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Abstract: Topic modeling is a widely utilized tool in text analysis. We investigate the optimal rate
for estimating a topic model. Specifically, we consider a scenario with n documents, a vocabulary of
size p, and document lengths at the order N. When N ≥ c · p, referred to as the long-document case,
the optimal rate is established in the literature at

√
p/(Nn). However, when N = o(p), referred to

as the short-document case, the optimal rate remains unknown. In this paper, we first provide new
entry-wise large-deviation bounds for the empirical singular vectors of a topic model. We then apply
these bounds to improve the error rate of a spectral algorithm, Topic-SCORE. Finally, by comparing
the improved error rate with the minimax lower bound, we conclude that the optimal rate is still√

p/(Nn) in the short-document case.

Keywords: decoupling inequality; entry-wise eigenvector analysis; pre-SVD normalization; sine-theta
theorem; topic-SCORE; word frequency heterogeneity
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1. Introduction

In today’s world, an immense volume of text data is generated in scientific research
and in our daily lives. This includes research publications, news articles, posts on social
media, electronic health records, and many more. Among the various statistical text models,
the topic model [1,2] stands out as one of the most widely used. Given a corpus consisting
of n documents written on a vocabulary of p words, let X = [X1, X2, . . . , Xn] ∈ Rp×n be the
word-document-count matrix, where Xi(j) is the count of the jth word in the ith document,
for 1 ≤ i ≤ n and 1 ≤ j ≤ p. Let A1, A2, . . . , AK ∈ Rp be probability mass functions (PMFs).
We call each Ak a topic vector, which represents a particular distribution over words in
the vocabulary. For each 1 ≤ i ≤ n, let Ni denote the length of the ith document, and let
wi ∈ RK be a weight vector, where wi(k) is the fractional weight this document puts on the
kth topic, for 1 ≤ k ≤ K. In a topic model, the columns of X are independently generated,
where the ith column satisfies:

Xi ∼ Multinomial(Ni, d0
i ), with d0

i =
K

∑
k=1

wi(k)Ak. (1)

Here d0
i ∈ Rp is the population word frequency vector for the ith document, which admits

a convex combination of the K topic vectors. The Ni words in this document are sampled
with replacement from the vocabulary using probabilities in d0

i ; as a result, the word counts
follow a multinomial distribution. Under this model, E[X] is a rank-K matrix. The statistical
problem of interest is using X to estimate the two parameter matrices A = [A1, A2, . . . , AK]
and W = [w1, w2, . . . , wn].

Since the topic model implies a low-rank structure behind the data matrix, spectral
algorithms [3] have been developed for topic model estimation. Topic-SCORE [4] is the
first spectral algorithm in the literature. It conducts singular value decomposition (SVD) on
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a properly normalized version of X, then uses the first K left singular vectors to estimate
A, and finally uses Â to estimate W by weighted least-squares. Ref. [4] showed that the
error rate on A is

√
p/(nN) up to a logarithmic factor, where N is the order of document

lengths. It matches with the minimax lower bound [4] when N ≥ c · p for a constant c > 0,
referred to as the long-document case. However, there are many application scenarios with
N = o(p), referred to as the short-document case. For example, if we consider a corpus
consisting of abstracts of academic publications (e.g., see [3]), N is usually between 100
and 200, but p can be a few thousands or even larger. In this short-document case, ref. [4]
observed a gap between the minimax lower bound and the error rate of Topic-SCORE. They
posted the following questions: Is the optimal rate still

√
p/(Nn) in the short-document

case? If so, can spectral algorithms still achieve this rate?
In this paper, we give answers to these questions. We discovered that the gap between

the minimax lower bound and the error rate of Topic-SCORE in the short-document case
came from the unsatisfactory entry-wise large-deviation bounds for the empirical singular
vectors. While the analysis in [4] is effective for long documents, there is considerable room
for improvement in the short-document case. We use new analysis to obtain much better
large-deviation bounds when N = o(p). Our strategy includes two main components: one
is an improved non-stochastic perturbation bound for SVD allowing severe heterogeneity
in the population singular vectors, and the other is leveraging a decoupling inequality [5]
to control the spectral norm of a random matrix with centered multinomial-distributed
columns. These new ideas allow us to obtain satisfactory entry-wise large-deviation bounds
for empirical singular vectors across the entire regime of N ≥ log3(n). As a consequence,
we are able to significantly improve the error rate of Topic-SCORE in the short-document
case. This answers the two questions posted by [4]: The optimal rate is still

√
p/(Nn) in

the short-document case, and Topic-SCORE still achieves this optimal rate.
Additionally, inspired by our analysis, we have made a modification to Topic-SCORE

to better incorporate document lengths. We also extend the asymptotic setting in [4] to a
weak-signal regime allowing the K topic vectors to be extremely similar to each other.

1.1. Related Literature

Many topic modeling algorithms have been proposed in the literature, such as LDA [2],
the separable NMF approach [6,7], the method in [8] that uses a low-rank approximation
to the original data matrix, Topic-SCORE [4], and LOVE [9]. Theoretical guarantees were
derived for these methods, but unfortunately, most of them had non-optimal rates even
when N ≥ c · p. Topic-SCORE and LOVE are the two that achieve the optimal rate when
N ≥ c · p. However, LOVE has no theoretical guarantee when N = o(p); Topic-SCORE has
a theoretical guarantee across the entire regime, but the rate obtained by [4] is non-optimal
when N = o(p). Therefore, our results address a critical gap in the existing literature by
determining the optimal rate for the short-document case for the first time.

Entry-wise eigenvector analysis [10–15] provides large-deviation bounds or higher-
order expansions for individual entries of the leading eigenvectors of a random matrix.
There are two types of random matrices, i.e., the Wigner type (e.g., in network data
and pairwise comparison data) and the Wishart type (e.g., in factor models and spiked
covariance models [16]). The random matrices in topic models are the Wishart type, and
hence, techniques for the Wigner type, such as the leave-one-out approach [15], are not a
good fit. We cannot easily extend the techniques [11,14] for spiked covariance models either.
One reason is that the multinomial distribution has heavier-than-Gaussian tails (especially
for short documents), and using the existing techniques only give non-sharp bounds.
Another reason is the severe word frequency heterogeneity [17] in natural languages, which
calls for bounds whose orders are different for different entries of an eigenvector. Our
analysis overcomes these challenges.
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1.2. Organization and Notations

The rest of this paper is organized as follows. Section 2 presents our main results about
entry-wise eigenvector analysis for topic models. Section 3 applies these results to obtain
improved error bounds for the Topic-SCORE algorithm and determine the optimal rate in
the short-document case. Section 4 describes the main technical components, along with a
proof sketch. Section 5 concludes the paper with discussions. The proofs of all theorems
are relegated to the Appendices A–E.

Throughout this paper, for a matrix B, let B(i, j) or Bij represent the (i, j)-th entry. We
denote ∥B∥ as its operator norm and ∥B∥2→∞ as the 2-to-∞ norm, which is the maximum
ℓ2 norm across all rows of B. For a vector b, b(i) or bi represents the i-th component. We
denote ∥b∥1 and ∥b∥ as the ℓ1 and ℓ2 norms of b, respectively. The vector 1n stands for
an all-one vector of dimension n. Unless specified otherwise, {e1, e2, . . . , ep} denotes the
standard basis of Rp. Furthermore, we write an ≫ bn or bn ≪ an if bn/an = o(1) for
an, bn > 0; and we denote an ≍ bn if C−1bn < an < Cbn for some constant C > 1.

2. Entry-Wise Eigenvector Analysis for Topic Models

Let X ∈ Rp×n be the word-count matrix following the topic model in (1). We introduce
the empirical frequency matrix D = [d1, d2, . . . , dn] ∈ Rp×n, defined by:

di(j) = N−1
i Xi(j), 1 ≤ i ≤ n, 1 ≤ j ≤ p . (2)

Under the model in (1), we have E[di] = d0
i = ∑K

k=1 wi(k)Ak. Write D0 = [d0
1, d0

2, . . . , d0
n] ∈

Rp×n. It follows that:
ED = D0 = AW.

We observe that D0 is a rank-K matrix; furthermore, the linear space spanned by the first
K left singular vectors of D0 is the same as the column space of A. Ref. [4] discovered
that there is a low-dimensional simplex structure that explicitly connects the first K left
singular vectors of D0 with the target topic matrix A. This inspired SVD-based methods for
estimating A.

However, if one directly conducts SVD on D, the empirical singular vectors can be
noisy because of severe word frequency heterogeneity in natural languages [17]. In what
follows, we first introduce a normalization on D in Section 2.1 to handle word frequency
heterogeneity and then derive entry-wise large-deviation bounds for the empirical singular
vectors in Section 2.2.

2.1. A Normalized Data Matrix

We first explain why it is inappropriate to conduct SVD on D. Let N̄ = n−1 ∑n
i=1 Ni de-

note the average document length. Write D = AW +Z, with Z = [z1, z2, . . . , zn] := D−ED.
The singular vectors of D are the same as the eigenvectors of DD′ = AWW ′A′ + AWZ′ +
ZW ′A′ + ZZ′. By model (1), the columns of Z are centered multinomial-distributed ran-
dom vectors; moreover, using the covariance matrix formula for multinomial distributions,
we have E[ziz′i] = N−1

i [diag(d0
i )− d0

i (d
0
i )

′]. It follows that:

E[DD′] = AWW ′A′ +
n

∑
i=1

N−1
i
[
diag(d0

i )− d0
i (d

0
i )

′]
= AWW ′A′ + diag

( n

∑
i=1

N−1
i d0

i

)
− A

( n

∑
i=1

N−1
i wiw′

i

)
A′

= n · A
( n

∑
i=1

Ni − 1
nNi

wiw′
i

)
︸ ︷︷ ︸

≡ΣW

A′ +
n
N̄

· diag
( n

∑
i=1

N̄
nNi

d0
i

)
︸ ︷︷ ︸

≡M0

. (3)

Here AΣW A′ is a rank-K matrix whose eigen-space is the same as the column span of A.
However, because of the diagonal matrix M0, the eigen-space of E[DD′] is no longer the
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same as the column span of A. We notice that the jth diagonal of M0 captures the overall
frequency of the jth word across the whole corpus. Hence, this is an issue caused by word
frequency heterogeneity. The second term in (3) is larger when N̄ is smaller. This implies
that the issue becomes more severe for short documents.

To resolve this issue, we consider a normalization of D to M−1/2
0 D. It follows that:

E[M−1/2
0 DD′M−1/2

0 ] = n · M−1/2
0 AΣW A′M−1/2

0 +
n
N̄

Ip. (4)

Now, the second term is proportional to an identify matrix and no longer affects the eigen-
space. Furthermore, the eigen-space of the first term is the column span of M−1/2

0 A, and
hence, we can use the eigenvectors to recover M−1/2

0 A (then A is immediately known). In
practice, M0 is not observed, so we replace it by its empirical version:

M = diag
( n

∑
i=1

N̄
nNi

di

)
. (5)

We propose to normalize D to M−1/2D before conducting SVD. Later, the singular vectors
of M−1/2D will be used in Topic-SCORE to estimate A (see Section 3).

This normalization is similar to the pre-SVD normalization in [4] but not exactly the
same. Inspired by analyzing a special case where Ni = N, ref. [4] proposed to normalize
D to M̃−1/2D, where M̃ = diag(n−1 ∑n

i=1 di). They continued using M̃ in general settings,
but we discover here that the adjustment of M̃ to M is necessary when Ni’s are unequal.

Remark 1. For extremely low-frequency words, the corresponding diagonal entries of M are very
small. This causes an issue when we normalize D to M−1/2D. Fortunately, such an issue disappears
if we pre-process data. As a standard pre-processing step for topic modeling, we either remove those
extremely low-frequency words or combine all of them into a single “meta-word”. We recommend
the latter approach. In detail, let L ⊂ {1, 2, . . . , p} be the set of words such that M(j, j) is below a
proper threshold tn (e.g., tn can be 0.05 times the average of diagonal entries of M). We then sum
up all rows of D with indices in L to a single row. Let D∗ ∈ R(p−|L|+1)×n be the processed data
matrix. The matrix D∗ still has a topic model structure, where each new topic vector results from a
similar row combination on the corresponding original topic vector.

Remark 2. The normalization of D to M−1/2D is reminiscent of the Laplacian normalization in
network data analysis, but the motivation is very different. In many network models, the adjacency
matrix satisfies that B = B0 + Y, where B0 is a low-rank matrix and Y is a generalized Wigner
matrix. Since E[Y] is a zero matrix, the eigen-space of EB is the same as that of B0. Hence, the role
of the Laplacian normalization is not correcting the eigen-space but adjusting the signal-to-noise
ratio [15]. In contrast, our normalization here aims to turn E[ZZ′] into an identity matrix (plus a
small matrix that can be absorbed into the low-rank part). We need such a normalization even under
moderate word frequency heterogeneity (i.e., the frequencies of all words are at the same order).

2.2. Entry-Wise Singular Analysis for M−1/2D

For each 1 ≤ k ≤ K, let ξ̂k ∈ Rp denote the kth left singular vector of M−1/2D. Recall
that D0 = ED. In addition, define:

M0 := EM = diag
( n

∑
i=1

N̄
nNi

d0
i

)
. (6)

Then, M−1/2
0 D0 is a population counterpart of M−1/2D. However, the singular vectors of

M−1/2
0 D0 are not the population counterpart of ξ̂k’s. In light of (4), we define:

ξk : the kth eigenvector of M−1/2
0 E[DD′]M−1/2

0 , 1 ≤ k ≤ K. (7)
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Write Ξ̂ := [ξ̂1, · · · , ξ̂K] and Ξ := [ξ1, · · · , ξK]. We aim to derive a large-deviation bound
for each individual row of (Ξ̂ − Ξ), subject to a column rotation of Ξ̂.

We need a few assumptions. Let hj = ∑K
k=1 Ak(j) for 1 ≤ j ≤ p. Define:

H = diag(h1, · · · , hp), ΣA = A′H−1 A, ΣW =
1
n

n

∑
i=1

(1 − N−1
i )wiw′

i . (8)

Here ΣA and ΣW are called the topic-topic overlapping matrix and the topic-topic concur-
rence matrix, respectively, [4]. It is easy to see that ΣW is properly scaled. We remark that
ΣA is also properly scaled, because ∑K

ℓ=1 ΣA(k, ℓ) = ∑
p
j=1 ∑K

ℓ=1 h−1
j Ak(j)Aℓ(j) = 1.

Assumption 1. Let hmax = max1≤j≤p hj, hmin = min1≤j≤p hj and h̄ = 1
p ∑

p
j=1 hj. We assume:

hmin ≥ c1h̄ = c1K/p, for a constant c1 ∈ (0, 1).

Assumption 2. For a constant c2 ∈ (0, 1) and a sequence βn ∈ (0, 1), we assume:

λmin(ΣW) ≥ c2, λmin(ΣA) ≥ c2βn, min
1≤k,ℓ≤K

ΣA(k, ℓ) ≥ c2.

Assumption 1 is related to word frequency heterogeneity. Each hj captures the overall
frequency of word j, and h̄ = p−1 ∑j hj = p−1 ∑k ∥Ak∥1 = K/p. By Remark 1, all extremely
low-frequency words have been combined in pre-processing. It is reasonable to assume
that hmin is at the same order of h̄. Meanwhile, we put no restrictions here on hmax, so that
hj’s can still be at different orders.

Assumption 2 is about topic weight balance and between-topic similarity. ΣW can be
regarded as an affinity matrix of wi’s. It is mild to assume that ΣW is well-conditioned. In
a special case where Ni = N and each wi is degenerate, ΣW is a diagonal matrix whose
kth diagonal entry is the fraction of documents that put all weights on topic k; hence,
λmin(ΣW) ≥ c2 is interpreted as “topic weight balance”. Regarding ΣA, we have seen that it
is properly scaled (its maximum eigenvalue is at the constant order). When K topic vectors
are exactly the same, λmin(ΣA) = 0; when the topic vectors are not the same, λmin(ΣA) ̸= 0,
and it measures the signal strength. Ref. [4] assumed that λmin(ΣA) is bounded below
by a constant, but we allow weaker signals by allowing λmin(ΣA) to diminish as n → ∞.
We also require a lower bound on ΣA(k, ℓ), meaning that there should be certain overlaps
between any two topics. This is reasonable as some commonly used words are not exclusive
to any one topic and tend to occur frequently [4].

