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Given p-dimensional Gaussian vectors Xi
iid∼ N(0,Σ), 1 ≤ i ≤ n,

where p ≥ n, we are interested in testing a null hypothesis where
Σ = Ip against an alternative hypothesis where all eigenvalues of Σ
are 1, except for r of them are larger than 1 (i.e., spiked eigenvalues).

We consider a Rare/Weak setting where the spikes are sparse (i.e.,
1 � r � p) and individually weak (i.e., each spiked eigenvalue is
only slightly larger than 1), and discover a phase transition: the
two-dimensional phase space that calibrates the spike sparsity and
strengths partitions into the Region of Impossibility and the Region of
Possibility. In Region of Impossibility, all tests are (asymptotically)
powerless in separating the alternative from the null. In Region of
Possibility, there are tests that have (asymptotically) full power.

We consider a CuSum test, a trace-based test, an eigenvalue-based
Higher Criticism test, and a Tracy-Widom test [32], and show that the
first two tests have asymptotically full power in Region of Possibility.

To use our results from a different angle, we derive new bounds for
(a) empirical eigenvalues, and (b) cumulative sums of the empirical
eigenvalues, both under the alternative hypothesis. Part (a) is related
to those in [4, 40], but both the settings and results are different.

The study requires careful analysis of the L1-distance of our test-
ing problem and delicate Radom Matrix Theory. Our technical de-
vises include (a) a Gaussian proxy model, (b) Le Cam’s comparison of
experiments, and (c) large deviation bounds on empirical eigenvalues.

1. Introduction. Suppose we have n normal vectors Xi ∈ Rp:

(1.1) Xi
iid∼ N(0,Σ), Σ ∈ Rp,p, 1 ≤ i ≤ n.

We are interested in testing the null hypothesis that Σ is the p by p identity
matrix Ip against an alternative hypothesis that Σ is a so-called spike matrix
[32]: for an integer r such that 1 ≤ r � p, all eigenvalues of Σ are 1, except
for the top r of them are larger than 1 (i.e., each of them is spiked):

(1.2) `1 ≥ `2 ≥ . . . ≥ `r > 1.
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Motivated by the recent interest of “p > n”, we assume p ≥ n, but this
should not be taken as a constraint. Let X ∈ Rn,p be the data matrix so
that X ′ = [X1, X2, . . . , Xn], and denote the empirical covariance matrix by

Σ̂ = (1/n)X ′X.

Since p ≥ n, with probability 1 [48], Σ̂ has n distinct positive eigenvalues

λ1 > λ2 > . . . > λn > 0.

This testing problem is of interest in many application areas.

• Covert communication. In computer security and privacy, covert chan-
nels are widely used. Consider a channel with r antennas at transmitter
and p antennas at receiver. The output vectors satisfy Xi = Hyi +Zi,

1 ≤ i ≤ n, where yi
iid∼ N(0, δ · Ir) are the input vectors, Zi

iid∼ N(0, Ip)
is noise, and H ∈ Rp,r is a confidential “channel matrix” [47]. When
using a covert channel, we would like to know whether our “enemy”
can notice that we are sending signals. Note that Xi’s follow Model
(1.1) with Σ = Ip + δHH ′. From the perspective of our enemy, H is
unavailable, so it becomes a problem of detecting spiked eigenvalues
in Σ. We will revisit this application in Section 1.6.
• Inference of genetic population structure. One of main challenges in

analyzing genetic data is to explore whether the samples contain sub-
populations that are genetically distinct [43, 39]. Let Y ∈ {0, 1, 2}n,p
be the matrix of SNP counts for p markers and n subjects. When
there are no sub-populations, {Y (i, j)}ni=1 are modeled as iid samples
from Binomial(2, pj), where pj ∈ (0, 1) is the Minor Allele Frequency
of marker j. Consider the normalized data matrix X ∈ Rn,p, where
X(i, j) = [Y (i, j) − 2p̂j ]/

√
2p̂j(1− p̂j) and p̂j = (2n)−1

∑n
i=1 Y (i, j).

Then, entries of X are independent, with (approximately) zero mean
and unit variance. When there are subpopulations, rows of X are con-
founded by latent ancestry variables, and its covariance matrix has
spiked eigenvalues [39]. Inference of genetic sub-populations reduces
to detecting spikes in the covariance matrix.
• Multiple testing. How to account for data dependence is a central chal-

lenge in large-scale multiple testing [23, 21]. Recent works [35, 27, 26]
used Model (1.1)-(1.2) to model test statistics, where each spiked eigen-
value comes from an unobserved confounding variable. Under this
framework, various factor-adjusted multiple testing procedures have
been proposed. Then, a fundamental problem is to detect the existence
of confounding factors, so that we know when to use factor-adjusted
methods instead of classical ones.
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• Network community detection. Given a large social network, we are
often interested in testing whether it contains only one community or
multiple communities. Let A ∈ {0, 1}n,n be the adjacency matrix of
a symmetrical network with n nodes. Consider the centered and re-
scaled adjacency matrix Ã ∈ Rn,n by Ã(i, j) = [A(i, j)− p̂]/

√
p̂(1− p̂),

where p̂ =
∑

i<j A(i, j)/[n(n−1)/2]. Under the stochastic block model,

it is well-known that Ã is approximately a Wigner matrix when there
is only one community and has a few spiked eigenvalues when there
are multiple communities [10, 36].

Other applications include low-rank matrix recovery [13], PCA and sparse
PCA [52, 40], and high-dimensional clustering [30, 31].

In Model (1.1)-(1.2), we assume all eigenvalues of Σ are 1 under the null.
This is a mild assumption since the data matrix is always pre-normalized in
above applications. The setting that Σ̂ is a Gaussian covariance matrix is not
exactly the same as those in genetics (where data are sub-Gaussian) and in
social networks (where we deal with Wigner matrices). But due to eigenvalue
universality, the asymptotic behavior of many eigenvalue-based tests remains
the same. Our testing framework can be viewed as an idealization of these
applications, but it still captures the essential features.

Recently, encouraging progresses have been made to understanding this
problem, such as Johnstone [32], Onatski et al. [37, 38] and Johnstone and
Nadler [33]. However, these works have been largely focused on the case
where the number of spikes r is small. In fact, in the asymptotic framework
used in these papers, r is fixed as n→∞.

In this paper, the primary interest is to consider the testing problem in
the case where we have many weak spikes. For covert communication, this
means the transmitter has a number of antennas, each with a relatively small
capacity. For genetical data, it is the case where the subjects come from a
number of sub-populations whose mutual genetic distinction is so weak that
to separate them is subtle or even impossible; this can happen for studies
conducted on European populations (say). Similar scenarios also happen in
social networks: a large network often contains many “weak communities”
[44] that are hard to identify. Motivated by these applications, we adopt a
Rare and Weak Spike (RWS) model where as n→∞,

r →∞ in an algebraic rate, each spiked eigenvalue is slightly larger than 1.

The main contribution of the paper is three-fold.

• (Phase transition). We discover that the two-dimensional phase space
calibrating the spike sparsity and spike strengths partitions into the
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Region of Impossibility and the Region of Possibility. In the former, the
spikes are so rare/weak that it is impossible to separate the alternative
from the null. In the latter, the spikes are sufficiently strong and it is
possible to separate the alternative from the null.
• (Methods). We propose a CuSum test and an (eigenvalue-based) Higher

Criticism (HC) test1 as new approaches to the testing problem. In
particular, we show that the CuSum test is optimal.
• (Bounds on eigenvalues). Knowledge/innovation flow is rarely a one-

way street: while Random Matrix Theory (RMT) helps us establish
the lower/upper bounds of our testing problem, the latter also shed
lights on some problems in RMT in return: we obtain new bounds on
λi and on the cumulative sums of λi, a topic of great interest in RMT.

Our study requires delicate analysis, and the following are some noteworthy
points of our technical contributions.

• The RWS model is similar to that in [33, 38] and is known to be hard
to analyze. We overcome the technical hurdle by using a Gaussian
proxy model, which is comparably easier to analyze. Our result on the
intimacy of two models is of interest for its own sake, and can be used
as a technical device to study problems other than spike detection.
• Le Cam’s comparison of experiments provides a useful tool for ana-

lyzing complicated models. Using Le Cam’s idea, we extend our main
results on the RWS model to more complicated settings.
• Our analysis needs many recent results in RMT. These results scatter

across the literature and are presented in forms that are not always
easy to access. With substantial efforts, we adapt such results to our
testing problem and make them more accessible for us (see Section 3).

1.1. Four test statistics. We propose CuSum (CS) and (eigenvalue-based)
Higher Criticism (HC) as two new tests. We also investigate a trace-based
test and a Tracy-Widom (TW) test.

The trace-based test uses the empirical moments of λi for testing. While
there are many tests of this kind, we focus our study on the following test:

Sn =
n∑
i=1

λi = tr(Σ̂).2

In Section 1.3 we discuss other versions of trace-based statistics.

1The HC test is based on λi and is very different from those in literature.
2For any square matrix A, tr(A) stands for the trace.
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The trace statistic uses the total sum of all eigenvalues. A natural alter-
native is to use the cumulative sum (CuSum)

Sk =

k∑
i=1

λi, 1 ≤ k ≤ n,

where we hope for some k < n, Sk contains stronger evidence against the null
than Sn. Of course, we don’t know how to pick the “best” k. To address this
problem, we propose the following test statistic which we call the CuSum:

CS∗n = max
1≤k≤n

{CSn,k}, where CSn,k = Sk−E0[Sk]
SD0(Sk) .

Here, E0[Sk] and SD0[Sk] are the mean and standard deviation of Sk under
the null, respectively. Such quantities do not have a closed-form expression,
but can be conveniently simulated. In some cases, especially when the spikes
are very rare, CuSum improves the trace-based test; see Section 2.

In a similar spirit, we have the eigenvalue-based Higher Criticism (HC)
test.3 The HC statistic is defined by

(1.3) HC∗n = max
1≤k≤n

{HCn,k}, where HCn,k = λk−E0[λk]
SD0(λk) .

The current HC is very different from existing versions of HC (e.g., [19, 20]).
The HC test is an extension of the well-known Tracy-Widom (TW) test:

(1.4) TWn ≡ HCn,1 =
λ1 − E0[λ1]

SD0(λ1)
.

The TW test is motivated by recent works on the Tracy-Widom law [46] and
has been studied in several recent papers [32, 33, 37, 38]. HC has advantages
over TW: it is known that the empirical eigenvalues are much noisier at the
edge than in the bulk, so it is possible that HCn,1 is less powerful than
HCn,k for some k > 1. Numerical results confirm this point; see Section 2.

We compare all four tests in Table 1. Note that these tests are not tied to
the Gaussian model (1.1) and can be implemented in much broader settings.

The CS and HC tests are convenient to use in practice, but are difficult
to analyze theoretically: it is hard to pin down the magnitudes of SD0(Sk)
and SD0(λk) analytically. Fortunately, we have the following upper bounds
[6, 42]. With probability at least 1− o(n−1), for all 1 ≤ k ≤ n,

(1.5) SD0(Sk) ≤ (Ln)c(k/n)2/3, SD0(λk) ≤ (Ln)cn−
2
3 [k∧(n+1−k)]−

1
3 ,

3The test was briefly mentioned in a survey paper by Donoho and Jin [21], but has not
yet been formally studied.
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Table 1
Comparison of four test statistics. Both CS∗n and HC∗n have a variant, CS+

n and HC+
n ,

proposed for the convenience of theoretical study.

Trace (Sn) CuSum (CS∗n) HC (HC∗n) TW (TWn)∑n
i=1 λi max1≤k≤n{Sk−E0[Sk]

SD0(Sk)
} max1≤k≤n{λk−E0[λk]

SD0(λk)
} λ1−E0[λ1]

SD0(λ1)

where Ln ≡ [log(n)]log(log(n)) and c > 0 is a universal constant. These moti-
vate the following variants of CS∗n and HC∗n:
(1.6)

CS+
n = max

1≤k≤n

{Sk − E0[Sk]

(k/n)2/3

}
, HC+

n = max
1≤k≤n

{ λk − E0[λk]

n−2/3[k ∧ (n+ 1− k)]−1/3

}
.

Due to the explicit forms in the denominators, these variants are more con-
venient for theoretical analysis than the original version of the statistics.

1.2. Rare and Weak Spike (RWS) model. Let Xi
iid∼ N(0,Σ) be as in

(1.1). Our interest is to test whether the null

(1.7) H
(n)
0 : Σ = Ip

holds or not. Fixing an integer 1 ≤ r ≤ p and a parameter δ > 0 and letting
S(p, r) be the Stiefel manifold [15] (consisting all matrices Q ∈ Rp,r such
that Q′Q = Ir), we consider a specific alternative hypothesis:

(1.8) H
(n)
1 : Σ = (Ip − δQQ′)−1 = Ip +

δ

1− δ
·QQ′,

where Q is uniformly generated from the Stiefel manifold S(p, r).
We use n as the driving asymptotic parameter, and tie (p, r, δ) to n by

fixed parameters. In detail, fixing α, β ∈ (0, 1) and γ ≥ 1, we assume

(1.9) pn/n→ γ, r = rn = n1−β, δ = δn = n−α.

Definition 1.1 We call (1.8)-(1.9) the Rare and Weak Spike (RWS) model.

Similar Rare/Weak models have been used in many recent works but for
different problems [21], and the Rare/Weak Spike model here is new.

Remark. (A Gaussian proxy model to RWS). The RWS model is hard to
analyze: in the likelihood ratio associated with the testing problem, it is hard
to integrate Q out with the law of Q ∼ S(p, r). In the case where r is fixed
while n → ∞, [37, 38] attacked the problem with the so-called Laplace’s
method and careful large deviation analysis of the spherical integrals, but
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how to extend their techniques and results to our case (where r grows to ∞
at an algebraic rate as n→∞) remains unclear.

