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Abstract

We develop new structural nonparametric methods for estimating conditional asset

pricing models using deep neural networks. Our method is guided by economic the-

ory and employs time-varying conditional information on alphas and betas carried

by firm-specific characteristics. Contrary to many applications of neural networks

in economics, we open the “black box” of machine learning predictions by incorpo-

rating finance theory into the learning, and provide an economic interpretation of

the successful predictions obtained from neural networks, by decomposing the neural

predictors as risk-related and mispricing components. Our estimation method starts

with period-by-period cross-sectional deep learning, followed by local PCAs to cap-

ture time-varying features such as latent factors of the model. We formally establish

the asymptotic theory of the structural deep-learning estimators, which apply to both

in-sample fit and out-of-sample predictions. We also illustrate the “double-descent-

risk” phenomena associated with over-parametrized predictions, which justifies the

use of over-fitting machine learning methods.

Key words: factor pricing model, neural network, double descent, alphas, charac-

teristics, risk premium

We thank Torben Andersen, Svetlana Bryzgalova, Carter Davis, Victor DeMiguel, Andrew Pat-
ton, Robert Jarrow, Robert Korajczyk, Oliver Linton, Viktor Todorov, Guofu Zhou, and seminar
and conference participants at Northwestern University, IDC Herzlyia, University of Washington,
University of Virginia, Rutgers University, Syracuse University, London Business School, Cornell
University, AI & Big Data in Financial Research Forum, RCEA Big Data & Machine Learning Con-
ference, SFS Calvacade, and Gri�n Applied Economics Incubator Conference on Machine Learning
Across Disciplines: New Theoretical Developments for valuable comments.

Department of ORFE, Princeton University. jqfan@princeton.edu.
Department of Statistics, Harvard University. zke@fas.harvard.edu
Department of Economics, Rutgers University. yuan.liao@rutgers.edu
Olin Business School, Washington University in St. Louis, andreas.neuhierl@wustl.edu

1

Electronic copy available at: https://ssrn.com/abstract=4117882



1 Introduction

In this paper, we develop new nonparametric methods to obtain economic in-

terpretations of asset return predictions obtained from deep neural networks. Our

analysis is guided by financial economic theory. We use mild economic structure

of asset pricing models and develop econometric theories for interpreting each of

the components for predicting asset returns. Deep learning methods have proven

to be among the most successful approaches for high dimensional and unstructured

prediction problems with little “curse of dimensionality” in implementation. They

have been shown to adapt automatically low-dimensional structures when unknown

functions are compositions of low-dimensional ones such as additive or bivariate in-

teraction models (Kohler and Langer, 2021). Despite of its popularity in the analysis

of financial market data, however, deep learning has often been criticized as a black

box, i.e. we see the inputs and the outputs, but we do not know enough about the

structure of the underlying problem. Neither do we know the source of the predictive

power (mispricing vs. risk premium), nor it is clear to us whether there are nontrivial

portions of noises that contain little predictive power inside the black box.

We take the success of deep learning methods as given, i.e. we do not aim to pro-

duce better predictions by modifying the components of deep learning architecture

in asset pricing. Our primary contribution is to open the black box by joining rigor-

ous asymptotic theory with financial economic theory. Thereby we obtain economic

understanding for why deep learning models have been shown to produce successful

prediction in financial economics and how to improve their prediction powers. More

concretely, our framework admits a structural decomposition of the predictions ob-

tained from deep neural networks into compensation for risk and possible mispricing.

In addition, we also characterize the temporal evolution of these components. In or-

der to obtain these results, we only need to impose mild economic restrictions on the

data generating process - in particular we merely assume that returns follow a factor

model and that some of the observed variables are informative about factor loadings

or mispricing.

Our approach features dynamics for the risk related components as well as the

mispricing component. We use the rich information in a large set of time-varying char-

acteristics to estimate mispricing and factor exposures more e�ciently. The dynamics

can be driven by two sources. First, we allow the time-variation in characteristics to
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map directly into the time-variation of alphas and betas. Second, we allow the func-

tions that map characteristics into alphas and betas to be varying over time. As

the characteristic information is purely cross-sectional, i.e. only the cross-sectional

ranking rather than the raw value matters, featuring a time-varying mapping from

characteristics to alphas and betas is crucial to capture important empirical facts such

as the alpha decay (McLean and Ponti↵, 2016). The alpha decay, i.e. the tendency

that abnormal returns tend to diminish over time, will arise naturally in a setting

in which investors learn about predictors and take advantage of arbitrage opportu-

nities to (eventually) eliminate them. In addition, the mapping from characteristics

to betas and mispring has been assumed to be time-invariant in the recent litera-

ture, with only characteristics being dynamics. In contrast, we allow time-varying

nonparametric mappings, and argue that the alpha decay in our empirical study also

demonstrates the importance of incorporating time-varying mappings.

We also contribute to the econometric literature by rigorously deriving the rate

of convergence for structural deep learning estimation of (predicted) returns, alphas

and compensation for risk. A novel theoretical result is that out-of-sample rates of

convergence are also derived for predicted alphas and risk-related return components

using deep neural networks. To our best knowledge, this is the first time such results

are established in the asset pricing literature, and even in the econometric literature

as most existing results concentrate on in-sample convergence. The derived rates

of convergence depend on three key ingredients, (1) the approximation error for the

unknown functions using deep neural networks (DNN), (2) the complexity of the

neural network in which the model is being trained, and (3) the degree of time-series

dynamics of nonparametric functions that measures the transition from in-sample to

out-of-sample periods. Our theory shows that the predictive error naturally pins down

these three sources of learning errors. In particular, while the first two components are

common in the deep learning theory though only in the nonstructural nonparametric

setting, the third component also appears naturally when we apply time localization

such as kernel smoothing for the time-varying principal components analysis (PCA).

We apply our structural decomposition to the standard CRSP/Compustat panel.

For the in-sample decomposition, we find that about 90% of the explained variation

can be attributed to risk. Within this 90%, the bulk of the explanatory power is

driven by the factor realization (⇡ 95%) and roughly 5% by the long-term risk pre-

mium. Up to 1% of the explained in-sample return can be attributed to mispricing.
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Meanwhile, our analysis provides new insights for the out-of-sample prediction of re-

turns in the cross-section: the predictive success is driven almost exclusively by the

risk premium component and the mispricing part. In addition, the predictability is

nearly entirely attributed to the risk premium for large firms, and is attributed to

both risk premium (about 76%) and mispricing (about 24%) for small firms. Mean-

while, the factor realization is essentially not predictable as the factor returns are

themselves excess returns, which are known to have very low persistence in the time

series. Due to the presence of old factor realizations, the out-of-sample R2 is negative

for the standard plugin forecast using DNN estimates in all scenarios under study.

This reveals that we can obtain greater predictive accuracy by focusing only on the

risk premium component and the mispricing component rather than the prevailing

practice of plugging new data into the estimated model. The former is possible due to

our novel econometric methods that allow us to consistently estimate each component

in the structural conditional asset pricing model. In contrast, the standard “plugin”

approach will lead to a suboptimal prediction which is “noised up” and “misguided”

by the past factor realization.

Finally, the neural networks that we empirically implement contain multilayers

with minimum degrees of regularizations, which may encounter the overfitting issues.

To this extent, we also numerically document an interesting phenomenon known

as “double descent” for machine learning predictions. That is, in contrast to the

traditional statistical wisdom on the bias-variance tradeo↵, the prediction risk starts

decreasing as the number of trained parameters exceeds the sample size and continues

growing. Using simulated data, we illustrate this phenomenon in one of the best

known economic predictive models as in Stock and Watson (2002). Recently, a similar

“virtual of complexity” is also studied in the asset pricing context by Kelly et al.

(2021), who document that Sharpe ratios of machine learning portfolios may increase

for overparametrized models.

It is important to point out that while our analysis accomplishes sensible improve-

ments on the out-of-sample forecast, it should be regarded as a means to provide a

structural decomposition of the machine learning forecast. Our main goal is to reach

an economically meaningful interpretation of source of predictability for asset returns.
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Related Literature

Deep learning models have achieved remarkable success in science and engineering.

The overall literature is too vast to be summarized here. Therefore, we refer to Fan

et al. (2021) for a broader overview and only mention the most closely connected

papers. Theoretically, deep learning has been shown to be able to approximate a

broad class of highly nonlinear functions, see, e.g. Mhaskar et al. (2016); Rolnick

and Tegmark (2017); Lin et al. (2017); Shen et al. (2021). Statistically, Bauer and

Kohler (2019), Schmidt-Hieber (2020), Kohler and Langer (2021) and Fan et al.

(2022) demonstrate the ability of deep neural networks for circumventing the curse of

dimensionality arising from high-dimensional predictors in nonparametric regression

with automatic adaptation to low-dimensional structures. Farrell et al. (2021) showed

that rates of convergence for deep neural nets are su�ciently fast to establish valid

second-step inference after first-step estimation with deep learning such as treatment

e↵ect evaluation. Since the pioneering contributions of Bansal and Viswanathan

(1993) and Chen and Ludvigson (2009), machine learning methods have recently

been applied in asset pricing frequently and have shown great promise. Freyberger

et al. (2020), Gu et al. (2020), Bianchi et al. (2021) and Chen et al. (2020); Guijarro-

Ordonez et al. (2021) show that equity and bond return predictions are improved

significantly via applications of neural networks relative to linear (or other parametric)

models. Gu et al. (2020) conducted extensive comparative studies to illustrate the

gain of using these methods.

Our paper also contributes to the large literature and (conditional) factor models

in asset pricing. Important early contribution to this literature where made by Chen

et al. (1986), Connor and Korajczyk (1986) and Fama and French (1992). More re-

cently, Connor et al. (2012); Fan et al. (2016); Giglio and Xiu (2021); Giglio et al.

(2021); Kim et al. (2021) studied the unconditional model in the presence of la-

tent factors. Meanwhile, conditional linear factor models have been popularly used

to capture time-varying e↵ects of financial variables and firm-specific characteristics

(Shanken, 1990; Ferson and Harvey, 1999; Lettau and Ludvigson, 2001; Ghysels, 1998;

Ang and Kristensen, 2012; Gagliardini et al., 2016). To account for dynamic factor

betas, Kelly et al. (2019, 2020); Chen et al. (2021); Gu et al. (2019) studied models

in which dynamic characteristics are mapped to alphas and betas and the mapping

is assumed to be time-invariant. Their findings are consistent with Bakalli et al.

(2021) which show that standard factor models can be improved significantly by con-
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sidering the additional information about risk contained in characteristics. We refer

to Gagliardini et al. (2020) for an excellent survey for econometric methodologies

for large-dimensional conditional factor models. Parallel to the literature on factor

model in asset pricing, a sizeable literature on latent factor modeling has developed

in econometrics. Important contributions were made (among many others) by Bai

and Ng (2002); Forni et al. (2000); Stock and Watson (2002); Onatski (2012).

2 The Model

2.1 The conditional factor pricing model

We consider the following time-varying factor model with intercepts:

yit = ↵i,t�1 + �0
i,t�1�t�1 + �0

i,t�1(ft � Eft) + uit, i  N, t  T, (2.1)

where yit is the excess return of asset i at time t; ft is a K ⇥ 1 vector of latent

factors; ↵i,t�1 and �i,t�1 respectively denote the (possibly) time-varying alpha and

beta of the factor model; �t�1 is the vector of factor risk premia which also allow for

nontradable factors; uit is the idiosyncratic component. ↵i,t�1 allows the possibility of

mispricing for asset i and thus a test of the factor pricing model. Formal assumptions

identifiability, and for establishing properties of estimators are discussed in Section 4.

We consider the scenario where alphas and betas can be (partially) explained by

a set of individual-specific characteristics. Let xi,t�1 be a d-dimensional vector of

observed characteristics associated with stock i. We model

↵i,t�1 = g↵,t(xi,t�1) + �↵,i,t�1, E(�↵,i,t�1|xi,t�1, ft) = 0,

�i,t�1 = g�,t(xi,t�1) + ��,i,t�1, E(��,i,t�1|xi,t�1, ft) = 0. (2.2)

Here g↵,t(·) and g�,t(·) are time-varying nonparametric functions of characteristics;

�↵,it and ��,it respectively represent the source of alphas and betas that cannot be

explained by the characteristics (Fan et al., 2016). This model extends the arbitrage

model of Kim et al. (2021) and Li and Linton (2020) to conditional models where the

characteristic e↵ects g↵,t(·) and g�,t(·) should be not only possibly nonlinear but also

dynamic. An important feature of this model is that, xi,t and �it := (�↵,it,��,it) may

vary in di↵erent frequencies. So both ↵i,t and �i,t may vary rapidly over time due to
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the high-frequency change of �↵,it and ��,it.

Machine learning methods, in particular, deep learning, has been successfully

employed to predict asset returns using large amount of conditional information in

the characteristics. For ease of interpretation, let us consider a framework of period-

by-period prediction. Suppose at period t, researchers obtain a prediction function

bmt(·) by applying deep neural networks on the cross-sectional data {(yi,t,xi,t�1) : i =

1, · · · , N}. They then predict yi,t+1 by substituting xi,t to obtain:

byi,t+1|t := bmt(xi,t).

The learned function bmt(·) is an estimate of the conditional mean function m
0
t (x) =

E(yit|xi,t�1 = x, ft) in the cross-sectional regression model:

yit = m
0
t (xi,t�1) + eit, i = 1, · · · , N, (2.3)

where eit is the regression noise.1 Note that the notation E(yit|xi,t�1 = x, ft) that

defines the conditional mean further conditions on ft, which regards ft � Eft in (2.1)

as a fixed parameter rather than a regressor at period t. Keep in mind that when

estimating m
0
t (·) at period t, we run a cross-sectional regression only by regressing on

xi,t�1, treating any components arising from ft as unknown, yet fixed parameters.

While it has been established that machine learning models as (2.3 are very suc-

cessful in prediction, little interpretation has been given regarding the source of pre-

dictability in these models. In this paper, we aim to open the “black box” of the

machine learning prediction model (2.3) and provide an economically insightful in-

terpretation of the successful prediction obtained using machine learning methods.

1Latent factors ft are given as they are already realized across assets at time t. Pooled regression
is also often used in the literature: minm

P
t

P
i(yit � m(xi,t�1))2. In conditional pricing models

however, the pooled regression does not incorporate the time-varyingness of betas and pricing errors,
which would not be consistent when characteristics vary over time even if the functions g↵,t() and
g�,t() do not vary. In conditional models, one may replace the pooled regression by “localized
pooling”: minm

P
t

P
i(yit �m(xi,t�1))2K( t�s

Th ), where K( t�s
Th ) is a kernel function to incorporate

the time-varyingness as we shall explain later in this paper. This localized pooling would give a
similar estimator for g↵,t(xi,t�1) + g�,t(xi,t�1)0�i�1 as in our approach, which removes the factor
shocks, and is equivalent to ours in linear models. However, unlike our method, it does not produce
estimators for factor realizations, betas, or pricing errors. In addition, it combines time smoothing
and DNN in a single step, which does not have the flexibility for choosing bandwidths as our method
does.
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2.2 Structural machine learning predictions

In this section we present decompositions of both in-sample estimation and out-

of-sample predictions. While the decompositions are obtained for a generic machine

learning method, in this paper we are primarily interested in the deep neural net-

work estimation, due to its various advantages on multi-dimensional nonparametric

function estimation, including representation powers and the arts of scalable imple-

mentations in high-dimension.

The conditional mean function m
0
t (x) = E(yit|xi,t�1 = x, ft) can be presented as:

m
0
t (x) = g↵,t(x) + griskP,t(x) + gfactor,t(x),

griskP,t(x) = g�,t(x)
0�t�1,

gfactor,t(x) = g�,t(x)
0(ft � Eft). (2.4)

Let bg↵,t, bgriskP,t and bgfactor,t respectively denote the estimated functions of g↵,t, griskP,t

and gfactor,t, whose construction will be clear in the next section. Then the conditional

factor model yields the following decompsitions of the in-sample fit at each time t:

In-sample decomposition:

spot expected return:

E(yit|xi,t�1, ft) = g↵,t(xi,t�1) + griskP,t(xi,t�1) + gfactor,t(xi,t�1),

long-term expected return:

E(yit|xi,t�1) = E
✓
E(yit|xi,t�1, ft)

����xi,t�1

◆

= g↵,t(xi,t�1)| {z }
mispricing

+ griskP,t(xi,t�1)| {z }
risk premium

,

returns: yit ⇡ bg↵,t(xi,t�1) + bgriskP,t(xi,t�1) + bgfactor,t(xi,t�1)| {z }
⇡byit

+eit,

byit := bmt(xi,t�1) (2.5)

where eit = �↵,i,t�1 + � 0
�,i,t�1�t�1 + � 0

�,i,t�1(ft � Eft) + uit and byit is the in-sample ex-

pected return by plugging the in-sample characteristic xi,t�1 into the machine learning

function. This decomposition takes into account the fact that the factors in the in-
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sample period have been realized and are estimable under some mild conditions.

The first equality is what the model implies, which leads to a decomposition of

what we call “spot expected return”. It is clear from the decomposition that the spot

return depends on realized factor returns, but does not depend on the components in

the betas and alphas that are orthogonal to the characteristics (�it), neither does it

depend on idiosyncratic errors (uit). Later on, we will show that the spot expected re-

turn can be learned by period-by-period cross-sectional deep neural networks (DNN),

via regressing returns on characteristics.

The second expected return, which we call “long-term expected return”, depends

only on characteristics and the factor risk premia, so can be learned by taking the local

time-series average (around time t) of the spot expected return. It clearly shows that

the conditional expected return evolves with characteristics through two components.

Finally, the third (approximate) equality shows that plugging the in-sample xi,t�1 into

the DNN estimated function yields the in-sample fit byit for the realized return.

Next we discuss the out-of-sample decomposition. The realized out-of-sample

returns, yi,t+1, has the following decomposition.