The last assumption is about the vocabulary size and document lengths.

Assumption 3. There exists N ≥ 1 and a constant c3 ∈ (0, 1) such that c3N ≤ Ni ≤ c−1
3 N for

all 1 ≤ i ≤ n. In addition, for an arbitrary constant C0 > 0:

min{p, N} ≥ log3(n), max{log(p), log(N)} ≤ C0 log(n), p log2(n)≤Nnβ2
n.

In Assumption 3, the first two inequalities restrict that N and p are between log3(n)
and nC0 , for an arbitrary constant C0 > 0. This covers a wide regime, including the scenarios
of both long documents (N ≥ c · p) and short documents (N = o(p)). The third inequality is
needed so that the canonical angles between the empirical and population singular spaces
converge to zero, which is necessary for our singular vector analysis. This condition is mild,
as Nn is the order of total word count in the corpus, which is often much larger than p.

With these assumptions, we now present our main theorem.

Theorem 1 (Entry-wise singular vector analysis). Fix K ≥ 2 and positive constants c1, c2, c3,
and C0. Under the model (1), suppose Assumptions 1–3 hold. For any constant C1 > 0, there exists
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C2 > 0 such that with probability 1 − n−C1 , there is an orthogonal matrix O ∈ RK×K satisfying
that simultaneously for 1 ≤ j ≤ p:

∥e′j(Ξ̂ − ΞO′)∥ ≤ C2

√
hj p log(n)

nNβ2
n

.

The constant C2 only depends on C1 and (K, c1, c2, c3, C0).

In Theorem 1, we do not assume any gap among the K singular values of M−1/2
0 D0;

hence, it is only possible to recover Ξ up to a column rotation O. The sin-theta theorem [18]
enables us to bound ∥Ξ̂ − ΞO′∥2

F = ∑
p
j=1 ∥e′j(Ξ̂ − ΞO′)∥2, but it is insufficient for analyzing

spectral algorithms for topic modeling (see Section 3). We need a bound for each individual
row of (Ξ̂ − ΞO′), and this bound should depend on hj properly.

We compare Theorem 1 with the result in [4]. They assumed that β−1
n = O(1), so their

results are only for the strong-signal regime. They showed that when n is sufficiently large:

∥e′j(Ξ̂ − ΞO′)∥ ≤ C
(

1 + min
{ p

N
,

p2

N
√

N

})√ hj p log(n)
nN

. (9)

When N ≥ c · p (long documents), it is the same bound as in Theorem 1 (with βn = 1).
However, when N = o(p) (short documents), it is strictly worse than Theorem 1. We obtain
better bounds than those in [4] because of new proof ideas, especially the use of refined
perturbation analysis for SVD and a decoupling technique for U-statistics (see Section 4.2).

3. Improved Rates for Topic Modeling

We apply the results in Section 2 to improve the error rates of topic modeling. Topic-
SCORE [4] is a spectral algorithm for estimating the topic matrix A. It achieves the optimal
rate in the long-document case (N ≥ c · p). However, in the short-document case (N = o(p)),
the known rate of Topic-SCORE does not match with the minimax lower bound. We address
this gap by providing better error bounds for Topic-SCORE. Our results reveal the optimal
rate for topic modeling in the short-document case for the first time.

3.1. The Topic-Score Algorithm

Let ξ̂1, ξ̂2, . . . , ξ̂K be as in Section 2. Topic-SCORE first obtains word embeddings
from these singular vectors. Note that M−1/2D is a non-negative matrix. By Perron’s
theorem [19], under mild conditions, ξ̂1 is a strictly positive vector. Define R̂ ∈ Rp×(K−1) by:

R̂(j, k) = ξ̂k+1(j)/ξ̂1(j), 1 ≤ j ≤ p, 1 ≤ k ≤ K − 1. (10)

Let r̂′1, r̂′2, . . . , r̂′p denote the rows of R̂. Then, r̂j is a (K − 1)-dimensional embedding of the
jth word in the vocabulary. This is known as the SCORE embedding [20,21], which is now
widely used in analyzing heterogeneous network and text data.

Ref. [4] discovered that there is a simplex structure associated with these word em-
beddings. Specifically, let ξ1, ξ2, . . . , ξK be the same as in (7) and define the population
counterpart of R̂ as R, where:

R(j, k) = ξk+1(j)/ξ1(j), 1 ≤ j ≤ p, 1 ≤ k ≤ K − 1. (11)

Let r′1, r′2, . . . , r′p denote the rows of R. All these rj are contained in a simplex S ⊂ RK−1

that has K vertices v1, v2, . . . , vK (see Figure 1). If the jth word is an anchor word [6,22] (an
anchor word of topic k satisfies that Ak(j) ̸= 0 and Aℓ(j) = 0 for all other ℓ ̸= k), then rj is
located at one of the vertices. Therefore, as long as each topic has at least one anchor word,
we can apply a vertex hunting [4] algorithm to recover the K vertices of S . By definition of
a simplex, each point inside S can be written uniquely as a convex combination of the K
vertices, and the K-dimensional vector consisting of the convex combination coefficients is
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called the barycentric coordinate. After recovering the vertices of S , we can easily compute
the barycentric coordinate πj ∈ RK for each rj. Write Π = [π1, π2, . . . , πp]′. Ref. [4]
showed that:

Ak ∝ M1/2
0 diag(ξ1)Πek, 1 ≤ k ≤ K.

Therefore, we can recover Ak by taking the kth column of M1/2
0 diag(ξ1)Π and re-normalizing

it to have a unit ℓ1-norm. This gives the main idea behind Topic-SCORE (see Figure 1).

A ∝ M1/20 diag(ξ1)
π′ 1
π′ 2
⋮
π′ p

rj

barycentric coordinate  πj

Figure 1. An illustration of Topic-SCORE in the noiseless case (K = 3). The blue dots are rj ∈ RK−1

(word embeddings constructed from the population singular vectors), and they are contained in a
simplex with K vertices. This simplex can be recovered from a vertex hunting algorithm. Given this
simplex, each rj has a unique barycentric coordinate πj ∈ RK . The topic matrix A is recovered from
stacking together these πj’s and utilizing M0 and ξ1.

The full algorithm is given in Algorithm 1. It requires plugging in a vertex hunting
(VH) algorithm. A VH algorithm aims to estimate v1, v2, . . . , vK from the noisy point cloud
{r̂j}1≤j≤p. There are many existing VH algorithms (see sec 3.4 of [21]). A VH algorithm is
said to be efficient if it satisfies that max1≤k≤K ∥v̂k − vk∥ ≤ C max1≤j≤p ∥r̂j − rj∥ (subject to
a permutation of v̂1, v̂2, . . . , v̂K). We always plug in an efficient VH algorithm, such as the
successive projection algorithm [23], the pp-SPA algorithm [24], and several algorithms in
sec 3.4 of [21].

Algorithm 1 Topic-SCORE
Input: D, K, and a vertex hunting (VH) algorithm.
• (Word embedding) Let M be as in (5). Obtain ξ̂1, ξ̂2, · · · , ξ̂K, the first K left singular

vectors of M−1/2D. Compute R̂ as in (10) and write R̂ = [r̂1, r̂2, · · · , r̂p]′.
• (Vertex hunting). Apply the VH algorithm on {r̂j}1≤j≤p to get v̂1, · · · , v̂K.
• (Topic matrix estimation) For 1 ≤ j ≤ p, solve π̂∗

j from:(
1 . . . 1
v̂1 . . . v̂K

)
π̂∗

j =

(
1
r̂j

)
.

Let π̃∗
j = max{π̂∗

j , 0} (the maximum is taken component-wise) and π̂i = π̃∗
j /∥π̃∗

j ∥1.

Write Π̂ = [π̂1, . . . , π̂p]′. Let Ã = M1/2diag(ξ̂1)Π̂. Obtain Â = Ã[diag(1′p Ã)]−1.

Output: the estimated topic matrix Â.

Additionally, after Â is obtained, ref. [4] suggested to estimate w1, w2, . . . , wn as
follows. We first run a weighted least-squares to obtain ŵ∗

i :

ŵ∗
i = argminw∈RK∥M−1/2(di − Awi)∥2, 1 ≤ i ≤ n. (12)

Then, set all the negative entries of ŵ∗
i to zero and re-normalize the vector to have a unit

ℓ1-norm. The resulting vector is ŵi.

Remark 3. In real-world applications, both n and p can be very large. However, since R̂ is
constructed from only a few singular vectors, its rows are only in dimension (K − 1). It suggests
that Topic-SCORE leverages a ‘low-dimensional’ simplex structure and is scalable to large datasets.
When K is bounded, the complexity of Topic-SCORE is at most O(np min{n, p}) [4]. The real
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computing time was also reported in [4] for various values of (n, p). For example, when both n and
p are a few thousands, it takes only a few seconds to run Topic-SCORE.

3.2. The Improved Rates for Estimating A and W

We provide the error rates of Topic-SCORE. First, we study the word embeddings
r̂j. By (10), r̂j is constructed from the jth row of Ξ̂. Therefore, we can apply Theorem 1 to
derive a large-deviation bound for r̂j.

Without loss of generality, we set C1 = 4 henceforth, transforming the event probability
1 − n−C1 in Theorem 1 to 1 − o(n−3). We also use C to denote a generic constant, whose
meaning may change from one occurrence to another. In all instances, C depends sorely on
K and the constants (c1, c2, c3, C0) in Assumptions 1–3.

Theorem 2 (Word embeddings). Under the setting of Theorem 1, with probability 1 − o(n−3),
there exists an orthogonal matrix Ω ∈ R(K−1)×(K−1) such that simultaneously for 1 ≤ j ≤ p:

∥r̂j − Ωrj∥ ≤ C

√
p log(n)
nNβ2

n
.

Next, we study the error of Â. The ℓ1-estimation error is L(Â, A) := ∑K
k=1 ∥Âk − Ak∥1,

subject to an arbitrary column permutation of Â. For ease of notation, we do not explicitly
denote this permutation in theorem statements, but it is accounted for in the proofs. For
each 1 ≤ j ≤ p, let â′j ∈ RK and a′j ∈ RK denote the jth row of Â and A, respectively. We can

re-write the ℓ1-estimation error as L(Â, A) = ∑
p
j=1 ∥âj − aj∥1. The next theorem provides

an error bound for each individual âj, and the aggregation of these bounds yields an overall
bound for L(Â, A):

Theorem 3 (Estimation of A). Under the setting of Theorem 1, we additionally assume that each
topic has at least one anchor word. With probability 1 − o(n−3), simultaneously for 1 ≤ j ≤ p:

∥âj − aj∥1 ≤ ∥aj∥1 · C

√
p log(n)
nNβ2

n
.

Furthermore, with probability 1 − o(n−3), the ℓ1-estimation error satisfies that:

L(Â, A) ≤ C

√
p log(n)
nNβ2

n
.

Theorem 3 improves the result in [4] in two aspects. First, [4] assumed β−1
n = O(1), so

their results did not allow for weak signals. Second, even when β−1
n = O(1), their bound is

worse than ours by a factor similar to that in (9).
Finally, we have the error bound for estimating wi’s using the estimator in (12).

Theorem 4 (Estimation of W). Under the setting of Theorem 3, with probability 1 − o(n−3),
subject to a column permutation of Ŵ:

max
1≤i≤n

∥ŵi − wi∥1 ≤ Cβ−1
n

(√
p log(n)
nNβ2

n
+ C

√
log(n)

N

)
.

In Theorem 4, there are two terms in the error bound of ŵi. The first term comes from
the estimation error in Â, and the second term is from noise in di. In the strong-signal case
of β−1

n = O(1), we can compare Theorem 4 with the bound for ŵi in [4]. The bound there
also has two terms: its second term is similar to ours, but its first term is strictly worse.
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3.3. Connections and Comparisons

There have been numerous results about the error rates of estimating A and W. For
example, ref. [6] provided the first explicit theoretical guarantees for topic modeling,
but they did not study the statistical optimality of their method. Recently, the statistical
literature aimed to understand the fundamental limits of topic modeling. Assuming
β−1

n = O(1), refs. [4,9] gave a minimax lower bound,
√

p/(Nn), for the rate of estimating
A, and refs. [25,26] gave a minimax lower bound, 1/

√
N, for estimating each wi.

For estimating A, when β−1
n = O(1), the existing theoretical results are summarized

in Table 1. Ours is the only one that matches the minimax lower bound across the entire
regime. In the long-document case (N ≥ c · p, Cases 1–2 in Table 1), the error rates in [4,9]
together have matched the lower bound, concluding that

√
p/(Nn) is indeed the optimal

rate. However, in the short-document case (N = o(p), Case 3 in Table 1), there was a
gap between the lower bound and the existing error rates. Our result addresses the gap
and concludes that

√
p/(Nn) is still the optimal rate. When βn = o(1), the error rates of

estimating A were rarely studied. We conjecture that
√

p/(Nnβ2
n) is the optimal rate, and

the Topic-SCORE algorithm is still rate-optimal.

Table 1. A summary of the existing theoretical results for estimating A (n is the number of documents,
p is the vocabulary size, N is the order of document lengths, and hmax and hmin are the same as in (8)).
Cases 1–3 refer to N ≥ p4/3, p ≤ N < p4/3, and N < p, respectively. For Cases 2–3, the sub-cases ‘a’
and ‘b’ correspond to n ≥ max{Np2, p3, N2 p5} and n < max{Np2, p3, N2 p5}, respectively. We have
translated the results in each paper to the bounds on L(Â, A), with any logarithmic factor omitted.

Case 1 Case 2a Case 2b Case 3a Case 3b

Ke & Wang [4]
√

p
Nn

√
p

Nn
p2

N
√

N

√
p

Nn
p
N

√
p

Nn
p2

N
√

N

√
p

Nn

Arora et al. [6] p4
√

Nn
p4

√
Nn

p4
√

Nn
p4

√
Nn

p4
√

Nn

Bing et al. [9]
√

p
Nn · hmax

hmin

√
p

Nn · hmax
hmin

√
p

Nn · hmax
hmin

NA NA

Bansal et al. [8] N
√

p
n N

√
p
n N

√
p
n N

√
p
n N

√
p
n

Our results
√

p
Nn

√
p

Nn

√
p

Nn

√
p

Nn

√
p

Nn

We emphasize that our rate is not affected by severe word frequency heterogeneity.
As long as hmin/h̄ is lower bounded by a constant (see Assumption 1 and explanations
therein), our rate is always the same, regardless of the magnitude of hmax. In contrast,
the error rate in [9] is sensitive to word frequency heterogeneity, with an extra factor of
hmax/hmin that can be as large as p. There are two reasons that enable us to achieve a flat
rate even under severe word frequency heterogeneity: one is the proper normalization of
data matrix, as described in Section 2.1, and the other is the careful analysis of empirical
singular vectors (see Section 4).

For estimating W, when β−1
n = O(1), our error rate in Theorem 4 matches the minimax

lower bound if n ≥ p log(n). Our approach to estimating W involves first obtaining Â and
then regressing di on Â to derive ŵi. The condition n ≥ p log(n) ensures that the estimation
error in Â does not dominate the overall error. This condition is often met in scenarios
where a large number of documents can be collected, but the vocabulary size remains
relatively stable. However, if n < p log(n), a different approach is necessary, requiring the
estimation of W first. This involves using the right singular vectors of M−1/2D. While our
analysis has primarily focused on the left singular vectors, it can be extended to study the
right singular vectors as well.
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4. Proof Ideas

Our main result is Theorem 1, which provides entry-wise large-deviation bounds for
singular vectors of M−1/2D. Given this theorem, the proofs of Theorems 2–4 are similar to
those in [4] and thus relegated to the appendix. In this section, we focus on discussing the
proof techniques of Theorem 1.