We propose a new technical device by introducing a proxy model that is
very close to RWS but is easier to analyze. In detail, we consider a proxy

testing problem where we replace the alternative hypothesis H
(n)
1 by

H̃
(n)
1 : Σ̃ = [Ip − (δ/p)Y Y ′]−1, Y = Z · 1{‖Z‖ ≤ 1

2

√
p/δ},

where Z ∈ Rp,r is the matrix that has iid N(0, 1) entries. Using Le Cam’s
“comparison of experiments”, we are able to prove that two models are
close to each other, for a wide region in the parameter space (see Figure 1
and Lemma 4.1). Note that Gaussian proxy model is comparably easier to
analyze than the RWS: the analysis of the former relies on the properties of
Wishart matrices where many results exist, while that of the latter relies on
properties of spherical integrals, a topic that is comparably less studied.

1.3. Main results. Our result has two parts: phase transition for the

testing problem, and bounds for empirical eigenvalues under H
(n)
1 .

In our results on phase transition, especially Theorem 1.1, recent devel-
opment in Random Matrix Theory (RMT) has played an important role.
However, knowledge flow is not a one-way street: our understanding of the
testing problem in turn sheds lights on some of the problems in RMT.

In detail, under H
(n)
0 , recent works in RMT have shed interesting lights

on the bounds of the empirical eigenvalues (e.g., [25]), but under H
(n)
1 , such

bounds are much less studied and remain largely unknown. Interestingly,

Theorem 1.1 provides an approach to studying the bounds under H
(n)
1 .

The idea is that, for parameters in the Region of Impossibility (see below),

any test is asymptotically powerless in distinguishing H
(n)
1 from H

(n)
0 . We

can therefore use existing bounds on the empirical eigenvalues under H
(n)
0

to derive similar bounds under H
(n)
1 ; the resultant bounds are non-trivial to

derive using RMT, at least for some of the parameter ranges.

Now, first, consider the trace-based test statistic Sn. Under H
(n)
0 , nSn ∼

χ2
np(0), and so (2np)−1/2(nSn − np) ≈ N(0, 1) for large (n, p). Fixing a

parameter q > 0, suppose we reject H
(n)
0 if and only if

(1.10) (2np)−1/2(nSn − np) ≥
√

2q log(n), q > 0.

The following theorem establishes the phase transition associated with the
testing problem (1.7)-(1.8) and the optimality of the trace-based test Sn.
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Fig 1. Left: the curve α = (1−β) partitions the phase space into the “detectable region” and
the “undetectable region”. Right: the curve α = max{1−5β/4, (1−β)/2} (see Lemma 4.1)
partitions the “detectable region” into part I and II. In both the undetectable region and
part I of the detectable region, the RWS model and the Gaussian proxy model have negligible
differences.

Theorem 1.1 (Phase transition and optimality of the trace-based test). Fix

α, β ∈ (0, 1), γ ≥ 1, and q > 0. Suppose Xi
iid∼ N(0,Σ) as in (1.1). Consider

the testing problem (1.7)-(1.8) where Σ satisfies the RWS model (1.8)-(1.9).

• If α+β > 1, then as n→∞, for any test, the sum of Type I and Type
II testing errors tends to 1.
• If α+β < 1, then as n→∞, the level of the trace-based test in (1.10)

tends to 0 while the power tends to 1.

See Figure 1. The proof of the second bullet point is not hard so is omitted.
The first bullet point is proved in Section 4, where the key ingredients include
(a) justifying that the RWS is close to the Gaussian proxy model, and (b)
analyzing the proxy model with delicate Random Matrix Theory. Note that
the case α+ β = 1 is more delicate and is addressed in Section 1.5.

Second, we consider the CS test statistic, focusing on CS+
n (the variant

of CS∗n). By definition of CS+
n (see (1.5)-(1.6)), we reject H

(n)
0 if and only if

(1.11) CS+
n ≥ L̃n, where L̃n = [log(n)]log2(log(n)).

Recall that Sk = λ1 + . . . + λk is the k-th cumulative sum of the empirical
eigenvalues. The following theorem shows that CS+

n is an optimal test and
provides some non-trivial bounds on Sk under the alternative.

Theorem 1.2 (Optimality of the CuSum test and bounds for Sk). Fix α, β ∈
(0, 1) and γ ≥ 1. Suppose Xi

iid∼ N(0,Σ) as in (1.1) and let L̃n = [log(n)]log2(log(n)).



9

Consider the testing problem (1.7)-(1.8) where Σ satisfies the RWS model
(1.8)-(1.9).

• If α+ β < 1, then as n→∞, the level of the CS test defined in (1.6)
and (1.11) tends to 0 while the power tends to 1.

• If α+ β > 1 and H
(n)
1 holds, then for sufficiently large n, with proba-

bility at least 1− C log(n)n1−(α+β),

(1.12)
∣∣Sk − E0[Sk]

∣∣ ≤ CL̃n(k/n)2/3, for all 1 ≤ k ≤ n.

To the best of my knowledge, the bounds in (1.12) are new. The probability
bound on the excluded event (i.e., C log(n)n1−(α+β)) is derived from the
relationship between the L1-distance and the Neyman-Pearson Lemma [49];
the bound may be improved, using presumably a different technique.

Next, consider the HC test statistic, focusing on HC+
n (the variant of

HC∗n). By definitions (i.e., (1.5)-(1.6)), we reject H
(n)
0 if and only if

(1.13) HC+
n ≥ L̃n, where L̃n = [log(n)]log2(log(n)).

Theorem 1.3 (Behavior of the HC test and bounds for λk). Fix α, β ∈
(0, 1) and γ > 1.4 Suppose Xi

iid∼ N(0,Σ) as in (1.1). Let L̃n = [log(n)]log2(log(n)).
Consider the testing problem (1.7)-(1.8) where Σ satisfies the RWS model
(1.8)-(1.9).

• If α+ β < 1, then as n→∞, the level of the HC test defined in (1.6)
and (1.13) tends to 0.

• If α+ β > 1 and H
(n)
1 holds, then for sufficiently large n, with proba-

bility at least 1− log(n)n1−(α+β),∣∣λk − E0[λk]
∣∣ ≤ L̃nn−2/3[k ∧ (n+ 1− k)]−1/3, for all 1 ≤ k ≤ n.

Compared to bounds of λk in literature (e.g., [4, 5, 40]), our results are new
for (a) the literature focus on the case where rn is fixed as n→∞, while our
results are for the case of rn = n1−β, and (b) the literature focus on bounds
for only edge eigenvalues and our bounds are for all eigenvalues.

Last, consider the Tracy-Widom test statistic TWn. It is known that under

H
(n)
0 , TWn converges weakly to the Tracy-Widom law. Let FTW be the CDF

4The case of γ = 1 is more complicated, for the behavior of the smallest eigenvalues is
different. To save space, we omit discussions of this case.



10

of the Tracy-Widom law. It is known that 1− FTW (t) ∼ e−(2/3)t3/2 [22] for

large t. In light of this, we reject H
(n)
0 if and only if

(1.14) TWn ≥ [3 log(n)]2/3.

Corollary 1.1 (Sub-optimality of the TW test). Fix α, β ∈ (0, 1) and γ ≥ 1.

Suppose Xi
iid∼ N(0,Σ) as in (1.1). Consider the testing problem (1.7)-(1.8)

where Σ satisfies the RWS model (1.8)-(1.9). If α+ β < 1, then as n→∞,
the level of the TW test defined in (1.13) tends to 0. If additionally α > 2/3,
then the power of the TW test also tends to 0.

The TW test is asymptotically powerless in the sub-region

{(β, α) : 0 < β < 1, α > 2/3, α+ β < 1};

In this region, both the CS test and the trace-based test have asymptotically
full power. This result is consistent with our numerical study (see Section 2),
where we observe that when there are multiple spikes, the TW test usually
behaves unsatisfactorily.

Remark. (Comparison with the testing problem of sparse normal means).
Consider a setting where we have samples yi ∼ N(µi, 1), 1 ≤ i ≤ n. We are
interested in testing whether µi = 0 for all 1 ≤ i ≤ n, or that most of
µi are 0 except for a small fraction of them are nonzero. In such a sparse
normal means test setting, it is preferable to use a small fraction of extreme
observations (instead of the bulk) for testing (e.g., [19]).

To those familiar with the normal means problem, Theorem 1.1 may strike
as a surprise, for it shows the trace-based test is optimal, even when the
spikes are very sparse; this is so because the current setting is very different
from the normal means settings: every spike in Σ affects the bulk of λi in a
subtle way; and even when the spikes in Σ are very sparse, the sparsity is
lost when we look at the vector

(1.15)
(
E1[λ1]− E0[λ1], E1[λ2]− E0[λ2], . . . , E1[λn]− E0[λn]

)
,

where E0 and E1 are the expectation under H
(n)
0 and H

(n)
1 , respectively. In

Figure 2, we plot the vector in (1.15) for the cases r = 1 and r = 5 (n, p, δ
are the same as those of Table 2). We observe that as soon as r move away
from 1, the vector in (1.15) become resonably non-sparse.

Remark. (Other trace-based statistics). One possible variant of the trace-

based test Sn is S
(2)
n =

∑n
k=1(λk − 1)2. The test targets on the case where

the off-diagonals of Σ̂ contain stronger evidence against the null than the
diagonals, so it is not surprising that, asymptotically, for (α, β) such that
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Fig 2. Plots of E1[λk]−E0[λk] for k = 1, · · · , 50, where (n, p) = (1000, 1200), (r, δ) = (1, 2)
in left panel, and (r, δ) = (5, 0.8) in right panel.

2α + β > 1 while α + β < 1, S
(2)
n is powerless while Sn has full power. On

the other hand, S
(2)
n may be more powerful in some other cases (e.g., [14]).

1.4. Extensions and Le Cam’s comparison of experiments. In his work on
comparison of experiments, Le Cam asserts that “adding noise always makes
the inference more difficult”. This allows us to compare our setting with
many other settings, and generalize our lower bound argument in Theorem
1.1 (one of our major contribution in this paper) to much broader settings.

We now consider two extensions of our lower bound argument. In the
first extension, for two covariance matrices Σ and Σ̃, we compare two ex-
periments. In the first one, we are interested in testing

H
(n)
0 : Xi

iid∼ N(0,Σ) vs. H
(n)
1 : (Xi|Q)

iid∼ N(0,Σ +
δ

1− δ
QQ′),

and in the second one, we are interested in testing

H̃
(n)
0 : Xi

iid∼ N(0, Σ̃) vs. H̃
(n)
1 : (Xi|Q)

iid∼ N(0, Σ̃ +
δ

1− δ
QQ′),

where as before, Q is uniformly distributed over the Stiefel manifold S(p, r).

Let f0, f1, f̃0, f̃1 be the joint density of {Xi}ni=1 under H
(n)
0 , H

(n)
1 , H̃

(n)
0 ,

and H̃
(n)
1 , respectively. We assume Σ � Σ̃, so the second experiment can

be viewed as the result of adding noise to the first experiment. Lemma 1.1
solidifies the claim that “adding noise makes the testing problem harder”.

Lemma 1.1 If Σ � Σ̃, then ‖f̃1 − f̃0‖1 ≤ ‖f1 − f0‖1.

Applying Lemma 1.1 with Σ = c0Ip and Σ̃ = Σ∗ (see below), we have the
following theorem, as a direct result of Theorem 1.1.

Theorem 1.4 (Extension of lower bound argument, I). Fix α, β ∈ (0, 1),
c0 > 0, and γ ≥ 1. Given n independent vectors Xi ∈ Rp, 1 ≤ i ≤ n,
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we are interested in testing H
(n)
0 : Xi

iid∼ N(0,Σ∗) versus the alternative

H
(n)
1 : (Xi|Q)

iid∼ N(0,Σ∗ + δ
1−δQQ

′), where Q is uniformly distributed over
the Stiefel manifold S(p, r), Σ∗ ∈ Rp,p is a covariance matrix, and (δ, r, p)
satisfies (1.9) as in Theorem 1.1. If α+ β > 1 and λmin(Σ∗) ≥ c0,5 then as
n→∞, the sum of Type I and Type II errors of any test tends to 1.

For another extension of the lower bound argument, we show that “ei-
ther adding more spikes or increasing the spike strengths makes the testing
problem (1.7)-(1.8) easier”. Consider two experiments. In the first one, we
are interested in testing

H
(n)
0 : Xi

iid∼ N(0, Ip) vs. H
(n)
1 : (Xi|Q)

iid∼ N(0, Ip +QDQ′).

In the second one, we are interested in testing

H
(n)
0 : Xi

iid∼ N(0, Ip) vs. H̃
(n)
1 : (Xi|Q)

iid∼ N(0, Ip +QD̃Q′),

where D, D̃ ∈ Rr,r are positive semi-definite matrices, and Q is uniformly
distributed over the Stiefel manifold S(p, r). Let f0, f1, f̃1 be the joint density

of {Xi}ni=1 under H
(n)
0 , H

(n)
1 , and H̃

(n)
1 , respectively. Similarly, we have the

following lemma, which is proved in Section 4 with nontrivial efforts.

Lemma 1.2 If D � D̃, then ‖f1 − f0‖1 ≤ ‖f̃1 − f0‖1.

We also have the following theorem.

Theorem 1.5 (Extension of lower bound argument, II). Fix α, β ∈ (0, 1),
c0 > 0, and γ ≥ 1. Given n independent vectors Xi ∈ Rp, 1 ≤ i ≤ n, we

are interested in testing H
(n)
0 : Xi

iid∼ N(0, Ip) versus the alterative H
(n)
1 :

(Xi|Q)
iid∼ N(0, Ip+QD

∗Q′), where Q is uniformly distributed over the Stiefel
manifold S(p, r), D∗ ∈ Rr,r is a positive semi-definite matrix, and (δ, r, p)
satisfies (1.9) as in Theorem 1.1. If α + β > 1 and ‖D∗‖ ≤ c0

δ
1−δ , then as

n→∞, the sum of Type I and Type II errors of any test tends to 1.