Out-of-sample decomposition

yi,t+1 = g↵,t+1(xi,t) + griskP,t+1(xi,t) + gfactor,t+1(xi,t) + ei,t+1

⇡ g↵,t(xi,t) + griskP,t(xi,t) + g�,t(xi,t)
0(ft+1 � Eft) + ei,t+1

= m
0
t (xi,t) + g�,t(xi,t)

0(ft+1 � ft) + ei,t+1, (2.6)

where ⇡ holds if the functions g↵,t(·) and griskP,t(·) change slowly over time. There-

fore, the return to be predicted approximately equals the conditional mean function

m
0
t (x) evaluated at the new characteristic x = xi,t, plus two noises: ei,t+1 being the

idiosyncratic noise in the mean regression, and g�,t(xi,t)0(ft+1 � ft) arising from the

factor innovation.

While the last line of (2.6) justifies the use of machine learning predictor byi,t+1|t

to predict returns, this predictor also contains the factor shocks which does not con-

tribute to predictability. In fact, our approach admits a refined out-of-sample decom-

position that specifies all components constituting byi,t+1|t. Equations (2.4) and (2.6)
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yield:

byi,t+1|t = bg↵,t(xi,t) + bgriskP,t(xi,t) + bgfactor,t(xi,t), (2.7)

yi,t+1 = bg↵,t(xi,t) + bgriskP,t(xi,t) + gfactor,t+1(xi,t) + ei,t+1| {z }
⇠i,t+1

+oP (1), (2.8)

where the oP (1) term converges to zero when N, T ! 1 and byi,t+1|t is the out-of-

sample machine learning predicted return by plugging the “new” xi,t into the machine

learning function. The decomposition Equation (2.7) justifies two main sources of

the predicting power inside byi,t+1|t: the mispricing component bg↵,t(xi,t) and the risk-

premia component bgriskP,t(xi,t). But the last term, bgfactor,t(xi,t) ⇡ g�,t(xi,t)0(ft � Eft),
has little predictive power. Indeed, (2.8) classifies two prediction noises:

⇠i,t+1 := gfactor,t+1(xi,t) + ei,t+1, where

gfactor,t+1(xi,t) := g�,t+1(xi,t)
0(ft+1 � Eft+1) is future factor realization,

ei,t+1 := �↵,it + � 0
�,it�t + � 0

�,it(ft+1 � Eft+1) + ui,t+1

is orthogonal and idiosyncratic components.

The future factor realization is often either nearly martingale di↵erence or very weakly

dependent on bgfactor,t(xi,t), so is unpredictable. This leads to a major di↵erence be-

tween the in-sample and out-of-sample decompositions. 2

We aim to estimate each component of the above decompositions, both in-sample

and out-of-sample. In particular, we shall apply DNN to respectively estimate func-

tions g↵,t+1(·) and griskP,t+1(·). Our method serves two goals of this paper: first, it

allows to quantify the role of each component in constituting asset returns; second,

it allows to remove the factor-realizations and use only the alphas and risk-premium

components for predictions. As one of the theoretical results, we show that the out-

of-sample true returns satisfy (2.8) for the future period T + 1, where bg↵,T (xi,T ) and

2In traditional prediction approaches, the past realizations of latent factors are used to predict
the future factor innovations, which doubles the prediction variance and is worse than the predictor
zero when the factor innovations are nearly martingale. Our structural decomposition and learning
techniques allow us to untangle the contributions of factor realizations and replace them by zero,
the best predictor when the underlying factor process is martingale. If there are nontrivial temporal
correlations among factor realizations, then we can fit an autoregressive model: gfactor,t+1(xi,t) =
⇢gfactor,t(xi,t�1) + ✏f,t+1. The first term is predictable at period t, while the new shock ✏f,t+1 has
smaller volatility than gfactor,t+1(xi,t) does. Hence adding gfactor,t(xi,t�1) may improve the out-of-
sample prediction in applications when ⇢ is relatively large. Unfortunately factor realizations in
asset pricing tend to have short memories whose autocorrelations are very low in magnitude.
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bgriskP,T (xi,T ) are respectively the DNN-predictions of mispricing and risk premium.

Yet, the remaining component ⇠i,T satisfies E(⇠i,T+1|FT ) = 0 for the filtration infor-

mation up to the prediction period. This shows: (i) the DNN-prediction can capture

the predictable components of future returns: mispricing and risk premium; (ii) other

than the two DNN-prediction components, other components in future returns are

not predictable.

3 The Methodology

In this section we describe our methods for estimating the components of the

return decomposition, i.e. the mispricing component, factors, risk exposures and risk

premia. Define

E(Yt|Xt�1, ft) = (E(yit|xi,t�1, ft) : i  N), N ⇥ 1 vector,

G�,t(Xt�1) = (g�,t(xi,t�1) : i  N), N ⇥ dim(ft) matrix,

which are the matrices stacking the high-dimensional spot expected returns and

characteristic-betas at each period. The building block of our methodology is the

following local approximation: By (2.5), fix a period t, for all periods s that are

“close to t”:

E(Ys|Xs�1, fs)� E
✓
E(Ys|Xs�1, fs)

����Xs�1

◆

= G�,s(Xs�1)(fs � Efs)
⇡ G�,t(Xt�1)(fs � Efs),

where “⇡” follows from the assumption that characteristic-betas are varying much

slower than factor realizations. Therefore, columns of G�,t(Xt�1) are locally propor-

tional to the top eigenvectors (left singular vectors) of the matrix of demeaned spot

expected returns. This motivates us to estimate the model in three steps:

(1) apply DNN to estimate the nonparametric spot returns E(Ys|Xs�1, fs);

(2) apply local averages to estimate the long-term returns E
✓
E(Ys|Xs�1, fs)

����Xs�1

◆
;

(3) apply local PCA to estimate betas G�,t(Xt�1).
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However, estimation details are technically challenging due to the possibly high

nonlinearity and time-varying nature of long-term expected returns and characteristic-

betas. These issues are to be addressed using deep neural networks and kernel smooth-

ing. In the following subsections we outline additional details of our methodology.

Formal properties are established in Section 4.

3.1 Learning spot returns by deep neural networks

The first step of our method is to estimate the spot expected return function

m
0
t (x) := E(yit|xi,t�1 = x, ft).

As the latent factors are realized at time t, this conditional mean function can be

estimated via the following cross sectional regression:

yit = m
0
t (xi,t�1) + eit, E(eit|xi,t�1, ft) = 0, i = 1, · · · , N.

Because of the nonlinearity and high-dimensionality of xi,t�1, the deep neural network

is an appealing nonparametric machine learning technique to employ here. Deep

learning can be viewed as a family of nonlinear statistical models that are able to

encode highly nontrivial representations of data. A prototypical example is a feed-

forward neural network with J layers, which is a family of functions taking form:

m(x) = �J(✓JhJ�1(x)), hj�1(x) = �j�1(✓j�1hj�2(x)), · · · , h0(x) = x

where the parameters ✓ = (✓1, · · · ,✓J) with ✓j 2 Rdj⇥dj�1 , and �j : Rdj ! Rdj+1

is a vector-value nonlinear activation functions, usually the same across components

and layers. One of the popularly used activation functions is known as ReLu, defined

as �(x) = max(0, x). The number of neurons being used in layer j, denoted by dj,

is called the width of that layer. For presentational simplicity, we shall just assume

d1 = · · · = dJ = L, but in practice they can be chosen to vary across layers.

Let MJ,L denote the neural network space with depth J and width L that collect

functions taking the form m(x) parametrized by ✓. We estimate m
0
t (·) period-by-

period via

bmt(·) = arg min
m2MJ,L

NX

i=1

(yit �m(xi,t�1))
2
,
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where we drop the superscript 0 for simplicity. Let bmt(Xt�1) be the N ⇥ 1 vector of

fitted values {bmt(xi,t�1)}, which estimates the N -dimensional spot expected return

at given time t. It can be shown that

bmt(xi,t�1) !
P
g↵,t(xi,t�1) + griskP,t(xi,t�1) + g�,t(xi,t�1)

0(ft � Eft), as N ! 1.

which demonstrates at least three appealing features of the period-by-period DNN

for expected returns: (1) it eliminates idyosyncratic noises with vanishing statistical

errors that only depends on the cross-sectional dimensions, so works well even if T is

finite; (2) it retains the factor realizations, and (3) it is not a↵ected by the nature of

time-varyingness under conditional models.

As has been documented in the literature, learning using deep neural networks

brings several advantages compared to classical nonparametric methods. First, as

an important statistical advantage (Bauer and Kohler, 2019; Schmidt-Hieber, 2020),

the art of deep-learning alleviates the curse of dimensionality arising from the high-

dimensional nonparametric regression, and finds an estimator with good generaliza-

tion power. See more details in the theory section. Secondly, both the asymptotic

theoretical performance and the finite sample performance of deep neural networks

are much less sensitive to the choice of tuning parameters than the kernel-based meth-

ods. Finally, it has been proved beneficial to use deep neural networks (Telgarsky,

2016), which can approximate various classes of functions (Yarotsky, 2017, 2018; Shen

et al., 2021; Lu et al., 2020; Shen et al., 2022). 3

3.2 Learning long-term returns by kernel smoothing

The next step is to estimate the long-term conditional expected return

E(yit|xi,t�1) = E
✓
E(yit|xi,t�1, ft)

����xi,t�1

◆
.

We apply the kernel smoothing method following the seminal work of Ang and Kris-

tensen (2012). Note that the kernel smoothing technique being employed here is

3Telgarsky (2016) shows that a tooth function with O(2k) oscillations can be expressed as a
ReLU-DNN with depth O(k) and O(1) nodes, but needs O(2k) nodes for a two-layer network to re-
alize it. Using Taylor expansion and approximating polynomials via tooth functions, nonasymptotic
approximation error bounds for various classes of functions have been derived in the aforementioned
references.
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not motivated by the usual nonparametric regression for estimating conditional mean

functions. Rather, it is the time-domain smoothing, motivated by the fact that the

conditional alpha and beta g↵,t(xi,t) and g�,t(xi,t) vary slowly across time. We assume

that for each individual i, there are twice di↵erentiable functions mi(·) and gi(·) so

that almost surely, we can write

E(yit|xi,t�1) = mi

✓
t

T

◆
, g�,t(xi,t�1) = gi

✓
t

T

◆
.

Then, we have mi

�
t
T

�
⇡ mi

�
s
T

�
, gi
�

t
T

�
⇡ gi

�
s
T

�
for all s

T ⇡
t
T . Thus, we have the

local approximation:

m
0
s(xi,s�1) = mi

⇣
s

T

⌘
+ g�,s(xi,s�1)

0(fs � Efs)

⇡ mi

✓
t

T

◆
+ g�,t(xi,t�1)

0(fs � Efs),
s

T
⇡

t

T
.

Therefore, averaging the DNN functions bms(xi,s�1) locally over time can lead to a

consistent estimation of the long-term expected return mi(t/T ).

To carry out the local-average, we adopt a kernel function K : [�1, 1] ! [0,1)

with bandwidth h. We estimate the long-term expected return E(yit|xi,t�1) by

m̄i,t =
1

Th

TX

s=1

bms(xi,s�1)K

✓
s� t

Th

◆
A

�1
t , At =

1

Th

TX

s=1

K

✓
s� t

Th

◆
.

This estimator is well motivated from the time-domain nonparametric kernel estima-

tion literature (Fan and Yao, 2003). The estimation performance is not sensitive to

the specific choice of kernel functions. In our empirical application, we use the quartic

kernel:

K(x) =
15

16
(1� x

2)2, �1  x  1

adjusted to alleviate the boundary e↵ects. The boundary kernel we employ reduces

the estimation bias on boundary time periods near both t = 0 and t = T , which

is relevant for out-of-sample forecasts. In addition, the bandwidth h controls the

time window used to locally average the DNN functions. A small bandwidth means

only observations close to t are used in the weighted averages, so the bandwidth

controls the bias and variance of the estimator. In particular, as sample size grows,
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the bandwidth should shrink towards zero at a suitable rate. 4

In time-varying asset pricing models with observable factors, Ang and Kristensen

(2012) applied a similar approach to estimate the unconditional alphas and betas.

Di↵erent from their approach, we are estimating the conditional expected returns

given characteristics. This is particularly valuable as extant recent literature, e.g.

Gagliardini et al. (2016), Chaieb et al. (2021), Kelly et al. (2019). Bakalli et al.

(2021) show that standard factor models can be improved significantly by consid-

ering the additional information about the variation of risk over time contained in

characteristics.

3.3 Local principal components analysis

After respectively estimating the spot and long-term returns, we now discuss how

the conditional alphas, betas and risk premia can be estimated. We propose to use

local PCA combined with DNN to estimate these quantities in conditional models.

As outlined earlier, the di↵erence between the spot and long-term expected returns

equals:

E(yis|xi,s�1, fs)� E(yis|xi,s�1) = g�,s(xi,s�1)
0(fs � Efs)

⇡ g�,t(xi,t�1)
0(fs � Efs), 8

s

T
⇡

t

T
, (3.1)

which is an approximate noise-free factor model locally around period t. Therefore,

locally G�,t(Xt�1) is approximately the top-eigenvector matrix of

var

✓
E(Ys|Xs�1, fs)� E(Ys|Xs�1)

����Xs�1

◆
⇡ G�,t(Xt�1)var(fs|Xs�1)G�,t(Xt�1)

0
.

Define

bms(Xs�1) = (bms(xi,s�1) : i  N), N ⇥ 1

m̄s = (m̄i,s : i  N), N ⇥ 1.

4For the baseline kernelK(u), we adjust it by taking the boundary e↵ect and define the boundary

kernel Kt(u) = 1{|u|  1}[K(u)�at], where at =
R u(t)
l(t) xK0(x)dx/

R u(t)
l(t) x1{|x| < 1}dx is a boundary

adjusting constant with lt = (1�t)/(Th) and u(t) = (T�t)/(Th). Alternatively, the boundary kernel

can also be defined as Kt(u) = K(u)(bt � uct), where bt =
R u(t)
l(t) x

2
K(x)dx and ct =

R u(t)
l(t) xK(x)dx.

The latter method is indeed the equivalent kernel induced by the local linear fitting (Fan and Gijbels,
1996).
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With the demeaned expected return E(Ys|Xs�1, fs) � E(Ys|Xs�1) estimated by

bms(Xs�1) � m̄s, we define the conditional-beta estimator bG�,t(Xt�1) as the eigen-

vectors corresponding to the first K eigenvalues of

1

Th

TX

s=1

[ bms(Xs�1)� m̄s][ bms(Xs�1)� m̄s]
0
K

✓
s� t

Th

◆
A

�1
t .

With the estimated conditional-beta, the conditional-alpha and risk premia can be es-

timated following a cross-sectional procedure based on the decomposition (2.5) for the

long-term expected returns. We present the formal algorithm in the next subsection.

It is important to note that the heuristic s ⇡ t in (3.1) by no means restricts our

method to only being applicable to short panels such as the usual moving-window

approach. Instead, the “local” nature is naturally possessed by the use of kernel

smoothing, and in fact allows much longer time series and more volatile parameters

than the usual moving-window approach would do.

In the presence of latent factors, PCA is often used to combine with cross-sectional

regressions for unconditional models (Giglio and Xiu, 2021; Giglio et al., 2021). But

ordinary PCA works well only in unconditional factor models, because factor-betas

can be regarded as eigenvectors of the data matrix only if betas are time-invariant.

In the context of conditional factor model, we recall that betas have the following

decomposition

�t�1 = G�,t(Xt�1) + ��,t�1.

In this context, PCA would not work well for two reasons. First, betas cannot be rep-

resented as the eigenvectors of the return covariance matrix in time-varying models.

Secondly, PCA does not distinguish characteristic e↵ects and its orthogonal e↵ects

(arising from �t). To improve over regular PCA, Fan et al. (2016); Kim et al. (2021)

proposed to use “projected PCA”, which removes the e↵ects of ��,t but does not

takes into account time-varying characteristics or varying g�,t(·) function. Kelly et al.

(2019) and Chen et al. (2021) extended their methods to incorporate time-varying

characteristics, in which dynamic characteristics are mapped to alphas and betas and

the mapping is assumed to be time-invariant, and do not work with high-dimensional

expected returns.
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3.4 The full estimation algorithm

Following the previous discussions, we propose the following algorithm to estimate

the conditional factor model. For simplicity, we denote the in-sample data as:

 
yi,1

xi,0

!
, · · · ,

 
yi,T

xi,T�1

!
, i = 1, · · · , N.

Algorithm 3.1. Estimate the model parameters and functions following these steps.

S1. Spot expected returns. Run cross-sectional deep NN regression:

bmt(·) = arg min
m2MJ,L

NX

i=1

(yit �m(xi,t�1))
2
, t = 1, · · · , T.

Let bmt(Xt�1) be the N ⇥ 1 vector of bmt(xi,t�1).

S2. Long-term expected returns. Run time-domain smoothing:

m̄t =
1

Th

TX

s=1

bmt(Xt�1)K

✓
s� t

Th

◆
A

�1
t , At =

1

Th

TX

s=1

K

✓
s� t

Th

◆
.

S3. Beta and Factors. Define 1p
N
bG�,t�1 as an N ⇥K matrix whose columns are

the eigenvectors of 1
ThZtKtZ

0
t, corresponding to the top K eigenvalues, where

Zt = ( bm1(X0)� m̄t, · · · , bmT (XT�1)� m̄t), 5

and Kt is a T ⇥ T diagonal matrix consisting of {K( s�t
Th ) : s = 1, · · · , T} as the

diagonal entries. Define the factor estimator at time t as:

bft = bG0
�,t�1( bmt(Xt�1)� m̄t).