4.1. Why the Leave-One-Out Technique Fails

Leave-one-out [13,15] is a common technique in entry-wise eigenvector analysis for a
Wigner-type random matrix B = B0 + Y ∈ Rm×m, where B0 is a symmetric non-stochastic
low-rank matrix and Y is a symmetric random matrix whose upper triangle consists of
independent mean-zero variables. One example of such matrices is the adjacency matrix of
a random graph generated from the block-model family [20].

However, our target here is the singular vectors of M−1/2D, which are the eigenvectors
of B := M−1/2DD′M−1/2. This is a Wishart-type random matrix, whose upper triangular
entries are not independent. We may also construct a symmetric matrix:

G :=
(

0 M−1/2D
D′M−1/2 0

)
∈ R(p+n)×(p+n).

The eigenvectors of G take the form ûk = (ξ̂ ′k, η̂′
k)

′, 1 ≤ k ≤ K, where ξ̂k ∈ Rp and
η̂k ∈ Rn are the kth left and right singular vectors of M−1/2D, respectively. Unfortunately,
the upper triangle of G still contains dependent entries. Some dependence is from the
normalization matrix M. It may be addressed by using the techniques developed by [15]
in studying graph Laplacian matrices. A more severe issue is the dependence among
entries in D. According to basic properties of multinomial distributions, D only has column
independence but no row independence. As a result, even after we replace M by M0, the
jth row and column of G are still dependent of the remaining ones, for each 1 ≤ j ≤ p. In
conclusion, we cannot apply the leave-one-out technique on either B or G.

4.2. The Proof Structure in [4] and Why It Is Not Sharp for Short Documents

Our entry-wise eigenvector analysis primarily follows the proof structure in [4]. Recall
that ξ̂k ∈ Rp is the kth left singular vector of M−1/2D. Define:

G := M−1/2DD′M−1/2 − n
N̄

Ip, G0 := n · M−1/2
0 AΣW A′M−1/2

0 . (13)

Since the identify matrix in G does not affect the eigenvectors, ξ̂k is the kth eigenvector
of G. Additionally, it follows from (7) and (4) that ξk is the kth eigenvector of G0. By (4):

G − G0 = M−1/2DD′M−1/2 − M−1/2
0 E[DD′]M−1/2

0 . (14)

The entry-wise eigenvector analysis in [4] has two steps. Step 1: Non-stochastic
perturbation analysis. In this step, no distributional assumptions are made on G. The
analysis solely focuses on connecting the perturbation from Ξ to Ξ̂ with the perturbation
from G0 to G. They showed in Lemma F.1 [4]:

∥e′j(Ξ̂ − ΞO′)∥ ≤ C∥G0∥−1(∥e′jΞ∥∥G − G0∥+
√

K∥e′j(G − G0)∥
)
. (15)

Step 2: Large-deviation analysis of G − G0. In this step, ref. [4] derived the large-deviation
bounds for ∥G − G0∥ and ∥e′j(G − G0)∥ under the multinomial model (1). For example,
they showed in Lemma F.5 [4] that when n is properly large, with high probability:

∥G − G0∥ ≤ C
(
1 + N−1√p

)√np log(n)
N

. (16)
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However, when N = o(p) (short documents), neither step is sharp. In (15), the second
term ∥e′j(G − G0)∥ was introduced as an upper bound for ∥e′j(G − G0)Ξ̂∥, but this bound is

too crude. In Section 4.3, we will conduct careful analysis of ∥e′j(G − G0)Ξ̂∥ and introduce
a new perturbation bound which significantly improves (15). In (16), the spectral norm is
controlled via an ε-net argument [27], which reduces the analysis to studying a quadratic
form of Z; ref. [4] analyzed this quadratic form by applying martingale Bernstein inequality.
Unfortunately, in the short-document case, it is hard to control the conditional variance
process of the underlying martingale. In Section 4.4, we address it by leveraging the matrix
Bernstein inequality [28] and the decoupling inequality [5,29] for U-statistics.

4.3. Non-Stochastic Perturbation Analysis

In this subsection, we abuse notations to use G and G0 to denote two arbitrary p × p
symmetric matrices, with rank(G0) = K. For 1 ≤ k ≤ K, let λ̂k and λk be the kth largest
eigenvalue (in magnitude) of G and G0, respectively, and let ξ̂k ∈ Rp and ξk ∈ Rp be the
associated eigenvectors. Write Λ̂ = diag(λ̂1, λ̂2, . . . , λ̂K), Ξ̂ = [ξ̂1, ξ̂2, . . . , ξ̂K], and define Λ
and Ξ similarly. Let U ∈ RK×K and V ∈ RK×K be such that its columns contain the left and
right singular vectors of Ξ̂′Ξ, respectively. Define sgn(Ξ̂′Ξ) = U′V. For any matrix B and
q > 0, let ∥B∥q→∞ = maxi ∥e′iB∥q.

Lemma 1. Suppose ∥G − G0∥ ≤ (1 − c0)|λ̂K|, for some c0 ∈ (0, 1). Consider an arbitrary p × p
diagonal matrix Γ = diag(γ1, γ2, . . . , γp), where:

γj > 0 is an upper bound for ∥e′jΞ∥∥G − G0∥+ ∥e′j(G − G0)Ξ∥.

If ∥Γ−1(G − G0)Γ∥1→∞ ≤ (1 − c0)|λ̂K|, then for the orthogonal matrix O = sgn(Ξ̂′Ξ), it holds
simultaneously for 1 ≤ j ≤ p that:

∥e′j(Ξ̂ − ΞO′)∥ ≤ c−1
0 |λ̂K|−1γj.

Since γj is an upper bound for ∥e′jΞ∥∥G − G0∥+ ∥e′j(G − G0)Ξ∥, we can interpret the
result in Lemma 1 as:

∥e′j(Ξ̂ − ΞO′)∥ ≤ C|λ̂K|−1(∥e′jΞ∥∥G − G0∥+ ∥e′j(G − G0)Ξ∥
)
. (17)

Comparing (17) with (15), the second term has been reduced. Since Ξ projects the vec-
tor e′j(G−G0) into a much lower dimension, we expect that ∥e′j(G − G0)Ξ∥ ≪ ∥e′j(G − G0)∥
in many random models for G. In particular, this is true for the G and G0 defined in (13).
Hence, there is a significant improvement over the analysis in [4].

4.4. Large-Deviation Analysis of (G − G0)

In this subsection, we focus on the specific G and G0 as defined in (13). The crux of
proving Theorem 1 lies in determining the upper bound γj as defined in Lemma 1. This is
accomplished through the following lemma.

Lemma 2. Under the settings of Theorem 1, let G and G0 be as in (13). For any constant C1 > 0,
there exists C3 > 0 such that with probability 1 − n−C1 , simultaneously for 1 ≤ j ≤ p:

∥G − G0∥ ≤ C3

√
pn log(n)

N
, ∥e′j(G − G0)Ξ∥ ≤ C3

√
hjnp log(n)

N
.

The constant C3 only depends on C1 and (K, c1, c2, c3, C0).
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We compare the bound for ∥G − G0∥ in Lemma 2 with the one in [4] as summarized
in (16). There is a significant improvement when N ≤ p2. This improvement primarily
stems from the application of a decoupling inequality for U-statistics, as elaborated below.

We outline the proof of the bound for ∥G − G0∥. Let Z = D −E[D] = [z1, z2, . . . , zn].
From (A24) and (A25) in Appendix A, G − G0 decomposes into the sum of four matrices,
where it is most subtle to bound the spectral norm of the fourth matrix:

E4 := M−1/2
0 (ZZ′ −E[ZZ′])M−1/2

0 .

Define Xi = (M−1/2
0 zi)(M

−1/2
0 zi)

′−E[(M−1/2
0 zi

)(
M−1/2

0 zi)
′]. It is seen that E4 = ∑n

i=1 Xi,
which is a sum of n independent matrices. We apply the matrix Bernstein inequality [28]
(Theorem A1) to obtain that if there exist b > 0 and σ2 > 0 such that ∥Xi∥ ≤ b almost surely
for all i and ∥∑n

i=1 EX2
i ∥ ≤ σ2, then for every t > 0,

P
(∥∥ n

∑
i=1

Xi
∥∥ ≥ t

)
≤ 2p exp

(
− t2/2

σ2 + bt/3

)
.

Determination of b and σ2 requires upper bounds for ∥Xi∥ and ∥EX2
i ∥. Since each Xi is

equal to a rank-1 matrix minus its expectation, it reduces to deriving large-deviation bounds for
∥M−1/2

0 zi∥2. Note that each zi can be equivalently represented by zi = N−1
i ∑N

m=1(Tim −ETim),
where {Tim}

Ni
m=1 are i.i.d. Multinomial (1, d0

i ). It yields that ∥M−1/2
0 zi∥2 = I1 + I2, where

I2 is a term that can be controlled using standard large-deviation inequalities, and:

I1 := N−2
i ∑

1≤m1 ̸=m2≤Ni

(Tim1 −ETim1)M−1
0 (Tim2 −ETim2).

The remaining question is how to bound |I1|. We notice that I1 is a U-statistic with
degree 2. The decoupling inequality [5,29] is a useful tool for studying U-statistics.

Theorem 5 (A special decoupling inequality [29]). Let {Xm}N
m=1 be a sequence of i.i.d. random

vectors in Rd, and let {X̃m}N
m=1 be an independent copy of {Xm}N

m=1. Suppose that h : R2d → R
is a measurable function. Then, there exists a constant C4 > 0 independent of n, m, d such that for
all t > 0:

P
(∣∣∣ ∑

m ̸=m1

h(Xm, Xm1)
∣∣∣ ≥ t

)
≤ C4P

(
C4

∣∣∣ ∑
m ̸=m1

h(Xm, X̃m1)
∣∣∣ ≥ t

)
.

Let {T̃im}
Ni
m=1 be an independent copy of {Tim}

Ni
m=1. By Theorem 5, the large-deviation

bound of I1 can be inferred from the large-deviation bound of:

Ĩ1 := N−2
i ∑

1≤m1 ̸=m2≤Ni

(Tim1 −ETim1)
′M−1

0 (T̃im2 −ET̃im2) .

Using h(Tim1 , T̃im2) to denote the summand in the above sum, we have a decompo-
sition: Ĩ1 = N−2

i ∑m1,m2
h(Tim1 , T̃im2) − N−2

i ∑m h(Tim, T̃im). The second term is a sum
of independent variables and can be controlled by standard large-deviation inequalities.
Hence, the analysis of Ĩ1 reduces to the analysis of Ĩ∗

1 := N−2
i ∑m1,m2

h(Tim1 , T̃im2). We
re-write Ĩ∗

1 as:

Ĩ∗
1 = N−2

i y′ỹ, with y :=
Ni

∑
m=1

M−1/2
0 (Tim −ETim), ỹ :=

Ni

∑
m=1

M−1/2
0 (T̃im −ET̃im).

Since ỹ is independent of y, we apply large-deviation inequalities twice. First, con-
ditional on ỹ, Ĩ∗

1 is a sum of Ni independent variables (randomness comes from Tim’s).
We apply the Bernstein inequality to get a large-deviation bound for Ĩ∗

1 , which depends
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on a quantity σ2(ỹ). Next, since σ2(ỹ) can also be written as a sum of Ni independent
variables (randomness comes from T̃im’s), we apply the Bernstein inequality again to obtain
a large-deviation bound for σ2(ỹ). Combining two steps gives the large-deviation bound
for Ĩ∗

1 .

Remark 4. The decoupling inequality is employed multiple times to study other U-statistics-type
quantities arising in our proof. For example, recall that (G − G0) decomposes into the sum of four
matrices, and we have only discussed how to bound ∥E4∥. In the analysis of ∥E2∥ and ∥E3∥, we
need to bound other quadratic terms involving a sum over (i, m), with 1 ≤ i ≤ n and 1 ≤ m ≤ Ni.
In that case, we need a more general decoupling inequality. We refer readers to Theorem A3 in
Appendix A for more details.

Remark 5. The analysis in [4] uses an ϵ-net argument [27] and the martingale Bernstein inequal-
ity [30] to study ∥E4∥. In our analysis, we use the matrix Bernstein inequality [28], instead of the
ϵ-net argument. The matrix Bernstein inequality enables us to tackle each quadratic term related to
each i separately instead of handling complicated quadratic terms involving summation over i and
m simultaneously. Additionally, we adopt the decoupling inequality for U-statistics [5,29], instead
of the martingale Bernstein inequality, to study all the quadratic terms arising in our analysis. The
decoupling inequality converts the tail anaysis of quadratic terms into tail analysis of (conditionally)
independent sums. It provides sharper bounds when the variables have heavy tails (which is the case
for the word counts in a topic model, especially when documents are short).

4.5. Proof Sketch of Theorem 1

We combine the non-stochastic perturbation result in Lemma 1 and the large-deviation
bounds in Lemma 2 to prove Theorem 1. By Lemma A2, |λK| ≥ C−1nβn. It follows from
Weyl’s inequality, the first claim in Lemma 2, and the assumption of p log2(n) ≤ Nnβ2

n that
with probability 1 − n−C1 :

|λ̂K| ≥ |λk| ·
[
1 − O

(
[log(n)]−1/2)] ≥ C−1nβn.

In addition, it can be shown (see Lemma A2) that ∥e′jΞ∥ ≤ Ch1/2
j . Combining this with

the two claims in Lemma 2 gives that with probability 1 − n−C1 :

∥e′jΞ∥∥G − G0∥+ ∥e′j(G − G0)Ξ∥ ≤ C

√
hjnp log(n)

N
:= γj.

We hope to apply Lemma 1. This requires obtaining a bound for ∥Γ−1(G − G0)Γ∥1→∞.
Since Γ ∝ H1/2, it suffices to study ∥H−1/2(G − G0)H1/2∥1→∞. Similar to the analysis
of ∥e′j(G − G0)Ξ∥, we can show (see the proofs of Lemmas A5 and A6, such as (A58))

that ∥e′j(G − G0)H1/2∥1 ≤ CN−1/2[hjnp log(n)]1/2 ≤ C
√

hj/ log(n) · nβn, where the last

inequality is because of p log2(n) ≤ Nn. We immediately have:

∥H−1/2(G − G0)H1/2∥1→∞ = max
j

{
h−1/2

j ∥e′j(G − G0)H−1/2∥1
}
≤ Cnβn√

log(n)
≤ |λ̂K|

2
.

We then apply Lemma 1 to get ∥e′j(Ξ̂ − ΞO′)∥ ≤ C|λ̂K|−1γj ≤ C(nβn)−1γj. The claim
of Theorem 1 follows immediately by plugging in the value of γj as given above.

5. Summary and Discussion

The topic model imposes a “low-rank plus noise” structure on the data matrix. How-
ever, the noise is not simply additive; rather, it consists of centered multinomial random
vectors. The eigenvector analysis in a topic model is more complex than standard eigen-
vector analysis for random matrices. Firstly, the entries of the data matrix are weakly
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dependent, making techniques such as leave-one-out inapplicable. Secondly, due to the
significant word frequency heterogeneity in natural languages, entry-wise eigenvector
analysis becomes much more nuanced, as different entries of the same eigenvector have
significantly different bounds. Additionally, the data exhibit Bernstein-type tails, preclud-
ing the use of random matrix theory tools that assume sub-exponential entries. While
we build on the analysis in [4], we address these challenges with new proof ideas. Our
results provide the most precise eigenvector analysis and rate-optimality results for topic
modeling, to the best of our knowledge.

A related but more ambitious goal is obtaining higher-order expansions of the em-
pirical singular vectors. Since the random matrix under study in the topic model is the
Wishart type, we can possibly borrow techniques in [31] to study the joint distribution of
empirical singular values and singular vectors. In this paper, we assume the number of
topics, K, is finite, but our analysis can be easily extended to the scenario of a growing K
(e.g., K = O(log(n))). We assume min{p, N} ≥ log3(n). When p < log3(n), it becomes a
low-dimensional eigenvector analysis problem, which is easy to tackle. When N < log3(n),
it is the extremely short documents case (i.e., each document has only a finite length, say,
fewer than 20, as in documents such as Tweets). We leave it to future work.
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Appendix A. Preliminary Lemmas and Theorems

In this section, we collect the preliminaries lemmas and theorems that will be used
in the entry-wise eigenvector analysis. Under Assumption 3, Ni ≍ N̄ ≍ N. Therefore,
throughout this section and subsequent sections, we always assume N̄ = N without loss of
generality.

