds. For the random-design setting, we proceed by deriving a lower bound and
an upper bound of the minimax Hamming error separately.

First, we derive a lower bound for the minimax Hamming error. Let G = X ′X denote the Gram
matrix of the random-design model. Fixing any two subsets V0, V1 ⊂ {1, 2, . . . , p}, we write
V = V0 ∪ V1. Let η ∈ {0, 1}p be an arbitrary binary vector. We consider two binary vectors
µ(0), µ(1) ∈ {0, 1}p where µ(0)

j = µ
(1)
j = ηj , for j /∈ V , and restricted on V , Supp(µ

(0)
V ) = V0 and

Supp(µ
(1)
V ) = V1. Let τp =

√
2r log(p). Consider the testing problem

H0 : β = τpµ
(0), v.s. H1 : β = τpµ

(1). (62)
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For a test T , let R(T ) be the sum of type I and type II errors. Any selector β̂ can be converted to a
test T (β̂), where we reject the null hypothesis if Supp(β̂) 6= V0. It is seen that R(T (β̂)) = P{β =

τpµ
(0),Supp(β̂) 6= V0}+P{β = τpµ

(1),Supp(β̂) = V0)} ≤
∑
j∈V {P(βj = 0, β̂j 6= τp)+P(βj =

τp, β̂j = 0)}. It follows that

E[H(β̂V , βV )|X] ≥ R(T (β̂)) ≥ inf
T
R(T ) ≡ R∗(V0, V1; η,X). (63)

We can compute the right hand side using the Neyman-Pearson lemma. Define

a = a(V0, V1, X) = (µ(0) − µ(1))′G(µ(0) − µ(1)). (64)

The likelihood ratio test for (62) is equivalent to using the test statisticZ = a−1/2(µ(1)−µ(0))′X ′(y−
τpXµ

(0)). Then, Z ∼ N (0, 1) under H0, and Z ∼ N (a1/2τp, 1) = N (
√

2ar log(p), 1), under H1.
By Neyman-Pearson lemma,

R∗(V0, V1; η,X) = inf
t

{
ε|V0|
p · P

(
N (0, 1) > t

)
+ ε|V1|

p · P
(
N (
√

2ar log(p), 1) < t
)}

= inf
t=
√

2q log(p)

{
Lpp

−|V0|ϑ−q + Lpp
−|V1|ϑ−(

√
ar−√q)2

+

}
= Lpp

−h(V0,V1,X), (65)

where
h(V0, V1, X) = max

q>0

(
min

{
|V0|ϑ+ q, |V1|ϑ+ (

√
ar −√q)2

+

})
.

In the second line of (65), we have used the Mills’ ratio of N(0, 1) (e.g., see Ke et al. (2014) for a
similar use of the Mills’ ratio). Let Σ be the covariance matrix, parameterized by ρ. We define the
following quantities:

a∗(V0, V1, ρ) = (µ(0) − µ(1))′Σ(µ(0) − µ(1)),

h∗(V0, V1, ρ) = max
q>0

(
min

{
|V0|ϑ+ q, |V1|ϑ+ (

√
a∗r −√q)2

+

})
. (66)

Below, we show that h(V0, V1, X) is sufficiently close to h∗(V0, V1, ρ). The key is showing that Σ
and G are sufficiently close on the diagonal block restricted to V . We use Theorem 5.39 and Remark
5.40 of Vershynin (2012) with t = O(

√
|V | log(p)). It follows that, when |V | � n, with probability

1− o(p−3−|V |),

‖GV,V − ΣV,V ‖ ≤ C‖ΣV,V ‖
√
n−1|V | log(p); here, C a constant independent of |V |.

We note that ‖ΣV,V ‖ ≤ ‖Σ‖ ≤ C. For any finite integer m ≥ 1, the total number of size-m subset V
is
(
p
m

)
= O(pm). We then apply the probability union bound to get that, with probability 1−O(p−3),

max
V :|V |≤m

‖GV,V − ΣV,V ‖ ≤ C
√
n−1 log(p). (67)

Since |a(V0, V1, X)− a∗(V0, V1, ρ)| ≤ ‖GV,V − ΣV,V ‖ · ‖µ(1) − µ(0)‖2 ≤ ‖GV,V − ΣV,V ‖ · |V |,
we immediately know that

|a(V0, V1, X)− a∗(V0, V1, ρ)| ≤ C
√
n−1 log(p) here, C depends on m. (68)