S4. Alpha and Risk Premia. Run cross-sectional regression to estimate the factor

risk premium and g↵,t:

b�t�1 =
1

N

bG0
�,t�1m̄t,

bG↵,t�1 := m̄t �
bG�,t�1

b�t�1. (3.2)

5We assume the number of factors is consistently estimable. In our empirical analysis we conduct
robustness study for various choices of the number factors.
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Steps 1 through 3 have been well motivated from our previous discussions. Step 4

estimates the alphas and the factor risk premium. While this step is similar to that

in the usual Fama and MacBeth (1973) procedure, here we apply the cross-sectional

regression on the average return after DNN projections. In estimating the risk premia

in (3.2), we impose bG0
�,t�1

bG↵,t�1 = 0.

Let bg↵,t�1,i denote the ith element of bG↵,t�1, which is the estimated in-sample

alpha, g↵,t(xi,t�1), driven by characteristics, bg0
�,t�1,i denotes the ith of bG�,t�1. We

define the in-sample risk-related components as in (2.4):

griskP,t(xi,t�1) := g�,t(xi,t�1)
0�t�1,

gfactor,t(xi,t�1) := g�,t(xi,t�1)
0(ft � Eft),

which can be estimated using6

bgriskP,t,i = bg0
�,t�1,i

b�t�1

bgfactor,t,i = bg0
�,t�1,i

bft.

Next, we present the out-of-sample algorithm. The key di↵erences are that the

factor innovations are unpredictable and mispricing and risk premia need to be ex-

trapolated. To utilize the state-domain regression for the out-of-sample prediction,

we additionally train two neural networks by regressing the estimated in-sample al-

phas bG↵,T�1 and risk premia bG�,T�1
b�T�1 on XT�1. This gives rise to DNN estimated

nonparametric functions: the mispricing function and risk-functions:

g↵,T (x), griskP,T (x).

Note these functions are not required for in-sample estimation of alpha and risk but

are required for the out-of-sample decomposition and prediction. The out-of-sample

prediction can be constructed by plugging in XT to these estimated functions.

Algorithm 3.2. Predict out-of-sample alpha and risk following these steps.

S5. Estimate the in-sample alpha and risk premium bG↵,T�1 and bG�,T�1
b�T�1 as in

6While it looks as if we dropped Eft in the estimation below, we actually did not. It is only a
matter of notation. The estimators for the latent factors are actually estimating the demeaned ones.
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Algorithm 3.1, and write elements of the N ⇥ 1 vectors as:

bG↵,T�1 = (bg↵,T�1,1, · · · , bg↵,T�1,N)
0
, bG�,T�1

b�T�1 = (bgriskP,T,1, · · · , bgriskP,T,N)0.

S6. Run cross-sectional deep NN regression:

bgriskP,T (·) = arg min
r2MJ,L

NX

i=1

(bgriskP,T,i � r(xi,T�1))
2
.

Run constrained cross-sectional deep NN regression: for some tuning parameter

⌫ ! 0,

bg↵,T (·) = arg min
g2MJ,L

NX

i=1

(bg↵,T�1,i � g(xi,T�1))
2

subject to

�����
1

N

NX

i=1

g(xi,T )bg�,T,i

�����  ⌫. (3.3)

S7. Using the new characteristic xi,T , predict the out-of-sample alphas and compen-

sations for risk as:

bG↵,T+1 = (bg↵,T (x1,T ), · · · , bg↵,T (xN,T ))
0
,

bgriskP,T+1 = (bgriskP,T (x1,T ), · · · , bgriskP,T (xN,T ))
0
.

The alpha-functions need be estimated subject to constraints, which restrict the

estimation of �����
1

N

NX

i=1

bg↵,T (xi,T )bg�,T�1,i

����� .

This restriction ensures that the predicted alphas should be approximately orthogo-

nal to betas, though we are using the in-sample estimated beta bg�,T�1,i here in the

constraint which facilitates computations.
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3.5 Double descent of the risk curve for overparametrized

learning models

The success of the deep learning revolution builds on a surprising empirical dis-

covery. The best performing deep neural networks are trained with no explicit regu-

larization to control their statistical complexity, and they display excellent prediction

performance in the highly-overparametrized regime, that is, the number of parame-

ters is much higher than the number of training samples. In fact, the prediction risk

for deep neural networks and other general machine learning methods often appear to

present a “double descent” shape as the degree of model complexity increases, where

the first descent appears in the classical under-fitting regime, casting the traditional

statistical wisdom on the bias-variance tradeo↵. Yet as the number of parameters

continues to grow, risk starts decreasing again, so a second descent of the prediction

risk occurs in the extremely overparametrized regime. Such double-descent phenom-

ena of DNN predictions are illustrated in a recent empirical work by (Belkin et al.,

2019). In fact, this scenario is far from being specific to neural networks, and has been

observed in quite a few statistical machine learning models including nonparametric

regression (Belkin et al., 2019), kernel learning (Belkin et al., 2018), and factor model-

ing and matrix factorization (Arora et al., 2019), ridge regression in random features

model (Mei and Montanari, 2019), and even for linear models (Hastie et al., 2019;

Belkin et al., 2020). In the asset pricing literature, Kelly et al. (2021) documented

that Sharpe ratios of machine learning portfolios may increase for overparametrized

models.

Below we demonstrate the “double descent” scenario using the di↵usion index

model of Stock and Watson (2002). Our demonstration is perhaps of independent

interest itself, because the di↵usion index model is one of the most popular economic

models for big-data forecasts, and to our best knowledge, the double descent scenario

has not been observed in this context. Consider forecasting an index return Yt+1 that

is generated from a dynamic factor model:

Yt+1 = b
0
ft + "t, ft = ⇢ft�1 + vt. (3.4)

As for the working model, we assume that the true DGP (3.4) is unknown, and forecast
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Yt+1 using lagged returns of a large number of asset returns Xt = (X1,t, · · · , Xp,t)0:

Yt+1 = X
0
t✓ + et, (3.5)

with Xj,t = �0
jft + uj,t follows a factor model with latent factors ft and unknown

factor loading vector �j. It is well known that when p > T , OLS is not defined. So to

estimate model (3.5) when p is large, we employ the “minimum-norm interpolation”

least squares:

b✓p = argmin{k✓k : ✓ minimizes
X

t

(Yt+1 �X
0
t✓)

2
}

=

 
TX

t=1

XtX
0
t

!+ TX

t=1

XtYt+1 (3.6)

where A
+ denotes the generalized inverse of matrix A. Note that the solution (3.6)

always exists regardless of p := dim(Xt) and reduces to OLS when p  T . But unlike

ridge regressions, this estimator overfits the model when p is large. In fact when

p > T , this estimator interpolates the in-sample data as Yt+1 = X
0
t
b✓p for t = 1, · · · , T

in this case. For the out-of-sample data {Xt : t = T + 1, · · · , T + s}, we evaluate the

out-of-sample prediction risk

R(p) :=
1

s

T+sX

t=T+1

(Yt+1 �Xt
b✓p)

2
.

Figure 1 plots R(p) as p increases, averaged over one hundred simulations, where

all parameters are calibrated to data of monthly U.S. equity returns. The plot clearly

shows the double-descent pattern of the prediction risk: The prediction risk first de-

creases because the model is less biased, but then increases because of a variance

explosion, and reaches a peak at the the interpolation threshold, where the model

completely interpolates the in-sample data, corresponding to zero in-sample error but

large prediction risk. As more assets are included as predictors, the prediction risk de-

creases again, and appears to be “at infinite complexity”: the more overparametrized

is the model, the smaller is the prediction risk.

There have been two interpretations in the literature: the first being that machine

learning algorithms often rely on gradient descent algorithms, which induces implicit

regularizations that select the simplest overparametrized model in a suitable sense
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Figure 1: The prediction risk R(p) for predicting the asset Yt+1 using lagged returns
(X1,t, · · · , Xp,t) with the minimum-norm interpolation estimator, averaged over one
hundred simulations. The number of in-sample fitted data is T = 100 and the number
of out-of-sample predicted data is s = 25. The interpolation threshold refers to the
occurance p = T , where the estimator completely interpolates the in-sample data.
The true model for Yt+1 is given by (3.4), and Xj,t = �0

jft+ut, with ("t,vt, et, ut) being
generated independent from the multivariate normal distribution. All parameters are
calibrated from the monthly data of 2140 asset returns and Fama-French-three factors
from January 2015 to December 2017. The prediction risk first descents and achieves
a local minimum at p = 10, and increases as p approaches to the in-sample size. As
the number of predictors continues increasing, it descents again.

(see, e.g., Du et al. (2018)). As for the linear model (3.4) and (3.6), we note that the

minimum-norm interpolation estimator can be seen as the limit of ridge regressions

with vanishing tuning parameters, which is in fact the convergence point of gradient

descent for least squares loss. The second interpretation is similar to the diversifica-

tion e↵ect in finance. As the number of regressors grows, more predictors/neurons

generally result in decreasing magnitudes for the components of ✓p, by distributing

signals over more parameters, so the variance of the estimator decreases, which also

leads to descending prediction risks. On the other hand, due to the interpolation, the

biases are generally small as p gets bigger. However, even though the double descent

has been documented widely, understanding it from a theoretical perspective is still

at the forefront of the statistical machine learning literature.
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4 Asymptotic Theory

While our methods seem intuitively appealing and appear heuristic, they are ac-

tually provable. In this section we present the formal theory to justify the proposed

procedure. We show that the theoretical results depend on three key quantities:

'T = max
t

sup
x


inf

g2MJ,L

|g�,t(x)� g(x)|+ inf
g2MJ,L

|g↵,t(x)� g(x)|

�
.

�T =

r
p(MJ,L) log(NT )

N
, (p(MJ,L) to be defined soon)

⌘T =
1

p
Th

+ h
2
.

The first term 'T denotes the approximation error using deep neural networks

to nonparametric functions of interests. The approximation error normally does not

su↵er from the curse of dimensionality when g�,t and g↵,t belong to a broad class of

functions with low intrinsic dimensions. For instance, Schmidt-Hieber (2020) showed

that if the true regression function, say g0 is a composition of several functions:

g0 = fq � fq�1 � · · · � f1

where each component fj is a multi-dimensional and multivariate function, then a

multilayer feedforward network with ReLu activation functions at each layer would

lead to the approximation error:

'T  Cmax
iq

N
�i/(2i+si),

for a flexible collection of width and length of layers. Namely the approximation errors

are dominated by the hardest functions in the composition, where si is the maximum

number of input variables that fi may depend on, and i measures the smoothness of

fi. This approximation error holds for a robust choice of the growth of the width J

and depth L of the network. Excitingly, ti is the “intrinsic dimension” which can be

much smaller than dim(xi,t�1). For instance if fi depends on the input fi�1 through

its linear combinations (such as the single index model), then maxiq ti = 1, so the

curse of dimensionality is adaptively avoided. Apparently, components fi in the com-

position are not separately identified, but we are only interested in g0 so this causes
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no problems. Schmidt-Hieber (2020) showed that among all possible representations,

the neural network picks one that leads to the fastest possible approximation rate. 7

The second term �T represents the complexity of the deep neural network space

growing with the number of layers and neurons. The complexity is measured by

the pseudo dimension p(MJ,L) of the network, defined as the Vapnik-Chervonenkis

dimension of the subgraph class {f(x, y) := sgn(h(x) � y) : h 2 MJ,L}. Bartlett

et al. (2019) showed that for a ReLu network with depth L and the maximum width

J across layers, for some constant C > 0,

p(MJ,L)  CJ
2
L
2 log(JL).

The third term ⌘T is the usual nonparametric rate for time-domain smoothing.

Thanks to the use of boundary-adjusted kernels, this result holds for not only the

“interior periods” (Th, T � Th), which is the focus of Ang and Kristensen (2012),

but also the “boundary periods” (either [1, Th] or [T � Th, T ]). We extend the in-

sample studies of Ang and Kristensen (2012) to the out-of-sample context, where

incorporating the boundary case t = T is essential.

The formal assumptions are listed as follows.

Assumption 4.1 (Cross-sectional and serial dependences). (i) For each fixed t, the

sequence {xi,t} is cross-sectionally i.i.d.

(ii) Let eit = yit � E(yit|xi,t�1, ft). Then for each fixed t, {eit} is cross-sectionally

independent and sub-Gaussian, conditioning on ft. More specifically, there are c1, c2 >

0, 8x > 0 such that almost surely for ft, maxit P(|eit| > x|ft)  c1 exp(�c2x
2).

(iii) Let Ft be the filtration generated by {xi,t : for all i} up to time t. Then for

all i, t, E(ui,t|Ft�1, ft) = 0, E(�↵,i,t�1|Ft�1, ft) = 0, and E(��,i,t�1|Ft�1, ft) = 0.

7Suppose unknown to us, the function m
0
t (·) is additive, the neural network will find an estimator

that has one-dimensional rate. As another example, suppose, unknown to us, that m(x1, · · · , x5) =
f1(x1, x2)+ f3(x3)+ f4(f5(x1, x3), f6(x2, x4), x5) (dropping the subscript t), the neural network will
automatically find an estimator m̂(·) with three dimensional nonparametric rate or more generally
the rate that is denominated by the hardest component in the composition. The main reason for
this automatic adaptation is that the composition of the neural networks is still a neural network.
Take the second case as an example, if the structure were known, we can construct an optimal neural
network N0 to approximate the function m(·) by constructing optimal DNN for each component and
taking a composition of these networks. When it is unknown, we can take the maximum depth and
maximum width of the network N0 and construct a fully connected DNN N1 that has at least order
of the approximation error as N0, yet the complexity of N1 remains the same order as N0. In other
words, we achieve the same order of approximation without inflating significantly the variance.
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(iv) The factor process {ft : t = 1, · · · , T} is stationary and E(ft|Ft�1) = Eft. In
addition, it is weakly dependent in the sense that for any vs 2 {fs, vec(fsf 0s)}, at each

fixed t,

max
k

var

 
1

Th

X

s

(s� t)

T
(vs,k � Evs,k)K

✓
t� s

Th

◆!
= O

✓
h

T

◆
. (4.1)

Condition (4.1) is straightforward to verify if factors are serially independent with

bounded second moments. Meanwhile, we present this high-level assumption to allow

some possible weak dependence over time. Above all, the factor process should have

very low persistence and hard to predict.

Assumption 4.2 (Smoothness over time). (i) For each fixed i, there exist functions

mi(·) and gi(·) so that almost surely for xi,t�1, we have

E(yit|xi,t�1) = mi

✓
t

T

◆
, g�,t(xi,t�1) = gi

✓
t

T

◆
, 8t = 1, · · · , T,

where the functions are continuously twice-di↵erentiable:

sup
v,i

���
dmi(v)

dv

���+
���
d
2
mi(v)

dv2

���+ krgi(v)k+ kr
2
gi(v)k

�
< C.

(ii) For out-of-sample predictions:

sup
x

|g↵,T (x)� g↵,T+1(x)| = OP (T
�1/2), sup

x
|griskP,T (x)� griskP,T+1(x)| = OP (T

�1/2),

Assumption 4.2 extends the condition A.1 of Ang and Kristensen (2012) to the

characteristic-based time-varying models, which assumes that the long-term expected

return and characteristic-betas should be varying smoothly over time. But di↵erent

from them, we do not require the entire betas or alphas to be smooth functions

since our approach is not based on time-series OLS. Rather, our approach, when

integrated with the neural network projection, allows us to impose such conditions

only on the characteristic-driven components, leaving the remaining components (�t)

to be possibly varying nonsmoothly over time.

In the assumption below, we recall that m0
t (x) := E(yit|xi,t�1 = x, ft).

Assumption 4.3 (For the Neural Network learning). (i) For each fixed t, almost
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surely for all ft, functions m
0
t , g↵,t and g�,t belong to the Hölder ball: for some q 2 R,

� 2 (0, 1] and L > 0, 8

H(q, �, L) = {f : [a, b]d ! R, kfkq,�  L}, kfkq,� = max
sq

sup
a,b

|f
(s)(a)� f

(s)(b)|

ka� bk�
.

(ii) The dimension of the neural network space satisfies:

J
2
L
2 log(JL) log3/2(NT ) = o(N), where J, L respectively denote the width and

depth of the network.

Assumption 4.3 is the technical condition that ensures that the spot expected

returns and alpha-, beta- functions can be learned su�ciently well by employing

cross-sectional DNN. Indeed, it has been proved in the machine learning literature

that functions in the Hölder space can be approximately well using fully connected

neural networks. Condition (ii) on the other hand, regulates the complexity of the

type of neural networks we shall use. Namely, the network cannot be too deep or too

wide, which is a technical condition for mathematical proofs.

Assumption 4.4. (i) Identification: For any ✏ > 0 and for some c > 0,

min
t

inf
km�m0

t kq,�>✏
E|m(xi,t�1)�m

0
t (xi,t�1)|

2
> c

In addition, we impose

max
t

�����
1

N

NX

i=1

g�,t(xi,t�1)g↵,t(xi,t�1)

����� = OP (N
�1/2).

(ii) Moments: For some C > 0,

sup
x

|g↵,t(x)|+ sup
x

kg�,t(x)k+ k�tk+ Ekftk2 < C.

(iii) The eigenvalues of
1
N

PN
i=1 g�,t(xi,t�1)g�,t(xi,t�1)0 and Eftf 0t are bounded away

from zero and infinity uniformly over t.

Recall that bmt(·) is the neural network estimated function by cross-sectionally

8With additional assumptions, the functional space can be extent to the hierarchical composition

space, which consists of compositions of several functions, such as f = fq � fq�1 � · · · � f1 where each
of fk belongs to a Hölder ball. See Kohler and Langer (2021) for additional details.
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regressing yit onto xi,t�1 at time t, which estimates the spot expected return; m̄i,t is

the weighted average of bms(·) locally around t.