For a proof, assume c0 = 1 without loss of generality. Applying Lemma 1.2
with D = D∗ and D̃ = δ

1−δ Ir, Theorem 1.5 follows from Theorem 1.1.

1.5. Spike detection in the critical case of rnδn = O(1). In Theorem 1.1,
we have either rnδn → ∞ or rnδn → 0. We consider a more subtle case
where rnδn = O(1) (in RWS, this is the case of α+ β = 1).

5For a symmetric matrix A, λmin(A) stands for the minimum eigenvalue of A.
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For analysis, we continue to use RWS, except for that (rn, δn) are cali-
brated slightly differently. In detail, fixing the parameter β ∈ (0, 1), γ ≥ 1
and θ > 0, we assume as n→∞,

(1.16) pn/n→ γ, r = rn = n1−β, δ = δn = r−1
n (θ

√
2γ).

The following Theorem is proved in Section 4.

Theorem 1.6 (Critical case of α+β = 1). Fix β ∈ (0, 1), θ > 0, and γ ≥ 1.
Consider the testing problem (1.7)-(1.8) where (1.16) holds. As n→∞, the

log-likelihood ratio log(LRn) converges weakly to N(∓ θ2

2 , θ
2), under the null

and under the alternative, respectively.

Recall that Sn denotes the trace-based test statistic. By elementary statis-
tics, it is seen that (the convergence is weak convergence):

θ
(nSn − np)√

2np
− θ2

2
→ N(∓θ

2

2
, θ2), under H

(n)
0 and H

(n)
1 , respectively.

This suggests that the trace-based statistic Sn is asymptotically efficient.
In our case, rnδn = O(1) but rn → ∞. A closely related case is that as

n→∞, both (r, δ) are fixed. Such a case was studied in detail in [38], with
very different techniques. Our framework can be extended to such a case.
Let ψ(λ) = γ

δ log(1+ δ
γ(1−δ) −

δ
γλ). Let µΣ̂ be the empirical spectral measure

associated with Σ̂ and let µn,p be the Marchenko-Pastur law (see (3.17) for
definition). By a simple modification of the proof of Theorem 1.6, we can

show that log(LRn) = −nrδ
2 [
∫
g(λ)µΣ̂(dλ)−

∫
g(λ)µn,p(dλ)]− r2δ2

2γ(1−δ) +oP (1).

So log(LRn) converges to a weak limit according to the central limit theorem

for linear spectral statistics [3]. It yields that log(LRn)→ N(∓ θ̃2

2 , θ̃
2) under

H
(n)
0 and H

(n)
1 , respectively, where θ̃ = r[−1

2 log(1 − δ2

γ )]1/2. This result
coincides with that of [38, Proposition 4].

1.6. A stylized application: Covert Communications. We wish to com-
municate with our “friends” through a covert channel, and our “enemy” is
trying to intercept it. We encode the desired information by a length-p string
of “0” and “1”, denoted by η (note η has r nonzero entries). Fix δ > 0 and
a p× p matrix Q̃ = [q1, q2, . . . , qp]. We send our friends vectors Xi ∈ Rp

Xi = δ
∑

{k:η(k)=1}

zk · qk + Zi, 1 ≤ i ≤ n,

where zk
iid∼ N(0, 1), Zi

iid∼ N(0, Ip), and they are independent. Let Q be the
p × r matrix {qk : η(k) = 1, 1 ≤ k ≤ p}. Note that Xi can be equivalently
viewed as samples from N(0,Σ), where Σ = Ip + δQQ′.
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Assume that the matrix Q̃ is available to our “friends”, but not to our
“enemy”. When our “friends” receive Xi, first, they can obtain X̃i:

X̃i = δ
∑

{k:η(k)=1}

zk · ek + Z̃i, X̃i = Q̃′Xi, Z̃i = Q̃′Zi.

Next, from X̃i, they are able to retrieve the vector η, provided with some
mild conditions on (r, δ). For our “enemy”, Q̃ is not available, so the problem
reduces to our previous setting of (1.8). Note also that if Q̃ is randomly gen-
erated, then Q is uniformly distributed in the Stiefel manifold S(p, r). Apply-
ing Theorem 1.1 and conventional results of sparse normal-means problems,
we have the following theorem:

Theorem 1.7 (Covert communitcation). Fix α, β ∈ (0, 1) and γ ≥ 1. Sup-
pose (δ, r,Q) satisfy model (1.8)-(1.9), and where 1/2 < β < 1 and (1−β) <
α < 1/2. Then with high probability, our “friends” are able to exactly decode
the vector η, while our “enemy” is not able to even distinguish whether we
are sending some signals or we are merely sending white noise.

1.7. Summary. Our results provide both a better understanding of the
problem of detecting rare/weak spikes, and better eigenvalue bounds for the
empirical covariance matrix Σ̂ (based on iid samples from N(0,Σ)).

For the testing problem, we adopt a Rare and Weak Spike (RWS) model
and discover an interesting phase transition. We study four different tests,
where the Higher Criticism test and the CuSum test are new. We show that
both the trace test and the CuSum test are optimal. We find that even when
the spikes are very rare, it is still necessary to use many eigenvalues (instead
of a few extreme eigenvalues) for testing against the null; such a finding is
very different from those in testing settings regarding sparse normal means.

Motivated by the interest of “p > n” in modern applications, we assume
γ ≥ 1, but this should not be taken as a constraint. When p/n → γ < 1,
the detection boundary is the same, and the asymptotic behavior of all four
tests can be studied similarly.

Our study is connected to the large body of literature on testing of spheric-
ity [2, 9, 12, 14, 18, 32, 33, 34, 37, 38], but most of these works focus on
specific tests, not on the phase transition. A few exceptions are [9, 12, 37, 38],
but the alternative hypotheses considered there are very different from ours:
in our setting, the number of spikes grow rapidly with n; such a case has
not been studied in the literature.

In [37, 38], they considered a testing framework equivalent to our RWS
model with both (r, δ) being constants. The test statistic they proposed is a
function of all empirical eigenvalues, resulting from a Laplace approximation
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of the log-likelihood ratio. They showed that the asymptotic power of their
test is better than that of the Tracy-Widom test. In a high level, both their
works and our work point out the advantage of using bulk eigenvalues in the
test, even for a small r. However, there are several major differences between
the two works: We focus on the setting of Rare/Weak Spikes where r →∞
and δ → 0; there is no straightforward extension of their method/theory to
our setting. Their test is essentially the likelihood ratio test, which requires
knowing (r, δ), but all four tests considered in our work are adaptive, whose
construction doesn’t depend on parameters of the alternative. The technical
approaches are also different. Their main tools are the Laplace’s method and
large-deviation analysis of spherical integrals; how to adapt these techniques
to our setting is unclear. We use the Gaussian proxy model and Le Cam’s
comparison of experiments. The Gaussian proxy model and the theory of its
intimacy to RWS (Lemma 4.1), as a new technical device, will be useful for
studying other problems associated with RWS.

For bounds on the eigenvalues of Σ̂, while most of the literature have been
focused on the case of Σ = Ip, our results focus on the case where Σ is a
spike matrix. For the latter, a few works exist (e.g., [4, 5, 40]), but the focus
there is on the bounds for the extreme eigenvalues only, and is for the case of
finitely many spikes. In comparison, our bounds are for all eigenvalues and
are for the case where the number of spikes grows rapidly with n as n→∞.
See Section 5 for more discussion.

Our philosophy is that, knowledge flow is a two-way street: while RMT
may help us obtain better results in statistical inference, statistical inference
can also provide better results in RMT, in return.

1.8. Content and notations. The remaining part of the paper is orga-
nized as follows. Section 2 contains a small-scale numerical study. In Sec-
tion 3, we present a list of useful results on Random Matrix Theory (RMT),
including some new results; this section can be read independently. In Sec-
tion 4, we prove the main theorems and lemmas. Section 5 contains discus-
sions. Proofs of the secondary lemmas are relegated to the appendix.

For two real numbers a and b, a ∧ b and a ∨ b denote the minimum and
maximum of them, respectively. We say two positive sequences an ∼ bn if
an/bn → 1 as n → ∞, an � bn if |an/bn| are uniformly upper and lower
bounded by constants. When ξ is a vector, ‖ξ‖ denotes the vector L2-norm;
when ξ is a matrix, ‖ξ‖ denotes the matrix spectral norm and ‖ξ‖F denotes
the matrix Frobenius norm. For two square matrices A,B, we say A � B
if B − A is positive semidefinite. For two probability densities f and g,
‖f − g‖1 ≡

∫
|f(x)− g(x)|dx denotes the L1-distance between them.
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2. Numerical study. We investigate the four tests with a small-scale
experiment. Fix (n, p) = (1000, 1200). For each (r, δ), we generate 100 data
sets of {Xi}ni=1 from (1.7) to represent the null, and generate 100 data sets
of {Xi}ni=1 from (1.8) to represent the alternative, and apply all four tests.
We measure the “ideal testing error” for each test which corresponds to the
rejection threshold that minimizes the sum of type I and type II errors over
200 data sets. For each setting, we run 20 repetitions.

First, we compare the HC test with the TW test.6 The HC statistic is the
maximum of HCn,k over k, and each HCn,k can be used as a test statistic,
including TW as a special case with k = 1. We record the “ideal testing
error” of HCn,k for all 1 ≤ k ≤ n, and let k̂hc minimize this error. We also
record the “ideal testing error” of the HC test, where k is chosen adaptively
by data. The results are summarized in Table 2.

Table 2
Comparison of TW and HC tests (standard deviations are in brackets).

(r, δ) k̂hc TW HC

(1, 2) 1(0) 0(0) .001(.003)
(5, .8) 22(9.7) .48(.05) .28(.04)
(10, .5) 53(25) .56(.05) .19(.03)

The results suggest that (a) when r is very small, k̂hc is very close to 1,
and two tests have very similar behaviors, with TW being slightly better,
and (b) when r gets larger, k̂hc is bounded away from 1, and the HC test is
usually better, and significantly so when r increases.

Next, we compare the trace test, CuSum test, and TW test. Each cumu-
lative sum CSn,k can be used as a test statistic, with TW and trace being

two special cases of k = 1 and k = n, respectively. Similarly, we let k̂cs be
the k such that the “ideal testing error” of CSn,k is minimized. The results
are summarized in Table 3.

Table 3
Comparison of TW, Trace, and CuSum (standard deviations are in brackets).

(r, δ) k̂cs TW Trace CuSum

(1, 2) 1(0) 0(0) .48(.05) 0(0)
(5, .8) 125(65) .48(.05) .18(.03) .16(.03)
(10, .5) 321(207) .56(.05) .08(.03) .12(.03)

It suggests that (a) when r is very small, k̂cs is very close to 1, and TW
and CuSum have similar performances, and (b) when r gets larger, k̂cs is

6For HC, E0[λk] and SD0(λk) are computed by simulating the null for 10, 000 times.
Same for CuSum.
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Fig 3. Comparison of the ideal testing errors (p = 1200, n = 1000). The x-axis represents
the number of spikes r, and for each r = 1, · · · , 10, the strength of spikes is δ = c/r, for a
constant c > 0.

much larger than 1, but it is also smaller than n; CuSum performs better
than the trace test, and the trace test outperforms the TW test.

Third, we compare all four tests for a variety of (r, δ). Fixing a constant
c > 0, we consider r ∈ {1, · · · , 10} and for each r we let δ = c/r. As r
changes, the performance of the trace test is roughly the same because

Sn − np√
2np

≈ N(0, 1) and ≈ N(
n(δr)√

2np
, 1), under H

(n)
0 and H

(n)
1 , respectively.

So the trace test can be used as a benchmark. The results for c ∈ {3, 4, 5, 6}
are displayed in Figure 3. When r = 1, the TW test usually performs the
best, and the trace test behaves unsatisfactorily. When r is slightly larger,
TW becomes less satisfactory and is inferior to all other three tests; in this
setting, trace and CuSum have the best performance.

Recall that CuSum can be viewed as a hybrid of the trace and TW tests,
we expect that CuSum has both the advantage of TW and trace. This is
confirmed by the numerical results: when r is very small, CuSum behaves
similarly to TW, and when r is slightly larger, CuSum behaves similarly to
trace. Overall, it seems CuSum has the best performance, especially when
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Fig 4. The case where some non-spiked eigenvalues are smaller than 1 under the alterna-
tive (p = 1500, n = 800). Dotted lines: all non-spiked eigenvalues are 1. Solid lines: most
non-spiked eigenvalues are 1, except that 30 of them are drawn uniformly from [0.95, 1].

the spikes are relatively strong (i.e., c is large).
Fourth, we investigate a case where a small number of non-spiked eigenval-

ues are strictly smaller than 1 under the alternative. Fix (n, p) = (800, 1500).
For each of r ∈ {1, 2, . . . , 10}, let δ = 5/r. The null hypothesis is the same

as before. For the alternative hypothesis, we generate Xi
iid∼ N(0,Σ), where

Σ is a p× p diagonal matrix such that Σ(j, j) = 1 + δ for 1 ≤ j ≤ r, Σ(j, j)
is drawn uniformly from [0.95, 1] for p− 29 ≤ j ≤ p, and Σ(j, j) = 1 for the
remaining. The ideal testing errors of all four tests are displayed in Figure 4
(solid lines). As a benchmark, we also consider a similar setting where the
only difference is that Σ(j, j) = 1 for p− 29 ≤ j ≤ p under the alternative.
The results for the bench mark setting are also in Figure 4 (dotted lines).