Write h = h(V0, V1, X) and h∗ = h∗(V0, V1, ρ) for short, and let (h∗, a∗) be the shorthand notations
defined similarly. Then, h = maxq g(q, a) and h∗ = maxq f(q, a∗), for f(q, a) = min{|V0|ϑ +
q, |V1|ϑ + (

√
ar − √q)2

+}. Let q̃ and q̃∗ be the two maximizers. It is seen that h = f(q̃, a) ≤
f(q̃, a∗)+maxq |f(q, a)−f(q, a∗)| ≤ h∗+maxq |f(q, a)−f(q, a∗)|. Similarly, we can also derive
that h ≤ h∗+maxq |f(q, a∗)−f(q, a)|. Combining them gives |h−h∗| ≤ maxq |f(q, a∗)−f(q, a)|.
We plug in the expression of f(q, a) to get

|h(V0, V1, X)− h∗(V0, V1, ρ)| ≤ |
√
ar −

√
a∗r| ≤ C

√
n−1 log(p).

We now combine all the results, and note that (67) has a maximum over all V = V0 ∪ V1. It follows
that, with probability 1−O(p−3),

max
(V0,V1):|V0∪V1|≤m

|h(V0, V1, X)− h∗(V0, V1, ρ)| ≤ C
√
n−1 log(p). (69)
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We plug it into (65). Note thatLpp−h = Lpp
−h∗ ·ph∗−h. In line of (69), ph

∗−h is a multi-log(p) term,
i.e., Lpp−h = Lpp

−h∗ . We then combine it with (63). It yields that, with probability 1−O(p−3),

E[H(β̂V , βV )|X] ≥ Lpp−h
∗(V0,V1,ρ), simultaneously for all (V0, V1) with |V0 ∪ V1| ≤ m. (70)

Given V , we further take a maximum over (V0, V1) on the right hand side. It follows that

E[H(β̂V , βV )|X] ≥ Lpp−h
∗∗(V,ρ), where h∗∗(V, ρ) = min

(V0,V1):V0 6=V1,
V0∪V1=V

h∗(V0, V1, ρ). (71)

Write {1, 2, . . . , p} = ∪dp/2ej=1 Vj , where Vj = {2j − 1, 2j} for j ≤ p/2 and Vj = {p} for j > p/2

(this happens only if p is odd). It follows that, with probability 1−O(p−3),

E[H(β̂, β)|X] =
∑

1≤j≤dp/2e

E[H(β̂Vj , βVj )|X] ≥
∑

1≤j≤dp/2e

Lpp
−h∗∗(Vj ,ρ).

When p is even, h∗∗(Vj , ρ) are all equal. When p is odd, h∗∗(Vj , ρ) are all equal, except for one Vj ;
but this one has a negligible effect on the right hand side above. Let h∗∗(ρ) be the common value of
h∗∗(Vj , ρ). Since h∗∗(ρ) also depends on (ϑ, r), we write it as h∗∗(ρ;ϑ, r) to reflect this dependence.
We immediately have that, with probability 1−O(p−3),

E[H(β̂, β)|X] ≥ Lpp1−h∗∗(ρ;ϑ,r).

On the event that the above inequality does not hold, the Hamming error is at most p. The contribution
of this event to the expected Hamming error is at most p ·O(p−3) = O(p−2), which is negligible to
Lpp

1−h∗(ρ;ϑ,r). It follows that

E[H(β̂, β)] ≥ Lpp1−h∗∗(ρ;ϑ,r), for any method β̂. (72)

This gives a lower bound for the minimax Hamming error.