Theorem 4.1 (Expected Returns). Suppose Assumptions 4.1-4.4 hold. Then

(i) For spot expected returns: at each fixed t,

E[bmt(xi,t�1)� E(yit|xi,t�1, ft)]
2 = OP (�

2
T + '

2
T ).

(ii) For long-term expected returns: at each fixed t,

E[m̄i,t � E(yit|xi,t�1)]
2 = OP (�

2
T + '

2
T + ⌘

2
T ).

Theorem 4.1 respectively presents the quality for learning the spot and long-

term expected returns using DNN projections. We see that the spot expected return

E(yit|xi,t�1, ft) is learned period-by-period, so its learning quality depends on both the

complexity (�T ) and the approximation error ('T ) of the DNN space. In addition,

estimating the long-term expected return E(yit|xi,t�1) requires an additional step of

kernel averaging over time, so its quality further involves the smoothing estimation

error ⌘T .

As for the in-sample alpha and risk, we have

Theorem 4.2 (In-Sample Alpha and Risk). Suppose Assumptions 4.1-4.4 hold. Then

at each time t of interest,

1

N

NX

i=1

[bg↵,t�1,i � g↵,t(xi,t�1)]
2 = OP (�

2
T + '

2
T + ⌘

2
T ),

1

N

NX

i=1

[bgriskP,t,i � griskP,t(xi,t�1)]
2 = OP (�

2
T + '

2
T + ⌘

2
T )

1

N

NX

i=1

[bgfactor,t,i � gfactor,t(xi,t�1)]
2 = OP (�

2
T + '

2
T + ⌘

2
T ).

The next theorem establishes the properties of the predictions for alpha and com-

pensation for risk. While the literature on deep neural networks mostly concentrates

on in-sample analysis, to our best knowledge, the out-of-sample predictive rate has

not been established in any context. We develop a new technical argument to achieve

a sharp out-of-sample rate for DNN predictions, and show that it can be as fast as

the in-sample convergence rate.
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Theorem 4.3 (Out-of-Sample Prediction). Suppose the tuning parameter ⌫ in the

constraint (3.3) satisfies: for some su�ciently large C > 0,

⌫ � C

2

4'N + ⌘T + �T +

 
1

N

NX

i=1

[g↵,T+1(xi,T )� g↵,T (xi,T�1)]
2

!1/2
3

5 .

In addition, Assumptions 4.1- 4.4 and Assumption ?? hold. Then

max
iN

|bg↵,T (xi,T )� g↵,T+1(xi,T )| = OP (�T + 'T + ⌘T )

max
iN

|bgriskP,T (xi,T )� griskP,T+1(xi,T )| = OP (�T + 'T + ⌘T ) .

As a consequence of Theorem 4.3, the out-of-sample decomposition follows. It

shows that yi,T+1 relies on the two DNN-forecasters bg↵,T (xi,T ) and bgriskP,T (xi,T ), plus

noises that are not predictable. We present it in the theorem below. Recall that FT

is the sigma-algebra generated by characteristics {xi,t : t = 1, ..., T, for all i} up to

time T .

Theorem 4.4 (Prediction decomposition). Suppose assumptions of Theorem 4.3

hold. Then there exists ⇠i,T+1 so that uniformly for i  N ,

yi,T+1 = bg↵,T (xi,T ) + bgriskP,T (xi,T ) + ⇠i,T+1 +OP (�T + 'T + ⌘T ) ,

where E(⇠i,T+1|FT ) = 0.

5 Empirical Analysis

5.1 Data

Our main data set is the same as in Freyberger et al. (2020) and has been updated

through 2018, spanning 648 months with about 4261 firms on average per month.

Asset returns are obtained from the Center for research in Security Prices (CRSP)

monthly file and accounting data are from Compustat. As in most empirical asset

pricing studies, we limit the analysis to common equity which is trading on NYSE,

Nasdaq or Amex. We also limit the analysis to U.S. firms. As in Freyberger et al.

(2020), we use accounting data from the fiscal year ending in calendar year t� 1 for

estimation starting from the end of June of year t until the end of May of year t+ 1,
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predicting returns from the beginning of July of year t until the end June of year

t+ 1. We require that firms have at least two years of data in Compustat to include

in the paper to mitigate survivorship biases, which may arise from backfilling. Our

overall sample ranges from 1965 through 2018. Table ?? in the Appendix provides

an overview of the characteristics.

5.2 Return Decomposition

In the following, we estimate the in- and out-of-sample return decompositions

(2.4) and (2.6) respectively. Throughout, we use a 60 months window for estimation,

which we slide forward by one month, after each estimation. In the implementation,

we use a one, two and three layer network with four nodes on each hidden layer.

Throughout, we employ a learning rate of 0.001 and use 2000 epochs. We also use

a constant bandwith h = 0.75, which approximately minimizes the in-sample mean

squared error for estimating the spot expected returns.

5.2.1 In-Sample Decomposition

We decompose both expected returns and realized returns into a mispricing com-

ponent, g↵,t, and a risk-based component which is driven by the risk premium com-

ponent, g�,t(x)0�t�1, and the exposure to the factor shock, g�,t(x)0(ft � Eft). Since

returns are noisy, we first establish a benchmark of how much of realized return can

be explained, relying on the the following measure of R2:

R
2 = 1�

P
i,t(yit � predictionit)

2

P
i,t y

2
it

, (5.1)

where we set predictionit to equal the di↵erent parts of the return decomposition,

(2.4), to assess their explanatory strength from a statistical perspective. For the

in-sample decomposition, prediction is the same as fitting.

Table I shows the results for varying the number of factors and di↵erent layer

networks. We see that, for the in-sample decomposition, the bulk of the variation

is due to risk related components. For instance, Panel A shows the results for all

firms, and when we use ten factors (K = 10) and a single layer, the in-sample R
2 for

�
0(F + �) is 23.67 percent, which explains about 90% of the explained variation of by.

Within this 90%, the bulk of the explanatory power is driven by the factor realization
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(⇡ 95%) and roughly 5% by the long-term risk premium. Panel B shows the results

for the 80% largest firms by (lagged) market capitalization. We can explain a lot more

variation in excess returns for large firms. Panel C of Table I shows the corresponding

measures for the 20% smallest firms. While the qualitative finding that the bulk of the

variation can be explained by the risk-related components is still true, the explained

variation slightly drops. For instance, for ten factors and a single layer model, it is

79% (= 17.17/21.64). This is in line with the intuition that returns of large firms are

in general better explained by exposure to systematic risk relative to small firms.

In addition, up to 1% of the explained in-sample return can be attributed to

mispricing for all firms if we use a single factor, otherwise the R
2
↵ is typically less

than zero, and small firms have larger R2
↵ than large firms. This is in line with many

findings in empirical asset pricing that mispricing tends to concentrate in smaller

firms. Additionally, when we compare R
2
by with R

2
�0(F+�) and R

2
↵, the general pattern

is that R2
by is closer to the sum of the two for large number of factors and large firms.

Meanwhile, Panel C shows that the di↵erence in R
2
by and R

2
�0(F+�) is still relatively

large even for 10 factors. A sensible explanation to this is that small firms tend to

load weakly on factors so the spot expected returns have relatively large idiosyncratic

components and errors in variable issues in the estimated factors.9

Overall, we can see from Table I that across all specifications and cuts of the

data, factor sensitivity times factor realization takes on the largest fraction of the

explanatory power. Since factors are only available contemporaneously with the re-

turn realization and are themselves excess returns they are almost completely un-

predictable. This carries an important lesson for out-of-sample prediction, the com-

ponents that we can forecast are the slower moving pieces, i.e. the risk-premium

component (g0
�,t�1�t�1) and mispricing (g↵,t�1). We will revisit this issue in Section

5.2.3 when we study out-of-sample predictability.

5.2.2 Pricing Error

Leitch and Tanner (1991) point out that studying purely statistical measures of

fit may sometimes be at odds with economic measures of success. In particular, some

of the R
2
↵s in Table I are negative which may at first sight suggest that mispricing is

9One can show the in-sample byit = bg↵,t(xi,t�1) + bgriskP,t(xi,t�1) + bgfactor,t(xi,t�1) + euit + oP (1),
where euit is the estimation error from the projected idiosyncratic term and the oP (1) term contains
other estimation errors. The last two components are relatively large for small firms.
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Table I: In-Sample Decomposition - Realized Returns (Full Sample)
This table shows empirical estimates for the in-sample decomposition of realized returns (equation (2.5)). R2

ŷ measures

the quality of the in-sample fit from the period-by-period DNN regresssions of excess returns onto characteristics. R2
�0F

measures how much of the variation in excess returns can be explained by exposure to common factors. R2
�0� measures

how much of excess returns is explained by the factor risk premia, R2
�0(F+�) measures how much can be explained

by all risk-based components. R2
↵ measures how much in-sample variation of excess returns can be explained by

mispricing. Panel A shows the results for all firms in our CRSP/Compustat sample, Panel B focuses on the 80%

largest firms and Panel C shows the results for the 20% smallest firms. All R2 measure are in percentage. The sample

period is 1970 - 2018.

1 Layer 2 Layers 3 Layers

K R
2
ŷ R

2
�0F R

2
�0� R

2
�0(F+�) R

2
↵ R

2
ŷ R

2
�0F R

2
�0� R

2
�0(F+�) R

2
↵ R

2
ŷ R

2
�0F R

2
�0� R

2
�0(F+�) R

2
↵

Panel A: All firms

1 26.34 16.31 1.03 17.33 0.03 27.57 16.36 1.03 17.39 0.02 30.36 17.22 1.00 18.20 0.17
6 26.34 21.46 1.21 22.61 -0.14 27.57 21.80 1.20 22.95 -0.16 30.36 23.85 1.25 25.04 -0.07
10 26.34 22.50 1.23 23.67 -0.16 27.57 23.15 1.24 24.34 -0.19 30.36 25.52 1.26 26.73 -0.09

Panel B: Large firms

1 35.9 23.12 0.86 24.05 -0.06 36.21 23.31 0.87 24.25 -0.10 36.45 22.37 0.83 23.26 0.20
6 35.9 33.22 1.13 34.58 -0.21 36.21 33.17 1.11 34.56 -0.24 36.45 32.73 1.17 34.12 -0.06
10 35.9 34.38 1.18 35.75 -0.27 36.21 34.27 1.20 35.65 -0.33 36.45 33.81 1.18 35.21 -0.09

Panel C: Small firms

1 21.64 10.01 1.35 11.30 0.23 23.76 10.04 1.34 11.32 0.19 29.75 12.99 1.30 14.20 0.34
6 21.64 14.68 1.49 15.94 0.01 23.76 15.19 1.48 16.42 -0.04 29.75 20.26 1.55 21.53 0.08
10 21.64 15.91 1.51 17.17 -0.02 23.76 17.14 1.50 18.38 -0.07 29.75 22.63 1.57 23.89 0.05
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Table II: In-Sample Sharpe Ratios of Mispricing Portfolio
This table presents estimates for the annualized Sharpe ratio of the mispricing portfolio for the full sample (Panel a),

the early sample (Panel B) and the late sample (Panel C). K denotes the number of estimated factors. Small firms

are the 20% smallest firms and large firms are the 80% largest firms in each month. The returns of the mispricing

portfolio are computed as r↵,t = G0
↵,t�1yt. The annualized Sharpe ratio is then computed as SRann =

p
12r̄↵/s

where r̄↵, s respectively denote the in-sample return average and standard deviation.

1 Layer 2 Layers 3 Layers

K All Large Small All Large Small All Large Small

Panel A: 1970 - 2018

1 1.45 0.50 1.51 1.52 0.51 1.41 1.63 0.63 1.33
6 1.11 0.43 1.22 1.19 0.42 1.00 1.57 0.54 1.32

10 0.96 0.30 1.11 0.91 0.29 0.83 1.55 0.52 1.21

Panel B: 1970 - 1999

1 1.57 0.62 1.32 1.71 0.67 1.33 1.69 0.80 1.15
6 1.07 0.65 1.08 1.29 0.55 0.98 1.86 0.71 1.26

10 0.95 0.45 0.98 0.99 0.37 0.79 1.83 0.65 1.19

Panel C: 2000 - 2018

1 1.41 0.29 1.86 1.40 0.24 1.58 1.52 0.32 1.71
6 1.20 0.23 1.45 1.07 0.28 1.03 1.21 0.38 1.43

10 0.99 0.21 1.32 0.79 0.22 0.90 1.21 0.45 1.25

completely negligible. To investigate this, we study G↵,t�1, more closely. In the first

step, we compute the (in-sample) returns to the mispricing portfolio,

r↵,t :=
1

Nt

bG0
↵,t�1yt.

To asses the economic magnitude of the mispricing, we compute the annualized

Sharpe ratio for this portfolio in Table II. We see that many annualized Sharpe ratios

are greater than one and therefore strongly economically significant in magnitude.

The results in Table II also show that mispricing is more strongly concentrated in

small rather than larger firms. Note that it can be the case that the Sharpe ratio is

higher for the portfolio using all stocks rather than just small stocks. This happens

because the standard deviation of the portfolio returns for all stocks can be smaller in

some cases than for the portfolio of small stocks due to greater diversification benefits.

At first sight, results from Table II might suggest that mispricing is more or less

constant across time. To investigate the time-variation more closely, it is advanta-
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geous to study a “denoised” version of the mispricing portfolio return, defined as

br↵,t :=
1

Nt

bG0
↵,t�1byt.

This quantity can be interpreted as an estimate of the squared pricing error, which is

often used in the examination of factor models, e.g. Gibbons et al. (1989) or Dybvig

and Ross (1985). While br↵,t cannot be interpreted as an excess return to a traded

portfolio (because byt are not the returns of traded assets), it is a good measurement

of the returns’ magnitude because the idiosyncratic components have been removed

due to the projected step: br↵,t = r↵,t + oP (1). Figure 2 plots the evolution of br↵,t
over time. From the plot, we see that the magnitude of the pricing error varies over

time and increases with times or large market volatility such as the dot-com episode

and the 2008/2009 financial crises. When we compare the three panels of Figure 2,

we observe that the magnitude of the pricing error is much smaller for six estimated

factors (K = 6) relative to just one estimated factor (K = 1). However, it appears

that the di↵erence between six and ten estimated factors does not a↵ect the shape or

magnitude of the pricing error in a material way. In Figure ?? in the Appendix, we

present the corresponding analysis for the 80% largest firms. While the shape of the

local average is similar across di↵erent firm sizes, the magnitude of the pricing error

is larger for small firms.

It is also evident from Figure 2 that the temporal evolution of alphas is not

simply due to the evolution of characteristics, but that the alpha-function, g↵,t, is

also changing over time. In fact, since we are ranking characteristics at each period

t, whose cross-sectional density is uniform on [0, 1]dim(x), as Nt ! 1,

br↵,t =
1

Nt

NtX

i=1

bg↵,t�1,ibyi,t =
1

Nt

NtX

i=1

g↵,t(xi,t�1)
2 + oP (1) !

P

Z
g↵,t(x)

2
p(x)dx,

where p(x) denotes the density of multivariate uniform distribution on [0, 1]dim(x). The

probability limit of the convergence depends on g↵,t rather than the characteristics.

This highlights the importance of our time-varying approach, which allows for varying

mappings from characteristics to mispricing over time.
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Figure 2: Evolution of Pricing Error over Time
This figures shows estimates of the average squared pricing error computed as 1

Nt
bG↵,t�1(x)0byt for all firms and

K = 1, K = 6 and K = 10 for the full sample (blue dots). We also present a local regression smoothing curve as an

estimate of the local average (black line). The red dashed horizontal line is at zero.
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Finally, it appears from Figure 2 that the pricing error is correlated with market

volatility. To analyze this relationship, we run the following time series regression:

br↵,t = a+ b⇥ VIXt + ✏t

where VIXt is the implied volatility index. We normalize both the estimated pricing

error and VIXt to have unit standard deviation for easier interpretability. The esti-

mates are ba = 1.245 and bb = 0.2783, both statistically significant at the 1% level, and

confirms our intuition that higher mispricing tends to occur during economic stress.

5.2.3 Out-of-Sample Decomposition

We now implement the out-of-sample decomposition developed in Section 2.2. The

prevailing practice in the literature is to estimate a model on some part of the data and
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then take the estimated model and plug in new data, i.e. data that has not been used

in estimation, to obtain an out-of-sample forecast. Deep neural networks have been

shown to be among most of successful methods in terms of predictive accuracy in such

explorations. We aim to understand the sources of the success better through the lens

of our return decompositions, and provide an economically meaningful explanation

of the source of predictability.

We apply Algorithm 3.2 to obtain out-of-sample predictions of the individual

quantities as well as the “aggregate” forecast for returns. In empirical analyses, a

standard measure of performance is the R
2 (in percentage) from equation (5.1). In

Table III we present this measure of fit separately for the plugin forecast, bm(x), the

predicted risk-premium, bg0
�,t�1

b�t�1, the mispricing components as-well as the sum of

the risk premium and mispricing component, bg↵,t�1. Most economic models suggest

that risk premia and exposures to risk premia tend to vary slowly over time (or may

even be constant). It is therefore natural to suspect that this component could be (at

least partially) predictable. For the mispricing components, theory o↵ers no direct

guidance, but conventional economic intuition suggests that arbitrageurs will act to

eliminate such opportunities, consequently we expect it to be predictable at best over

relatively short horizons. We do not present estimates of the R
2 for the component

relating to the factor realization, g0
�,t�1ft, because it is well known since Fama (1965)

that factor returns exhibit very low temporal dependence in the time series.

Table III shows that most of the out-of-sample predictabilty of deep neural net-

works stems from the risk premium component. The predictability stemming from it

is about two to three times as large as the predictive ability related to the mispricing

component. The column of R2
by measures the predictability of directly plugging the

out-of-sample characteristics into the DNN estimated expected return function. The

column is all negative over all scenarios under study, reviewing a very bad predictabil-

ity of this method. The reason for this is that the plugin forecast also contains the

“factor term”, i.e. the factor exposures multiplied with the past factor shock. Due

to the low temporal dependence of returns, this component is unlikely to be system-

atically related to future returns realizations. Due to its high relative volatility (on

average the standard deviation of byt is about seven times as large as the standard

deviation of (bg↵(x) + bg0�(x)b�t)), it only adds noise to the prediction, which leads to

reduced predictive accuracy.
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Table III: Out-of-Sample Decomposition - Expected Returns
This table shows empirical estimates for the out-of-sample decomposition of realized returns (equation (2.6)). R2

ŷ

measures the quality of the out-of-sample fit from the period-by-period DNN regresssions of excess returns onto

characteristics. R2
�0� measures how much of excess returns is explained by the factor risk premia, R2

�0(F+�) measures

how much can be explained by all risk-based components. R2
↵ measures how much out-of-sample variation of excess

returns can be explained by mispricing. All R2 measure are in percentage. The sample period is 1970 - 2018.