Compared with the benchmark setting, when some non-spiked eigenvalues
are strictly smaller than 1, the performance of all four tests become worse.
The reason is that each empirical eigenvalue λk is affected by all population
eigenvalues (spiked and non-spiked ones). Decreasing of non-spiked eigenval-
ues will make λk’s smaller, so the powers of all four tests deteriorate. Such
an effect is more mild for smaller k, which explains why the performance of
TW test remains almost the same but the performance of trace test changes
more significantly. By looking at the solid curves only, we can see that the
CuSum test still has the best overall performance.

Last, we consider the broader settings in Section 1.4 where Σ is not nec-
essarily the identity matrix under the null. Fix (n, p) = (800, 1500). Given
b ∈ [0, 1), we generate a p×p diagonal matrix Σ = diag(σ2

1, σ
2
2, . . . , σ

2
p) where

σj ’s are iid drawn from the uniform distribution on [1− b, 1 + b]. Then, for
each (r, δ), letting Σ∗ ∈ Rp,p be the diagonal matrix with Σ∗(j, j) = Σ(j, j)+

δ ·1{1 ≤ j ≤ r}, we consider the testing problem where Xi
iid∼ N(0,Σ) under
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the null and Xi
iid∼ N(0,Σ∗) under the alternative. Although the null model

is different from (1.7), we still use the same implementation for all tests; for
example, when computing the CuSum test statisitc, we still use E0(Sk) and
SD0(Sk) simulated from model (1.7). We consider b ∈ {0, 0.1, 0.2}, and for
each choice of b, we run experiments for r ∈ {1, 2, . . . , 10} with δ = 5/r. The
results are displayed in Figure 5.

For b = 0.1, results are similar to those for Σ = Ip (i.e., b = 0). For b = 0.2,
when r is small, results are similar to those for Σ = Ip; when r gets larger, the
performance of all tests becomes worse than that in the case of Σ = Ip but is
still reasonably good. Note that we haven’t used any knowledge of Σ in these
tests. It is hopeful to further improve the performance by incorporating Σ,
say, to compute the mean and standard deviation of λk and Sk.

3. Some results on Random Matrix Theory (RMT). In this sec-
tion, we present some Random Matrix Theory that are useful for our proofs.
Some of them come from existing literature and some are newly developed.

We write Z ∈ G(n, p) if Z is an n × p random matrix with independent
entries of N(0, 1). With probability 1, the matrix (1/n)Z ′Z has min{n, p}
distinct positive eigenvalues [48], denoted as λ1 > λ2 > · · · > λn∧p > 0. We
are interested in both cases of p/n→ 0 and p/n→ γ > 0.

Let µZn be the empirical spectral measure of (1/n)Z ′Z: for any real value
x, µZn ((−∞, x]) = p−1

∑p
j=1 1{λj ≤ x}, where λ1 ≥ λ2 ≥ · · · ≥ λp are all the

eigenvalues of (1/n)Z ′Z. Let µn,p be the Marchenko-Pastur (MP) measure
which has a point mass of max{1− n/p, 0} at 0 and the probability density

(3.17) µn,p(x) =
n

2πxp

√
(x− a−n,p)(a+

n,p − x), a−n,p < x < a+
n,p,

where a∓n,p = (1∓
√
p/n)2. For any 1 ≤ k ≤ (n ∧ p), let qk = q

(n,p)
k be such

that

(3.18)

∫ a+n,p

qk

µn,p(x)dx = k/n.

We also define µγ , the Marchenko-Pastur (MP) measure associated with γ,
which has a point mass of max{1− 1/γ, 0} at 0 and the probability density

(3.19) µγ(x) =
1

2πxγ

√
(x− a−γ )(a+

γ − x), a−γ < x < a+
γ ,

where a∓γ = (1∓√γ)2. Note that µn,p is a special case of µγ with γ = p/n.
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Fig 5. The case where Σ is not the identity matrix under the null (p = 1500, n = 800).
The eigenvalues of Σ are between (1− b)2 and (1 + b)2, for b = 0 (left), 0.1 (middle) and
0.2 (right).

3.1. Deviation of linear eigenvalue statistics. In this section, we assume
p ≤ n without loss of generality. For any function f : R→ R, we call

µZn (f) =
1

p

p∑
i=1

f(λi)

the linear eigenvalue statistic associated with f . The following theorem es-
tablishes a deviation inequality for such linear statistics when f ′ is uniformly
bounded. It is proved in the appendix.

Theorem 3.1 Suppose Z ∈ G(n, p), p ≤ n and that f is continuously dif-
ferentiable satisfying ‖f ′‖∞ ≡ supx |f ′(x)| <∞. For any t > 0,

P
(
|µZn (f)− E[µZn (f)]| > t‖f ′‖∞/

√
np
)
≤ 2 inf

y≥
√

2 log(2)

{
e
− t2

c0y
2 + 2e−y

2}
,

where c0 > 0 is an absolute constant.

A similar large-deviation inequality is given in [29, Corollary 1.8(b)], but
Theorem 3.1 improves it in two folds. First, Theorem 3.1 gives a sharper rate
in the case p/n→ 0. Second, Theorem 3.1 only requires that f is Lipschitz,
while [29, Corollary 1.8(b)] requires that f(x2) is Lipschitz. However, we pay
a price of the extra term 2e−y

2
on the right hand side.

A direct application of Theorem 3.1 is to derive a large deviation result
for
∑p

i=1(λi − 1)m in the case p/n → 0, where m is a positive integer. The
following lemma is proved in the appendix.

Lemma 3.1 Suppose Z ∈ G(n, p) and p/n → 0 as n → ∞. For any fixed
integer m ≥ 1, as p→∞, with probability at least 1− o(n−1),∣∣∣ p∑

i=1

{(λi − 1)m − E[(λi − 1)m]}
∣∣∣ ≤ C log(n)

[
p ∨ log(n)

n

]m/2
.
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Although large-deviation inequalities for
∑p

i=1(λi−1)m could be obtained
from existing results on polynomials of independent normals (e.g., [1, 51]),
those inequalities are expressed in terms of tensor norms or subgraph counts,
from which it is hard to get the explicit rate. We obtain Lemma 3.1 almost for
free by applying Theorem 3.1 to f(x) = (x−1)m (with a proper truncation).

3.2. Concentration of empirical spectral measure. In this section, we fo-
cus on the case that p/n→ γ, where γ > 0. It is well known that µZn → µγ
weakly. The following theorem, which is a special case of [28, Theorem 1.1],
gives its convergence rate in terms of the Kolmogorov-Smirnov distance be-
tween distribution functions of µZn and µn,p.

Theorem 3.2 Suppose Z ∈ G(n, p) and p/n→ γ for a constant γ > 0. Let
FZn and Fn,p be the CDF of µZn and µn,p, respectively. For any ζ > 0, there
exist positive constants C and c which depend on (ζ, γ), such that

P

(
sup
x∈R
|FZn (x)− Fn,p(x)| > n−1ω6

n,ζ

)
≤ Cζ exp(−cζωn,ζ),

where ωn,ζ = log(n)[log(log(n))]ζ .

The next lemma gives an explicit expression of
∫

log(t − x)µγ(x)dx, for
t > a+

γ , and is proved in the appendix. We have not found such a result in
the literature (although a formula for

∫
log(t+ x)µγ(x)dx is given in [47]).

Lemma 3.2 For any γ > 0 and t > (1 +
√
γ)2,∫

log(t− x)µγ(x)dx =
γ − 1

2γ
log
(
(γ + 1)At − (γ − 1)Bt + 4γ

)
+
At −Bt

2γ
− γ + 1

2γ
log(At −Bt) +

1

γ
log(2) +

γ + 1

2γ
log(γ),(3.20)

where At = t− γ − 1 and Bt =
√

(t− γ − 1)2 − 4γ.

3.3. Behavior of eigenvalues and their cumulative sums. In this section,
we study λk and Sk =

∑k
j=1 λj . Again, we focus on the case that p/n→ γ >

0. Consider λk first. The following theorem is a special case of [42, Theorem
3.3].

Theorem 3.3 Suppose Z ∈ G(n, p) and p/n→ γ for a constant γ > 0 and
γ 6= 1. Write Ln = [log(n)]log(log(n)). For any ζ > 0, there exists a constant
Cζ > 0 such that

P
(
∪1≤k≤n

{
|λk − qk| > L

Cζ
n n−2/3[k ∧ (n+ 1− k)]−1/3

})
≤ nCζ exp(−Lζn).
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In the case γ = 1, Theorem 3.3 continues to hold, except that 1 ≤ k ≤ n
is now replaced with 1 ≤ k ≤ (1− η)n, for a positive constant η ∈ (0, 1); see
the remarks in the end of [42, Section 4]. We note that a direct corollary of
Theorem 3.2 gives similar results but only for ω6

n,ζ ≤ k ≤ n−ω6
n,ζ , however,

Theorem 3.3 holds for the whole range 1 ≤ k ≤ n.
As a corollary of Theorem 3.3,

(3.21) |E(λk)− qk| ≤ Lcnn−2/3k̃−1/3, SD(λk) ≤ Lcnn−2/3k̃−1/3,

where k̃ = k ∧ (n + 1 − k) and c > 0 is a properly large constant. The null
behavior of HC+

n follows immediately. Now, we consider HC∗n. To access
its null behavior, we additionally need a lower bound for SD(λk). Unfortu-
nately, we have not found a desirable lower bound of SD(λk) in the existing
literature. According to [16, 45], we conjecture that

|E(λk)− qk| � n−2/3k̃−1/3, SD(λk) �
√

log(n)n−2/3k̃−1/3.

The following theorem gives a similar result for the cumulative sum Sk =∑k
j=1 λj . It is a generalization of the result in [8] and proved in [6].

Theorem 3.4 Suppose Z ∈ G(n, p) and p/n → γ for a constant γ > 0.
Write Ln = [log(n)]log(log(n)). For any ζ > 0, there exists a constant Cζ > 0
such that

P
(
∪1≤k≤n

{
|Sk −

k∑
i=1

qi| > L
Cζ
n (k/n)2/3

})
≤ nCζ exp(−Lζn).

The discussions of the null behavior of CS+
n and CS∗n are similar to those

of HC+
n and HC∗n, so we omit them.

4. Proof of main theorems. We prove the main results in Section 1.
For Theorem 1.2, the first claim is a direct result of Theorem 3.4 (so the
level of the test tends to 0) and that CS+

n ≥ Sn − E0[Sn] (so the power of
the test is no smaller than the power of the trace test), and the second claim
follows from the lower bound argument and the null behavior of eigenvalues
(Theorem 3.4). Similarly, Theorem 1.3 follows from Theorem 3.3 and the
lower bound argument. Theorems 1.4-1.5 are direct results of Lemmas 1.1-
1.2, respectively, and Theorem 1.7 follows directly from Theorem 1.1.

What remains is to prove Theorem 1.1, Corollary 1.1, Lemmas 1.1-1.2,
and Theorem 1.6.
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4.1. Preliminary I: Gaussian proxy model and its intimacy to RWS. At
the heart of our analysis is to consider a proxy testing problem where we

replace the alternative hypothesis H
(n)
1 by

(4.22) H̃
(n)
1 : Σ̃ = [Ip − (δ/p)Y Y ′]−1, Y = Z · 1{‖Z‖ ≤ 1

2

√
p/δ}, 7

where Z ∈ Rp,r is the matrix that has iid N(0, 1) entries.

Definition 4.1 We call (1.9) and (4.22) the Gaussian proxy model of RWS.

The next lemma says that two models are close to each other, for a wide
region in the parameter space. Let LRn and L̃Rn be the likelihood ratios
associated with the RWS and the proxy model, respectively. Let E0 stand

for the expectation under H
(n)
0 .

Lemma 4.1 (Intimacy of two models). Consider the testing problem (1.7)-
(1.8) where (1.9) holds. If α > max{1 − 5β/4, (1 − β)/2}, then as n → ∞,

E0|LRn − 1| − E0|L̃Rn − 1| → 0.

See Figure 1 for an illustration.
This lemma is proved in Section 4.8. The proof uses Le Cam’s “comparison

of experiments”, an idea explained in Section 1.4. We conjecture a stronger
result of E0|LRn − L̃Rn| → 0 holds; see Section 4.8 for more discussions.

Our motivation of introducing the proxy model is that it is much easier
to analyze than the RWS. Let F (Q) and F (Y ) be the CDF of Q in RWS
and Y in proxy model. It will be shown in Section 4.2 that

LRn = (1− δ)
nr
2

∫
exp(

δ

2
tr(Σ̂QQ′))dF (Q),(4.23)

L̃Rn ≈ (1− δ)
nr
2 e

nrδ
2(1−δ) (1− rδ

p(1−δ) )
∫
e
δn
2p

tr((Σ̂− 1
1−δ Ip)Y Y ′)

dF (Y ).(4.24)

The main technical hurdle we face in RWS is that, for the integral in (4.23),
it is hard to integrate Q out. However, such a hurdle is removed by using a
proxy model: for the integral in (4.24), we can integrate Y out and derive
a (relatively) simple formula, because the entries of Y are (approximately)
iid N(0, 1) and the integral can be expressed using linear spectral statistics
of a standard Wishart matrix.

7Requiring that ‖Z‖ ≤ 1
2

√
p/δ seems to be a nuisance but is necessary: otherwise the

matrix [Ip−(δ/p)Y Y ′] may not be invertible; note that P
(
‖Z‖ > (1/2)

√
p/δ
)

is negligible.
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4.2. Preliminary II: Likelihood ratio of the proxy model. We justify the
approximation in (4.24) and calculate the integral over Y . The justification
of (4.24) is relatively short and conventional, however, for LRn, it is unclear
how to derive such an approximation.