Next, we give an upper bound for the minimax Hamming error. We will consider a specific β̂. Let the
partition {1, 2, . . . , p} = ∪dp/2ej=1 Vj be the same as above. For any subset U ⊂ {1, 2, . . . , p}, let 1U
be the binary vector such that its jth entry is 1 if j ∈ U and 0 otherwise. Additionally, let XU be the
submatrix of X restricted to columns in U . For each Vj , define

Ûj = arg min
U⊂Vj

{1

2
‖y − τpX1U‖2 + ϑ log(p)|U |

}
. (73)

Define µ̂ ∈ {0, 1}p such that for any i ∈ Vj , µ̂i = 1 if i ∈ Ûj , and µ̂i = 0 otherwise. The estimator
is β̂ = τpµ̂. We now calculate the expected Hamming error of this estimator. Let S be the support of
β. Fix Vj and write V = Vj for short. Given any two subsets U0 and U1 of V such that U0 6= U1, we
consider the event

Supp(βV ) = U0, Supp(β̂V ) = U1, |S| ≤ 2p1−ϑ. (74)

On this event, it is true that
1

2
‖y − τpX1U0‖2 + ϑ log(p)|U0| ≥

1

2
‖y − τpX1U1‖2 + ϑ log(p)|U1|. (75)

Note that y = Xβ + z = τpX1U0 + τpX1S∩V c + z. We can re-write (75) as
1

2
‖z + τpX1S∩V c‖2 + ϑ log(p)|U0| ≥

1

2
‖(z + τpX1S∩V c)− τpX(1U1 − 1U0)‖2 + ϑ log(p)|U1|.

Let F = U0 ∩ U1, E0 = U0 \ F and E1 = U1 \ F . Then, |U0| = |F |+ |E0| and |U1| = |F |+ |E1|.
We plug it into the above inequality and re-arrange the terms. It gives

z′X(1U1
−1U0

) ≥ τp
2

(1U1
−1U0

)′G(1U1
−1U0

)−1′S∩V cG(1U1
−1U0

)+
ϑ log(p)

τp
(|E1|− |E0|).

Let a = a(U0, U1, X) = (1U1 − 1U0)′G(1U1 − 1U0). We note that this definition is indeed the same
as that in (64). Let z̃ = z′X(1U1

− 1U0
)/
√
a. The above can be written equivalently as

z̃ ≥
√

2 log(p)

[√
ra

2
− 1′S∩V cG(1U1

− 1U0
)√

a
+
ϑ(|E1| − |E0|)

2
√
ra

]
, where z̃|(X,β) ∼ N(0, 1).

(76)
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We bound |1′S∩V cG(1U1
−1U0

)|. Since ΣV cV is a zero matrix, we immediately have 1′S∩V cΣ(1U1
−

1U0
) = 0. It follows by the triangle inequality that

|1′S∩V cG(1U1 − 1U0)| ≤ |1′S∩V c(G− Σ)(1U1 − 1U0)|
≤ |V | ·max

k∈V
|e′k(G− Σ)1S∩V c |. (77)

For k ∈ V , e′k(G− Σ)1S∩V c =
∑n
i=1

∑
`∈S∩V c{X(i, k)X(i, `)− E[X(i, k)X(i, `)]}. We recall

that {1, 2, . . . , p} = ∪dp/2em=1 Vm is a partition. It induces a partition on S ∩ V c, which we denote by
S ∩ V c = ∪Npm=1Sm. Each Sm contains at most 2 indices and |S ∩ V c|/2 ≤ Np ≤ |S ∩ V c|. Write

e′k(G− Σ)1S∩V c =

n∑
i=1

Np∑
m=1

[ ∑
`∈Sm

{X(i, k)X(i, `)− E[X(i, k)X(i, `)]}
]
.

The right hand side is a sum of nNp independent variables, where each variable has a zero mean and
a sub-exponential norm bounded by n−1K, for a constant K > 0. We apply the Bernstein inequality
(Vershynin, 2012, Proposition 5.16) to get that, for every t > 0,

P
(
|e′k(G− Σ)1S∩V c | > t

)
≤ 2 exp

(
−cmin

{ nt2

K2Np
,
nt

K

})
,

where c > 0 is a universal constant. By letting t = C
√
n−1Np log(p) for a properly large constant

C, we have that, with probability 1−O(p−3),

|e′k(G− Σ)1S∩V c | ≤ C
√
n−1Np log(p) ≤ C

√
n−1|S| log(p).

We plug it into (76) and apply the probability union bound. We also note that |S| = O(p1−ϑ) on the
event (74); also, n = pω with ω > 1− ϑ. It follows that, on this event, with probability 1−O(p−3),

|1′S∩V cG(1U1
− 1U0

)| ≤ Cp−(ω−1+ϑ)/2
√

log(p). (78)
We plug (78) into (76) to get:

z̃ ≥
√

2bp log(p), where bp =
[√ra

2
+
ϑ(|E1| − |E0|)

2
√
ra

− Lpp−
ω−1+ϑ

2

]2
.