1 Layer 2 Layers 3 Layers

K R2
ŷ R2

�0� R2
↵ R2

↵+�0� R2
ŷ R2

�0� R2
↵ R2

↵+�0� R2
ŷ R2

�0� R2
↵ R2

↵+�0�

Panel A: All firms

1 ⌧ 0 0.44 0.15 0.59 ⌧ 0 0.36 0.14 0.51 ⌧ 0 0.37 0.12 0.49
6 ⌧ 0 0.47 0.14 0.60 ⌧ 0 0.45 0.12 0.55 ⌧ 0 0.42 0.13 0.53

10 ⌧ 0 0.43 0.15 0.58 ⌧ 0 0.43 0.12 0.53 ⌧ 0 0.37 0.16 0.53

Panel B: Large firms

1 ⌧ 0 0.82 -0.07 0.82 ⌧ 0 0.72 -0.13 0.67 ⌧ 0 0.83 -0.13 0.78
6 ⌧ 0 0.91 -0.11 0.85 ⌧ 0 0.95 -0.16 0.83 ⌧ 0 0.85 -0.07 0.80

10 ⌧ 0 0.81 -0.07 0.80 ⌧ 0 0.90 -0.13 0.79 ⌧ 0 0.69 0.01 0.73

Panel C: Small firms

1 ⌧ 0 0.39 0.16 0.51 ⌧ 0 0.32 0.17 0.44 ⌧ 0 0.25 0.13 0.36
6 ⌧ 0 0.38 0.18 0.52 ⌧ 0 0.30 0.15 0.42 ⌧ 0 0.29 0.15 0.40

10 ⌧ 0 0.38 0.16 0.51 ⌧ 0 0.28 0.15 0.40 ⌧ 0 0.33 0.14 0.45

In contrast, R2
↵+�0� is much larger, which also approximately equals the sum of

R
2
↵ and R

2
�0�.

10 It reveals that we can obtain greater predictive accuracy by focusing

only on the risk premium component and the mispricing component rather than the

prevailing practice of plugging new data into the estimated model. In addition,the

predictability is nearly entirely attributed to the risk premium �
0
� for large firms, and

is attributed to both risk premium (about 76%) and mispricing (about 24%) for small

firms. This comparison is also consistent with the in-sample result that mispricing is

more strongly concentrated in small firms.

Overall, our analysis shows that the main reason why neural networks are success-

ful in predicting the cross-section of returns stems from their ability to predict risk

premia. In addition, and primarily for smaller firms, we gain additional predictive

ability from the mispricing component. We improve the out-of-sample forecasts by

appealing to our structural decomposition as opposed to the agnostic “plugin fore-

cast”. This underscores the need for appealing to theory even in such highly practical

applications as predicting the cross section of stock returns. Finally, it is particularly

10The orthogonality of ↵ and � in estimations only holds exactly in-sample. It holds approxi-
mately for the out-of-sample quantities.
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noteworthy that while sensible improvement on the out-of-sample forecast has been

achieved, it is important to regard our analysis as a means to provide a structural

decomposition of the machine learning forecast, which leads to an economically mean-

ingful interpretation of source of predictability for asset returns.

6 Simulations

To demonstrate the finite sample performance of our method, we simulate a con-

ditional five–factor model for excess returns as in model (2.1). We generate five

characteristics xi,t = (xi,t,1, · · · , xi,t,5) as follows: For each given t and k,

xi,t,k =
1

N + 1
rank(x̄i,t,k), x̄i,t,k = 0.98kx̄i,t�1,k + ✏x,i,t,k,

where ✏x,i,t,k ⇠ N (0, 1) and rank(x̄i,t,k) is the cross-sectional ranking of x̄i,t,k in

(x̄1,t,k, · · · , x̄N,t,k). The five characteristics within the firm i have strong temporal

dependence over time, but they are independent across firms. We take five factors,

where the j
th

�-function (j  5) are generated as follows:

g�,t,j(x) = bj�j(x)+aj, (b1, · · · , b5) = (1, 1,
p

2, 1, 1), (a1, · · · , a5) = (0,�0.5,�1, 0, 0).

Here �j(x) is the j th basis function, chosen as

�1(xi,t) = (xi,t,1 � 0.5)2, �2(xi,t) = (xi,t,1 � 0.5)xi,t,2, �3(xi,t) = xi,t,3,

�4(xi,t) = x
4
i,t,4, �5(xi,t) = max{xi,t,3 � 0.75, 0}.

To generate g↵,t(x) that is orthogonal to g�,t(x) period-by-period, we set g↵,t(x) =

[�1(x), · · · ,�5(x)]✓↵,t and calibrate it to approximate the asset’s long-run alpha’s,

namely ✓↵,t is obtained by solving the following constraint least squares problem:

min
✓t

NX

i=1

(g↵,t(xi,t�1)� bai)2, g↵,t(xi,t�1) = [�1(xi,t�1), · · · ,�5(xt�1)]✓t,

NX

i=1

g↵,t(xi,t�1)g�,t(xi,t�1) = 0
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with bai being the estimated alpha for firm i using the Fama-French 5-factor model

during 2001-2018. The coe�cient ✓t is solved at each given time t and hence

the function g↵,t(·) is time-varying. Furthermore, we generate �↵,i,t�1 ⇠ N (0, �2
�1)

and ��,i,t�1,j ⇠ N (0, �2
�2,j), with variance parameters calbirated from the alphas

and betas from Fama-French-5-factor-model: the residual variances in the linear

regression of alphas and betas respectively regressing on characteristics. Factors

and idiosyncratics are generated from fj,t ⇠ N (µf,j, �
2
f,j) and ui,t ⇠ N (0, �2

u,i),

with parameters generated using the Fama-French 5-factor model using data dur-

ing 2001-2018. The factor risk premium is set to �t�1 = atµf , where we calibrate

the constant at so that g↵,t(xi,t�1) explains about 20% variations in the decomposi-

tion E(yit|xi,t�1) = g↵,t(xi,t�1) + g�,t(xi,t�1)0�t�1 at each period. Throughout we fix

N = 500 firms and T = 200 periods.

In-sample estimation

We examine the performance of estimating the alpha g↵,t(xi,t�1) and the risk

premium griskP,t(xi,t�1) = g�,t(xi,t�1)0�t�1. For each estimated quantity bgi,t for gi,t

being the alpha or the risk premium, we report the relative mean squared error

RMSE(bg) =
PN

i=1

PT
t=1(bgit � git)2PN

i=1

PT
t=1 g

2
it

,

We compare the proposed method (“DNN-varying”) with three additional bench-

mark methods. The first is linear varying method (“Linear-varying”) where the DNN

projections in all steps of the algorithms are replaced by linear regressions on the

characteristics. The second benchmark is the DNN moving-window method (“DNN-

mw”) which estimates quantities at time t by fixing a moving-window of twenty-four

months [t�23, · · · , t] as the in-sample period, and estimates alphas and risks by treat-

ing them constants within the period. The last benchmark we compare with is the

linear moving-window method (“Linear-mw”), which replaces the DNN projection in

DNN-mw with linear projections. The moving-window methods have been commonly

used as a means of accounting for time-varying alphas and betas. Both DNN-based

methods use feedforward three-layer neural networks with number of layers being

16, 8, 4. We fix the learning rate as 0.1 and use the ReLu activation functions.

Out-of-sample estimation

We conduct out-of-sample comparisons, by refitting the estimated functions g↵,t(·)

and griskP,t(·) using the new data xi,t and compare them with the true values. As
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“pooling” has been one of the standards for predictions in the literature, we also

examine the multi-months pooling for forecasts. Specifically, for both the “DNN-

varying” and “Linear-varying” methods, after obtaining the in-sample estimates of

the alphas and risks as in step S5 of Algorithm 3.2, we estimate functions g↵,t(·) and

griskP,t(·) by pooling the in-sample estimates of the previous M months: t, t�1, ..., t�

M , and regressing on the corresponding pooled characteristics, for M 2 {0, 3, 6}.

When M = 0, it means we use only the in-sample estimates of the most recent month

to estimate the alpha and risk functions. For the two moving-window methods “DNN-

mw” and “Linear-mw”, we do not pool the in-sample data because these methods

treat alphas and risk constant within the estimation window. We compute

RMSE(bg) =
PN

i=1

PT+s
t=T+1(bgt(xi,t)� gt(xi,t))2PN
i=1

PT+s
t=T+1 gt(xi,t)2

.

for new sampling periods T + 1, · · · , T + s with s = 100, where bgt(·) is estimated

using in-sample estimates (either alphas or risks) and then evaluated at xi,t and

compare with the true value gt(xi,t) 2 {g↵,t(xi,t), griskP,t(xi,t)}. For the two DNN-

based methods, we use the same two-layer networks as in the in-sample estimation.

Table IV reports both the median and standard-deviation of the RMSEs for each

method over 100 Monte Carlo repetitions, both in-sample and out-of-sample. The re-

sults show that the proposed DNN-varying method outperforms the competing bench-

marks in estimating both alphas and risks, closely followed by the moving-window

DNN method which accounts for the nonlinearity but not fully the time-varying fea-

tures. For out-of-sample performance, the race is closer, but the DNN-varying method

is still better than competing ones. In addition, we observe the following patterns

from the comparisons. First, the alphas are more di�cult to estimate/predict than

the risk, with larger RMSE for both in-sample and out-of-sample. Second, the two

DNN- based methods produce more stable estimates than the linear-based meth-

ods, evidenced by the smaller standard deviations of the repeated RMSE. Finally,

pooling does not help in improving the out-of-sample predictions: the three pooling

approaches (no-pooling, pooling three months, and pooling six months) perform very

similarly. This is not surprising because our kernel-smoothing based estimations lead

to estimated alphas and risk, both in-sample and out-of-sample, very close in any

local window. It provides justifications of not using pooling in our method.
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Table IV: In-sample and Out-of-sample RMSE
This table reports the median and standard-deviations of in-sample and out-of-sample RMSE over 100 replications,

for four competing methods: the proposed method (DNN-varying); the linear varying method (Linear-varying) where

the DNN projection is replaced by linear regressions on the characteristics period-by-period; the DNN moving-window

method (DNN-mw) which treats quantities constants in the fixed twenty-four month moving window, and the linear

moving-window method (Linear-mw) which replaces the DNN projection in DNN-mw with linear projections. For the

out-of-sample estimation, both “DNN-varying” and “Linear-varying” pooled the in-sample estimates of the previous

M months: t, t� 2, ..., t�M to estimate the alpha and risk functions. Here reported M 2 {0, 3, 6}. The two moving-

window methods do not do pooling because they treat in-sample estimates constant in the estimation window.

alpha g↵ risk g0��
median std ⇥10 median std ⇥10

In-sample
DNN-varying 0.880 0.160 0.589 0.145
Linear-varying 1.334 0.687 0.657 0.175

DNN-mw 0.884 0.128 0.763 0.104
Linear-mw 1.420 0.823 0.925 0.209

Out-of-sample
DNN-varying M = 0 0.893 0.200 0.518 0.271

pooled M = 3 0.879 0.204 0.517 0.274
M = 6 0.872 0.193 0.519 0.275

Linear-varying M = 0 0.972 0.444 0.547 0.286
pooled M = 3 0.973 0.448 0.548 0.290

M = 6 0.973 0.452 0.551 0.291
DNN-mw 0.946 0.199 0.624 0.216
Linear-mw 1.047 0.539 0.717 0.385

7 Conclusion

While this paper focuss on the estimation using neural networks, our method is

suitable for a generic machine learning method. For example, we could derive similar

results if predictions were made using random forests.

Our main application in this paper is cross-sectional asset pricing of U.S. equities.

The methods developed are however more broadly applicable. In finance a further

application (besides the cross-section of other assets) is modeling implied volatility

surfaces as in Park et al. (2009). Another possible application is the estimation of

consumer demand as in Lewbel (1991), or the in-sample study for portfolio allocations

as in the recent work of Lopez-Lira and Roussanov (2020).
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A Technical proofs

A.1 The boundary kernel

We apply the boundary kernel Kt(·) which satisfies the following property: write l(t) =

(1� t)/(Th), and u(t) = (T � t)/(Th) then

Z u(t)

l(t)
xKt(x)dx = 0, t = 1, 2, · · · , T. (A.1)

The use of boundary kernel is important as it does not slow down the rate of convergence

at the end-period, which is relevant for out-of-sample forecasts.

To construct such a kernel, let K0(·) be a baseline kernel function supported on [�1, 1]

satisfying
R
1

�1
xK0(x)dx = 0. Now define the boundary kernel

Kt(x) = 1{�1  x  1}[K0(x)� at]

where

at =

8
>>><

>>>:

0 t 2 (Th, T � Th]

bt, where bt = 2
R
1

l(t) xK0(x)dx/
⇥
1� l(t)2

⇤
, t  Th

ct, where ct = 2
R u(t)
�1

xK0(x)dx/
⇥
u(t)2 � 1

⇤
, t > T � Th.

It is straightforward to show that (A.1) is satisfied (in Lemma A.1).

As for the baseline kernel K0, in our empirical studies we use the quartic kernel:

K0(x) =
15

16
(1� x2)2, �1  x  1

which satisfies d
dxK0(±1) = 0, so that Kt(x) is continuous with respect to t at the boundary

points t 2 {Th, T�Th} as Th ! 1. Lemma A.1 verifies additional properties of this kernel.

Lemma A.1. Suppose K0(x) =
15

16
(1�x2)21{�1  x  1}. Then at any t

R u(t)
l(t) Kt(x)dx >

c0 > 0 and
R u(t)
l(t) x2Kt(x)dx < 1. In addition

R u(t)
l(t) xKt(x)dx = 0.

Proof. When t 2 (Th, T � Th], l(t)  �1 and u(t) � 1 so
R u(t)
l(t) Kt(x)dx = 1

and
R u(t)
l(t) x2Kt(x)dx = 1/7. We now consider the boundary cases. Calculus yields

R u
l xmK0(x)dx = 15

16
[x

m+1

m+1
+ xm+5

m+5
� 2xm+3

m+3
]|ul for m 2 {0, 1, 2} and �1  l, u  1. This

2
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implies

bt =
15

8(1� l(t)2)
[
x2

2
+

x6

6
�

x4

2
]

����
1

l(t)

, if � 1 < l(t)  0

ct =
15

8(u(t)2 � 1)
[
x2

2
+

x6

6
�

x4

2
]

����
u(t)

�1

, if 0 < u(t)  1

Z u(t)

l(t)
K0(x)dx =

15

16
[x+

x5

5
� 2

x3

3
]

����
u

l

,

Z u(t)

l(t)
x2K0(x)dx =

15

16
[
x3

3
+

x7

7
� 2

x5

5
]

����
u

l

.

When t  Th, l(t) 2 (�1, 0] and u(t) � 1. Then
R u(t)
l(t) Kt =

R
1

l(t)K0 � bt(1� l(t)) = F (l(t))

F (l) =

Z
1

l
K0(x)dx� 2(1� l)

Z
1

l
xK0/(1� l2).

Note that F is a decreasing function of l since its derivative is negative when l 2 (�1, 0].

Hence
R u(t)
l(t) Kt � F (0) = 3/16. In addition,

R u(t)
l(t) x2Kt =

R
1

l(t) x
2K0 � (1

3
�

l(t)3

3
)bt. The first

term is bounded. For the second term, when l(t)2 ! 1, let F1(y) = y
2
+ y3

6
�

y2

2
. Then

d
dyF1(1) = 0, implying

(
1

3
�

l(t)3

3
)bt  |bt|  2

F1(1)� F1(l(t)2)

1� l(t)2


d

dy
F1(1) + o(1) = o(1).

When l(t)2 is bounded away from 1, this term is also bounded. Hence
R u(t)
l(t) x2Kt(x)dx < 1.

Similarly, the conclusions hold when t > T � Th.

It remains to prove (A.1). We consider three cases.

Case 1: t 2 (Th, T � Th]. Then l(t)  �1 and u(t) � 1 and Kt(x) = K0(x) where K0

satisfies
R
1

�1
xK0(x)dx = 0.

Case 2: t 2 (0, Th]. We have u(t) � 1 and l(t) 2 (�1, 0]. This is one of the boundary

cases and Kt(x) = K0(x)� bt. Then by the definition of bt.

Z u(t)

l(t)
xKt(x)dx =

Z
1

l(t)
xK0(x)dx� 0.5bt[1� l(t)2] = 0.

Case 3: t > T � Th. We have l(t)  �1 and u(t) 2 [0, 1). This is another boundary

case and Kt(x) = K0(x)� ct. Then by the definition of ct.

Z u(t)

l(t)
xKt(x)dx =

Z u(t)

�1

xK0(x)dx� 0.5ct[u(t)
2
� 1] = 0.
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A.2 Proof of Theorem 4.1

Let �t := bmt�E(yt|Xt�1, ft), where bmt is the DNN estimator for E(yt|Xt�1, ft). Also,

let �i,t denote the i th component of �t. We shall obtain the rate of convergence for k�tk.

m0

t (x) := E(yit|xi,t�1 = x, ft).

A.2.1 Convergence of bmt �m0

t .

We derive bounds that require the pseudo dimension of the deep neural network class,

e.g., Anthony and Bartlett (2009); Bartlett et al. (2019). Let p(MJ,L) denote the pseudo

dimension of MJ,L, defined as the Vapnik-Chervonenkis (VC) dimension of the subgraph

class {sgn(h(x)� y) : h 2 MJ,L}.