Let Y ∈ Rp,r be a random matrix of iid N(0, 1) entries. Since r � p, with
probability 1, p−1Y Y ′ has r distinct positive eigenvalues [48], denoted as
η1 > η2 . . . > ηr > 0. Then, the proxy model (4.22) is equivalent to

(4.25) H̃
(n)
1 : Σ̃ =

{
[Ip − δ(p−1Y Y ′)]−1, if δη1 ≤ 1/2,

Ip, otherwise.

Let F (Y ) be the joint distribution function of Y . The likelihood ratio L̃Rn
associated with (4.25) is

L̃Rn = (1− δ)
nr
2

∫
δη1≤1/2

exp

{
δn

2p
tr(Σ̂Y Y ′) +

n

2
gn(Y, δ, r)

}
dF (Y )

+ P (δη1 > 1/2),(4.26)

where gn(Y, δ, r) =
∑r

k=1 log(1− δ
1−δ (ηk − 1)).

We then show that L̃Rn can be approximated by R̃n, to be introduced be-
low, which has a relatively simple form. Introduce g∗n(Y, δ, r) = − δ

1−δ
∑r

k=1(ηk−
1)− δ2

2(1−δ)2
∑r

k=1E[(ηk − 1)2]; it is the Taylor expansion of gn(Y, δ, r) up to

the second term, except for (ηk−1)2 is replaced by E[(ηk−1)2]. Substituting

gn with g∗n gives a proxy of L̃Rn:8

R̃n = (1− δ)
nr
2

∫
exp

{
δn

2p
tr(Σ̂Y Y ′) +

n

2
g∗n(Y, δ, r)

}
dF (Y )

= (1− δ)
nr
2 bn(δ, r)

∫
exp

{
δn

2p
tr
(
(Σ̂− 1

1− δ
Ip)Y Y

′)} dF (Y ),(4.27)

where bn(δ, r) = e
nrδ

2(1−δ)−
nr2δ2

4p(1−δ)2 . Here the second equality follows from that∑r
k=1E[(µk−1)2] = r2/p [47, Lemma 2.9]. Noting that the above R̃n is finite

only when δn
p (λ1 − 1

1−δ ) < 1, we simply set R̃n = 1 when δn
p (λ1 − 1

1−δ ) ≥ 1.
The following lemma is proved in the appendix.

Lemma 4.2 Consider the testing problem (1.7) and (4.22) with parameters

as in (1.9). If α > max{(4 − 5β)/6, (1 − β)/2}, then E0|L̃Rn − R̃n| ≤
Cn1−min{2α+β, 3α+5β/2−1}.

8We also remove δη1 < 1 in the integral of (4.27) so that it has a closed form.
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A nice property of R̃n is that we can integrate out Y explicitly in (4.27).
Denote by µXn the empirical spectral measure of Σ̂ under the null, i.e., µXn =
p−1

∑p
j=1 δλj , where δa represents the point mass at a and λ1 ≥ λ2 · · · ≥ λp

are all eigenvalues of Σ̂ (including zero ones). Let µn,p be the Marchenko-
Pastur (MP) measure with parameter γ = p/n as in (3.17). The next lemma
gives two equivalent expressions of R̃n.

Lemma 4.3 Consider the testing problem (1.7) and (4.22) with parameters
as in (1.9). Let ψn(λ) = p

nδ log(1− δn
p (λ− 1

1−δ )). When δn
p (λ1 − 1

1−δ ) < 1,

R̃n = (1− δ)
nr
2 bn(δ, r)exp

{
− r

2

p∑
j=1

log
(
1− δn

p
(λj −

1

1− δ
)
)}

(4.28)

= e
− nr2δ2

4p(1−δ)2 exp

{
−nrδ

2

[∫
ψn(λ)µXn (dλ)−

∫
ψn(λ)µn,p(dλ)

]}
,(4.29)

where bn(δ, r) is the same as in (4.27).

We have seen that
LRn ≈ L̃Rn ≈ R̃n,

and according to (4.29), the key of analyzing R̃n is to characterize the con-
vergence of empirical spectral measure µXn to the Marchenko-Pastur measure
µn,p. This is well-studied in Random Matrix Theory.

4.3. Proof of Theorem 1.1. We only prove the first claim. By Neyman-
Pearson lemma, it suffices to show that when α+ β > 1, E0|LRn − 1| → 0.

Recall that L̃Rn is the likelihood ratio associated with the Gaussian proxy
model, and R̃n is a proxy of L̃Rn introduced in Section 4.2. By Lemma 4.1
and Lemma 4.2, E0|LRn−1| = E0|R̃n−1|+o(1). So it suffices to show that

(4.30) E0|R̃n − 1| → 0.

We now show (4.30). Write ψn(λ) = p
nδ log(1− δn

p (λ− 1
1−δ )). Let µXn be the

empirical spectral measure associated with Σ̂, and let µn,p be the Marchenko-
Pastur (MP) measure as in Section 3. Using (4.29) of Lemma 4.3, we have
(4.31)

log(R̃n) = −nrδ
2

[∫
ψn(λ)µXn (dλ)−

∫
ψn(λ)µn,p(dλ)

]
− nr2δ2

4p(1− δ)2
,

Let FXn and Fn,p be the CDF associated with µXn and µn,p, respectively. In-
troduce En = {X ∈ Rn,p : supx∈R |FXn (x)−Fn,p(x)| ≤ n−1 log6(n) log6(log(n))},
and let IEn be the indicator that X ∈ En, similarly for IEcn . By Theorem 3.2,
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as n→∞, we have P0(X ∈ Ecn) = O(e−C log(n) log(log(n))) = o(n1−α−β). Since

E0(R̃n) ≤ E0(L̃Rn) + o(1), which is bounded, we have E0(R̃n · IEcn) = o(1).
As a result,

(4.32) E0(|R̃n − 1| · IEcn) ≤ E0(R̃n · IEcn) + P0(X ∈ Ecn)→ 0.

Below, we consider E0(|R̃n− 1| · IEn). Over the event En, both the supports
of µXn and µn,p are strictly contained in Aε = [(1−√γ)2 − ε, (1 +

√
γ)2 + ε],

for any ε ∈ (0, 1). Furthermore, ψ′n(λ) = −[1 − δn
p (λ − 1

1−δ )]−1; it follows

that supλ∈Aε |ψ
′
n(λ)| ≤ 2. Combining the above results, for X ∈ En,∣∣∣∣∫ ψn(λ)µXn (dλ)−

∫
ψn(λ)µn,p(dλ)

∣∣∣∣ ≤ sup
λ∈Aε

|ψ′n(λ)| · sup
λ
|FXn (λ)− Fn,p(λ)|

≤ 2n−1 log6(n) log6(log(n)).

Plugging it into (4.31) gives | log(R̃n)| ≤ Lnδr+Cδ2r2 ≤ Lnδr, where Ln is
a multi-log(n) term. This implies that for X ∈ En, |R̃n− 1| ≤ max{|eLnδr−
1|, |e−Lnδr − 1|} ≤ Lnδr. As a result,

(4.33) E0(|R̃n − 1| · IEn) ≤ Lnδr = Lnn
1−α−β.

Combining (4.32)-(4.33) gives (4.30). �

4.4. Proof of Corollary 1.1. The first claim follows immediately from the
null behavior of λ1. We only prove the second claim, that is, if α > 2/3, the
power of the TW test tends to 0.

We first show that, if we fix all other parameters in the RWS (1.8) but
increase r, the power of the TW test always increases. For r1, r2 such that
r2 > r1, let Q1 and Q2 be uniformly distributed over S(p, r1) and S(p, r2),
respectively, and write Σ1 = Ip+ δ

1−δQ1Q
′
1 and Σ2 = Ip+ δ

1−δQ2Q
′
2. Consider

the two RWS models Xi|Q1
iid∼ N(0,Σ1) and Xi|Q2

iid∼ N(0,Σ2). Write
Q2 = [Q̃2, R], where Q̃2 is the submatrix of Q2 formed by its first r1 columns.
It is known that Q̃2 is uniformly distributed over S(p, r1). As a result,

Σ1
(d)
= Ip +

δ

1− δ
Q̃2Q̃

′
2, Σ2 = Ip +

δ

1− δ
(Q̃2Q̃

′
2 +RR′).

For each realization of Q2 = [Q̃2, R], Σ2 − Σ1 is positive semi-definite. So,
for any value a > 0, the probability that λ1 > a under the first RWS model
is no larger than the probability that λ1 > a under the second RWS model.
This implies that the power of the TW test is larger in the second model.
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Then, it suffices to consider the case that r = n. In this case, Σ = 1
1−δ Ip

under the alternative. By [32], if Xi
iid∼ N(0, Ip), then

n2/3(λ1−a+n,p)
σn,p

converges

weakly to the Tracy-Widom distribution, where a+
n,p = (1 +

√
p/n)2 and

σn,p = (1 +
√
p/n)(1 +

√
n/p)1/3, both converging to a constant as n→∞.

Therefore, when Σ = 1
1−δ Ip,

W ≡
n2/3[(1− δ)λ1 − a+

n,p]

σn,p
converges weakly to the TW law.

The rejection region is that λ1 > a+
n,p +n−2/3σn,p[3 log(n)]2/3. Hence, under

the alternative, the rejection probability is equal to

P
(
W > −(n2/3δ) · σ−1

n,pa
+
n,p + (1− δ)[3 log(n)]2/3

)
.

Since α > 2/3, the term n2/3δ = n2/3−α is dominated by the term [log(n)]2/3,
so the above probability tends to 0. �

4.5. Proof of Lemma 1.1. Let A = Σ̃− Σ and Zi
iid∼ N(0, A), 1 ≤ i ≤ n,

independent of Xi’s. Write X = [X1, · · · , Xn]′ and Z = [Z1, · · · , Zn]′. It is

seen that for s ∈ {0, 1}, if X follows the model in H
(n)
s , then X̃ = X + Z

follows the model in H̃
(n)
s . Therefore, letting h(Z) be the joint density of Z,

we have

f̃s(X̃) =

∫
fs(X̃ − Z)h(Z)dZ, s = 0, 1.

It follows that

‖f̃0 − f̃1‖ =

∫ ∣∣∣ ∫ f0(X̃ − Z)h(Z)dZ −
∫
f0(X̃ − Z)h(Z)dZ

∣∣∣dX̃
≤
∫ ∫

|f0(X̃ − Z)− f1(X̃ − Z)|dX̃h(Z)dZ

=

∫
‖f0 − f1‖h(Z)dZ = ‖f0 − f1‖,

where the third line is due to a variable change X = X̃ − Z. �

4.6. Proof of Lemma 1.2. We prove the following lemma, and Lemma 1.2
is a special case of it.

Lemma 4.4 (Monotonicity of L1-distance). Let Σ0(Q), Σ1(Q), and Σ2(Q)
be three covariance matrix models indexed by a random quantity Q such that
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• For any non-random orthogonal matrix U , U ′Σ`(Q)U follows the same
distribution as Σ`(Q), ` = 0, 1, 2.
• Given any realization Q, Σ1(Q) � Σ2(Q).
• Given any two realizations Q and Q̃, Σ0(Q) � Σ1(Q̃).

For each ` ∈ {0, 1, 2}, consider a model where (Xi|Q) are iid samples from
N(0,Σ`(Q)), 1 ≤ i ≤ n, and let f` be the joint density of {Xi}ni=1. We have
‖f1 − f0‖1 ≤ ‖f2 − f0‖1.

Proof. Consider the problem of testing H1 : Xi|Q
iid∼ N(0,Σ1(Q)) against

H0 : Xi|Q
iid∼ N(0,Σ0(Q)). By Neyman-Pearson lemma, 1− (1/2)‖f1 − f0‖1

is a lower bound for the sum of type I and type II errors of any test, and
this lower bound is achieved by the likelihood ratio test which rejects H0 if
and only if

(4.34) T (X) > 1, where T (X) ≡ f1(X)/f0(X).

We then use this test for testing H2 : Xi|Q
iid∼ N(0,Σ2(Q)) against H0. The

type I error remains the same as before. Let P` be the probability measure
associated with the model H`, ` = 1, 2. If we can show that the type II error
does not increase, i.e.,

(4.35) P2(T (X) ≤ 1) ≤ P1(T (X) ≤ 1),

then the sum of type I and type II errors does not increase either, i.e., it is
no larger than 1− (1/2)‖f1− f0‖1. On the other hand, by Neyman-Pearson
lemma again, with the test (4.34) for testing H2 against H0, the sum of type
I and type II errors is no smaller than 1− (1/2)‖f2− f0‖1. This proves that
‖f1 − f0‖1 ≤ ‖f2 − f0‖1.

It remains to show (4.35). Without loss of generality, we assume Σ0(Q)
is non-degenerate almost surely. Write Σ̂ = (1/n)

∑n
i=1XiX

′
i and let λ1 ≥

λ2 ≥ · · · ≥ λp ≥ 0 be its eigenvalues. We first show that T (X) depends on
X only through λ1, · · · , λp, i.e.,

(4.36) T (X) = T (λ1, · · · , λp).

Let Σ̂ = UΛU ′ be the eigen-decomposition of Σ̂, where Λ = diag(λ1, λ2, · · · , λp)
and U is an orthogonal matrix. For ` = 0, 1, 2, write Ω`(Q) = [Σ`(Q)]−1 and
Ω̃`(Q) = U ′Ω`(Q)U . By our assumption, for any U , Ω`(Q) and Ω̃`(Q) have
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the same distribution. It follows that

f`(X) =
1

(2π)np/2

∫
exp

(
− n

2
tr(UΛU ′Ω`(Q)) +

n

2
log(|Ω`(Q)|)

)
dF (Q)

=
1

(2π)np/2

∫
exp

(
− n

2
tr(ΛΩ̃`(Q)) +

n

2
log(|Ω̃`(Q)|)

)
dF (Q)

=
1

(2π)np/2

∫
exp

(
− n

2
tr(ΛΩ`(Q)) +

n

2
log(|Ω`(Q)|)

)
dF (Q),

where the second equality is because |Ω`(Q)| = |U Ω̃`(Q)U ′| = |Ω̃`(Q)|. This
implies that f`(X) depends onX only through Λ, i.e., f`(X) = f`(λ1, · · · , λp),
for ` = 0, 1, 2. Combining it with the definition of T (X) gives (4.36).