Moreover, let a∗ = a∗(U0, U1, ρ) = (1U1
− 1U0

)′Σ(1U1
− 1U0

), which is the same as the definition
in (66). By (68), the replacement of a by a∗ only yields a difference of Lpp−

ω−1+ϑ
2 in the expression

of bp. We further have:

z̃ ≥
√

2bp log(p), where z̃|(X,β) ∼ N(0, 1) and bp =
[√ra∗

2
+
ϑ(|E1| − |E0|)

2
√
ra∗

+Lpp
−ω−1+ϑ

2

]2
.

(79)
First, what (79) says is that, conditioning on (X,βV , βV c), if ‖β‖0 ≤ Cp1−ϑ, then except for an
event of probability O(p−3), Supp(β̂V ) = U1 implies z̃ >

√
2bp log(p). Second, under our model,

(X,βV c) are independent of βV , and P(Supp(βV ) = U0) = Lpp
−ϑ|U0| = Lpp

−ϑ(|F |+|E0|). Last,
P(‖βV c‖0 ≤ 2p1−ϑ) = 1−O(p−3) (this is seen by noticing that ‖βV c‖0 is the sum of independent
Bernoulli variables and by applying the Bernstein’s inequality). We combine the above to get

P
(
Supp(βV ) = U0, Supp(β̂V ) = U1, |S| ≤ 2p1−ϑ)

≤ Lpp
−ϑ|U0| · P

(
z̃ ≥

√
2bp log(p)

)
+O(p−3)

≤ Lpp
−ϑ(|F |+|E0|)−

[√
ra∗
2 +

ϑ(|E1|−|E0|)
2
√
ra∗

]2
+ .

By elementary calculations, we have

ϑ(|F |+ |E0|) +
[√ra∗

2
+
ϑ(|E1| − |E0|)

2
√
ra∗

]2
+

≥ ϑ|F |+ max{|E0|, |E1|}ϑ+
1

4

(√
ra∗ − |(|E1| − |E0|)|√

ra∗

)2

+

= max{|U0|, |U1|}ϑ+
1

4

(√
ra∗ − |(|U1| − |U0|)|√

ra∗

)2

+
= h∗(U0, U1, ρ),
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where h∗(U0, U1, ρ) is the same as that defined in (66) (the last equality above follows by solving q
in (66)). We combine the above to get

P
(
Supp(βV ) = U0, Supp(β̂V ) = U1, |S| ≤ 2p1−ϑ) ≤ Lpp−h∗(U0,U1,ρ). (80)

On the above event, the Hamming error contributed by β̂V is |E0| + |E1| ≤ |V | ≤ 2. Moreover,
h∗(U0, U1, ρ) ≥ h∗∗(ρ;ϑ, r), where the latter is defined in (71). It follows that

E[H(β̂V , βV )] =
∑

(U0,U1)

2 · P
(
Supp(βV ) = U0, Supp(β̂V ) = U1, |S| ≤ 2p1−ϑ)+O(p−3)

≤ Lp
∑

(U0,U1)

p−h
∗(U0,U1,ρ) ≤ Lpp−h

∗∗(ρ;ϑ,r).

The above is true for every V = Vj in the partition {1, 2, . . . , p} = ∪dp/2ej=1 (except for the last Vj in
the case that p is odd; but this single Vj has a negligible effect on the rate of the Hamming error). We
immediately have

E[H(β̂, β)] =
∑

1≤j≤dp/2e

E[H(β̂V , βV )] ≤ Lpp1−h∗∗(ρ;ϑ,r), for the β̂ in (73). (81)

This gives an upper bound for the minimax Hamming error.

Last, we use (72) and (81) to show the claim. By combining these two inequalities, we know that, for
the random design,

inf
β̂

E[H(β̂, β)] = Lpp
1−h∗∗(ρ;ϑ,r).

A key observation is that the exponent h∗∗(ρ;ϑ, r) is only related to Σ, not the realization of X ′X .
Now, we can mimic all the above derivations to get the same conclusion when the Gram matrix is
fixed at Σ (the proof is very similar, except that we now have G = Σ). Therefore, the minimax rates
of the Hamming errors under two settings are exactly the same.
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