The first result of Theorem 4.1 follows from (i) of Proposition A.1 below.

Proposition A.1. Suppose m0
t belongs to the Hölder ball for all t:

H(q, �, L) = {f : [a, b]d ! R, kfkq,�  L}, kfkq,� = sup
a,b

|f (q)(a)� f (q)(b)|

ka� bk�
.

Let s0 =
2(q+�)

2(q+�)+dim(xi,t�1)
. Let dt(m1,m2) :=

p
E[m1(xi,t�1)�m2(xi,t�1)]2, which does not

depend on i by the assumption that xi,t�1’s identically distributed across i. Let

�2T =
p(MJ,L) log(NT )

N
,

'2

T = max
t

inf
m2MJ,L

sup
x

|m0

t (x)�m(x)| = max
t

km0

t � ⇡Nm0

t k1.

Suppose p(MJ,L) log
3/2(NT ) + loga(NT ) = o(N) for some a > 1 + s�1

0
. Also suppose:

(a) there is q 2 R, � 2 (0, 1] and L > 0 so that m0
t 2 H(q, �, L).

(b) For any ✏ > 0, mint infkm�m0
t kq,�>✏ E|m(xi,t�1)�m0

t (xi,t�1)|2 > c for some c > 0.

(c) xi,t�1’s are i.i.d. cross i and eit’s are independent across i.

(d) There are c1, c2 > 0, 8x > 0, maxit P(|eit| > x)  c1 exp(�c2x2).

Then

(i) maxt dt(m0
t , bmt)2  OP (�2T + '2

T ).

(ii) maxt supx |bmt(x)�m0
t (x)| = OP ('

s0
T + �s0T ).

(iii) maxt
1

N

P
i[bmt(xi,t�1)�m0

t (xi,t�1)]2 = OP (�2T + '2

T ).

Proof. (i) Let ✏2T = C̄('2

T + �2T ) for some large C̄ > 0. The goal is to show that

P(max
t

dt(m
0

t , bmt) > 0.5✏T ) ! 0.

4
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step 1 peeling device.

We apply the standard peeling device (e.g., in the proof of Theorem 3.2.5 of van der

Vaart and Wellner (1996)). Note that

A := P(max
t

dt(m
0

t , bmt) > 0.5✏T )  TP(dt(m0

t , bmt) > 0.5✏T )



1X

k=0

TP(2k�1✏T  dt(bmt,m
0

t )  2k✏T ).

Let QT,t(m) = 1

N

P
i(yit �m(xi,t�1))2. We also have

max
t

|QT,t(⇡Nm0

t )�QT,t(m
0

t )|  2'2

T +max
t

|
4

N

X

i

eit(m
0

t (xi,t�1)� ⇡Nm0

t (xi,t�1))|

 C1'
2

T + C2

log T

N
 ✏2T /8 (A.2)

for su�ciently large C̄ > 0 in the definition of ✏T , and this holds with probability approach-

ing one. So we now condition on this event. For notational simplicity, all P throughout this

proof refers to this conditional probability.

Define for k = 0, 1, 2, · · ·

Ekt := {m 2 MJ,L : 2k�1✏T  dt(m,m0

t )  2k✏T }

Ckt := {f : f(",x) = "2 � ("+m0

t (x)�m(x))2 : m 2 Ekt}.

Also let Et(f) := 1

N

P
i=1

f(eit,xi,t�1) � Ef(eit,xi,t�1) for f 2 Ck,t. Then the events

2k�1✏T  dt(bmt,m0
t )  2k✏T and (A.2) imply

sup
f2Ckt

Et(f) = sup
m2Ekt

[QT,t(m
0

t )� EQT,t(m
0

t )]� [QT,t(m)� EQT,t(m)]

� EQT,t(bmt)� EQT,t(m
0

t ) + [QT,t(m
0

t )�QT,t(⇡Nm0

t )]

= dt(bmt,m
0

t )
2 + [QT,t(m

0

t )�QT,t(⇡Nm0

t )]

� (2k�1✏T )
2
� ✏2T /8 � (2k�2✏T )

2/2.

Let BT ! 1 be some truncation sequence. Then

A 

1X

k=0

TP( sup
f2Ckt

Et(f) � (2k�2✏T )
2/2)

 T
1X

k=0

P
 

sup
f2Ckt

Et(f) � (2k�2✏T )
2/2,max

it
|eit|  BT

!

+T
1X

k=0

P
 

sup
f2Ckt

Et(f) � (2k�2✏T )
2/2,max

it
|eit| > BT

!
:= A1 +A2.
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To bound A1, we apply Lemma 1 of Chen and Shen (1998). While Lemma 1 of Chen

and Shen (1998) is for �-mixing data, it admits independent data as a special case. In their

notation, set an1 = 1 and a2n = N . When maxit |eit|  BT ,

sup
f2Ckt

|f(eit,xi,t�1)|  4BT |m
0

t (xi,t�1)�m(xi,t�1)|  CBT (2
k✏T )

s0 := Tk (A.3)

sup
f2Ckt

1

N
var(

X

i

f(eit,xi,t�1)) < E|m(xi,t�1)�m0

t (xi,t�1)|
2 + CE|m(xi,t�1)�m0

t (xi,t�1)|
4

 E|m(xi,t�1)�m0

t (xi,t�1)|
2

+[sup
x

|m(xi,t�1)|+ sup
x

|m0

t (xi,t�1)|]E|m(xi,t�1)�m0

t (xi,t�1)|
2

 E|m(xi,t�1)�m0

t (xi,t�1)|
2
 C(2k✏T )

2 := �2

k. (A.4)

Set Mk = (2k�2✏T )2/2. Then in Lemma 1 of Chen and Shen (1998), condition (a.1) is

satisfied for ⇠ = 0.5 and Mk = (2k�2✏T )2/2  ⇠�2

k/4 for some large C. Condition (a.3) is

satisfied for NMk/6 > CBT (2k✏T )s0 = Tk and an2 = N , as long as N✏2�s0
T � BT .

In (A.3), we used the fact that for any � > 0, there is s 2 (0, 2) so that

max
t

sup
dt(m0

t ,m)�
sup
x

|m0

t (x)�m(x)|  C�s0 , (A.5)

which is to be verified in the end.

In the next step, we verify condition (a.3) in Lemma 1 of Chen and Shen (1998).

step 2 the bracketing number.

In this step we bound the bracketing number N[](�, Ckt, k.kL2). Let m1, · · · ,mN be a �-

cover of MJ,L under the sup norm k.k1 and N := N (�,MJ,L, k.k1). Then for any f 2 Ckt,

where f(",x) = (" + m0
t (x) � m(x))2 � "2, there is mj such that km � mjk1  �. Let

fj(",x) = ("+m0
t (x)�mj(x))2 � "2.

sup
f2Ckt,km�mjk1�

|fj(eit,xit)� f(eit,xit)|  (C + 2)|eit|� := b(eit)�

Hence f 2 [lj , uj ], where lj = fj � b� and uj = fj + b�. Moreover, E(uj � lj)2  C�2Ee2it.
This shows that {[lj , uj ] : j  N} is a C�- bracket of Ckt, implying that the bracketing

number satisfies

N[](�, Ckt, k.kL2)  N (C�,MJ,L, k.k1) 

✓
CN

�p(MJ,L)

◆p(MJ,L)

.

where the last inequality follows from Theorem 12.2 of Anthony and Bartlett (2009). Let

6
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D := p(MJ,L) log
CN

p(MJ,L)
. Because p(MJ,L) = o(N),

logN[](�, Ckt, k.kL2)  D(1 + log
1

�
). (A.6)

Note that log y  y � 1 for all y > 0. Hence for any small c0 > 0,

212
Z �k

p
Tk

Mk/64

q
logN[](�, Ckt, k.kL2)d�  212

p

D

Z p
BT (2

k✏T )
s0/2+1

(2k✏T )2/c

q
1 + c�1

0
log ��c0d�

 C
q
1 + log(2k✏T )�2c0

p
DBT (2

k✏T )
s0/2+1

 C
p
DBT (2

k✏T )
s0/2+1�c0



q
BT p(MJ,L) logN(2k✏T )

s0/2+1�c0  Mk

p

N (A.7)

where the last inequality holds if
p
BT �T  C(✏T )1�s0/2+c0 and ✏T = C̄�T + C̄'T . We shall

prove this claim in the end. Hence we have verified condition (a.3).

step 3 bounding A1.

We are ready to apply Lemma 1 of Chen and Shen (1998). For Mk = (2k�2✏T )2/2, and

�2

k = C(2k✏T )2, and because BT ✏sT > c for some c > 0 (a claim to be proved in the end), so

TP
 

sup
f2Ckt

Et(f) � Mk,max
it

|eit|  BT

!
 CT exp

✓
�

CNM2

k

�2

k(1 + cTk)

◆

 CT exp

✓
�

CN(2k✏T )2

(1 +BT (2k✏T )s0)

◆
 CT exp

✓
�
CN(2k)2�s0✏2T

✏s0T BT

◆

 CT exp
⇣
�CN(2k)2�s0✏2�s0

T B�1

T

⌘
.

This implies, with CN✏2�s0
T B�1

T � 2 log(NT ),

A1  T
1X

k=0

C exp
⇣
�CN(2k)2�s0✏2�s0

T B�1

T

⌘
 CT exp(�CN✏2�s0

T B�1

T )

 C exp(� log T � 2 log(NT )) ! 0.

step 4 bounding A2.

When maxit |eit| > BT ,

sup
f2Ckt

Et(f)  |
1

N

X

i=1

(m(xi,t�1)�m0

t (xi,t�1))
2
� E(m(xi,t�1)�m0

t (xi,t�1))
2
|

+|
1

N

X

i=1

(m(xi,t�1)�m0

t (xi,t�1))eit|  (C +max
it

|eit|)km�m0

t k1

 Cmax
it

|eit|(2
k✏T )

s0 .

7
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A2 = T
1X

k=0

P
 

sup
f2Ckt

Et(f) � (2k�2✏T )
2/2,max

it
|eit| > BT

!

 T
1X

k=0

P
✓
Cmax

it
|eit|(2

k✏T )
s0 � (2k�2✏T )

2,max
it

|eit| > BT

◆

 T
1X

k=0

P
✓
max
it

|eit|1{max
it

|eit| > BT } � c(2k�2✏T )
2�s0

◆



1X

k=0

T

2(k�2)(2�s0)/2
(✏T )

�(2�s0)/2Emax
it

|eit|
1/21{max

it
|eit| > BT }

 TC(✏T )
�(2�s0)/2

q
Emax

it
|eit|P(max

it
|eit| > BT )

 TC(✏T )
�(2�s0)/2 log1/4(NT )

p

NT exp(�CB2

T )  (NT )c exp(�CB2

T )

 exp(c log(NT )� CB2

T ) ! 0

The last inequality holds for B2

T � C log(NT ) for su�ciently large C > 0.

step 5 proving claims. It remains to show claims used in the above proofs:

(1)N✏2�s0
T � BT , (2)

p
BT �T  C(✏T )1�s0/2+c0 some c0 > 0, (3) CN✏2�s0

T B�1

T � 2 log(NT ),

(4) B2

T � C log(NT ), and (A.5). In fact (1)-(3) hold for any BT  c��(s0�2c0)
T with s0 > 2c0.

Hence we can choose BT to satisfy (1)-(4) as long as C(log(NT ))1/2  B2

T  ��(s0�2c)
T . Such

BT always exists as long as loga(NT ) = O(N) for some a > 1 + s�1

0
.

Finally, to prove (A.5), we apply Lemma 2 of Chen and Shen (1998). By Lemma A.2,

P(8t, bmt 2 H(q, �, 2L)) ! 1. Let

s0 =
2(q + �)

2(q + �) + dim(xi,t�1)
.

Then maxt supdt(m0
t ,m)� supx |m

0
t (x)�m(x)|  2(2L)1�s0�s0 .

(ii) By Lemma A.2, P(8t, bmt 2 H(q, �, L)) ! 1 for any L > 0. Then by Lemma 2 of

Chen and Shen (1998), maxt supx |bmt(x)�m0
t (x)|  2(2L)1�s0 maxt dt(m0

t , bmt)s0  C✏s0T .

(iii) Recall ✏2T = C̄('2

T + �2T ). Note that

max
t

1

N
k�tk

2 = max
t

1

N

X

i

(bmt(xi,t�1)�m0

t (xi,t�1))
2
 OP (✏

2

T ) + g

where g = maxt supm2C
1

N

P
i[(m(xi,t�1)�m0

t (xi,t�1))2 � E(m(xi,t�1)�m0
t (xi,t�1))2], and

C = {m 2 MJ,L,max
t

dt(m
0

t ,m)2  C✏2T ,max
t

km�m0

t k1  C✏s0T }.

Let Ft := {f : f(x) = (m(x)�m0
t (x))

2,m 2 C}. We now bound g using Lemma 1 of Chen

8

Electronic copy available at: https://ssrn.com/abstract=4117882



and Shen (1998). Then g  maxt supf2Ft
1

N

P
i f(xi,t�1)� Ef(xi,t�1) and

sup
f2Ft

|f(xi,t�1)|  sup
m2C

km�m0

t k
2

1  C✏2s0T := G

sup
f2Ft

1

N
var(

X

i

f(xi,t�1)) < C sup
m2C

E|m(xi,t�1)�m0

t (xi,t�1)|
4
 C✏2T := �2.

Set M = �2/8. So their (a.1) (a.3) both are satisfied. As for (a.2), for any small c0 2 (0, s0),

note that the integral below is bounded by replacing � with M/64.

212
Z �

p
G

M/64

q
logN[](�, Ckt, k.kL2)d�  212

p

D

Z �
p
G

M/64

p
1 + log ��1d�

 C
q

1 + c�1

0
log(M)�c0

p

DG�2  CM�c0/2
p

DG�2  M
p

N

where the last inequality holds for D := p(MJ,L) log(NT ) = O(N) and c0 < s0. We can

apply Lemma 1 of Chen and Shen (1998) to reach g = OP (✏2T ), given:

P(g > M)  TP( sup
f2Ft

1

N

X

i

f(xi,t�1)� Ef(xi,t�1) > M)

 CT exp(�
CNM2

�2
)  CT exp(�CN✏2T ) ! 0.

Lemma A.2 (Consistency). Suppose

p
log(NT )p(MJ,L) log(NT ) = o(N). Also suppose:

(a) there is q 2 R, � 2 (0, 1] and L > 0 so that m0
t 2 H(q, �, L).

(b) For any ✏ > 0, mint infkm�m0
t kq,�>✏ E|m(xi,t�1)�m0

t (xi,t�1)|2 > c for some c > 0.

(c) xi,t�1’s are i.i.d. cross i and eit’s are independent across i.

(d) There are c1, c2 > 0, 8x > 0, maxit P(|eit| > x)  c1 exp(�c2x2).

Then

(i) maxt supm2MJ,L
|
1

N

P
i eitm(xi,t�1)| = oP (1) and

(ii) supm2MJ,L,t |
1

N

P
i d(m)�Ed(m)| = oP (1) where d(m) = [m(xi,t�1)�m0

t (xi,t�1)]2.

(iii) maxt kbmt �m0
t kq,� = oP (1).

Proof. (i) Set BT :=
p
log(NT )L for su�ciently large L > 0.

Let At := supm2MJ,L
|
1

N

P
i eitm(xi,t�1)|. For any M > 0,

P
⇣
max

t
At > M

⌘
= P

✓
max

t
At > M,max

it
|eit|  BT

◆

+P
✓
max

t
At > M,max

it
|eit| > BT

◆
:= E1 + E2.

9

Electronic copy available at: https://ssrn.com/abstract=4117882



To bound E1, we apply Lemma 1 of Chen and Shen (1998). While Lemma 1 of Chen

and Shen (1998) is for �-mixing data, it admits independent data as a special case. In their

notation, set an1 = 1 and a2n = N .

Step 1 verify their conditions (a.1) (a.3).

We now verify condition (a.1) in Lemma 1 of Chen and Shen (1998). Let F = {f :

f(",x) = "m(x),m 2 MJ,L}. When maxit |eit|  BT ,

sup
f2F

|f(eit,xi,t�1)|  CBT , sup
f2F

1

N
var(

X

i

f(eit,xi,t�1))  C.

Hence their (a.1) and (a.3) hold for su�ciently small M , and BT = O(N).

step 2 the bracketing number.

In this step we bound the bracketing number N[](�,F , k.kL2). Let m1, · · · ,mN be a �-

cover of MJ,L under the sup norm k.k1 and N := N (�,MJ,L, k.k1). Then for any f 2 F ,

where f(",x) = "m(x), there is mj such that km�mjk1  �. Let fj(",x) = "mj(x).

sup
f2Ckt,km�mjk1�

|fj(eit,xit)� f(eit,xit)|  |eit|�.

Hence f 2 [lj , uj ], where lj = fj � |"|� and uj = fj + |"|�. Moreover, E(uj � lj)2  4�2Ee2it.
This shows that {[lj , uj ] : j  N} is a C�- bracket of F , implying that the bracketing

number satisfies

N[](�,F , k.kL2)  N (C�,MJ,L, k.k1) 

✓
CN

�p(MJ,L)

◆p(MJ,L)

.

where the last inequality follows from Theorem 12.2 of Anthony and Bartlett (2009). Let

D := p(MJ,L) log
CN

p(MJ,L)
�p(MJ,L). By (A.6), p(MJ,L) log

CN
�p(MJ,L)

 D+D��1. Therefore

when
p
log(NT )p(MJ,L) logN = o(N), we have DBT = o(N),

212
Z p

BT

0

q
logN[](�, Ckt, k.kL2)d�  212

p

D

Z p
BT

0

p
1 + ��1d�  0.53/2M

p

N.