From the above expression of f`(X), we see that ∂
∂λj

f` exists for ` = 0, 1, 2,

so ∂
∂λj

T is well defined. We next show that

(4.37)
∂T

∂λj
≥ 0, for all 1 ≤ j ≤ p.

Fix 1 ≤ j ≤ p. We note that ∂T
∂λj

has the same sign as f0
∂f1
∂λj
− f1

∂f0
∂λj

. Define

h(B; Λ) = (2π)−np/2e−
n
2

tr(ΛB)+n
2

log(|B|) . Then,

f`(λ1, · · · , λp) = EQ
[
h
(
Ω`(Q); Λ

)]
,

∂f`
∂λj

(λ1, · · · , λp) = −n
2
EQ
[
Ωjj
` (Q) · h

(
Ω`(Q); Λ

)]
,

where Ωjj
` (Q) is the j-th diagonal of Ω`(Q) and EQ[·] denotes the expectation

with respect to the randomness of Q only. Let Q and Q̃ be two independent
copies of Q. Write h(B; Λ) = h(B) for short. It is seen that

f0
∂f1

∂λj
= EQ

[
h(Ω0(Q))

]
· −n

2
EQ̃
[
Ωjj

1 (Q̃) · h(Ω1(Q̃))
]

= −n
2
EQ,Q̃

[
Ωjj

1 (Q̃) · h(Ω1(Q̃)) · h(Ω0(Q))
]

≥ −n
2
EQ,Q̃

[
Ωjj

0 (Q) · h(Ω1(Q̃)) · h(Ω0(Q))
]

= EQ̃
[
h(Ω1(Q̃))

]
· −n

2
EQ
[
Ωjj

0 (Q) · h(Ω0(Q))
]

= f1
∂f0

∂λj
,

where the inequality is due to the assumption that Σ1(Q̃) � Σ0(Q) for any
realized Q, Q̃. This proves (4.37).

We now show (4.35). For ` = 0, 1, 2, let λ
(`)
k (Q) be the k-th leading eigen-

value of Σ̂ under the model H`. By our assumption, Σ1(Q) � Σ2(Q) for any
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realized Q, which implies λ
(1)
k (Q) ≤ λ(2)

k (Q), 1 ≤ k ≤ p. Combining this with

(4.36)-(4.37), we have T (λ
(1)
1 (Q), · · · , λ(1)

p (Q)) ≤ T (λ
(2)
1 (Q), · · · , λ(2)

p (Q)). It
follows that

P2(T (X) > 1|Q) ≥ P1(T (X) > 1|Q), for any realized Q.

Taking expectation with respect to Q on both sides gives (4.35). �

4.7. Proof of Theorem 1.6. By Lemmas 4.1, 4.2 and 4.3,

log(LRn) = log(R̃n) + oP (1)

= − nr2δ2

4p(1− δ)2
− nrδ

2

[∫
ψn(λ)µXn (dλ)−

∫
ψn(λ)µn,p(dλ)

]
+ oP (1),

where ψn(λ) = p
nδ log(1− δn

p (λ− 1
1−δ )). With high probability, the support of

µXn and the support of µn,p are both strictly contained in a bounded interval
[(1−√γ)2−0.1, (1+

√
γ)2 +0.1]. Write γn = p/n. Since δ = o(1), the Taylor

expansion yields ψn(λ) = γn
δ [− δ

γn
(λ − 1

1−δ ) + O(δ2)] = −(λ − 1
1−δ ) + O(δ).

Moreover, since
∫
µXn (dλ) =

∫
µn,p(dλ) = 1, the term 1

1−δ does not affect
the integral. As a result,

log(LRn) = − nr2δ2

4p(1− δ)
+
nrδ

2

[ ∫
λµXn (dλ)−

∫
λµn,p(dλ)

]
+ oP (1)

= −(rδ)2

4γn
+

(rδ)

2γn
[Sn − p] + oP (1),

where Sn is the trace statistic, and the second line is because
∫
λµXn (dλ) =

p−1Sn and
∫
λµn,p(dλ) = 1. In other words,

log(LRn) = −θ
2
n

2
− θn ·

(
Sn − p√

2γn

)
+ oP (1), where θn ≡

rδ√
2γn
→ θ.

Note that Sn−p√
2γn

= (nSn−np)√
2np

. By elementary statistics, this term converges to

N(0, 1) under the null, and converges to N( nrδ√
2np

, 1) = N(θn, 1) under the

alternative. The claim then follows. �

4.8. Proof of Lemma 4.1. Let Y ∈ Rp,r be a matrix such that Y (i, j)
iid∼

N(0, 1). It is known that when Q is uniformly distributed over the Stiefel
manifold S(p, r), QQ′ has the same distribution as Y (Y ′Y )−1Y ′. So, the
RWS model (1.8) is equivalent to

(4.38) H
(n)
1 : Σ = [Ip − δY (Y ′Y )Y ′]−1.



31

Denote by η1 ≥ η2 ≥ · · · ≥ ηr > 0 the nonzero eigenvalues of (1/p)Y Y ′. Let
Bn = {Y : max1≤k≤r |ηk − 1| ≤ 2

√
r/p}.

We first show that Y ∈ Bc
n has a negligible effect on the likelihood ratio.

Denote by Σ(Y ) a general covariance matrix model indexed by Y . Introduce

(4.39) Σ
∗
(Y ) = Σ(Y ) · 1{Y ∈ Bn}+ Ip · 1{Y ∈ Bc

n}.

Consider the model Xi|Y
iid∼ N(0,Σ(Y )) and let LRn be the corresponding

likelihood ratio with respect to H
(n)
0 : Xi

iid∼ N(0, Ip). Define LR
∗
n similarly

by replacing Σ(Y ) with Σ
∗
(Y ). Below, we show that

(4.40) E0|LRn − LR
∗
n| → 0.

To see this, let f0(X) be the joint density of X under H
(n)
0 , f(Y ) be the joint

density of Y and f1(X|Y ) be the conditional density of X under Xi|Y
iid∼

N(0,Σ(Y )). Then, LRn =
∫ f1(X|Y )f(Y )

f0(X) dY and LR
∗
n =

∫
Bn

f1(X|Y )f(Y )
f0(X) dY +∫

Bcn
f(Y )dY . So E0|LRn−LR∗n| ≤

∫
f0(X)

∫
Bcn

[f1(X|Y )f(Y )
f0(X) +f(Y )

]
dY dX =∫

Bcn
[
∫
f1(X|Y )dX]f(Y )dY +

∫
Bcn

[
∫
f0(X)dX]f(Y )dY = 2

∫
Bcn
f(Y )dY = 2 ·

P (Y ∈ Bc
n). By [50, Corollary 5.35], P (Y ∈ Bc

n) ≤ 2e−r. So (4.40) follows.
Regarding (4.40), for all the covariance models considered here, switching

between Y and Y · 1{Y ∈ Bn} only affects the L1-distance by an o(1) term,
and we omit such a difference for notation simplicity.

Introduce δ± = δ/(1∓ 2
√
p/n) and let L̃R

±
n be the likelihood ratio asso-

ciated with the Gaussian proxy model with δ = δ±. For Y ∈ Bn,

(4.41) δ−(p−1Y Y ′) � δ[Y (Y ′Y )−1Y ′] � δ+(p−1Y Y ′).

We apply Lemma 4.4 with Σ0(Y ) = Ip, Σ1(Y ) = [Ip− δY (Y ′Y )−1Y ′]−1 and
Σ2(Y ) = [Ip − δ+p−1Y Y ′]−1.9 It yields that

E0|1− L̃R
−
n | ≤ E0|1− LRn| ≤ E0|1− L̃R

+

n |.

Similarly, since δ−(p−1Y Y ′) � δ(p−1Y Y ′) � δ+(p−1Y Y ′),

E0|1− L̃R
−
n | ≤ E0|1− L̃Rn| ≤ E0|1− L̃R

+

n |.
9When applying Lemma 4.4, we consider Y · 1{Y ∈ Bn} in all the covariance models.

So, we need to show that for any nonradom orthogonal matrix U ∈ Rp,p, UY ·1{UY ∈ Bn}
has the same distribution as Y · 1{Y ∈ Bn}. We note that Y

(d)
= P1ΓP2, where P1 and P2

are uniformly distributed over S(p, r) and S(r, r), respectively, and Γ ∈ Rr,r is a random

diagonal matrix, and (P1,Γ, P2) are independent. So UY ·1{UY ∈ Bn}
(d)
= UP1ΓP2 ·1{‖Γ−

Ir‖ ≤ 2
√
r/p}. The claim follows by noting that UP1 has the same distribution as P1.
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As a result,

|E0|1−L̃Rn|−E0|1−LRn|| ≤ E0|1−L̃R
+

n |−E0|1−L̃R
−
n | ≤ E0|L̃R

−
n −L̃R

+

n |.

To show the claim, it suffices to show that

(4.42) E0|L̃R
−
n − L̃R

+

n | → 0.

We now show (4.42). Denote by µXn the empirical spectral measure of Σ̂,
and by µn,p the Marchenko-Pastur (MP) measure with parameter γ = p/n
(see Section 3). Let FXn and Fn,p be the corresponding CDF’s. Introduce
En = {X ∈ Rn,p : supt∈R |FXn (t) − Fn,p(t)| ≤ n−1 log6(n) log6(log(n))}. By
Theorem 3.2, P0(X ∈ Ecn) = O(e−c log(n) log(log(n))), as n→∞. Note that

E0

(
|L̃R

−
n − L̃R

+

n | · IEcn
)
≤ E0(L̃R

−
n · IEcn) + E0(L̃R

+

n · IEcn).

Since E0(L̃R
±

) = 1 is finite, P0(Ecn) = o(1) implies E0(L̃R
−
n · IEcn) = o(1).

Therefore, to show (4.42), it suffices to show that

(4.43) E0

(
|L̃R

−
n − L̃R

+

n | · IEn
)
→ 0.

Below, we show (4.43). The assumption on (α, β) ensures that en ≤ n−ε

for some ε > 0, where

en ≡ δ2r5/2n−1/2 + δr3/2n−1/2 + δ2r.10

In Section 4.2, we define R̃n, a proxy of L̃Rn. Let R̃±n be the proxy associated

with δ = δ±. By Lemma 4.2, E0|L̃R
±
n − R̃±n | = o(1). So it suffices to show

(4.44) E0

(
|R̃−n − R̃+

n | · IEn
)
→ 0.

Let g±n (λ) = p
n log(1− δ±n

p (λ− 1
1−δ± )). By Lemma 4.3,

log(R̃±n ) = − nr2(δ±)2

4p(1− δ±)2
− nr

2

[∫
g±n (λ)µXn (dλ)−

∫
g±n (λ)µn,p(dλ)

]
.

Let ∆gn = g+
n − g−n . It follows that

log
(
R̃−n /R̃

+
n

)
=
nr

2

[∫
∆gn(λ)µXn (dλ)−

∫
∆gn(λ)µn,p(dλ)

]
+

nr2(δ+)2

4p(1− δ+)2
− nr2(δ−)2

4p(1− δ−)2
≡ (I) + (II).

10The first two terms are from the calculation of (I) and (II) below, and the last term

is due to E0|L̃Rn − R̃n| ≤ C(δ2r + δ3r5/2n−1/2), as seen in the proof of Lemma 4.2.
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On the event En,

|(I)| ≤ nr

2
· sup

λ
|(∆gn)′(λ)| · sup

λ∈R
|FXn (λ)− Fn,p(λ)| ≤ Lnr sup

λ
|(∆gn)′(λ)|,

where Ln = log6(n) log6(log(n))/2. For X ∈ En, the supports of µn,p and
µXn are both strict subsets of A = [1

2(1 − √γ)2, 2(1 +
√
γ)2]. So it suffices

to consider supλ∈A |(∆gn)′(λ)|. By direct calculations, (∆gp)
′(λ) = −(δ+ −

δ−) · [1− nδ+δ−

p(1−δ+)(1−δ−)
][1− δ+n

p (λ− 1
1−δ+ )]−1[1− δ−n

p (λ− 1
1−δ− )]−1 = −(δ+−

δ−)[1 + o(1)], for λ ∈ A. It follows that

sup
λ∈A
|(∆gn)′(λ)| ≤ C(δ+ − δ−) ≤ Cδ

√
r/p.

Combining the above gives

(4.45) |(I)| ≤ CLn · δr3/2n−1/2.

By direct calculation, (II) = nr2

4p
(δ+−δ−)(δ++δ−−2δ+δ−)

(1−δ+)2(1−δ−)2
. It follows that

(4.46) |(II)| ≤ Cr2(δ+ − δ−)δ ≤ Cδ2r5/2n−1/2.

Both the right hands of (4.45)-(4.46) are O(en). As a result, for X ∈ En,

|R̃−n /R̃+
n − 1| ≤ max{|eCen − 1|, |e−Cen − 1|} ≤ Cen.

So E0(|L̃R
−
n − L̃R

+

n | · IEn) ≤ CenE0(R̃+
n ). Since E0|R̃+

n − L̃R
+

n | = o(1) and

E0(L̃R
+

n ) = 1, E0(R̃+
n ) ≤ 2. Combining these gives (4.44). �

Remark. (Conjecture on E0|LRn− L̃Rn|). We conjecture that a stronger
result holds:

E0|LRn − L̃Rn| → 0.