The first lemma describes the estimates of the entries in M0 and reveals its relation to
the underlying frequency parameters, and further provides the large-deviation bound for
the normalization matrix M.

Lemma A1 (Lemmas D.1 & E.1 in [4]). Recall the definitions M = diag(n−1 ∑n
i=1 Ndi/Ni),

M0 = diag(n−1 ∑n
i=1 Nd0

i /Ni), and hj = ∑K
k=1 Ak(j) for 1 ≤ j ≤ p. Suppose the conditions in

Theorem 1 hold. Then:

M0(j, j) ≍ hj; and |M(j, j)− M0(j, j)| ≤ C

√
hj log(n)

Nn
,

for some constant C > 0, with probability 1 − o(n−3), simultaneously for all 1 ≤ j ≤ p.
Furthermore, with probability 1 − o(n−3),

∥∥∥M−1/2M1/2
0 − Ip

∥∥∥ ≤ C

√
p log(n)

Nn
. (A1)

Remark A1. In this lemma and other subsequent lemmas, “with probability 1 − o(n−3)” can
always be replaced by “with probability 1 − n−C1”, for an arbitrary constant C1 > 0. The
small-probability events in these lemmas come from the Bernstein inequality or the matrix Bern-
stein inequality. These inequalities concern small-probability events associated with an arbitrary
probability δ ∈ (0, 1), and the high-probability bounds depend on log(1/δ). When δ = n−C1 ,
log(1/δ) = C1 log(n). Therefore, changing C1 only changes the high-probability bound by a
constant. Without loss of generality, we take C1 = 4 for convenience.
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The proof of the first statement is quite similar to the proof detailed in the supple-
mentary materials of [4]. The only difference is the existence of the additional factor
N/Ni. Thanks to the condition that Ni’s are at the same order, it is not hard to see that
M0(j, j) ≍ n−1 ∑n

i=1 d0
i (j),where the RHS is exactly the definition of M0 in [4]. Thus, the

proof follows simply under Assumption 2. To obtain the large-deviation bound, the follow-
ing representation is crucial:

M(j, j)− M0(j, j) =
1
n

n

∑
i=1

N
Ni

(
di(j)− d0

i (j)
)
=

1
n

n

∑
i=1

N
N2

i

Ni

∑
m=1

Tim(j)− d0
i (j),

where {Tim}n
m=1 are i.i.d. Multinomial (1, d0

i ) with d0
i = Awi. The RHS is a sum of

independent random variables, thus allowing the application of Bernstein inequality. The
inequality (A1) is not provided in the supplementary materials of [4], but it follows easily
from the first statement. We prove (A1) in detail below.

By definition, it suffices to claim that:∣∣∣∣
√

M0(j, j)√
M(j, j)

− 1
∣∣∣∣ ≤ C

√
p log(n)

Nn

simultaneously for all 1 ≤ j ≤ p. To this end, we derive:∣∣∣∣
√

M0(j, j)√
M(j, j)

− 1
∣∣∣∣ ≤

∣∣M0(j, j)− M(j, j)
∣∣√

M(j, j)(
√

M0(j, j) +
√

M(j, j))

Using the large-deviation bound |M(j, j)− M0(j, j)| ≤ C
√

hj log(n)/(Nn) = o(hj)

and also the estimate M0(j, j) ≍ hj, we bound the denominator by:√
M(j, j)

(√
M0(j, j) +

√
M(j, j)

)
≥ C

√
hj − o(hj)

(√
hj +

√
hj − o(hj)

)
≥ Chj

with probability 1 − o(n−3), simultaneously for all 1 ≤ j ≤ p. Consequently:∣∣∣∣
√

M0(j, j)√
M(j, j)

− 1
∣∣∣∣ ≤ C

√
log(n)
Nnhj

≤ C

√
p log(n)

Nn
,

where the last step is due to hj ≥ hmin ≥ C/p. This completes the proof of (A1).
The next Lemma presents the eigen-properties of the population data matrix.

Lemma A2 (Lemmas F.2, F.3, and D.3 in [4]). Suppose the conditions in Theorem 1 hold. Let
G0 be as in (13). Denote by λ1 ≥ λ1 ≥ . . . ≥ λK the non-zero eigenvalues of G0. There exists a
constant C > 1 such that:

Cnβn ≤ λk ≤ Cn, for 2 ≤ k ≤ K, and λ1 ≥ C−1n + max
2≤k≤K

λK .

Furthermore, let ξ1, ξ2, . . . , ξK be the associated eigenvectors of G0. Then:

C−1
√

hj ≤ ξ1(j) ≤ C
√

hj , ∥e′jΞ∥ ≤ C
√

hj .

The above lemma can be proved in the same manner as those in the supplement
materials of [4]. Given our more general condition on ΣA, which allows its smallest
eigenvalue to converge to 0 as n → ∞, the results on the eigenvalues are slightly different.
In out setting, only the largest eigenvalue is of order n and it is well-separated from the
others as the first eigenvector of n−1G0 has multiplicity one, which can be claimed by
using Perron’s theorem and the last inequality in Assumption 2. For the other eigenvalues,
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they might be at the order of βn in Assumption 2. The details are very similar to those
in the supplement materials of [4] by adapting our relaxed condition on ΣA, so we avoid
redundant derivations here.

Throughout the analysis, we need matrix Bernstein inequality and decoupling inequal-
ity for U-statistics. For readers’ convenience, we provide the theorems below.

Theorem A1. Let X1, · · · , XN be independent, mean zero, n × n symmetric random matrices,
such that ∥Xi∥ ≤ b almost surely for all i and ∥∑N

i=1 EX2
i ∥ ≤ σ2. Then, for every t ≥ 0, we have:

P
(∥∥∥ N

∑
i=1

Xi

∥∥∥ ≥ t

)
≤ 2n exp

(
− t2/2

σ2 + bt/3

)
.

The following two theorems are special cases of Theorem 3.4.1 in [29], which implies
that using decoupling inequality simplifies the analysis of U-statistics to the study of sums
of (conditionally) independent random variables.

Theorem A2. Let {Xi}n
i=1 be a sequence of i.i.d. random vectors in Rd, and let {X̃i}n

i=1 be an
independent copy of {Xi}n

i=1. Then, there exists a constant C̃ > 0 independent of n, d such that:

P(|∑
i ̸=j

X′
i Xj| ≥ t) ≤ C̃P( C̃ |∑

i ̸=j
X′

i X̃j| ≥ t)

Theorem A3. Let {X(i)
m }i,m, for 1 ≤ i ≤ n and 1 ≤ m ≤ N, be a sequence of i.i.d. random

vectors in Rd, and let {X̃(i)
m }i,m be an independent copy of {X(i)

m }i,m. Suppose that h : R2d → R is
a measurable function. Then, there exists a constant C > 0 independent of n, m, d such that:

P
(∣∣∣∑

i
∑

m ̸=m1

h(X(i)
m , X(i)

m1)
∣∣∣ ≥ t

)
≤ CP

(
C
∣∣∣∑

i
∑

m ̸=m1

h(X(i)
m , X̃(i)

m1)
∣∣∣ ≥ t

)
The key difference between the above theorems is attributed to the index set used

across the sum. In Theorem A2, the random variables are indexed by i and all pairs of
(Xi, Xj) are included; in contrast, Theorem A3 uses both i and m and consider only the pairs
that share the identical index i. However, both are viewed as special cases of Theorem 3.4.1
with degree 2 in [29], which discussed a broader sequence of functions {hij(·, ·)}i,j, where
each hij(·, ·) can differ with varying i, j. By assigning all hij(·, ·) to the same product
function, we have Theorem A2; whereas Theorem A3 follows from specifying:

h(im)(jm1)
(·, ·) =

{
h(·, ·), i f i = j;

0, otherwise.

Appendix B. Proofs of Lemmas 1 and 2

Appendix B.1. Proof of Lemma 1

Using the definition of eigenvectors and eigenvalues, we have GΞ̂ = Ξ̂Λ̂ and G0Ξ = ΞΛ.
Additionally, since G0 has a rank K, G0 = ΞΛΞ′. It follows that:

Ξ̂Λ̂ = [G0 + (G − G0)]Ξ̂ = ΞΛΞ′Ξ̂ + (G − G0)Ξ̂ = ΞΞ′G0Ξ̂ + (G − G0)Ξ̂.

As a result:
e′jΞ̂ = e′jΞΞ′G0Ξ̂Λ̂−1 + e′j(G − G0)Ξ̂Λ̂−1 . (A2)
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Note that G0Ξ̂ = GΞ̂ + (G0 − G)Ξ̂ = Ξ̂Λ̂ + (G0 − G)Ξ̂. We plug this equality into the first
term on the RHS of (A2) to obtain:

e′jΞΞ′G0Ξ̂Λ̂−1 = e′jΞΞ′Ξ̂ + e′jΞΞ′(G0 − G)Ξ̂Λ̂−1

= e′jΞO′ + e′jΞ(Ξ
′Ξ̂ − O′) + e′jΞΞ′(G0 − G)Ξ̂Λ̂−1,

for any orthogonal matrix O. Combining this with (A2) gives:

∥e′j(Ξ̂ − ΞO′)∥ ≤ ∥e′jΞ(Ξ
′Ξ̂ − O′)∥+ ∥e′jΞΞ′(G0 − G)Ξ̂Λ̂−1∥+ ∥e′j(G − G0)Ξ̂Λ̂−1∥. (A3)

Fix O = sgn(Ξ̂′Ξ). The sine-theta theorem [18] yields:

∥Ξ′Ξ̂ − O′∥ ≤ |λ̂K|−2∥G − G0∥2. (A4)

We use (A4) to bound the first two terms on the RHS of (A3):

∥e′jΞ(Ξ
′Ξ̂ − O′)∥ ≤ ∥e′jΞ∥∥Ξ′Ξ̂ − O′∥ ≤ ∥e′jΞ∥ · |λ̂K|−2∥G − G0∥2,

∥e′jΞΞ′(G0 − G)Ξ̂Λ̂−1∥ ≤ ∥e′jΞ∥ · |λ̂K|−1∥Ξ′(G0 − G)Ξ̂∥ ≤ ∥e′jΞ∥ · |λ̂K|−1∥G − G0∥.

Since ∥G − G0∥ ≤ (1 − c0)|λ̂K|, the RHS in the second line above dominates the RHS in the
first line. We plug these upper bounds into (A3) to get:

∥e′j(Ξ̂ − ΞO′)∥ ≤ |λ̂K|−1∥e′jΞ∥∥G − G0∥+ ∥e′j(G − G0)Ξ̂Λ̂−1∥

≤ |λ̂K|−1(∥e′jΞ∥∥G − G0∥+ ∥e′j(G − G0)Ξ̂∥
)
. (A5)

We notice that the second term on the RHS of (A5) still involves Ξ̂, and we further
bound this term. By the assumption of this theorem, there exists a diagonal matrix Γ such
that ∥Γ−1(G − G0)Γ∥1→∞ ≤ (1 − c0)|λ̂K|. It implies:

∥e′j(G − G0)Γ∥1 ≤ (1 − c0)γj|λ̂K|.

Additionally, for any vector v ∈ Rp and matrix B ∈ Rp×K, it holds that ∥v′B∥ ≤ ∑j |vj|∥e′jB∥
≤ ∑j |vj|∥B∥2→∞ ≤ ∥v∥1∥B∥2→∞. We then bound the second term on the RHS of (A5)
as follows:

∥e′j(G − G0)Ξ̂∥ ≤ ∥e′j(G − G0)ΞO′∥+ ∥e′j(G − G0)(Ξ̂ − ΞO′)∥

≤ ∥e′j(G − G0)Ξ∥+ ∥e′j(G − G0)Γ∥1 · ∥Γ−1(Ξ̂ − ΞO′)∥2→∞

≤ ∥e′j(G − G0)Ξ∥+ (1 − c0)γj|λ̂K| · ∥Γ−1(Ξ̂ − ΞO′)∥2→∞. (A6)

Plugging (A6) into (A5) gives:

∥e′j(Ξ̂ − ΞO′)∥ ≤ |λ̂K|−1(∥e′jΞ∥∥G − G0∥+ ∥e′j(G − G0)Ξ∥
)

+ (1 − c0)γj · ∥Γ−1(Ξ̂ − ΞO′)∥2→∞

≤ |λ̂K|−1γj + (1 − c0)γj · ∥Γ−1(Ξ̂ − ΞO′)∥2→∞, (A7)

where in the last line we have used the assumption that γj is an upper bound for ∥e′jΞ∥∥G −
G0∥ + ∥e′j(G − G0)Ξ∥. Note that ∥Γ−1(Ξ̂ − ΞO′)∥2→∞ = max1≤j≤p

{
γ−1

j ∥e′j(Ξ̂ − ΞO′)∥
}

.

We multiply both LSH and RSH of (A7) by γ−1
j and take the maximum over j. It gives:

∥Γ−1(Ξ̂ − ΞO′)∥2→∞ ≤ |λ̂K|−1 + (1 − c0)∥Γ−1(Ξ̂ − ΞO′)∥2→∞, (A8)
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or equivalently, ∥Γ−1(Ξ̂−ΞO′)∥2→∞ ≤ c−1
0 |λ̂K|−1. We further plug this inequality into (A7)

to obtain:

∥e′j(Ξ̂ − ΞO′)∥ ≤ |λK|−1γj + (1 − c0) · c−1
0 |λK|−1γj ≤ c−1

0 |λK|−1γj. (A9)

This proves the claim.

Appendix B.2. Proof of Lemma 2

The first claim is the same as the one in Lemma A3 and will be proved there.
The second claim follows by simply collecting arguments in the proof of Lemma A3,

as shown below: By (A24), G − G0 = E1 + E2 + E3 + E4. It follows that:

∥e′j(G − G0)Ξ∥ ≤
4

∑
s=1

∥e′jEsΞ∥. (A10)

We apply Lemma A5 to get large-deviation bounds for ∥e′jEsΞ∥ with s ∈ {2, 3, 4}. This

lemma concerns ∥e′jEsΞ̂∥, but in its proof we have already analyzed ∥e′jEsΞ∥. In particular,
∥e′jE2Ξ∥ and ∥e′jE3Ξ∥ have the same bounds as in (A29), and the bound for ∥e′jE4Ξ∥ only
has the first term in (A30). In summary:

∥e′jEsΞ∥ ≤ C

√
hjnp log(n)

N
, for s ∈ {2, 3, 4}. (A11)

It remains to bound ∥e′jE1Ξ∥. We first mimic the steps of proving (A33) of Lemma A5

(more specifically, the derivation of (A63), except that Ξ̂ is replaced by Ξ) to obtain:

∥ejE1Ξ∥ ≤ Cn∥e′j(M1/2
0 M−1/2 − Ip)Ξ∥+ C∥e′jG0(M1/2

0 M−1/2 − Ip)Ξ∥

+
4

∑
s=2

∥e′jEs(M1/2
0 M−1/2 − Ip)Ξ∥. (A12)

We note that:

∥e′j(M1/2
0 M−1/2 − Ip)Ξ∥ ≤ ∥M1/2

0 M−1/2 − Ip∥ · ∥e′jΞ∥,

∥e′jG0(M1/2
0 M−1/2 − Ip)Ξ∥ = ∥e′jΞΛΞ′(M1/2

0 M−1/2 − Ip)Ξ∥

≤ ∥e′jΞ∥ · ∥Λ∥ · ∥M1/2
0 M−1/2 − Ip∥,

∥e′jEs(M1/2
0 M−1/2 − Ip)Ξ∥ ≤ ∥e′jEs∥ · ∥M1/2

0 M−1/2 − Ip∥.

For s ∈ {2, 3}, we have ∥e′jEs∥ ≤ C
√

hj p log(n)/(Nn). This has been derived in the proof

of Lemma A5: when controlling ∥e′jE2Ξ∥ and ∥e′jE3Ξ∥ there, we first bound them by ∥e′jE2∥
and ∥e′jE3∥, respectively, and then study ∥e′jE2∥ and ∥e′jE3∥ directly). We plug these results
into (A12) to obtain:

∥ejE1Ξ∥ ≤ ∥M1/2
0 M−1/2 − Ip∥

(
n∥e′jΞ∥+ |λ1|∥e′jΞ∥+ C

√
hjnp log(n)

N

)
+ ∥e′jE4(M1/2

0 M−1/2 − Ip)Ξ∥. (A13)

For ∥e′jE4(M1/2
0 M−1/2 − Ip)Ξ∥, we cannot use the same idea to bound it as for s ∈ {2, 3},

because the bound for ∥e′jE4∥ is much larger than those for ∥e′jE2∥ and ∥e′jE4∥. Instead, we
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study ∥e′jE4(M1/2
0 M−1/2 − Ip)Ξ∥ directly. This part is contained in the proof of Lemma A6;

specifically, in the proof of (A31). There we have shown:

∥e′jE4(M1/2
0 M−1/2 − Ip)Ξ∥ ≤ C

√
hj ·

p log(n)
N

. (A14)

We plug (A14) into (A13) and note that λ1 = O(n) and ∥e′jΞ∥ = O(h1/2
j ) (by Lemma A2). We

also use the assumption that Nn ≥ Nnβ2
n ≥ p log2(n) and the bound for ∥M1/2

0 M−1/2 − Ip∥
in (A1). It follows that

∥ejE1Ξ∥ ≤ ∥M1/2
0 M−1/2 − Ip∥ · C

√
hj

(
n +

√
np log(n)

N
+

p log(n)
N

)

≤ ∥M1/2
0 M−1/2 − Ip∥ · O(nh1/2

j ) ≤ C

√
hjnp log(n)

N
. (A15)

We plug (A11) and (A15) into (A10). This proves the second claim.