This verifies (a.2) in Lemma 1 of Chen and Shen (1998). Hence when
p
log(NT ) log T =

o(N),

E1 

X

t

P
✓
At > M,max

it
|eit|  BT

◆
 CT exp

✓
�

CNM2

(1 + cBT )

◆
! 0.

step 3 bound E2. For BT =
p
log(NT )L and su�ciently large L > 0, So
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P(supm2MJ,L
|
1

N

P
i eitm(xi,t�1)| > M) ! 0 for any small M > 0, with

E2  NTP (|eit| > BT )  C exp(log(NT )� cB2

T ) ! 0.

(ii) The proof is very similar to that of (i) so is omitted.

(iii) The inequality QT,t(bmt)  QT,t(⇡Nm0
t ) implies

1

N

X

i

(m0

t (xi,t�1)� bmt(xi,t�1))
2


1

N

X

i

(m0

t (xi,t�1)� ⇡Nm0

t (xi,t�1))
2

+2
1

N

X

i

eit(bmt(xi,t�1)� ⇡Nm0

t (xi,t�1)).

Note that maxt km0
t � ⇡Nm0

t k1 = oP (1). Results (i) (ii) then imply

max
t

E(m0

t (xi,t�1)� bmt(xi,t�1))
2 = o(1).

It follows from the condition mint infkm�m0
t kq,�>✏ E|m(xi,t�1)�m0

t (xi,t�1)|2 > c that for any

small ✏ > 0, with probability approaching one, maxt kbmt �m0
t kq,� < ✏.

A.2.2 Convergence of m̄i,t � E(yit|xi,t�1)

We recall and introduce the following notation.

mi

✓
t

T

◆
:= E(yit|xi,t�1) = g↵,t(xi,t�1) + g�,t(xi,t�1)

0�t�1.

m0

t (xi,t�1) := E(yit|xi,t�1, ft) = mi

✓
t

T

◆
+ g�,t(xi,t�1)

0[ft � Eft],

gi

✓
t

T

◆
= g�,t(xi,t�1)

m̄0

i,t =
1

Th

TX

s=1

m0

s(xi,s�1)Kt

✓
t� s

Th

◆
A�1

t , At =
1

Th

TX

s=1

Kt

✓
t� s

Th

◆

m̄i,t =
1

Th

TX

s=1

bms(xi,s�1)Kt

✓
t� s

Th

◆
A�1

t

where the first lines follows from E(ui,t|Ft�1, ft) = 0, E(�↵,i,t�1|Ft�1, ft) = 0, and

E(��,i,t�1|Ft�1, ft) = 0 , the model assumption.

Here m̄0

i,t is the oracle estimator for E(yit|xi,t�1) as if m0
t (xi,t�1) were known. For any

twice di↵erentiable scalar function m, let ṁ(v) = dm(v)
dv and m̈(v) = d2mi(v)

dv2 . Also for any

twice di↵erentiable vector function g, let ġ(v) = rg(v) and g̈(v) = r
2
g(v).

Proposition A.2. Suppose (i) var( 1

Th

PT
s=1

g�,s(xi,s�1)0fsKt
�
t�s
Th

�
) = O(1/(Th)).
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(ii) supv,i |ṁi(v)|+ |m̈i(v)|+ supv,i kġi(v)k+ kg̈i(v)k < C.

Then for each fixed t,

1

N

X

i

E |m̄i,t �mi (t/T )|
2 = O

✓
1

Th
+ h4 + �2T + '2

T

◆
.

Proof. For notational simplicity, write K(t, s) := Kt
�
t�s
Th

�
A�1

t . Then

m̄0

i,t �mi

✓
t

T

◆
= a1 + a2

a1 :=
1

Th

TX

s=1

✓
mi

⇣ s

T

⌘
�mi

✓
t

T

◆◆
K(t, s), a2 :=

1

Th

TX

s=1

g�,s(xi,s�1)
0[fs � Efs]K(t, s).

We have E(fs|xs) = Efs implying Ea2 = 0. Also, maxit var(a2) = O(1/(Th)). This shows
1

N

P
imaxt Ea22 = O((Th)�1).

As for a1, by the second order Taylor expansion, for some v,

a1 = ṁi(
t

T
)
1

Th

TX

s=1

(s� t)

T
K(t, s)

| {z }
a11

+
1

Th

TX

s=1

m̈i(
v

T
)
(s� t)2

T 2
K(t, s)

| {z }
a12

max
i

|a12|  C
1

Th

TX

s=1

(s� t)2

T 2
K(t, s)  Ch2

Z
x2Kt(x)dx+ o(1)

�
= O(h2).

To bound a11, we apply the property of boundary kernels. Write �(x) = 1

Th , l(t) =

(1� t)/(Th), and u(t) = (T � t)/(Th). The kernel Kt(·) satisfies:

Z u(t)

l(t)
xKt(x)dx = 0, t = 1, 2, · · · , T, (A.8)

proved in Lemma A.1. By the same lemma, At = 1

Th

P
sKt(

t�s
Th ) is bounded away from

zero for any t. Hence

max
i

|a11| = max
i

ṁi(
t

T
)A�1

t h
uX

x=l

xKt(x)�(x) = max
i

ṁi(
t

T
)A�1

t h

"Z u(t)

l(t)
xKt(x)dx+O(

1

Th
)

#

 max
i

|ṁi(
t

T
)|A�1

t hO(
1

Th
) = O(T�1).

Together, 1

N

P
i E
���m̄0

i,t �mi (t/T )
���
2

= O
�

1

Th + h4
�
. In addition, by Proposition A.1, write
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�is := m0
s(xi,s�1)� bms(xi,s�1).

E 1

N

X

i

[m̄0

i,t � m̄i,t]
2


1

N

X

i

E
 

1

Th

X

s

�isK(t, s)

!2


1

T 2h2

X

s

X

l

1

N

X

i

E|�is�il|K(t, s)K(t, l)  max
sl

1

N

X

i

E|�is�il|

 
1

Th

X

s

K(t, s)

!2

 max
s

1

N

X

i

E�2

is = OP (�
2

T + '2

T ). (A.9)

Hence for each fixed t, E 1

N

P
i |m̄i,t �mi (t/T )|

2 = OP
�

1

Th + h4 + �2T + '2

T

�
.

A.3 Proof of Theorem 4.2

Proof. Step 1. Behavior of eigenvalues. Fix t of interest. Let Ms denote the N ⇥ 1

vector whose i th element is bms(xi,s�1) � m̄i,t. Let bV and V denote the K ⇥ K diagonal

matrices of the top K eigenvalues of 1

NTh

P
sMsM

0
sK(s, t) and 1

N g�,t�1Sfg0�,t�1
, where

Sf = 1

Th

P
s fsf

0
sK(s, t). As, kSf � Eftf 0tk = oP (1), then the diagonals of V are bounded

away from zero and infinity. Moreover, by Proposition A.3 to be presented below and the

Weyl’s inequality, for some matrix B(t).

kbV �Vk 
1

N
kB(t)kF = oP (1).

Hence the diagonals of bV are also bounded away from zero and infinity.

Step 2. Convergence of G�,t�1. By the definition of eigenvalues/vectors, the following

identity holds: 1

NTh

P
sMsM

0
sK(s, t) bG�,t�1 = bG�,t�1

bV. Applying Proposition A.3, and

letting Ht :=
1

NTh

P
s fsf

0
sK(s, t)G0

�,t�1
bG�,t�1

bV�1, we have

bG�,t�1 �G�,t�1Ht =
1

N
B(t) bG�,t�1

bV�1. (A.10)

This shows that 1

N k bG�,t�1 �G�,t�1Htk
2

F = OP (�T + 'T + 1

Th + h2)2.

Step 3. The risk premium. By definition, b�t�1 = 1

N

PN
i=1
bg�,t�1,im̄i,t. Then from the

following identity,

b�t�1 �H
�1

t �t�1 =
1

N

NX

i=1

bg�,t�1,i(m̄i,t �mi(t/T )) +
1

N

NX

i=1

(bg�,t�1,i �H
0
tg�,t(xi,t�1))g↵,t(xi,t�1)

0
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+
1

N

NX

i=1

bg�,t�1,i(g�,t(xi,t�1)
0
Ht � bg0�,t�1,i)H

�1

t �t�1 +
1

N
H

0
tG

0
�,t�1G↵,t�1.

(A.11)

By Proposition A.2, step 2, and 1

N g0�,t�1
g↵,t�1 = OP (N�1/2), we can conclude that kb�t�1�

H
�1

t �t�1k = OP (
1p
Th

+ h2 + �T + 'T ). So

1

N
k bG�,t�1

b�t�1 �G�,t�1�t�1k
2 = OP (

1
p
Th

+ h2 + �T + 'T )
2.

Step 4. The alpha. bg↵,t�1,i = m̄i,t � bg0�,t�1,i
b�t�1. Hence

bg↵,t�1,i � g↵,t(xi,t�1) = m̄i,t �mi(t/T ) + g0�,t�1,i�t�1 � bg0�,t�1,i
b�t�1. (A.12)

By Proposition A.2 and step 3, 1

N kbg↵,t�1 � g↵,t�1k
2 = OP (

1p
Th

+ h2 + �T + 'T )2.

Step 5. The factors. Note that

bft =
1

N
bG0
�,t�1Mt =

1

N

NX

i=1

bg�,t�1,i(m̄i,t � m̄i,t)

= H
�1

t [ft � Eft] +
1

N

NX

i=1

bg�,t�1,izit(t) +
1

N

NX

i=1

bg�,t�1,i[g�,t(xi,t�1)
0
Ht � bg�,t�1,i]H

�1

t [ft � Eft]

where zit(t) is defined in the proof of Proposition A.3. This implies bft � H
�1

t [ft � Eft] =
OP (�T + 'T + ⌘T ). Then

1

N

X

i

[brfactor,t,i�rfactor,t(xi,t�1)]
2 =

1

N

X

i

[bg0�,t�1,i
bft�g�,t(xi,t�1)

0(ft�Eft)]2 = OP (�T+'T+⌘T )
2.

Proposition A.3. Suppose (i) var(ft) does not vary across t.

(ii) maxkl var
⇣

1

Th

P
s
(s�t)
T (Rs,k � ERs,k)K(s, t)

⌘
= O( h2

Th) where Rs,k is the k th ele-

ment of Rs 2 {vs, vec(vsv
0
s)} with vs = fs � Efs. Then for each fixed t,

1

Th

X

s

MsM
0
sK(s, t) = G�,t�1

1

Th

X

s

[fs � Efs][fs � Efs]0K(s, t)G0
�,t�1 +B(t)

for some B(t) such that
1

N2 kB(t)k2F = OP (�2T + '2

T + 1

(Th)2 + h4).

Proof. Step 1. Bound 1

N

P
i k

1

Th

P
s zis(t)vsK(s, t)k2 and 1

NTh

P
is zis(t)

2K(s, t).

Note that bms(xi,s�1)� m̄i,t estimates the demeaned expected return, E(yit|xi,t�1, ft)�
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E(yit|xi,t�1), which should be approximately g�,t(xit)0[fs �Efs]. The definition zis(t) below

quantifies the estimation error. For each (s, t),

zis(t) := [bms(xi,s�1)� m̄i,t]� g�,t(xi,t�1)
0[fs � Efs] = d1(i, s) + · · ·+ d4(i)

d1(i, s) = bms(xi,s�1)�m0

s(xi,s�1) = �is

d2(i, s) = m0

s(xis)�mi(s/T )� g�,t(xi,t�1)
0[fs � Efs] = (g�,s(xi,s�1)� g�,t(xi,t�1))

0
vs

d3(i, s) = mi(s/T )�mi(t/T )

d4(i) = mi(t/T )� m̄i,t. (A.13)

Let vs = fs � Efs. Fix t of interest. By Propositions A.1, A.2,

1

N

X

i

k
1

Th

X

s

d1(i, s)vsK(s, t)k2  max
sl

1

N

X

i

|�is�il|

 
1

Th

X

s

kvskK(s, t)

!2

= OP
�
�2T + '2

T

�

1

NTh

X

is

d1(i, s)
2K(s, t)  max

s

1

N

X

i

�2

is
1

Th

X

s

K(s, t) = OP
�
�2T + '2

T

�

1

N

X

i

k
1

Th

X

s

d4(i)vsK(s, t)k2 
1

N

X

i

d4(i)
2
k

1

Th

X

s

vsK(s, t)k2

 OP

✓
1

Th
+ h4 + �2T + '2

T

◆
1

Th
= OP

✓
1

(Th)2
+

h4

Th
+ �2T + '2

T

◆

1

NTh

X

is

d4(i)
2K(s, t)  OP

✓
1

Th
+ h4 + �2T + '2

T

◆
.

Next, write ss := vsv
0
s � Evsv

0
s. Also note that Evsv

0
s does not depend on s due to the

stationarity. By Taylor expansion, for some v,

1

N

X

i

k
1

Th

X

s

d2(i, s)vsK(s, t)k2 
1

N

X

i

k
1

Th

X

s

(g�,s(xis)� g�,t�1(xit))
0
vsv

0
sK(s, t)k2


2

N

X

i

k
1

Th

X

s

s� t

T
ġi

✓
t

T

◆0
vsv

0
sK(s, t)k2 +

2

N

X

i

k
1

Th

X

s

(s� t)2

T 2
g̈i

⇣ v
T

⌘0
vsv

0
sK(s, t)k2

 OP (1)max
kl

var

 
1

Th

X

s

(s� t)

T
ss,klK(s, t)

!
+ CA�2

t h2
Z u

l
xK(x)dx+OP (

1

Th
)

�2
+OP (h

4)

 OP (
h2

Th
+ h2k2T + h4)

where l = (1� t)/(Th) and u = (T � t)/(Th); kT = 1

Th if t 2 (Th, T � Th) and kT = 1 for

all other t.

Now for some v,

1

NTh

X

is

d2(i, s)
2K(s, t) =

1

NTh

X

is

kg�,s(xis)� g�,t�1(xit)k
2
kvsk

2K(s, t)

15

Electronic copy available at: https://ssrn.com/abstract=4117882




1

NTh

X

is

kġi(v)k
2
(s� t)2

T 2
kvsk

2K(s, t)  OP (1)
1

Th

X

s

(s� t)2

T 2
Ekvsk

2K(s, t) = OP (h
2).

Finally,

1

N

X

i

k
1

Th

X

s

d3(i, s)vsK(s, t)k2 
1

N

X

i

k
1

Th

X

s

[mi(s/T )�mi(t/T )]vsK(s, t)k2

 OP (1)max
k

var

 
1

Th

X

s

(s� t)

T
vs,kK(s, t)

!
+OP (h

4)  OP (
h2

Th
+ h4).

1

NTh

X

is

d3(i, s)
2K(s, t) 

1

NTh

X

is

[mi(s/T )�mi(t/T )]
2K(s, t) = OP (h

2).

Putting together,

1

N

X

i

k
1

Th

X

s

zis(t)vsK(s, t)k2 = OP

✓
�2T + '2

T +
1

(Th)2
+ h4

◆

1

NTh

X

is

zis(t)
2K(s, t) = OP

✓
�2T + '2

T +
1

Th
+ h2

◆
.

Step 2. A decomposition. Now let Ms and Zs denote the N ⇥ 1 vectors whose i th

elements are respectively bms(xi,s�1)� m̄i,t and zis(t). Let G�,t�1 denote the N ⇥K matrix

of g�,t�1(xit). Then Ms = Zs +G�,t�1(fs � Efs), vs = (fs � Efs),

1

Th

X

s

MsM
0
sK(s, t) = G�,t�1

1

Th

X

s

vsv
0
sK(s, t)G0

�,t�1 + b1 + b2 + b
0
2| {z }

B(t)

b1 =
1

Th

X

s

ZsZ
0
sK(s, t), b2 =

1

Th

X

s

Zsv
0
sK(s, t)G0

�,t�1

1

N2
kb1k

2

F 
1

N2
[
1

Th

X

s

kZsk
2K(s, t)]2 = [

1

NTh

X

is

zis(t)
2K(s, t)]2

= OP

✓
�4T + '4

T +
1

(Th)2
+ h4

◆

1

N2
kb2k

2

F  OP (1)
1

N
k

1

Th

X

s

Zsv
0
sK(s, t)k2F = OP (1)

1

N

NX

i=1

k
1

Th

X

s

zis(t)vsK(s, t)k2

= OP

✓
�2T + '2

T +
1

(Th)2
+ h4

◆
. (A.14)

Hence 1

N2 kb1k
2

F + 1

N2 kb2k
2

F = OP (�2T + '2

T + 1

(Th)2 + h4).
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A.4 Proof of Theorem 4.3: out-of-sample forecasts

Let bT := 'N + ⌘T + �T .

A.4.1 Slower rate of convergence

We start with a result whose proof requires weaker assumptions, with the cost of a

slower rate of convergence.

Theorem A.1 (Out-of-Sample Prediction). Suppose the tuning parameter ⌫ in the con-

straint (3.3) satisfies: for some su�ciently large C > 0,

⌫ � C

2

4bT +

 
1

N

NX

i=1

[g↵,T+1(xi,T )� g↵,T (xi,T�1)]
2

!1/2
3

5 .

Let s0 =
2(q+�)

2(q+�)+dim(xi,t�1)
, with (q, �) as defined in Assumption 4.3. Then

max
iN

|bg↵,T (xi,T )� g↵,T+1(xi,T )| = OP
�
bs0T
�

max
iN

|bgriskP,T (xi,T )� griskP,T+1(xi,T )| = OP
�
bs0T
�
.

As shown in Theorem A.1, the prediction rate has an additional parameter s0 < 1

compared to that of the in-sample result. This parameter slightly slows down the rate of

convergence.

A.4.2 Proof of Theorem 4.3: Sharp predictive rate of convergence

To achieve sharp prediction rate of convergence at OP (bT ), we rely on the Riesz rep-

resentation theorem and requires one more assumption. First, for a generic function h, let

⇡Nh denote its projection on the DNN space MJ,L. Define the space

A = span(B1 [ B2), B1 = MJ,L � {⇡Ng↵,T }, B2 = MJ,L � {⇡NgriskP,T },

where span(B1 [ B2) denotes the closed linear span of B1 [ B2. Define an inner product:

hh1, h2i := E(h1(xi,T�1)h2(xi,T�1)), 8h1, h2 2 A.