To see this, let Σ(Y ) be the covariance matrix (4.38) of RWS, and let Σ̃(Y ),
Σ̃±(Y ) be the covariance matrices of proxy models associated with δ, δ±, re-
spectively. By (4.41), Σ̃−(Y ) � Σ(Y ) � Σ̃+(Y ), so the RWS is “sandwiched”
by two proxy models. We conjecture that

(4.47) E0|LRn − L̃R
−
n | ≤ E0|L̃R

+

n − L̃R
−
n |.

Similarly, since Σ̃−(Y ) � Σ̃(Y ) � Σ̃+(Y ), we conjecture E0|LRn − L̃R
−
n | ≤

E0|L̃R
+

n − L̃R
−
n |. By the triangular inequality, E0|LRn− L̃Rn| ≤ E0|LRn−

L̃R
−
n |+E0|L̃Rn− L̃R

−
n | ≤ 2E0|L̃R

+

n − L̃R
−
n |. It then follows from (4.42) that

E0|LRn − L̃Rn| → 0.
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To rigorously prove (4.47), we need a slightly stronger result than Lemma 4.4
(monotonicity of L1-distance). In Lemma 4.4, one assumption is that Σ0(Q) �
Σ1(Q̃) for any realizations Q, Q̃. If this assumption is relaxed to requiring
Σ0(Q) � Σ1(Q) for any Q, then we can apply the result to (Σ0,Σ1,Σ2) =
(Σ̃−(Y ),Σ(Y ), Σ̃+(Y )) and obtain (4.47).

5. Discussions. Testing of sphericity, i.e., whether the population co-
variance matrix Σ is the identity, has been well-studied. While many tests
were proposed for high-dimensional settings [2, 14, 32, 34], there are rela-
tively few results about the phase transition: [12] studied the testing limit
for a class of alternatives that are characterized by the Frobenius norm of
Σ − Ip, and [9] investigated a class of alternatives which are rank-1 sparse
perturbations of the null. We are interested in a different class of alterna-
tives, the Rare and Weak Spike model. When the number of spikes is finite,
[37, 38] studied the asymptotic power envelopes of eigenvalue-based tests,
and their results implicitly gave the phase transition of this testing problem.
Compared with [37, 38], our results cover broader situations where the num-
ber of spikes may tend to infinity as n, p → ∞. We also extend our results
to more complicated settings where Σ is not necessarily the identity in the
null, by exploring the idea of “comparison of experiments.”

Various tests were proposed for testing Σ = Ip; some are based on extreme
eigenvalues [32, 33], and some are based on bulk eigenvalues [2, 18, 34, 37].
It has been recognized that the extreme-eigenvalue tests are more powerful
for testing Rare and Strong spikes, while for Rare and Weak spikes, it is
better to use more than just a few top eigenvalues. In the spirit of “letting
the data decide which eigenvalues to use”, we proposed two new tests, the
Higher Criticism (HC) test, and the Cumulative Sum (CuSum) test. Both
tests can be viewed as extensions of the Higher Criticism test for testing
sparse normal means [19]. In contrast to bulk-eigenvalue tests [18, 37], our
proposed tests are purely adaptive. Moreover, we find that the CuSum test
is both theoretically optimal and has impressive numerical performance.

Technically, we introduce a Gaussian proxy model for studying the RWS
model. We show that the two models are close enough for a wide range of
parameters. At the same time, the likelihood of the proxy model is easier to
analyze, where we can use the available results on Wishart matrices instead
of analyzing any spherical integrals. Such an approach can be useful for other
problems related to the RWS model.

In Random Matrix Theory, it is an interesting topic to study the em-
pirical eigenvalues of a spiked covariance model. In the seminal work [4],
they derived the limiting joint distribution of top k eigenvalues of a complex



35

Gaussian Wishart matrix, with the population covariance a rank-r perturba-
tion of the identity, where r is finite and k ≤ r. Later, [5, 40] proved similar
results for real covariance matrices. However, there is little understanding
on the case that r tends to infinity as n, p grows. Moreover, existing works
mainly focus on a few top eigenvalues. The bulk eigenvalues of a spiked
model are also of great interest in many applications, but such results are
only found for the identify covariance case [16, 42, 45]. Our results fill in
the gap by both allowing r → ∞ (in a algebraic rate) and concerning all
eigenvalues.

A somewhat relevant setting to the spiked covariance model is the spiked
Wigner model, where we consider an n × n Wigner matrix plus a non-
random, rank-r diagonal matrix. Such a setting with r →∞ was studied in
[41], and they derived the limiting behavior of top eigenvalues. Besides that
the two settings are very different, [41] assumes the magnitude of entries in
the diagonal perturbation is independent of n, so it is not about rare and
“weak” spikes.

Our work also brings a new angle of using statistical theory to shed lights
on random matrix theory. We recognize that, for parameters where all tests
are asymptotically powerless, any bounds of empirical eigenvalues that hold
in the null should also hold in the alternative. Hence, as long as we know the
statistical limits, we can take advantage of results in the identity covariance
case for studying the spiked covariance models. Alternatively, if we wish to
derive such results directly from random matrix theory, we have to pay non-
trivial efforts, noting that how to extend [4, 5, 40] to the setting of rare and
weak spikes is largely unclear.

It is possible to extend our results to nonGaussian settings: X = Y Σ1/2,
where Y is an n× p random matrix with iid entries of mean 0 and variance
1. To test Σ = Ip, we can still apply the four tests considered in this paper,
and their performance will be similar to the Gaussian case, due to universal-
ity of eigenvalue statistics (e.g., [42]). The lower bound arguments may be
slightly different, depending on the distribution of the entries of Y . However,
the key technique of this paper continues to work: we can approximate the
RWS model (on Σ) by a Gaussian proxy model, to overcome the hurdle of
analyzing likelihood ratios. We leave this for future work.

Another extension of our work is to consider the same testing problem for
population correlation matrices. For this setting, it is natural to apply the
tests to eigenvalues of the sample correlation matrix. The existing results
about the null behavior of these eigenvalues [7, 24] will be helpful. We also
leave this for future study.
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6. Appendix.

6.1. Proof of Theorem 3.1. Define the function h : Rn,p → R by h(Z) =
pµZn (f), i.e., we view pµZn (f) =

∑p
j=1 f(λj) as a function of the entries of

Z. For a differentiable f such that ‖f ′‖∞ <∞, Delyon [17] shows that ∇h
exists. According to the last equation on [17, Page 554], for each 1 ≤ i ≤ n,∑

1≤j≤p
(∂h(Z)
∂Zij

)2 ≤ 4n−2‖f ′‖2∞
∑

1≤j≤p Z
2
ij . It follows that

(6.48) ‖∇h(Z)‖2 ≤ 4n−2‖f ′‖2∞‖Z‖2F .

Introduce

h̃(Z) =

√
n log(2)

2
√

2p‖f ′‖∞
h(Z).

Since ‖Z‖2F has a χ2
np(0) distribution, E[et‖Z‖

2
F ] = (1−2t)−np/2 for all t ≥ 0.

From (6.48), ‖∇h̃(Z)‖2 ≤ log(2)
2np ‖Z‖

2
F . It follows that

(6.49) E[e‖∇h̃(Z)‖2 ] ≤
[
1− (2np)−1 log(2)

]−np/2 ≤ 2.

We now apply [11, Theorem 6.1], a concentration inequality for non-Lipschitz
functions, to h̃. The probability measure µ there corresponds to the stan-
dard Gaussian measure of dimension np in our settings, so the subGaussian
constant σ(µ) = 1. It yields that for L0 such that P (|∇h̃(Z)| > L0) ≤ 1/2
and all t > 0,

P
(
|h̃(Z)− E[h̃(Z)]| > t

)
≤ 2 inf

y≤L0

{
e
− t2

cy2 + P (‖∇h̃(Z)‖ > y)
}
,

where c > 0 is an absolute constant. By (6.49) and the Chebyshev inequality,
P (‖∇h̃(Z)‖ > L) ≤ 2e−L

2
. Therefore, for any y ≥ L0 ≡

√
2 log(2),

(6.50) P
(
|h̃(Z)− E[h̃(Z)]| > t

)
≤ 2e

− t2

cy2 + 4e−y
2
.

The claim follows by noticing that µZn (f) = 2
√

2‖f ′‖∞√
np log(2)

h̃(Z). �

6.2. Proof of Lemma 3.1. Fixm ≥ 1. Write for shortH =
∑p

k=1(λj−1)m

and en = log(n)[(p∨ log(n))/n]m/2. We aim to show that for some constant
C > 0,

P (|H − E(H)| > Cen) = o(n−1).

Note that p ≤ n. By [50, Corollary 5.35], for every t ≥ 0,

(6.51) P

(
max

1≤j≤p
|λj − 1| >

√
p/n+ t/

√
n

)
≤ 2e−t

2/2.
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Let an =
√
p/n+ 2

√
log(n)/n and Bn be the event max1≤j≤p |λj − 1| ≤ an.

The above implies that P (Bc
n) = o(n−1). So it suffices to show that

(6.52) P (|H − E(H)| > Cen, Bn) = o(n−1).

Define a function fn(x) = hn(x− 1), where

hn(x) =


xm, if 0 ≤ x ≤ an,
(2an)m, if x ≥ 2an,

amn +m
∫ x−an

0 (2an − x)m−1, if an < x < 2an,

(−1)mhn(−x), if x < 0.

Introduce H∗ =
∑p

j=1 fn(λj). Then, H = H∗ over the event Bn. Therefore,
to show (6.52), it suffices to show that for some constants C1, C2 > 0,

(6.53) P (|H∗ − E(H∗)| > C1en) = o(n−1),

and

(6.54) |E(H∗)− E(H)| < C2en.

First, consider (6.53). We write H∗ = pµZn (fn), and note that fn is con-
tinuously differentiable and ‖f ′n‖∞ = mam−1

n . By Theorem 3.1 where we set
y =
√

2 log(n) and t = 2
√
c0 log(n), with probability at least 1− o(n−1),

|H∗ − E(H∗)| ≤
2
√
c0p log(n)
√
n

‖f ′n‖∞ ≤ Cmam−1
n

√
p/n log(n).

The right hand side is no larger than Cen. This proves (6.53).
Next, consider (6.54). Let ξ = max1≤j≤p |λj − 1|. We have

(6.55) |E(H)− E(H∗)| ≤
p∑
j=1

E(|λj − 1|m · IBcn) ≤ pE
(
ξm · I{ξ>an}

)
.

We use the simple fact that for any continuous random variable W and real
number a, E(W · I{W>a}) = aP (W > a) +

∫∞
a P (W > t)dt. It follows that

E
(
ξm · I{ξ>an}

)
= amn P (ξ > an) +

∫ ∞
amn

P (ξm > x)dx

= o(n−1amn ) +
m√
n

∫ ∞
2
√

log(n)
(
√
p/n+ t/

√
n)m−1P

(
ξ >

√
p/n+ t/

√
n
)
dt

= o(n−1amn ) +
m

(
√
n)m

∫ ∞
2
√

log(n)
2m−1[(

√
p)m−1 + tm−1]e−t

2/2dt

≤ o(n−1amn ) +
2m−1m

(
√
n)m

·
[
(
√
p)m−1 + (2

√
log(p))m−1

]
· Ce−2 log(n).
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Here the second line is due to a variable change t =
√
n(x1/m −

√
p/n), the

third line follows from (6.51) and that (a+ b)k ≤ 2k(ak+ bk) for a, b > 0 and
k being a positive integer, and the last line is from elementary calculation. It
is easy to see that the right hand side is no larger than Cp−1en. Combining
it with (6.55) gives (6.54). �

6.3. Proof of Lemma 3.2. Write L(t; γ) =
∫

log(t − λ)dFmpγ (λ) for any
γ ≥ 1 and t > (1 +

√
γ)2. It is known that (e.g., equation (3.6) of [37]) the

Hilbert transformation of Fmpγ is

H(t; γ) ≡
∫

(t− λ)−1dFmpγ (λ) =
t+ γ − 1−

√
(t− γ − 1)2 − 4γ

2γt
,

for t > (1+
√
γ)2; the sign of the square root is the same as that of (t−γ−1).

Since ∂
∂t log(t− λ) = (t− λ)−1, we have

(6.56) L(t; γ) =

∫
H(t; γ)dt+ C0,

where
∫
H(t; γ)dt is any indefinite integral of H(t; γ). We take the following

choice (it can be verified by checking the derivative):∫
H(t; γ)dt =

1

2γ

{
(At −Bt)− (γ + 1) log(At −Bt)

+ (γ − 1) log
(
(γ + 1)At − (γ − 1)Bt + 4γ

)}
,(6.57)

where At = t− γ − 1 and Bt =
√

(t− γ − 1)2 − 4γ are the same as those in
Lemma 3.2. To get the constant C0 in (6.56), we note that limt→∞[L(t; γ)−
log(t)] = limt→∞

∫
[log(t− λ)− log(t)]dFmpγ (λ) = 0. As a result,

C0 = − lim
t→∞

[

∫
H(t; γ)dt− log(t)].

As t → ∞, we have At/t → 1 and Bt/t → 1. Also, At − Bt = 4γ/(At +
Bt)→ 0 and log(At−Bt) + log(2t)→ log(4γ). Moreover, (2t)−1[(γ+ 1)At−
(γ − 1)Bt + 4γ] = (2t)−1[At + Bt + γ(At − Bt) + 4γ] → 1; it follows that
log((γ + 1)At − (γ − 1)Bt + 4γ) − log(2t) → 0. Plugging these results into
(6.57), we find that

lim
t→∞

[ ∫
H(t; γ)dt− γ + 1

2γ
log(2t)− γ − 1

2γ
log(2t)

]
→ −γ + 1

2γ
log(4γ).

It follows that

(6.58) C0 = − log(2) +
γ + 1

2γ
log(4γ).

Combining (6.56)-(6.58) gives the explicit expression of L(t; γ). �
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6.4. Proof of Lemma 4.2. Let en = δ3r5/2n−1/2 + δ2r. It suffices to show
that when en = o(1), E0|L̃Rn − R̃n| ≤ Cen.