Appendix C. The Complete Proof of Theorem 1

A proof sketch of Theorem 1 has been given in Section 4.4. For the ease of writing
formal proofs, we have re-arranged the claims and analyses in Lemmas 1 and 2, so the proof
structure here is slightly different from the sketch in Section 4.4. For example, Lemma A3
combines the claims of Lemma 2 with some steps in proving Lemma 1; the remaining steps
in the proof of Lemma 1 are combined into the proof of the main theorem.

First, we present a key technical lemma. The proof of this lemma is quite involved and
relegated to Appendix D.1.

Lemma A3. Under the setting of Theorem 1. Recall G, G0 in (13). With probability 1 − o(n−3):

∥G − G0∥ ≤ C

√
pn log(n)

N
≪ nβn; (A16)

∥e′j(G − G0)Ξ̂∥/n ≤ C

√
hj p log(n)

nN

(
1 + ∥H− 1

2 (Ξ̂ − ΞO′)∥2→∞

)
+ o(βn) · ∥e′j(Ξ̂ − ΞO′)∥ ,

(A17)

simultaneously for all 1 ≤ j ≤ p.

Next, we use Lemma A3 to prove Theorem 1. Let (λ̂k, ξ̂k) and (λ̂k, ξ̂k) be the k-th eigen-
pairs of G and G0, respectively. Let Λ̂ = diag(λ̂1, λ̂2, . . . , λ̂K) and Λ = diag(λ1, λ2, . . . , λK).
Following (A2) and (A3), we have:

∥e′j(Ξ̂ − ΞO′)∥ ≤ ∥e′jΞ(Ξ
′Ξ̂ − O′)∥+ ∥e′jΞΞ′(G0 − G)Ξ̂Λ̂−1∥+ ∥e′j(G − G0)Ξ̂Λ̂−1∥. (A18)

In the sequel, we bound the three terms on the RHS above one-by-one.
First, by sine-theta theorem:

∥e′jΞ(Ξ
′Ξ̂ − O′)∥ ≤ C∥e′jΞ∥

∥G − G0∥2

|λ̂K − λK+1|2
.

For 1 ≤ k ≤ p, by Weyl’s inequality:

|λ̂k − λk| ≤ ∥G − G0∥ ≪ nβn (A19)

with probability 1 − o(n−3), by employing (A16) in Lemma A3. In particular, λ1 ≍ n
and Cnβn < λk ≤ Cn for 2 ≤ k ≤ K and λk = 0 otherwise (see Lemma A2). Thereby,
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|λ̂K − λK+1| ≥ Cnβn. Further using ∥e′jΞ∥ ≤ C
√

hj (see Lemma A2), with the aid of

Lemma A3, we obtain that with probability 1 − o(n−3):

∥e′jΞ(Ξ
′Ξ̂ − O′)∥ ≤ C

√
hj ·

p log(n)
Nnβ2

n
(A20)

simultaneously for all 1 ≤ j ≤ p.
Next, we similarly bound the second term:

∥e′jΞΞ′(G0 − G)Ξ̂Λ̂−1∥ ≤ C
nβn

∥e′jΞ∥∥G − G0∥ ≤ C

√
hj p log(n)

Nnβ2
n

. (A21)

Here we used the fact that λ̂K ≥ Cnβn following from (A19) and Lemma A2.
For the last term, we simply bound:

∥e′j(G − G0)Ξ̂Λ̂−1∥ ≤ C∥e′j(G − G0)Ξ̂∥/(nβn) . (A22)

Combining (A20), (A21), and (A22) into (A18), by (A17) in Lemma A3, we arrive at:

∥e′j(Ξ̂ − ΞO′)∥ ≤ C

√
hj p log(n)

Nnβ2
n

(
1 + ∥H− 1

2 (Ξ̂ − ΞO′)∥2→∞

)
+ o(1) · ∥e′j(Ξ̂ − ΞO′)∥ .

Rearranging both sides above gives:

∥e′j(Ξ̂ − ΞO′)∥ ≤ C

√
hj p log(n)

Nnβ2
n

(
1 + ∥H− 1

2 (Ξ̂ − ΞO′)∥2→∞

)
, (A23)

with probability 1 − o(n−3), simultaneously for all 1 ≤ j ≤ p.
To proceed, we multiply both sides in (A23) by h−1/2

j and take the maximum. It
follows that:

∥H− 1
2 (Ξ̂ − ΞO′)∥2→∞ ≤ C

√
p log(n)
Nnβ2

n

(
1 + ∥H− 1

2
0 (Ξ̂ − ΞO′)∥2→∞

)
.

Note that
√

p log(n)/
√

Nnβ2
n = o(1) from Assumption 3. We further rearrange both sides

above and get:

∥H− 1
2 (Ξ̂ − ΞO′)∥2→∞ ≤

√
p log(n)
Nnβ2

n
= o(1) .

Plugging the above estimate into (A23), we finally conclude the proof of Theorem 1.

Appendix D. Entry-Wise Eigenvector Analysis and Proof of Lemma A3

To finalize the proof of Theorem 1 as outlined in Appendix C, the remaining task is to
prove Lemma A3.

Recall the definition in (13) that:

G = M− 1
2 DD′M− 1

2 − n
N

Ip, G0 = M− 1
2

0

[ n

∑
i=1

(1 − N−1
i )d0

i (d
0
i )

′
]

M− 1
2

0 .

Write D = D0 + Z, where Z = (z1, z2, . . . , zn) is a mean-zero random matrix with each
Nzi being centered Multinomial (Ni, Awi). By this representation, we decompose the
perturbation matrix G − G0 as follows:
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G − G0 = M− 1
2 DD′M− 1

2 − M− 1
2

0 DD′M− 1
2

0 + M− 1
2

0
(

DD′ −
n

∑
i=1

(1 − N−1
i )d0

i (d
0
i )

′ − n
N

M0
)

M− 1
2

0

= (M− 1
2 DD′M− 1

2 − M− 1
2

0 DD′M− 1
2

0 ) + M− 1
2

0 ZD′
0M− 1

2
0 + M− 1

2
0 D0Z′M− 1

2
0

+ M− 1
2

0 (ZZ′ −EZZ′)M− 1
2

0

= E1 + E2 + E3 + E4, (A24)

where:

E1 := M− 1
2 DD′M− 1

2 − M− 1
2

0 DD′M− 1
2

0 ,

E2 := M− 1
2

0 ZD′
0M− 1

2
0 , E3 := M− 1

2
0 D0Z′M− 1

2
0

E4 := M− 1
2

0 (ZZ′ −EZZ′)M− 1
2

0 . (A25)

Here the second step of (A24) is due to the identity:

E(ZZ′) +
n

∑
i=1

N−1
i d0

i (d
0
i )

′ − n
N

M0 = 0 ,

which can be obtained by:

E(ZZ′) =
n

∑
i=1

Eziz′i =
n

∑
i=1

N−2
i

Ni

∑
m,s=1

E(Tim −ETim)(Tis −ETis)
′,

with {Tim}N
m=1 being i.i.d. Multinomial (1, Awi).

Throughout the analysis in this section, we will frequently rewrite and use:

zi =
1
Ni

Ni

∑
m=1

Tim −ETim (A26)

as it introduces the sum of independent random variables. We use the notation d0
i := Edi =

ETim = Awi for simplicity.
By (A24), in order to prove Lemma A3, it suffices to study:

∥Es∥ and ∥e′jEsΞ̂∥/n, for s = 1, 2, 3, 4 and 1 ≤ j ≤ p.

The estimates for the aforementioned quantities are provided in the following technical
lemmas, whose proofs are deferred to later sections.

Lemma A4. Suppose the conditions in Theorem 1 hold. There exists a constant C > 0, such that
with probability 1 − o(n−3):

∥Es∥ ≤ C

√
pn log(n)

N
, for s = 1, 2, 3 (A27)

∥E4∥ = ∥M− 1
2

0 (ZZ′ −EZZ′)M− 1
2

0 ∥ ≤ C max
{√ pn log(n)

N2 ,
p log(n)

N

}
. (A28)
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Lemma A5. Suppose the conditions in Theorem 1 hold. There exists a constant C > 0, such that
with probability 1 − o(n−3), simultaneously for all 1 ≤ j ≤ p:

∥e′jEsΞ̂∥/n ≤ C

√
hj p log(n)

Nn
, for s = 2, 3 (A29)

∥e′jE4Ξ̂∥/n ≤ C

√
hj p log(n)

Nn

(
1 + ∥H− 1

2
0 (Ξ̂ − ΞO′)∥2→∞

)
, (A30)

with O = sgn(Ξ̂′Ξ).

Lemma A6. Suppose the conditions in Theorem 1 hold. There exists a constant C > 0, such that
with probability 1 − o(n−3), simultaneously for all 1 ≤ j ≤ p:

∥e′jE4(M1/2
0 M−1/2 − Ip)Ξ̂∥/n ≤ C

√
hj ·

p log(n)
nN

(
1 + ∥H− 1

2 (Ξ̂ − ΞO′)∥2→∞

)
, (A31)∥∥∥e′j

(
M1/2M−1/2

0 − Ip
)
Ξ̂
∥∥∥ ≤ C

√
log(n)

Nn
+ o(βn) · ∥e′j(Ξ̂ − ΞO′)∥; (A32)

and furthermore:

∥e′jE1Ξ̂∥/n ≤ C

√
hj p log(n)

Nn

(
1 + ∥H− 1

2
0 (Ξ̂ − ΞO′)∥2→∞

)
+ o(βn) · ∥e′j(Ξ̂ − ΞO′)∥ . (A33)

For proving Lemmas A4 and A5, the difficulty lies in showing (A28) and (A30) as the
quantity E4 involves the quadratic terms of Z with its dependence on Ξ̂. We overcome
the hurdle by decomposing Ξ̂ = Ξ + Ξ̂ − ΞO′ and employing decoupling techniques
(Theorems A2 and A3). Considering the expression of E1, where DD′ is involved, the proof
of (A33) in Lemma A6 significantly rely on the estimates in Lemma A5, together with
(A31) and (A32). The detailed proofs are systematically presented in subsequent sections,
following the proof of Lemma A3.

Appendix D.1. Proof of Lemma A3

We employ the technical lemmas (Lemmas A4–A6) to prove Lemma A3. We start with
(A16). By the representation (A24), it is straightforward to obtain that:

∥G − G0∥ ≤
4

∑
s=1

∥Es∥ ≤ C

√
pn log(n)

N
+ C max

{√ pn log(n)
N2 ,

p log(n)
N

}
for some constant C > 0, with probability 1 − o(n−3). Under Assumption 3, it follows that:√

pn log(n)
N2 ≪

√
pn log(n)

N
,

p log(n)
N

=

√
pn log(n)

N
·
√

p log(n)
Nn

≪
√

pn log(n)
N

and: √
pn log(n)

N
= n ·

√
p log(n)

Nn
≪ n .

Therefore, we complete the proof of (A16).
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Next, we show (A17). Similarly, using (A27), (A30), and (A33), we have:

∥e′j(G − G0)Ξ̂∥/n ≤
4

∑
s=1

∥e′jEsΞ̂∥/n

≤ C

√
hj p log(n)

Nn

(
1 + ∥H− 1

2
0 (Ξ̂ − ΞO′)∥2→∞

)
+ o(βn) · ∥e′j(Ξ̂ − ΞO′)∥ .

This concludes the proof of Lemma A3.

Appendix D.2. Proof of Lemma A4

We examine each ∥Ei∥ for i = 1, 2, 3, 4. We start with the easy one, ∥E2∥. Recall D0 = AW.
We denote by W ′

k the k-th row of W and rewrite W = (W1, · · · , WK)
′. Similarly, we use Z′

j,
1 ≤ j ≤ p to denote j-th row of Z. Thereby, Z = (z1, z2, . . . , zn) = (Z1, Z2, . . . , Zp)′. By the
definition that E2 = M−1/2

0 ZD′
0M−1/2

0 , we have:

∥E2∥ = ∥M−1/2
0 ZW ′A′M−1/2

0 ∥ =
∥∥∥ K

∑
k=1

M−1/2
0 ZWk · A′

k M−1/2
0

∥∥∥
≤

K

∑
k=1

∥M−1/2
0 ZWk∥ · ∥A′

k M−1/2
0 ∥. (A34)

We analyze each factor in the summand:

∥M−1/2
0 ZWk∥2 =

p

∑
j=1

1
M0(j, j)

(Z′
jWk)

2, ∥A′
k M−1/2

0 ∥ ≍ ∥A′
k H−1 Ak∥1/2 ≤ C, (A35)

where we used the fact that Ak(j) ≤ hj for 1 ≤ j ≤ p. Hence, what remains is to prove a
high-probability bound for each Z′

jWk. By the representation (A26):

Z′
jWk =

n

∑
i=1

zi(j)wi(k) =
n

∑
i=1

Ni

∑
m=1

N−1
i wi(k)

(
Tim(j)− d0

i (j)
)
.