Hence A is a Hilbert space endowed with this inner product. Evaluated at the out-of-sample

xi,T , define the following linear functional on A:

Ti(h) := h(xi,T ), h 2 A, 8i = 1, · · · , N.
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Because Ti is a linear functional on the Hilbert space, the Riesz representation theorem

implies that there is a function v⇤i 2 A, called Riesz representer, so that

Ti(h) = hh, v⇤i i, 8h 2 A, 8i = 1, · · · , N. (A.15)

We impose the following assumption.

Assumption A.1. The Riesz representer v⇤i satisfies: maxiN Ev⇤i (xj,T�1)2 < C.

Proof of Theorem 4.3:

Proof. The proof requires Assumption A.1.

We focus on the proof for estimating g↵,T (); the proof for estimating g�,T () is similar.

By the Riesz representation theorem, uniformly for j  N,

bg↵,T (xj,T )� ⇡Ng↵,T (xj,T ) = Tj(bg↵,T � ⇡Ng↵,T ) = hbg↵,T � ⇡Ng↵,T , v
⇤
j i

= E(bg↵,T (xi,T�1)� ⇡Ng↵,T (xi,T�1))v
⇤
j (xi,T�1)

 O(1)
⇥
E(bg↵,T (xi,T�1)� g↵,T (xi,T�1))

2
⇤1/2

+OP ('T )

= OP (bT ).

where the inequality follows from maxj Ev⇤j (xi,T�1)2 < C; the last equality is due to (A.17).

max
jN

|bg↵,T (xj,T )� g↵,T (xj,T )|  OP (bT + 'T ) = OP (bT ).

A.4.3 Proof of Theorem A.1

Proof. The proof of Theorem A.1 does not require Assumption A.1.

We focus on the convergence for predicting the alpha g↵,T+1(xi,T+1). The proof for

sup
x

|bgriskP,T (x)� griskP,T (x)| = OP (b
s0
T )

is mostly the same (but is simpler as it does not require constraints).

The proof is based on an interpolation result (see Step 3 below, cited from Chen and

Shen (1998)), which bounds supx |bg↵,T (x) � g↵,T+1(x)| using E|bg↵,T (xi,T ) � g↵,T+1(xi,T ))2

directly. Recall that g↵,T+1(·) is the true out-of-sample alpha function at time T + 1, and

⇡Ng↵,T+1 denotes its projection to the DNN space.

18

Electronic copy available at: https://ssrn.com/abstract=4117882



Step 1. In-sample mean squared error. Because ⇡Ng↵,T+1(·) 2 MJ,L satisfies the

constraint, as proved in Lemma A.3,

1

N

X

i

(bg↵,T (xi,T�1)� g↵,T (xi,T�1))
2
 a

2

N

X

i

(bg↵,T (xi,T�1)� bg↵,T�1,i)
2

+
2

N

X

i

(bg↵,T�1,i � g↵,T (xi,T�1))
2


8

N

X

i

(g↵,T+1(xi,T�1)� g↵,T (xi,T�1))
2 +

8

N

X

i

(g↵,T (xi,T�1)� bg↵,T�1,i)
2

+
8

N

X

i

(⇡Ng↵,T+1(xi,T�1)� g↵,T+1(xi,T�1))
2 +OP (b

2

T )

 sup
x

|g↵,T+1(x)� g↵,T (x)|
2 +OP (b

2

T ) = OP (b
2

T ). (A.16)

For su�ciently large C̄ > 0, ✏T := C̄bT . For any ✏ > 0, we can choose C̄ so that

P
 

1

N

X

i

(bg↵,T (xi,T�1)� g↵,T (xi,T�1))
2 > ✏2T /8

!
< ✏.

From 1

N

P
i(bg↵,T (xi,T�1) � g↵,T (xi,T�1))2 to dT (bg↵,T , g↵,T ), we apply the peeling device in

Step 3 below.

Step 2. Bound for dT (bg↵,T , g↵,T ). For notational simplicity, write (bg, g) := (bg↵,T , g↵,T )
and d(a, b) := dT (a, b) =

p
E[a(xi,T�1)� b(xi,T�1)]2. The proof is very similar to that of

Proposition A.1. We simply write

Ek := {m 2 MJ,L \H(q, �, L) : 2k�1✏T  d(m, g)  2k✏T ,
1

N

X

i

(m(xi,T�1)� g(xi,T�1))
2 < ✏2T /8}

Ck := {f : f(x) = �(m(x)� g(x))2 : m 2 Ek},

wheras g denotes the true alpha-function. Then bg 2 Ek implies

sup
f2Ck

1

N

X

i

f(xi,t�1)� Ef(xi,t�1)

= sup
m2Ek

�
1

N

X

i

(m(xi,t�1)� g(xi,t�1))
2 + E(m(xi,t�1)� g(xi,t�1))

2

� �
1

N

X

i

(bg(xi,t�1)� g(xi,t�1))
2 + d(bg, g)2 � d(bg, g)2 � ✏2T /8 � (2k�2✏T )

2/2.

A := P(d(bg, g) > 0.5✏T ) 
1X

k=0

P(bg 2 Ek) + ✏



1X

k=0

P( sup
f2Ck

1

N

X

i

f(xi,t�1)� Ef(xi,t�1) � (2k�2✏T )
2/2) + ✏.
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By Lemma 2 of Chen and Shen (1998),

sup
f2Ck

|f(xi,t�1)|  sup
m2Ek

sup
x
(m(x)� g(x))2  sup

m2Ek
|2(2L)1�s0d(m, g)s0 |2  C(2k✏T )

s0

sup
f2Ck

1

N
var(

X

i

f(xi,t�1))  sup
m2Ek

E|m(xi,t�1)� g(xi,t�1)|
4
 C sup

m2Ek
d(m, g)2  C(2k✏T )

2.

From a very similar as bounding term A1 in the proof Proposition A.1 to check that all

conditions of Lemma 1 of Chen and Shen (1998) are verified (omitting details for brevity).

A 

1X

k=0

P( sup
f2Ck

1

N

X

i

f(xi,t�1)� Ef(xi,t�1) � Mk) + ✏



1X

k=0

exp

✓
�

CN(2k✏T )2

(1 + (2k✏T )s0)

◆
+ ✏ 

1X

k=0

exp
⇣
�CN(2k)2�s0✏2�s0

T

⌘
+ ✏  2✏.

This implies d(bg, g) = OP (✏T ) = OP (bT ), meaning

E(bg↵,T (xi,T�1)� g↵,T (xi,T�1))
2 = OP (b

2

T ). (A.17)

Step 3. Out-of-sample prediction. By Lemma 2 of Chen and Shen (1998), for any

✏ > 0, there is C > 0, with probability at least 1� ✏,

sup
x

|bg↵,T (x)� g↵,T (x)|  2(2L)1�s0d(bg↵,T , g↵,T )s0  Cbs0T . (A.18)

max
i

|bg↵,T (xi,T )� g↵,T+1(xi,T )|  sup
x

|bg↵,T (x)� g↵,T (x)|+sup
x

|g↵,T (x)� g↵,T+1(x)|  Cbs0T .

Lemma A.3 (feasibility of ⇡Ng↵,T+1). The following inequality holds, which does not re-

quire Assumption A.1: k
1

N

P
i ⇡Ng↵,T+1(xi,T )(bg�,T�1,i, 1)k  ⌫.

Proof. ⇡Ng↵,T+1(·) satisfies the constraint due to the following inequality:

k
1

N

X

i

⇡Ng↵,T+1(xi,T )(bg�,T�1,i, 1)k  a1 + · · ·+ a5

a1 = k
1

N

X

i

⇡Ng↵,T+1(xi,T )(bg�,T�1,i � g�,T (xi,T�1)k = OP (bT )

a2 = k
1

N

X

i

[⇡Ng↵,T+1(xi,T )� g↵,T+1(xi,T )](g�,T (xi,T�1), 1)k = OP (bT )

a3 = k
1

N

X

i

g↵,T+1(xi,T )k = OP (N
�1/2)
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a4 = k
1

N

X

i

(g↵,T+1(xi,T )� g↵,T (xi,T�1))g�,T (xi,T�1)k  OP (
1

N

X

i

(g↵,T+1(xi,T )� g↵,T (xi,T�1))
2)1/2

a5 = k
1

N

X

i

g↵,T (xi,T�1)g�,T (xi,T�1)k = OP (N
�1/2).

A.5 Proof of Theorem 4.4: out-of-sample decomposition

Proof. Theorem 4.3 shows, uniformly in i  N ,

yi,T+1 = g↵,T+1(xi,T ) + griskP,T+1(xi,T ) + gfactor,T+1(xi,T ) + "i,T+1

= bg↵,T (xi,T ) + bgriskP,T (xi,T ) + gfactor,T+1(xi,T ) + "i,T+1 +OP (bT ).

Now let FT be the filtration generated by {Xt : t = 1, · · · , T}. Then

E(gfactor,T+1(xi,T )|FT ) = g�,T+1(xi,T )
0E(fT+1 � EfT+1|FT ) = 0

with EfT+1 = E(fT+1|FT ). In addition, "i,t+1 = �↵,it + � 0
�,it�t + � 0

�,it(ft+1 � Eft) + ui,t+1.

Hence E("i,T+1|FT ) = 0 provided that E(ui,t|Ft�1, ft) = 0, E(�↵,i,t�1|Ft�1, ft) = 0, and

E(��,i,t�1|Ft�1, ft) = 0.
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B Additional Figures and Tables

Table I: In-Sample Decomposition - Realized Returns (Early Sample)

This table shows empirical estimates for the in-sample decomposition of realized returns (equation (2.5)). R2
quantities

are as defined in Table I of the paper. All R2
measure are in percentage. The sample period is 1970 - 1999.

1 Layer 2 Layers 3 Layers

K R2

ŷ R2

�0F R2

�0� R2

�0(F+�) R2

↵ R2

ŷ R2

�0F R2

�0� R2

�0(F+�) R2

↵ R2

ŷ R2

�0F R2

�0� R2

�0(F+�) R2

↵

Panel A: All firms

1 24.41 15.26 1.35 16.46 0.00 26.71 15.32 1.35 16.53 -0.01 30.39 16.66 1.31 17.80 0.21

6 24.41 19.61 1.51 20.93 -0.15 26.71 20.32 1.50 21.64 -0.16 30.39 23.29 1.57 24.66 -0.05

10 24.41 20.61 1.52 21.94 -0.17 26.71 21.82 1.54 23.18 -0.20 30.39 25.13 1.59 26.53 -0.07

Panel B: Large firms

1 35.45 22.07 1.75 23.61 0.11 35.77 22.16 1.73 23.70 0.11 36.05 20.47 1.63 21.92 0.53

6 35.45 31.90 2.08 33.89 -0.14 35.77 31.95 2.06 33.95 -0.19 36.05 31.45 2.12 33.46 0.02

10 35.45 33.14 2.15 35.12 -0.25 35.77 33.09 2.17 35.11 -0.31 36.05 32.51 2.15 34.54 -0.06

Panel C: Small firms

1 19.79 9.46 1.52 10.85 0.14 23.73 9.56 1.50 10.94 0.12 31.56 14.10 1.44 15.38 0.29

6 19.79 13.24 1.58 14.58 0.00 23.73 14.45 1.57 15.76 -0.05 31.56 21.59 1.69 22.95 0.08

10 19.79 14.37 1.59 15.70 -0.03 23.73 16.61 1.60 17.92 -0.09 31.56 24.13 1.70 25.50 0.06

Table II: In-Sample Decomposition - Realized Returns (Late Sample)

This table shows empirical estimates for the in-sample decomposition of realized returns (equation (2.5)). R2
quantities

are as defined in Table I of the paper. R2
measure are in percentage. The sample period is 2000 - 2018.

1 Layer 2 Layers 3 Layers

K R2

ŷ R2

�0F R2

�0� R2

�0(F+�) R2

↵ R2

ŷ R2

�0F R2

�0� R2

�0(F+�) R2

↵ R2

ŷ R2

�0F R2

�0� R2

�0(F+�) R2

↵

Panel A: All firms

1 29.18 17.85 0.55 18.61 0.09 28.85 17.90 0.57 18.65 0.05 30.33 18.06 0.56 18.81 0.11

6 29.18 24.19 0.76 25.10 -0.12 28.85 23.99 0.76 24.89 -0.15 30.33 24.68 0.77 25.59 -0.10

10 29.18 25.30 0.79 26.23 -0.15 28.85 25.11 0.80 26.05 -0.18 30.33 26.10 0.78 27.03 -0.11

Panel B: Large firms

1 36.49 24.53 -0.33 24.65 -0.30 36.8 24.86 -0.28 24.99 -0.40 36.98 24.91 -0.25 25.07 -0.24

6 36.49 34.98 -0.14 35.50 -0.31 36.8 34.81 -0.17 35.37 -0.30 36.98 34.43 -0.10 35.02 -0.17

10 36.49 36.04 -0.11 36.58 -0.31 36.8 35.84 -0.10 36.36 -0.35 36.98 35.54 -0.11 36.11 -0.12

Panel C: Small firms

1 24.88 10.98 1.06 12.08 0.38 23.8 10.88 1.05 11.98 0.31 26.57 11.06 1.04 12.14 0.44

6 24.88 17.20 1.34 18.30 0.03 23.8 16.49 1.32 17.59 -0.01 26.57 17.94 1.31 19.03 0.09

10 24.88 18.62 1.37 19.75 -0.01 23.8 18.09 1.35 19.19 -0.04 26.57 19.99 1.35 21.08 0.04
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Table III: Out-of-Sample Decomposition - Expected Returns (Early Sample)

This table shows empirical estimates for the out-of-sample decomposition of realized returns (equation (2.6)). R2

quantities are as defined in Table I of the paper. All R2
measure are in percentage. The sample period is 1970 - 1999.

1 Layer 2 Layers 3 Layers

K R2
ŷ R2

�0� R2
↵ R2

↵+�0� R2
ŷ R2

�0� R2
↵ R2

↵+�0� R2
ŷ R2

�0� R2
↵ R2

↵+�0�

Panel A: All firms

1 ⌧ 0 0.56 0.17 0.73 ⌧ 0 0.42 0.17 0.59 ⌧ 0 0.43 0.14 0.57

6 ⌧ 0 0.58 0.15 0.73 ⌧ 0 0.54 0.16 0.67 ⌧ 0 0.52 0.17 0.65

10 ⌧ 0 0.55 0.17 0.72 ⌧ 0 0.51 0.15 0.64 ⌧ 0 0.47 0.18 0.65

Panel B: Large firms

1 ⌧ 0 1.19 0.10 1.33 ⌧ 0 0.99 0.00 1.07 ⌧ 0 1.10 -0.02 1.13

6 ⌧ 0 1.37 -0.01 1.39 ⌧ 0 1.26 -0.02 1.26 ⌧ 0 1.15 0.05 1.19

10 ⌧ 0 1.17 0.09 1.30 ⌧ 0 1.20 0.02 1.23 ⌧ 0 1.02 0.16 1.18

Panel C: Small firms

1 ⌧ 0 0.47 0.17 0.58 ⌧ 0 0.36 0.17 0.48 ⌧ 0 0.28 0.13 0.39

6 ⌧ 0 0.42 0.18 0.56 ⌧ 0 0.36 0.16 0.48 ⌧ 0 0.34 0.15 0.45

10 ⌧ 0 0.46 0.17 0.58 ⌧ 0 0.34 0.15 0.46 ⌧ 0 0.39 0.13 0.49

Table IV: Out-of-Sample Decomposition - Expected Returns (Late Sample)

This table shows empirical estimates for the out-of-sample decomposition of realized returns (equation (2.6)). R2

quantities are as defined in Table I of the paper. All R2
measure are in percentage. The sample period is 2000 - 2018.

1 Layer 2 Layers 3 Layers

K R2
ŷ R2

�0� R2
↵ R2

↵+�0� R2
ŷ R2

�0� R2
↵ R2

↵+�0� R2
ŷ R2

�0� R2
↵ R2

↵+�0�

Panel A: All firms

1 ⌧ 0 0.29 0.12 0.41 ⌧ 0 0.29 0.12 0.41 ⌧ 0 0.30 0.09 0.39

6 ⌧ 0 0.32 0.13 0.45 ⌧ 0 0.34 0.08 0.40 ⌧ 0 0.31 0.09 0.37

10 ⌧ 0 0.29 0.12 0.41 ⌧ 0 0.32 0.08 0.38 ⌧ 0 0.25 0.13 0.38

Panel B: Large firms

1 ⌧ 0 0.38 -0.26 0.21 ⌧ 0 0.39 -0.29 0.18 ⌧ 0 0.51 -0.26 0.35

6 ⌧ 0 0.35 -0.23 0.19 ⌧ 0 0.58 -0.33 0.30 ⌧ 0 0.50 -0.21 0.33

10 ⌧ 0 0.38 -0.25 0.21 ⌧ 0 0.55 -0.32 0.27 ⌧ 0 0.30 -0.17 0.19

Panel C: Small firms

1 ⌧ 0 0.28 0.15 0.40 ⌧ 0 0.26 0.16 0.39 ⌧ 0 0.21 0.13 0.32

6 ⌧ 0 0.32 0.18 0.47 ⌧ 0 0.22 0.13 0.33 ⌧ 0 0.22 0.14 0.32

10 ⌧ 0 0.28 0.16 0.40 ⌧ 0 0.21 0.14 0.32 ⌧ 0 0.26 0.16 0.39
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Figure 1: Evolution of Pricing Error over Time (Large Firms)

This figures shows estimates of the average squared pricing error computed as
1
Nt
bG↵,t�1(x)0byt for large firm and

K = 1, K = 6 and K = 10 for the full sample (blue dots). We also present a local regression smoothing curve as an

estimate of the local average (black line). The red dashed horizontal line is at zero.
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