Let h(X,Y ) be the integrand in (4.26). Define the events An = {Y : δη1 <
1/2} and Dn = {X : p−1δn(λ1 − 1

1−δ ) < 1}. Introduce

∆n(Y ) = ∆n(Y, δ, r) ≡ g∗n(Y, δ, r)− gn(Y, δ, r).

By (4.26)-(4.27), L̃Rn =
∫
An
h(X,Y )dF (Y )+

∫
Acn
dF (Y ) and R̃n = IDcn(X)+

IDn(X) ·
∫
h(X,Y )e

n
2

∆n(Y )dF (Y ). Let F0(X) be the joint CDF of X under

H
(n)
0 . Then,

E0|L̃Rn − R̃n| ≤
∫
An×Dn

h(X,Y )|1− e
n
2

∆n(Y )|dF (Y )dF0(X)

+

∫
Acn×Dn

|1− h(X,Y )e
n
2

∆n(Y )|dF (Y )dF0(X)

+

∫
An×Dcn

|h(X,Y )− 1|dF (Y )dF0(X).(6.59)

By definition of the Gaussian model, conditioning on any Y ∈ An, h(X,Y )dF0(X)

is the joint density of X under H̃
(n)
1 . Consequently,

(6.60)

∫
h(X,Y )dF0(X) = 1, for Y ∈ An.

We plug (6.60) into (6.59), and note that |1 − h(X,Y )| ≤ 1 + h(X,Y ) and
|1− h(X,Y )e

n
2

∆n(Y,δ,r)| ≤ 1 + h(X,Y )e
n
2

∆n(Y,δ,r). It follows that

E0|L̃Rn − R̃n| ≤
∫
An

|1− e
n
2

∆n(Y )|dF (Y )

+ P0(X ∈ Dn, Y ∈ Acn) +

∫
Acn×Dn

h(X,Y )e
n
2

∆n(Y )dF0(X)dF (Y )

+ P0(X ∈ Dc
n, Y ∈ An) + P̃1(X ∈ Dc

n, Y ∈ An),(6.61)

where P0 and P̃1 are the probability measures under H
(n)
0 and H̃

(n)
1 , respec-

tively. By (6.51), P0(X ∈ Dc
n) = P0(λ1−1 > δ

1−δ+ p
δn) ≤ 2e−

n
2

( δ
1−δ+ p

δn
−
√
p/n)2 ≤

2e−p/2, where the last inequality follows from δ
1−δ + p

δn ≥ 2
√
p/n by Cauchy-

Schwartz inequality. Again, by (6.51), P0(Y ∈ Acn) ≤ 2e−
p
2

[(2δ)−1−1−
√
r/p]2 ≤

2e−cn. Combining these with (6.61), to show the claim, it suffices to show
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that

J1 ≡
∫
An

|1− e
n
2

∆n(Y )|dF (Y ) ≤ Cen

J2 ≡
∫
Acn×Dn

h(X,Y )e
n
2

∆n(Y )dF0(X)dF (Y ) = o(en)

J3 ≡ P̃1(X ∈ Dc
n, Y ∈ An) = o(en).(6.62)

Consider J2. By (4.27), h(X,Y )e
n
2

∆n(Y ) = (1−δ)
nr
2 bn(δ, r) exp{ δn2p tr((Σ̂−

1
1−δ )Y Y ′). We note that (1−δ)

nr
2 ≤ 1 and bn(δ, r) ≤ e

nrδ
2p(1−δ) . Moreover, since

Y Y ′ is positive semi-definite, tr((Σ̂ − 1
1−δ )Y Y ′) ≤ (λ1 − 1

1−δ )tr(Y Y ′). For

X ∈ Dn, (λ1 − 1
1−δ ) < δ−1p/n. As a result,

J2 ≤ e
nrδ

2p(1−δ)

∫
δη1>1/2

exp
{1

2
tr(Y Y ′)

}
dF (Y ).

Let W = (2pr)−1/2(tr(Y Y ′) − pr). Note that η1 ≥ (pr)−1tr(Y Y ′). So W >
1−δ
2δ

√
(pr)/2 implies that δη1 > 1/2. It follows that

J2 ≤ e
nrδ

2p(1−δ)+ pr
2

∫
W> 1−δ

2δ

√
pr
2

e
√

pr
2
WdF (W ).

Since tr(Y Y ′) has a chi-square distribution, W weakly converges to N(0, 1).

So e
√

pr
2
WdF (W ) = e

pr
2 · 1√

2π
e

1
2

(W−
√

pr
2

)2 [1+o(1)]dW , and the above integral

is equal to epr/2[1 + o(1)] · P
(
N(0, 1) > (1−δ

2δ − 1)
√
pr/2

)
. It follows that

J2 ≤ e
nrδ

2p(1−δ)+ pr
2 · 2e−Cpr/δ2 ≤ 2e−Cpr/(2δ

2) = o(en).
Consider J3. First, X ∈ Dc

n implies λ1 >
p
nδ + 1

1−δ >
p

2nδ , noting that δ →
0. Second, under H̃

(n)
1 , Xi|Y

iid∼ N(0, Σ̃(Y )), 1 ≤ i ≤ n, where [Σ̃(Y )]−1 =

Ip − δp−1Y Y ′. Since for Y ∈ An, the maximum eigenvalue of Σ̃(Y ) is (1 −
δη1)−1 ≤ 2, we find that P̃1(λ1 > t) ≤ P0(2λ1 > t) for any t > 0, where

P0 is the probability measure under H
(n)
0 . Combining the above results and

applying (6.51),

J3 ≤ P0

(
2λ1 >

p

2nδ

)
≤ 2e−

n
2

( p
4nδ
−1−
√

p
n

)2 ≤ 2e−Cδ
−1n = o(en).

Last, consider J1. Let q(x) = − log(1 − x) − x − x2/2 and recall that
η1 > η2 > · · · > ηr > 0 are the nonzero eigenvalues of (1/p)Y Y ′. Introduce

M1(Y ) =

r∑
k=1

q
(δ(ηk − 1)

1− δ
)
, M2(Y ) =

δ2

2(1− δ)2

r∑
k=1

{
(ηk−1)2−E[(ηk−1)2]

}
.
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Then, ∆n(Y ) = M1(Y )+M2(Y ). Let E∗[f(Y )] =
∫
Y ∈An f(Y )dF (Y ) for any

function f . We then have

J1 ≤ E∗|1− e
n
2
M1(Y )|+ E∗

[
e
n
2
M1(Y )|1− e

n
2
M2(Y )|

]
≤ E∗|1− e

n
2
M1(Y )|+

(
E∗[enM1(Y )] · E∗|1− e

n
2
M2(Y )|2

)1/2
.(6.63)

We claim that

(6.64) E∗|1− e
n
2
M1(Y )| ≤ Cen, E∗|1− enM1(Y )| ≤ Cen,

and

(6.65) E∗|1− e
n
2
M2(Y )| ≤ Cen, E∗|1− enM2(Y )| ≤ Cen.

Note that (6.65) implies E∗|1− e
n
2
M2(Y )|2 ≤ Cen. Combining it with (6.63)-

(6.64) gives J1 ≤ Cen.
It remains to show (6.64)-(6.65). We first prove (6.64). It suffices to con-

sider the first inequality, as the second one is similar. Define U = δ
1−δ (η1−1)

if |η1 − 1| ≥ |ηr − 1|, and U = δ
1−δ (ηr − 1) if |η1 − 1| < |ηr − 1|. Note that

U ≤ 1/2 for Y ∈ An. Since q(x) =
∑∞

`=3 x
`/`, we have |M1(Y )| ≤ rq(|U |).

Therefore, to show (6.64), it suffices to show that

(6.66) E
(
|1− e

nr
2
q(|U |)| · 1{U ≤ 1/2}

)
≤ Cen.

Let bn = 3δ
√
r/p. By Taylor expansion, q(|x|) ≤ C1|x|3 for x ∈ [−bn, bn],

q(|x|) ≤ C2x
2, for x ∈ (bn, 1/2] ∪ (−bn,∞), where C1, C2 > 0 are absolute

constants. Note that nrb3n ≤ Cen → 0. Hence, when |U | ≤ bn, |1−e
nr
2
q(|U |)| ≤

Cnrb3n; when |U | > bn, |1− e
nr
2
q(|U |)| ≤ 1 + e

nr
2
q(|U |) ≤ 1 + eCnrU

2
. It follows

that the left hand side of (6.66) is upper bounded by

(6.67) Cnrb3n + P (|U | > bn) + E
[
eCnrU

2
1{|U | > bn}

]
.

The first term is O(en). To bound the second term, by (6.51), write

|U | = δ

1− δ
(
√
r/p+ U1/

√
p), where P (U1 > t) ≤ 2e−t

2/2 for t > 0.

It follows that P (|U | > bn) ≤ P (U1 >
√
r) ≤ 2e−r

2/2 = o(en). Last, consider
the third term. Since nrU2 ≤ Cδ2r2 + Cδ2rU2

1 , this term is bounded by
eCδ

2r2 ·E[eCδ
2rU2

1 1{U1 >
√
r}] ≤ eCδ2r2−r/4, provided that

√
r � δ2r (which

is obviously true here). Since δ2r ≤ en → 0, this term is O(e−r/8) = o(en).
Combing the above gives (6.66), and (6.64) follows.
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Next, we prove (6.65). We only consider the first inequality, and the second
one is similar. Let U and bn be the same as above, and let V =

∑r
k=1{(ηk−

1)2 −E[(ηk − 1)2]}. It is seen that n|M2(Y )| = n δ2

2(1−δ)2 |V |. Moreover, since∑r
k=1(ηk − 1)2 ≤ rmax{|η1 − 1|2, |ηr − 1|2} and

∑r
k=1E[(ηk − 1)2] = r/p,

we have a naive upper bound: n|M2(Y )| ≤ CnrU2 + Cδ2r. As a result,

E∗|1− e
n
2
M2(Y )| ≤ E

(
|1− eCnδ2V | · 1{|U | ≤ bn}

)
+ P (|U | > bn)

+ eCδ
2rE

[
eCnrU

2
1{|U | > bn}

]
.(6.68)

In the analysis of (6.67), we have seen that the second term is o(en) and
the last term is O(eCδ

2r−r/8) = o(en). Consider the first term. We adapt the
proof of Lemma 3.1 by constructing a function h̃n, similar to hn in the proof
of Lemma 3.1, except that an is now replaced with 3

√
r/p. Then, ‖h̃′n‖∞ ≤

6
√
r/p; in addition, when |U | ≤ bn, V =

∑r
k=1 h̃n(ηk)−

∑r
k=1E[(ηk − 1)2].

Similar to (6.55), we can show that
∑r

k=1E[(ηk − 1)2] =
∑r

k=1E[h̃n(ηk)] +
o(r/p). Therefore, by Theorem 3.1 (with m = 2),

P
(
|V | > 6p−1rt, |U | ≤ bn

)
≤ 2 inf

y≥
√

2 log(2)

{
e
− t2

c0y
2 + 2e−y

2} ≤ 4e−t/
√
c0 .

With V1 = r−1pV · 1{|U | ≤ bn}, the above implies P (|V1| > 6t) ≤ 4e−c
−1/2
0 t,

so V1 has an exponential tail. The first term in (6.68) is upper bounded by
E|1− eCδ2rV1 | ≤ Cδ2r = O(en). Combining the above gives (6.65). �

6.5. Proof of Lemma 4.3. We first show (4.28). Let Σ̂ = Q̂ΛQ̂′ be the
eigen decomposition of Σ̂, where Λ = diag(λ1, · · · , λp) and Q̂ is an orthogo-
nal matrix. Let Z = Q̂′Y . Write b∗n(δ, r) = (1− δ)

nr
2 bn(δ, r). We can rewrite

R̃n = b∗n(δ, r)

∫
exp

{
δn

2p
tr
(
Z ′(Λ− 1

1− δ
In)Z

)}
dF (Z)

= b∗n(δ, r)

∫
exp

{
δn

2p

r∑
k=1

p∑
j=1

(λj −
1

1− δ
)Z2(j, k)

}
dF (Z).

Conditioning on X, Z has iid entries of N(0, 1). For z ∼ N(0, 1) and c < 1,
E[ecz

2/2] = (1− c)−1/2 = e− log(1−c)/2. Therefore,

R̃n = b∗n(δ, r)exp
{
− r

2

p∑
j=1

log
(
1− δn

p
(λj −

1

1− δ
)
)}
.

We then show (4.29). By definition, we have
∑p

j=1 log(1− δn
p (λj− 1

1−δ )) =
nδ
p

∑p
j=1 ψn(λj) = nδ

∫
ψn(λ)µXn (dλ). Hence, given (4.28), it suffices to show
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that

(6.69)

∫
ψn(λ)µn,p(dλ) =

1

δ
log(1− δ) +

1

1− δ
.

Write γn = p/n. Then ψn(λ) = γn
δ log( δ

γn
) + γn

δ log(γnδ + 1
1−δ − λ). Let

Hγ(x) =
∫

log(x−λ)µγ(dλ) for any γ ≥ 1 and x > (1+
√
γ)2. It is seen that

(6.70)

∫
ψn(λ)µn,p(dλ) =

γn
δ
Hγn

(γn
δ

+
1

1− δ
)

+
γn
δ

log(δ/γn).

We apply Lemma 3.2 with t = γn
δ + 1

1−δ and γ = γn. By direct calculations,

At = 1−δ
δ γn + δ

1−δ , Bt = 1−δ
δ γn − δ

1−δ and (γn + 1)At − (γn − 1)Bt + 4γn =
2γn

δ(1−δ) . Plugging them into Lemma 3.2 and inserting the result into (6.70)

gives (6.69). �
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