We then apply Bernstein inequality to the RHS above. By straightforward computations:

var(Z′
jWk) =

n

∑
i=1

Ni

∑
m=1

N−2
i wi(k)2E

(
Tim(j)− d0

i (j)
)2

≤
n

∑
i=1

N−1
i wi(k)2d0

i (j) ≤
hjn
N

,

and the individual bound for each summand is C/N. Then, one can conclude from
Bernstein inequality that with probability 1 − o(n−3−c0):

|Z′
jWk| ≤ C

√
nhj log(n)/N + log(n)/N . (A36)

As a result, considering all 1 ≤ j ≤ p, under pn−c0 ≤ C from Assumption 3, we have:

∥M− 1
2

0 ZWk∥2 ≤ C
p

∑
j=1

h−1
j ·

(nhj log(n)
N

+
log(n)2

N2

)
≤ C

np log(n)
N

(A37)
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with probability 1 − o(n−3). Here, in the first step, we used M0(j, j) ≍ hj; the last step is
due to the conditions hj ≥ hmin ≥ C/p and p log(n) ≪ Nn. Plugging (A37) and (A35) into
(A34) gives:

∥E2∥ ≤ C

√
np log(n)

N
. (A38)

Furthermore, by definition, E3 = E′
2 and ∥E3∥ = ∥E2∥. Therefore, we directly conclude the

upper bound for ∥E3∥.
Next, we study E4 and prove (A28). Notice that M0(j, j) ≍ hj for all 1 ≤ j ≤ p. It

suffices to prove:

∥H− 1
2 (ZZ′ −EZZ′)H− 1

2 ∥ ≤ C max
{√ pn log(n)

N2 ,
p log(n)

N

}
. (A39)

We prove (A39) by employing Matrix Bernstein inequality (i.e., Theorem A1) and decou-
pling techniques (i.e., Theorem A2). First, write:

H− 1
2 (ZZ′ −EZZ′)H− 1

2 =
n

∑
i=1

(H− 1
2 zi)(H− 1

2 zi)
′ −E(H− 1

2 zi)(H− 1
2 zi)

′

=: n ·
n

∑
i=1

1
n
(
z̃i z̃′i −Ez̃i z̃′i

)
=: n ·

n

∑
i=1

Xi

In order to get sharp bound, we employ the truncation idea by introducing:

X̃i :=
1
n
(
z̃i z̃′i1Ei −Ez̃i z̃′i1Ei

)
, where Ei := {z̃′i z̃i ≤ Cp/N},

for some sufficiently large C > 0 that depends on C0 (see Assumption 3) and 1Ei represents
the indicator function. We then have:

n
n

∑
i=1

Xi = n
n

∑
i=1

X̃i −
n

∑
i=1

E(z̃i z̃′i1E c
i
) (A40)

under the event
⋂n

i=1 Ei. We will prove the large-deviation bound of H− 1
2 (ZZ′−EZZ′)H− 1

2

in the following steps.

(a) We claim that:

P(
n⋂

i=1

Ei) ≤ 1 −
n

∑
i=1

P(E c
i ) = 1 − o(n−(2C0+3)) .

(b) We claim that under the event
⋂n

i=1 Ei:∥∥∥n
n

∑
i=1

Xi − n
n

∑
i=1

X̃i

∥∥∥ = o(n−(C0+1)) .

(c) We aim to derive a high probability bound of n ∑n
i=1 X̃i by Matrix Bernstein inequality

(i.e., Theorem A1). We show that with probability 1 − o(n−3), for some large C > 0:

∥∥∥ n

∑
i=1

X̃i

∥∥∥ ≤ C max
{√ p log(n)

nN2 ,
p log(n)

nN

}
.
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If (a)–(c) are claimed, with the condition that N < Cn−C0 from Assumption 3, it is straight-
forward to conclude that:

∥H− 1
2 (ZZ′ −EZZ′)H− 1

2 ∥ = n
∥∥∥ n

∑
i=1

X̃i

∥∥∥+ o(n−C0)

≤ C max
{√ pn log(n)

N2 ,
p log(n)

N

}
,

with probability 1 − o(n−3). This gives (A28), except that we still need to verify (a)–(c).
In the sequel, we prove (a), (b) and (c) separately. To prove (a), it suffices to show

that P(E c
i ) = o(n−(2C0+4)) for all 1 ≤ i ≤ n. By definition, for any fixed i, Nizi is centered

multinomial with Ni trials. Therefore, we can represent:

zi =
1
Ni

Ni

∑
m=1

(Tim −ETim), where Tim’s are i.i.d. multinomial(1, d0
i ) for fixed i, (A41)

Then it can be computed that:

E(z̃′i z̃i) = Ez′i H
−1zi =

1
N2

i

Ni

∑
m=1

E(Tim −ETim)
′H−1(Tim −ETim)

=
1

N2
i

Ni

∑
m=1

p

∑
t=1

E(Tim(t)− d0
i (t))

2h−1
t

=
1

N2
i

Ni

∑
m=1

p

∑
t=1

d0
i (t)

(
1 − d0

i (t)
)
h−1

t ≤ p
Ni

. (A42)

We write:

z̃′i z̃i −E(z̃′i z̃i) = z′i H
−1zi −Ez′i H

−1zi = I1 + I2, (A43)

where:

I1 :=
1

N2
i

Ni

∑
m1 ̸=m2

(Tim1 −ETim1)
′H−1(Tim2 −ETim2),

I2 :=
1

N2
i

Ni

∑
m=1

(Tim −ETim)
′H−1(Tim −ETim)−E(Tim −ETim)

′H−1(Tim −ETim).

First, we study I1. Let {T̃im}N
m=1 be an independent copy of {Tim}N

m=1 and:

Ĩ1 :=
1

N2
i

Ni

∑
m1 ̸=m2

(Tim1 −ETim1)
′H−1(T̃im2 −ET̃im2).

We apply Theorem A2 to I1 and get:

P(|I1| > t) ≤ CP(Ĩ1 > C−1t). (A44)



Mathematics 2024, 12, 1682 26 of 41

It suffices to obtain the large-deviation of Ĩ1 instead. Rewrite:

Ĩ1 =
1
Ni

Ni

∑
m1

(T̃im1 −ET̃im1)
′H−1/2

( 1
Ni

Ni

∑
m=1

H−1/2(Tim −ETim)
)

− 1
N2

i

Ni

∑
m=1

(Tim −ETim)
′H−1(T̃im −ET̃im)

=: T1 + T2. (A45)

We derive the high-probability bound for T1 first. For simplicity, write:

a = H−1/2
( 1

Ni

Ni

∑
m=1

(Tim −ETim)
)

.

Then, T1 = N−1
i ∑Ni

m=1(T̃im − ET̃im)
′H−1/2a. We apply Bernstein inequality condition on

{Tim}
Ni
m=1. By elementary computations:

var(T1|{Tim}
Ni
m=1) =

1
N2

i

Ni

∑
m=1

E
[(

(T̃im −ET̃im)
′H−1/2a

)2∣∣∣a]
=

1
Ni

p

∑
j=1

d0
i (j)

(
a(j)/h1/2

j − (d0
i )

′H−1/2a
)2

=
1
Ni

p

∑
j=1

d0
i (j)
hj

a2(j)− 1
Ni

[
(d0

i )
′H−1/2a

]2
≤ ∥a∥2/Ni,

where we used that fact d0
i (j) = e′j Awi ≤ e′j A1K = hj. Furthermore, with the individual

bound N−1 maxt{a(t)/
√

ht}, we obtain from Bernstein inequality that with probability
1 − o(n−(2C0+4)):

|T1| ≤ C

(√
log(n)

N
∥a∥+ 1

N
max

t

|a(t)|√
ht

log(n)

)
,

by choosing appropriately large C > 0. We then consider using Bernstein inequality to
study a(t) and get:

|a(t)| ≤ C

√
log(n)

N
+ C

log(n)
N
√

hmin

simultaneously for all 1 ≤ t ≤ p, with probability 1 − o(n−(2C0+4)). As a result, under the
condition min{p, N} ≥ C0 log(n) from Assumption 3, it holds that:

|T1| ≤ C

(√
log(n)

N
∥a∥+ 1

N
max

t

|a(t)|√
ht

log(n)

)

≤ C

(√
p log(n)

N

[√ log(n)
N

+ C
log(n)

N
√

hmin

]
+

p
N

)
≤ C

p
N

. (A46)
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We then proceed to the second term in (A45), T2 = N−2
i ∑Ni

m=1(Tim −ETim)
′H−1(T̃im −ET̃im).

Using Bernstein inequality, similarly to the above derivations, we get:

var(T2) = N−4
i

Ni

∑
m=1

E
(
(Tim −ETim)

′H−1(T̃im −ET̃im)
)2

= N−4
i

Ni

∑
m=1

E
[ p

∑
j=1

d0
i (j)
h2

j
(T̃im(j)−ET̃im(j))2 −

(
(d0

i )
′H−1(T̃im −ET̃im)

)2
]

= N−3
i

[ p

∑
j=1

(d0
i (j))2(1 − d0

i (j))
h2

j
−

p

∑
j=1

d0
i (j)

(d0
i (j)
hj

− (d0
i )

′H−1d0
i

)2
]

= N−3
i

[ p

∑
j=1

(d0
i (j))2(1 − 2d0

i (j))
h2

j
+
(
(d0

i )
′H−1d0

i

)2
]

< 2
p

N3 .

The individual bound is given by N−2/hmin. If follows from Bernstein inequality that:

T2 ≤ C

(√
p log(n)

N3 +
log(n)
N2hmin

)
(A47)

with probability 1 − o(n−(2C0+4)). Consequently, by pluging (A46) and (A47) into (A45)
and using Assumption 3,

|Ĩ1| ≲
p
N

(A48)

with probability 1 − o(n−(2C0+4)). By (A44), we get:

|I1| ≤ C

(√
log(n)

N
∥a∥+ p

N

)
(A49)

with probability 1 − o(n−(2C0+4)).
Second, we prove a similar bound for I2 with:

I2 =
1

N2
i

Ni

∑
m=1

(Tim −ETim)
′H−1(Tim −ETim)−E(Tim −ETim)

′H−1(Tim −ETim).

We compute the variance by:

var(Tim −ETim)
′H−1(Tim −ETim)

= E
(

∑
t

h−1
t (Tim(t)− d0

i (t))
2
)2

−
(
E∑

t
h−1

t (Tim(t)− d0
i (t))

2
)2

≤ ∑
t

h−2
t d0

i (t)
[
(1 − d0

i (t))
4 + (1 − d0

i (t))d
0
i (t)

3]− ∑
t

h−2
t d0

i (t)
2(1 − d0

i (t))
2

≤ ∑
t

h−1
t ≲ ph−1

min.

This, together with the crude bound:

|(Tim −ETim)
′H−1(Tim −ETim)−E(Tim −ETim)

′H−1(Tim −ETim)| ≤ Ch−1
min,
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gives that with probability 1 − o(n−(2C0+4)), for some sufficiently large C > 0:

|I2| ≤ C max
{√ p log(n)

N3hmin
,

log(n)
N2hmin

}
≤ C

p
N

, (A50)

under Assumption 3. Combing (A49) and (A50), yields that:

z̃′i z̃i = z′i H
−1zi ≤ Ez′i H

−1zi + |I1|+ |I2| ≤ C
p
N

with probability 1 − o(n−(2C0+4)). Thus, we conclude the claim P(Ec
i ) = o(n−(2C0+4)) for

all 1 ≤ i ≤ n. The proof of (a) is complete.
Next, we show the proof of (b). Recall the second term on the RHS of (A40). Using the

convexity of ∥ · ∥ and the trivial bound:

E|z̃′i z̃i1Ec
i
| ≤ P(E c

i )∥z̃′i z̃i∥max ≤ h−1
minP(E

c
i ),

we get:∥∥∥ n

∑
i=1

E(z̃i z̃′i1E c
i
)
∥∥∥ ≤

n

∑
i=1

E
∥∥z̃i z̃′i1E c

i

∥∥ =
n

∑
i=1

E|z̃′i z̃i1E c
i
| ≤ o(n−(2C0+4))np = o(n−(C0+3)) .

Here, in the last step, we used the fact that p ≤ nC0 , which follows from the second
condition in Assumption 3. This yields the estimate in (b).

Finally, we claim (c) by Matrix Bernstein inequality (i.e., Theorem A1). Towards that,
we need to derive the upper bounds of ∥X̃i∥ and ∥EX̃2

i ∥. By definition of X̃i, that is:

X̃i :=
1
n
(
z̃i z̃′i1Ei −Ez̃i z̃′i1Ei

)
,

we easily derive that:

∥X̃i∥ ≤ 1
n

(
|z̃′i z̃i1Ei |+ ∥E(z̃i z̃′i1Ei )∥

)
≤ 1

n

(
|z̃′i z̃i1Ei |+ ∥E(z̃i z̃′i1E c

i
)∥+ ∥E(z̃i z̃′i)∥

)
≤ Cp

nN

for some large C > 0, in which we used the estimate:

∥E(z̃i z̃′i)∥ = ∥H−1/2E(ziz′i)H−1/2∥ ≤ N−1
i

∥∥∥H−1/2
(

diag(d0
i )− d0

i (d
0
i )

′
)

H−1/2
∥∥∥

≤ N−1
i

∥∥∥H−1/2diag(d0
i )H−1/2

∥∥∥+ N−1
i

∣∣(d0
i )

′H−1d0
i
∣∣

≤ 2
N

.

By the above inequality, it also holds that:

∥E(z̃i z̃′i1Ei )∥ ≤ ∥E(z̃i z̃′i1E c
i
)∥+ ∥E(z̃i z̃′i)∥ ≤ C

N
.

Moreover:

∥EX̃2
i ∥ =

∥∥n−2E(∥z̃i∥2z̃i z̃′i1Ei )− n−2(Ez̃i z̃′i1Ei )
2∥∥

≤ p
n2N

∥E(z̃i z̃′i1Ei )∥+
1
n2 ∥E(z̃i z̃′i1Ei )∥

2

≤ Cp
n2N2 .
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Since EX̃i = 0, it follows from Theorem A1 that:

P
(∥∥∥ n

∑
i=1

X̃i

∥∥∥ ≥ t
)
≤ 2n exp

( −t2/2
σ2 + bt/3

)
,

with σ2 = Cp/(nN2), b = Cp/(nN). As a result:

∥∥∥ n

∑
i=1

X̃i

∥∥∥ ≤ C max
{√ p log(n)

nN2 ,
p log(n)

nN

}
with probability 1 − o(n−3), for some large C > 0. We hence finish the proof of (c). The
proof of (A28) is complete now.

Lastly, we prove ∥E1∥ ≤ C
√

pn log(n)/
√

N. By definition, we rewrite:

E1 = (M−1/2M1/2
0 )M−1/2

0 DD′M−1/2
0 (M−1/2M1/2

0 − Ip)

+ (M−1/2M1/2
0 − Ip)M−1/2

0 DD′M−1/2
0 . (A51)

Decomposing D by D0 + Z gives rise to:

M− 1
2

0 DD′M− 1
2

0 = M− 1
2

0

n

∑
i=1

(1 − N−1
i )d0

i (d
0
i )

′M− 1
2

0 +
n
N

Ip + M− 1
2

0 D0Z′M− 1
2

0 + M− 1
2

0 ZD′
0M− 1

2
0

+ M− 1
2

0 (ZZ′ −EZZ′)M− 1
2

0

= G0 +
n
N

Ip + E2 + E3 + E4 (A52)

Applying Lemma A2, together with (A38) and (A39), we see that:

∥M− 1
2

0 DD′M− 1
2

0 ∥ ≤ Cn

Furthermore, it follows from Lemma A1 that:

∥M−1/2M1/2
0 − Ip∥ ≤ C

√
p log(n)

Nn
, and ∥M−1/2M1/2

0 ∥ = 1 + o(1) .

Combining the estimates above, we conclude that:

∥E1∥ ≤ C

√
pn log(n)

N

We therefore finish the proof of Lemma A4.

Appendix D.3. Proof of Lemma A5

We begin with the proof of (A29). Recall the definitions:

E2 = M− 1
2

0 ZD′
0M− 1

2
0 , E3 = M− 1

2
0 D0Z′M− 1

2
0 .

We bound:

∥e′jE2Ξ̂∥/n ≤ ∥e′jE2∥/n ≤ 1
n

K

∑
k=1

∥e′j M
−1/2
0 ZWk∥ · ∥A′

k M− 1
2

0 ∥ ≤ C
n

K

∑
k=1

∥e′j M
−1/2
0 ZWk∥
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by the second inequality in (A35). Similarly to how we derived (A37), using Bernstein
inequality, we have:

∥e′j M
−1/2
0 ZWk∥ ≤ C ∑n

i=1 zi(j)Wk(i)√
hj

= C
n

∑
i=1

Ni

∑
m=1

N−1
i h−1/2

j
(
Tim(j)− d0

i (j)
)
Wk(i)

≤ C

√
∥Wk∥2 log(n)

N
+

C log(n)

N
√

hj

≤ C

√
n log(n)

N
+

C log(n)

N
√

hj

with probability 1 − o(n−C0−3). Consequently:

∥e′jE2Ξ̂∥/n ≤ C

√
log(n)

Nn
+ C

log(n)

nN
√

hj

≤ C

√
log(n)

Nn
≤ C

√
hj p log(n)

Nn
(A53)

in view of p log(n)2 ≤ Nn and hj ≥ hmin ≥ c/p from Assumption 3.
Analogously, for Ξ3, we have:

∥e′jE3Ξ̂∥/n ≤ 1
n

K

∑
k=1

∥e′j M
−1/2
0 Ak∥ · ∥W ′

kZ′M−1/2
0 Ξ̂∥ ≤ C

√
hj p log(n)

Nn
. (A54)

where we used ∥W ′
kZ′M−1/2

0 Ξ̂∥ ≤ ∥M−1/2
0 ZWk∥ ≤

√
pn log(n)/

√
N from (A37) and

∥e′j M
−1/2
0 Ak∥ ≤ C

√
hj. Hence, we complete the proof of (A29).

In the sequel, we focus on the proof of (A30). Recall that E4 = M− 1
2

0 (ZZ′ −EZZ′)M− 1
2

0 .
We expect to show that:

∥e′jE4Ξ̂∥/n ≤ C

√
hj p log(n)

Nn

(
1 + ∥H− 1

2
0 (Ξ̂ − ΞO′)∥2→∞

)
.

Let us decompose ∥e′jE4Ξ̂∥/n as follows:

n−1∥e′jE4Ξ̂∥ ≤ n−1∥e′jE4Ξ∥+ n−1∥e′jE4(Ξ̂ − ΞO′)∥ .

We bound n−1∥e′jE4Ξ∥ first. For any fixed 1 ≤ k ≤ K, in light of the fact that M0(j, j) ≍ hj
for all 1 ≤ j ≤ p:

|e′jE4ξk| ≍ |e′j H−1/2(ZZ′ −EZZ′)H−1/2ξk| =
∣∣∣ n

∑
i=1

h−1/2
j zi(j)z′i H

−1/2ξk − h−1/2
j Ezi(j)z′i H

−1/2ξk

∣∣∣
=

∣∣∣∣∣∣
n

∑
i=1

1
N2

i

Ni

∑
m,m1=1

Tim(j)− d0
i (j)√

hj

· (Tim1 − d0
i )

′H− 1
2 ξk −E

[
Tim(j)− d0

i (j)√
hj

· (Tim1 − d0
i )

′H− 1
2 ξk

]∣∣∣∣∣∣
≤ |J1|+ |J2|,
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with:

J1 :=
n

∑
i=1

1
N2

i

Ni

∑
m
(Tim − d0

i )
′H−1/2ej · (Tim − d0

i )
′H−1/2ξk

−E(Tim − d0
i )

′H−1/2ej · (Tim − d0
i )

′H−1/2ξk,

J2 :=
n

∑
i=1

1
N2

i

Ni

∑
m ̸=m1

(Tim − d0
i )

′H−1/2ej · (Tim1 − d0
i )

′H−1/2ξk .

For J1, it is easy to compute the order of its variance as follows:

var(J1)

=
n

∑
i=1

Ni

∑
m=1

N−4
i var

(
(Tim − d0

i )
′H−1/2ej · (Tim − d0

i )
′H−1/2ξk

)
=

n

∑
i=1

Ni

∑
m=1

N−4
i d0

i (j) ·
(1 − d0

i (j))2

hj

( ξk(j)√
hj

− ∑
t

d0
i (t)ξk(t)√

ht

)2

+
n

∑
i=1

Ni

∑
m=1

N−4
i ∑

t ̸=j
d0

i (t) ·
(d0

i (j))2

hj

( ξk(t)√
ht

− ∑
s

d0
i (s)ξk(s)√

hs

)2

−
n

∑
i=1

Ni

∑
m=1

1
N4

i

 d0
i (j)√

hj

( ξk(j)√
hj

− ∑
t

d0
i (t)ξk(t)√

ht

)
−

p

∑
j=1

(d0
i (j))2√

hj

( ξk(j)√
hj

− ∑
t

d0
i (t)ξk(t)√

ht

)2

≤ C
n

N3 ,

where we used the facts that ξk(t) ≤
√

ht, d0
i (j) ≤ Chj, and ∑t d0

i (t) = 1. Furthermore,
with the trivial bound of each summand in J1 given by CN−2h−1/2

j , it follows from the
Bernstein inequality that:

|J1| ≤ C

√
n log(n)

N3 + C
log(n)

N2
√

hj

≤ C

√
n log(n)

N3

with probability 1− o(n−3−C0). Here, we used the conditions that hj ≥ C/p and p log(n)2 ≤ Nn.
We proceed to estimate |J2|. Employing Theorem A3 with:

h(Tim, Tim1) = N−2
i (Tim − d0

i )
′H−1/2ej · (Tim1 − d0

i )
′H−1/2ξk ,

it suffices to examine the high probability bound of:

J̃2 :=
n

∑
i=1

1
N2

i

Ni

∑
m ̸=m1

(Tim − d0
i )

′H−1/2ej · (T̃im1 − d0
i )

′H−1/2ξk

where {T̃im1} is an independent copy of {Tim1}. Imitating the proof of (A45), we rewrite:

J̃2 =
n

∑
i=1

Ni

∑
m=1

N−1
i (Tim − d0

i )
′H−1/2ej · bim where bim =

(
∑

m1 ̸=m
N−1

i (T̃im1 − d0
i )

′H−1/2ξk

)
Notice that bim can be crudely bounded by C in view of ξk(t) ≤

√
ht. Then, condition on

{T̃im1}, by Bernstein inequality, we can derive that:

|J̃2| ≤ C
(√n log(n)

N
+

log(n)

N
√

hj

)
≤ C

√
n log(n)

N
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with probability 1 − o(n−3−C0). Consequently, we arrive at:

|e′jE4ξk| ≤ C

√
n log(n)

N
≤ C

√
hj pn log(n)

N

under the assumption that hj ≥ C/p. As K is a fixed constant, we further conclude:

∥e′jE4Ξ∥ ≤ C

√
hj pn log(n)

N
(A55)

with probability 1 − o(n−3−C0).
Next, we estimate n−1∥e′jE4(Ξ̂ − ΞO′)∥. By definition, we write:

1
n
∥e′jE4(Ξ̂ − ΞO′)∥ =

1
n
∥e′j M

−1/2
0 (ZZ′ −EZZ′)M−1/2

0 (Ξ̂ − ΞO′)∥ .

For each 1 ≤ t ≤ p:

1
n
|e′j M

−1/2
0 (ZZ′ −EZZ′)et|

≍ 1

n
√

hj

n

∑
i=1

zi(j)zi(t)−E(zi(j)zj(t))

=
1

n
√

hj
∑

i
∑
m,m̃

N−2
i (Tim(j)− d0

i (j))(Tim̃(t)− d0
i (t))−E(Tim(j)− d0

i (j))(Tim̃(t)− d0
i (t))

=
1

n
√

hj
∑
i,m

N−2
i (Tim(j)− d0

i (j))(Tim(t)− d0
i (t))−E(Tim(j)− d0

i (j))(Tim(t)− d0
i (t))

+
1

n
√

hj
∑

i
N−2

i ∑
m ̸=m̃

(Tim(j)− d0
i (j))(Tim̃(t)− d0

i (t))

:= (I)t + (I I)t.

For (I)k, using Bernstein inequality, it yields that with probability 1 − o(n−3−2C0):

∣∣(I)t
∣∣ ≤ C


max

{√
(hj+ht)ht log(n)

nN3 ,
(hj+ht) log(n)

nN2
√

hj

}
, t ̸= j

max
{√

log(n)
nN3 , log(n)

nN2
√

hj

}
, t = j

≤ C


√

(hj+ht)ht log(n)
nN3 , t ̸= j√

log(n)
nN3 , t = j

where the last step is due the the fact p log(n)2 ≤ Nn from Assumption 3. As a result:

p

∑
t=1

∣∣(I)t
∣∣ ≤ C

√
p

√
∑t ̸=j hjht log(n)

nN3 + ∑
t ̸=j

ht

√
log(n)
nN3 +

√
log(n)
nN3

 ≤ C

√
hj p log(n)

nN3 (A56)

Here, we used the Cauchy–Schwarz inequality to get:

∑
t ̸=j

√
hjht log(n)

nN3 ≤
√

p − 1 · ∑
t ̸=j

hjht log(n)
nN3 ≤ √

p

√
∑t ̸=j hjht log(n)

nN3 .
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For (I I)t, since it is a U-statistics, we then apply the decoupling idea, i.e., Theorem A3,
such that its high probability bound can be controlled by that of ( Ĩ I)t, defined by:

( Ĩ I)t :=
1

n
√

hj
∑

i
N−2

i ∑
m ̸=m̃

(Tim(j)− d0
i (j))(T̃im̃(t)− d0

i (t)).

where {T̃im̃}i,m̃ is the i.i.d. copy of {Tim}i,m. We further express:

( Ĩ I)t =
1

n
√

hj
∑

i
N−2

i ∑
m
(Tim(j)− d0

i (j))T̃i,−m,

where T̃i,−m := ∑m̃ ̸=m(T̃im̃(t)− d0
i (t)). Condition on {T̃im̃}i,m̃, we use Bernstein inequality

and get:

( Ĩ I)t ≤ C max
{√ log(n) · ∑i,m T̃2

i,−m

n2N4 ,
log(n) · maxi,m |T̃i,−m|

nN2
√

hj

}

≤ C

√
log(n) · maxi,m |T̃i,−m|2

nN3 ,

in light of p log(n)2 ≤ Nn. Furthermore, notice that:

max
i,m

|T̃i,−m| ≤ ∑̃
m

∣∣T̃im̃(t)− d0
i (t)

∣∣.
It follows that:

p

∑
t=1

∣∣( Ĩ I)t
∣∣ ≤ C

√
log(n)

nN
· 1

N

p

∑
t=1

max
i,m

|T̃i,−m| ≤ C

√
log(n)

nN
· 1

N

p

∑
t=1

∑̃
m

∣∣T̃im̃(t)− d0
i (t)

∣∣
≤ C

√
log(n)

nN
, (A57)

where the last step is due to the trivial bound that:

p

∑
t=1

∣∣T̃im̃(t)− d0
i (t)

∣∣ ≤ 1 +
p

∑
t=1

d0
i (t) ≤ C

for any 1 ≤ m̃ ≤ N. Thus, combining (A56) and (A57), under the condition hj ≥ C/p, we
obtain:

1
n
∥e′j M

−1/2
0 (ZZ′ −EZZ′)∥1 =

1
n

p

∑
t=1

|e′j M
−1/2
0 (ZZ′ −EZZ′)et| ≤ C

√
hj p log(n)

nN
(A58)

with probability 1 − o(n−3−C0).
Moreover, employing the estimate M0(j, j) ≍ hj for all 1 ≤ j ≤ p, it follows that:

1
n
∥e′jE4(Ξ̂ − ΞO′)∥ =

1
n
∥e′j M

−1/2
0 (ZZ′ −EZZ′)M−1/2

0 (Ξ̂ − ΞO′)∥

≤ 1
n
∥e′j M

−1/2
0 (ZZ′ −EZZ′)∥1 · ∥M−1/2

0 H1/2∥ · ∥H−1/2(Ξ̂ − ΞO′)∥2→∞

≤ C

√
hj p log(n)

nN
∥H−1/2(Ξ̂ − ΞO′)∥2→∞ (A59)

with probability 1 − o(n−3−C0).
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In the end, we combine (A55) and (A59) and consider all j simultaneously to conclude that:

n−1∥e′jE4Ξ̂∥ ≤ n−1∥e′jE4Ξ∥+ n−1∥e′jE4(Ξ̂ − ΞO′)∥

≤ C

√
hj p log(n)

nN

(
1 + ∥H−1/2(Ξ̂ − ΞO′)∥2→∞

)
with probability 1 − o(n−3−C0). Combining all 1 ≤ j ≤ p, together with p ≤ nC0 , we
complete the proof.

Appendix D.4. Proof of Lemma A6

We first prove (A31) that:

∥e′jE4(M1/2
0 M−1/2 − Ip)Ξ̂∥/n ≤ C

√
hj ·

p log(n)
nN

(
1 + ∥H− 1

2 (Ξ̂ − ΞO′)∥2→∞

)
By the definition that E4 = M−1/2

0 (ZZ′ −EZZ′)M−1/2
0 , we bound:

∥e′jE4(M1/2
0 M−1/2 − Ip)Ξ̂∥/n ≤ 1

n
∥e′j M

−1/2
0 (ZZ′ −EZZ′)∥1 · ∥M−1/2

0 (M1/2
0 M−1/2 − Ip)Ξ̂∥2→∞ .

From (A58), it holds that ∥e′j M
−1/2
0 (ZZ′ −EZZ′)∥1/n ≤ C

√
hj p log(n)/

√
nN with proba-

bility 1 − o(n−3−C0). Next, we bound:

∥M−1/2
0 (M1/2

0 M−1/2 − Ip)Ξ̂∥2→∞ ≤ ∥H−1/2(M1/2
0 M−1/2 − Ip)Ξ∥2→∞

+ ∥H−1/2(M1/2
0 M−1/2 − Ip)(Ξ̂ − ΞO′)∥2→∞

The first term on the RHS can be bounded simply by:

∥H−1/2(M1/2
0 M−1/2 − Ip)Ξ∥2→∞ ≤ C max

i
|h−1/2

i

√
p log(n)/nN ·

√
hi|

≤ C
√

p log(n)/nN = o(1)

The second term can be simplified to:

∥H−1/2(M1/2
0 M−1/2 − Ip)(Ξ̂ − ΞO′)∥2→∞ = ∥(M1/2

0 M−1/2 − Ip)H−1/2(Ξ̂ − ΞO′)∥2→∞

≤ C

√
p log(n)

nN
· ∥H−1/2(Ξ̂ − ΞO′)∥2→∞.

As a result:

∥e′jE4(M1/2
0 M−1/2 − Ip)Ξ̂∥/n ≤ C

√
hj p log(n)

nN
·
√

p log(n)
nN

(
1 + ∥H− 1

2
0 (Ξ − Ξ0O′)∥2→∞

)
≤ C

√
hj ·

p log(n)
nN

(
1 + ∥H− 1

2 (Ξ̂ − ΞO′)∥2→∞

)
. (A60)

This proves (A31).
Subsequently, we prove (A32) that:

∥∥∥e′j
(

M1/2M−1/2
0 − Ip

)
Ξ̂
∥∥∥ ≤ C

√
log(n)

Nn
+ o(βn) · ∥e′j(Ξ̂ − ΞO′)∥.

We first bound:∥∥∥e′j
(

M1/2M−1/2
0 − Ip

)
Ξ̂
∥∥∥ ≤

∥∥∥e′j
(

M1/2M−1/2
0 − Ip

)
Ξ
∥∥∥+ ∥∥∥e′j

(
M1/2M−1/2

0 − Ip
)
(Ξ̂ − ΞO′)

∥∥∥.
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By Lemma A1, |M(j, j)− M0(j, j)|/M0(j, j) ≤ C
√

log(n)/
√

Nnhj. It follows that:

∥∥∥e′j
(

M1/2M−1/2
0 − Ip

)
Ξ
∥∥∥ ≤

∣∣∣∣∣
√

M(j, j)
M0(j, j)

− 1

∣∣∣∣∣ · ∥e′jΞ∥

≤ C
|M(j, j)− M0(j, j)|

M0(j, j)
· ∥e′jΞ∥

≤ C

√
log(n)

Nn
,

and:

∥∥∥e′j
(

M1/2M−1/2
0 − Ip

)
(Ξ̂ − ΞO′)

∥∥∥ ≤
∣∣∣∣∣
√

M(j, j)
M0(j, j)

− 1

∣∣∣∣∣ · ∥e′j(Ξ̂ − ΞO′)∥

≤
√

p log(n)
Nn

· ∥e′j(Ξ̂ − ΞO′)∥

= o(βn) · ∥e′j(Ξ̂ − ΞO′)∥ .

by the condition that p log(n) ≪ Nn. We therefore conclude (A32), simultaneously for all
1 ≤ j ≤ p, with probability 1 − o(n−3).

Lastly, we prove (A33). By the definition:

E1 = M− 1
2 DD′M− 1

2 − M− 1
2

0 DD′M− 1
2

0 ,

and the decomposition:

M− 1
2

0 DD′M− 1
2

0 = G0 +
n
N

Ip + E2 + E3 + E4, where G0 = M−1/2
0

n

∑
i=1

(1 − N−1
i )d0

i (d
0
i )

′M−1/2
0 ,

we bound:

∥ejE1Ξ̂∥/n

≤ ∥e′j(Ip − M−1/2
0 M1/2)M−1/2DD′M−1/2Ξ̂∥/n + ∥e′j M

−1/2
0 DD′M−1/2

0 (M1/2
0 M−1/2 − Ip)Ξ̂∥/n

≤ C∥e′j(Ip − M−1/2
0 M1/2)Ξ̂∥+ C∥e′jG0(M1/2

0 M−1/2 − Ip)Ξ̂∥/n

+ ∥e′j(M1/2
0 M−1/2 − Ip)Ξ̂∥/N +

4

∑
i=2

∥e′jEi(M1/2
0 M−1/2 − Ip)Ξ̂∥/n,

where we used the fact that M−1/2DD′M−1/2Ξ̂ = Λ̃Ξ̂, where Λ̃ = Λ̂ + nN−1 Ip, which
leads to ∥Λ̃∥ ≤ Cn.

In the same manner to prove ∥e′jE2Ξ̂∥/n and ∥e′jE3Ξ̂∥/n, we can bound:

1
n
∥e′jEs(M1/2

0 M−1/2 − Ip)Ξ̂∥ ≤ 1
n
∥e′jEs∥∥M1/2

0 M−1/2 − Ip∥ ≤ C

√
hj p log(n)

Nn
, for s = 2, 3 . (A61)
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By Lemma A1, we derive:

∥e′jG0(M1/2
0 M−1/2 − Ip)Ξ̂∥/n ≤ C

p

∑
t=1

1√
hjht

|a′jΣW at|

√
log(n)
htNn

∥e′tΞ̂∥

≤ C

√
hj p log(n)

Nn
, (A62)

where we crudely bound |a′jΣW at| ≤ hjht, and use Cauchy–Schwarz inequality that

∑
p
t=1 ∥e′tΞ̂∥ ≤ √

p
√

tr(Ξ̂Ξ̂′) ≤ K
√

p. In addition:

∥e′j(M1/2
0 M−1/2 − Ip)Ξ̂∥/N ≤

∣∣∣∣√M0(j, j)/
√

M(j, j)
∣∣∣∣ · ∥e′j(Ip − M−1/2

0 M1/2)Ξ̂∥

≤ C∥e′j(Ip − M−1/2
0 M1/2)Ξ̂∥ ,

which results in:

∥ejE1Ξ̂∥/n ≤ C∥e′j(Ip − M−1/2
0 M1/2)Ξ̂∥+ C∥e′jG0(M1/2

0 M−1/2 − Ip)Ξ̂∥/n

+
4

∑
i=2

∥e′jEi(M1/2
0 M−1/2 − Ip)Ξ̂∥/n. (A63)

Combining (A61), (A62), (A31), and (A32) into the above inequality, we complete the proof
of (A33).

Appendix E. Proofs of the Rates for Topic Modeling

The proofs in this section are quite similar to those in [4] by employing the bounds in
Theorem 1. For readers’ convenience, we provide brief sketches and refer to more details in
the supplementary materials of [4]. Notice that Ni ≍ N̄ ≍ N from Assumption 3. Therefore,
throughout this section, we always assume N̄ = N without loss of generality.

Appendix E.1. Proof of Theorem 2

Recall that:
R̂ = (r̂1, r̂2, . . . , r̂p)

′ = [diag(ξ̂1)]
−1(ξ̂2, . . . , ξK).

Since the first eigenvector of G0 is with multiplicity one, which can been seen in Lemma A2,
and the fact that ∥G − G0∥ ≪ n, it is not hard to obtain that O′ = diag(ω, Ω′) where
ω ∈ {1,−1} and Ω′ is an orthogonal matrix in RK−1,K−1. Let us write Ξ̂1 := (ξ̂2, . . . , ξ̂K)
and similarly for Ξ1. Without loss of generality, we assume ω = 1. Therefore:

∣∣ξ1(j)− ξ̂1(j)
∣∣ ≤ C

√
hj p log(n)

Nnβ2
n

,
∥∥e′j(Ξ̂1 − Ξ1)Ω′∥∥ ≤ C

√
hj p log(n)

Nnβ2
n

. (A64)

We rewrite:

r̂′j − r′jΩ
′ = Ξ̂1(j) · ξ1(j)− ξ̂1(j)

ξ̂1(j)ξ1(j)
−

e′j(Ξ̂1 − Ξ1Ω′)

ξ1(j)
.

Using Lemma A2 together with (A64), we conclude the proof.

Appendix E.2. Proof of Theorem 3

In this section, we provide a simplified proof by neglecting the details about some
quantities in the oracle case. We refer readers to the proof of Theorem 3.3 of [4] for more
rigorous arguments.
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Proof of Theorem 3. Recall the Topic-SCORE algorithm. Let V̂ = (v̂1, v̂2, . . . , v̂K) and
denote its population counterpart by V. We write:

Q̂ =

(
1 . . . 1
v̂1 . . . v̂K

)
, Q =

(
1 . . . 1
v1 . . . vK

)
Similarly to [4], by properly choosing the vertex hunting algorithm and the anchor words
condition, it can be seen that:

∥V̂ − V∥ ≤ C

√
p log(n)
Nnβ2

n

where we omit the permutation for simplicity here and throughout this proof. As a result:

∥π̂∗
j − π∗

j ∥ =

∥∥∥∥Q̂−1
(

1
r̂j

)
− Q−1

(
1

Ωrj

)∥∥∥∥
≤ C∥Q−1∥2 · ∥V̂ − V∥ · ∥rj∥+ ∥Q−1∥∥r̂j − Ωrj∥

≤ C

√
p log(n)
Nnβ2

n
= o(1)

where we used the fact that ∥Q−1∥ ≤ C whose details can be found in the proof of
Lemma G.1 in supplementary material of [4]. Considering the truncation at 0, it is not hard
to see that:

∥π̃∗
j − π∗

j ∥ ≤ C∥π̂∗
j − π∗

j ∥ ≤ C

√
p log(n)
Nnβ2

n
= o(1);

and furthermore:

∥π̂j − πj∥1 ≤
∥π̃∗

j − π∗
j ∥1

∥π̃∗
j ∥1

+
∥π∗

j ∥1
∣∣∥π̃∗

j ∥1 − ∥π∗
j ∥1
∣∣

∥π̃∗
j ∥1∥π∗

j ∥1

≤ C∥π̃∗
j − π∗

j ∥1 ≤ C

√
p log(n)
Nnβ2

n
. (A65)

by noticing that πj = π∗
j in the oracle case.

Recall that Ã = M1/2diag(ξ̂1)Π̂ =: (ã1, . . . , ãp)′. Let A∗ = M1/2
0 diag(ξ1)Π =

(a∗1 , . . . , a∗p)′. Note that A = A∗[diag(1p A∗)]−1. We can derive:

∥ãj − a∗j ∥1 ≤
∥∥∥√M(j, j) ξ̂1(j)π̂j −

√
M0(j, j) ξ1(j)πj

∥∥∥
1

≤ C∥
√

M(j, j)−
√

M0(j, j)∥ · ∥ξ1(j)∥ · ∥πj∥1 + C
√

M0(j, j) · ∥ξ̂1(j)− ξ1(j)∥ · ∥πj∥1

+ C
√

M0(j, j) · ∥ξ1(j)∥ · ∥π̂j − πj∥1

≤ Chj

√
p log(n)
Nnβ2

n
, (A66)

where we used (A65), (A64) and also Lemma A1. Write Ã = (Ã1, . . . , ÃK) and A∗ =
(A∗

1 , . . . , A∗
K). We crudely bound:

∣∣∣∥Ãk∥1 − ∥A∗
k∥1

∣∣∣ ≤ p

∑
j=1

∥ãj − a∗j ∥1 ≤ C

√
p log(n)
Nnβ2

n
= o(1) (A67)
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simultaneously for all 1 ≤ k ≤ K, since ∑j hj = K. By the study of oracle case in [4], it can
be deduced that ∥A∗

k∥1 ≍ 1 (see more details in the supplementary materials of [4]). It then
follows that:

∥âj − aj∥1 =
∥∥∥diag(1/∥Ã1∥1, . . . , 1/∥ÃK∥1)ãj − diag(1/∥A∗

1∥1, . . . , 1/∥A∗
K∥1)a∗j

∥∥∥
1

=
K

∑
k=1

∣∣∣∣ ãj(k)

∥Ãk∥1
−

a∗j (k)

∥A∗
k∥1

∣∣∣∣
≤

K

∑
k=1

∣∣∣∣ ãj(k)− a∗j (k)

∥A∗
k∥1

∣∣∣∣+ |a∗j (k)|
∣∣∥Âk∥1 − ∥A∗

k∥1
∣∣

∥A∗
k∥1∥Ãk∥1

≤ C
K

∑
k=1

∥ãj − a∗j ∥1 + ∥a∗j ∥1 max
k

∣∣∣∥Ãk∥1 − ∥A∗
k∥1

∣∣∣
≤ Chj

√
p log(n)
Nnβ2

n
= C∥aj∥1

√
p log(n)
Nnβ2

n
.

Here, we used (A66), (A67) and the following estimate:

∥a∗j ∥1 =
√

M0(j, j) |ξ1(j)|∥π∗
j ∥ ≍ hj

Combining all j together, we immediately have the result for L(Â, A).

Appendix E.3. Proof of Theorem 4

The optimization in (12) has a explicit solution given by:

ŵ∗
i =

(
Â′M−1 Â

)−1 Â′M−1di .

Notice that (A′M−1
0 A)−1 A′M−1

0 d0
i = (A′M−1

0 A)−1 A′M−1
0 Awi = wi. Consequently:

∥ŵ∗
i − wi∥1 =

∥∥(Â′M−1 Â
)−1 Â′M−1di − (A′M−1

0 A)−1 A′M−1
0 d0

i
∥∥

1

≤
∥∥(A′M−1

0 A)−1(Â′M−1 Â − A′M−1
0 A

)(
Â′M−1 Â

)−1 Â′M−1di
∥∥

1

+
∥∥(A′M−1

0 A)−1(Â′M−1di − A′M−1
0 d0

i
)∥∥

1

≤ Cβ−1
n ∥

(
Â′M−1 Â − A′M−1

0 A
)
∥(∥ŵ∗

i − wi∥1 + ∥wi∥1)

+ Cβ−1
n
∥∥Â′M−1di − A′M−1

0 d0
i
∥∥, (A68)

since
∥∥(A′M−1

0 A)−1
∥∥ ≍

∥∥(A′H−1 A)−1
∥∥ ≍ 1. What remains is to analyze:

T1 := ∥
(

Â′M−1 Â − A′M−1
0 A

)
∥, and T2 :=

∥∥Â′M−1di − A′M−1
0 d0

i
∥∥.

For T1, we bound:

T1 ≤ ∥(Â − A)′M−1 Â∥+ ∥A′(M−1 − M−1
0 )Â∥

+ ∥A′M−1
0 (Â − A)∥ .

Using the estimates:

∥âj − aj∥1 ≤ Chj

√
p log(n)
Nnβ2

n
,

∣∣M(j, j)−1 − M0(j, j)−1∣∣ ≤ √
log(n)

hj

√
Nnhj

,
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it follows that:

∥A′(M−1 − M−1
0 )(Â − A)∥ ≤

K

∑
k,k1=1

∣∣Ak(M−1 − M−1
0 )(Âk1 − Ak1)

∣∣
≪

K

∑
k=1

∥Âk − Ak∥1 =
p

∑
j=1

∥âj − aj∥1

≪

√
p log(n)
Nnβ2

n
,

and similarly:

∥(Â − A)′M−1
0 (Â − A)∥ ≪

K

∑
k=1

∥Âk − Ak∥1 ≪

√
p log(n)
Nnβ2

n
,

∥(Â − A)′(M−1 − M−1
0 )(Â − A)∥ ≪

K

∑
k=1

∥Âk − Ak∥1 ≪

√
p log(n)
Nnβ2

n
.

As a result:

T1 ≤ C∥(Â − A)′M−1
0 A∥+ C∥A′(M−1 − M−1

0 )A∥

≤ C
p

∑
j=1

∥âj − aj∥1 + C

√
p log(n)

Nn
·

p

∑
j=1

∥aj∥1

≤ C

√
p log(n)
Nnβ2

n
. (A69)

Next, for T2, we bound:

T2 ≤ ∥(Â − A)′M−1di∥+ ∥A′(M−1 − M−1
0 )di∥+ ∥A′M−1

0 (di − d0
i )∥

≤ max
j

∥âj − aj∥1

hj
+ ∥aj∥1

√
log(n)

hj

√
Nnhj

 · ∥di∥1 + max
1≤k≤K

∣∣A′
k M−1

0 (di − d0
i )
∣∣

≤ C

√
p log(n)
Nnβ2

n
+ max

1≤k≤K

∣∣A′
k M−1

0 (di − d0
i )
∣∣ .

where for (Â − A)′M−1di, given the low-dimension K, we crudely bound:

∥(Â − A)′M−1di∥ ≤ C max
k

∣∣(Âk − Ak)
′M−1di

∣∣ ≤ C max
k,j

∣∣h−1
j
(
âj(k)− aj(k)

)∣∣∥di∥1

and
∣∣âj(k)− aj(k)

∣∣ ≤ ∥âj − aj∥1. We bound ∥A′(M−1 − M−1
0 )di∥ in the same manner. To

proceed, we analyze
∣∣A′

k M−1
0 (di − d0

i )
∣∣ for a fixed k. We rewrite it as:

A′
k M−1

0 (di − d0
i ) =

1
Ni

Ni

∑
m=1

A′
k M−1

0 (Tim −Tim).

The RHS is an independent sum where Bernstein inequality can be applied. By elementary
computations, the variance is:

N−1
i var

(
A′

k M−1
0 (Tim −Tim)

)
= N−1

i E
(

A′
k M−1

0 (Tim −Tim)
)2

= N−1
i A′

k M−1
0 diag(d0

i )M−1
0 Ak − N−1

i
(

A′
k M−1

0 d0
i
)2

≤ N−1
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and the individual bound is crudely N−1. It follows from Bernstein inequality that with
probability 1 − o(n−4):

∥A′
k M−1

0 (di − d0
i )∥ ≤ C

(√ log(n)
N

+
log(n)

N

)
≤ C

√
log(n)

N

in light of N ≫ log(n). This gives rise to:

T2 ≤ C

√
p log(n)
Nnβ2

n
+ C

√
log(n)

N

We substitute the above equation, together with (A69), into (A68) and conclude that:

∥ŵ∗
i − wi∥1 ≤ C

√
p log(n)
Nnβ4

n
+ C

√
log(n)
Nβ2

n
.

Recall that the actual estimator ŵi is defined by:

ŵi = max{ŵ∗
i , 0}/∥max{ŵ∗

i , 0}∥1,

where the maximum is taken entry-wisely. We write w̃i := max{ŵ∗
i , 0} for short. Since wi

is always non-negative, it is not hard to see that:

∥w̃i − wi∥1 ≤ C∥ŵ∗
i − wi∥1 ≤ C

√
p log(n)
Nnβ4

n
+ C

√
log(n)
Nβ2

n
= o(1) .

As a result, ∥w̃i∥1 = 1 + o(1). Moreover:

∥ŵi − wi∥1 ≤ ∥w̃i − wi∥1

∥w̃i∥1
+ ∥wi∥1

∣∣∣ 1
∥w̃i∥1

− 1
∥wi∥1

∣∣∣
≤ C∥w̃i − wi∥1 ≤ C

√
p log(n)
Nnβ4

n
+ C

√
log(n)
Nβ2

n

with probability 1 − o(n−4). Combining all i, we thus conclude the proof.
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