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In this supplement we present the technical proofs and numer-
ical tables for simulation, for the main article. Section A contains
proofs of Propositions 2.1, 5.1 and 6.2. Section B contains proofs of
Lemmas A.1, 9.1, 9.2 and 9.3. Section C contains numerical tables
corresponding to Figure 3 and Figure 4 in the main article.

APPENDIX A

A.1. Proof of Proposition 2.1. We first present a lemma which is
proved in Section B.

Lemma A.1. If U follows a uniform distribution on Sd−1, for any d×d
diagonal matrix S and any vector β ∈ Rd, we have

• E(U>SU) = tr(S)
d , E[(U>SU)2] = 2 tr(S2)+[tr(S)]2

d2+2d
;

• E(U>β) = 0, E[(U>β)2] = ‖β‖2
d ;

• E(U>SUU>β) = 0.

Now, we show the claim of Proposition 2.1. Let Y = Σ−1/2(Z −µ), then
Y = ξU where U follows a uniform distribution on Sd−1 and is independent
of ξ. The quadratic form Q(Z) can be rewritten as

Q(Z) = Z>ΩZ − 2δ>Z

= Y >Σ1/2ΩΣ1/2Y + 2Y >Σ1/2(Ωµ− δ) + µ>Ωµ− 2µ>δ

= Q̄(Y ) + c,

where c = µ>Ωµ−2µ>δ. Therefore, E[Q(Z)] = E[Q̄(Y )]+c and var[Q(Z)] =
var[Q̄(Y )].
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Furthermore, we let
Σ1/2ΩΣ1/2 = KSK>

be the eigenvalue decomposition of Σ1/2ΩΣ1/2, where K is an orthogonal
matrix and S is a diagonal matrix. We also define

β = K>Σ1/2(Ωµ− δ).

Notice that Y>Σ1/2ΩΣ1/2Y = ξ2U>KSK>U = ξ2U>1 SU1, where U1 =
K>U . Since K is an orthogonal matrix, U1 follows the same distribution as
U and is also independent of ξ. Moreover, we can write Y >Σ1/2(Ωµ−δ) =
ξU>1 β. To save notation, we still use U to represent U1. It follows that

Q̄(Y ) = ξ2U>SU + 2ξU>β.

Let’s calculate E[Q̄(Y )] first.

E[Q̄(Y )] = E(ξ2)E(U>SU) + 2E(ξ)E[U>β]

=
E(ξ2)

d
tr(S) = tr(ΩΣ).

The first equality is due to the fact that ξ and U are independent; the second
equality is from Lemma A.1; and the last inequality is because E(ξ2) = d
and tr(S) = tr(Σ1/2ΩΣ1/2) = tr(ΩΣ). It follows that

E[Q(Z)] = E[Q̄(Y )] + c = tr(ΩΣ) + µ>Ωµ− 2µ>δ.

Next, we calculate var[Q̄(Y)]. It follows that

var[Q̄(Y)] = var(ξ2U>SU + 2ξU>β)

= var(ξ2U>SU) + 4 var(ξU>β) + 4 cov(ξ2U>SU , ξU>β).

Let’s look at them term by term. First,

var(ξ2U>SU) = E[ξ4(U>SU)2]− E2(ξ2U>SU)

= E(ξ4)E[(U>SU)2]− E2(ξ2)E2(U>SU)

= E(ξ4)
2 tr(S2) + tr2(S)

2d+ d2
− E2(ξ2)

tr2(S)

d2

= 2(γ + 1) tr(S2) + γtr2(S)

= 2(γ + 1) tr(ΩΣΩΣ) + γ[tr(ΩΣ)]2.

The third equality comes from Lemma A.1; the last equality follows from
the fact that tr(S2) = tr(Σ1/2ΩΣΩΣ1/2) = tr(ΩΣΩΣ). Second,

var(ξU>β) = E(ξ2(U>β)2)− E2(ξU>β)
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= E(ξ2)E[(U>β)2]− E2(ξ)E2(U>β)

= E(ξ2)
‖β‖2

d
= (Ωµ− δ)>Σ(Ωµ− δ).

In the last equality, we have used E(ξ2) = d, β = KΣ1/2(Ωµ − δ) and
K>K = Id. Last,

cov(ξ2U>SU , ξU>β) = E(ξ3)E(U>SUU>β)− E(ξ2)E(U>SU)E(ξU>β)

= E(ξ3)E(U>SUU>β) = 0

Combining the above gives

var[Q(Z)] = var[Q̄(Y )] = 2(γ + 1) tr(ΩΣΩΣ) + γ[tr(ΩΣ)]2

+ 4(Ωµ− δ)>Σ(Ωµ− δ).

A.2. Proof of Proposition 5.1. For any d × 1 vector v and d × d
matrix A, we denote by Supp(v) the support of v, which is contained
in {1, · · · , d}, and by Supp(A) the support of A, which is contained in
{1, · · · , d} × {1, · · · , d}. Let θ =

√
1 + v1(1 + γ)/2 > 1 and

c = (1 + κ) min
{

(1 + γ)v2
2, 4(1− 1/θ2)v2

}
.

The claim then becomes Θ(S, 0) ≥ c, or in other words,

x>Qx ≥ c|x|2, when Supp(x) ⊂ S.

First, using (13) and Lemma 9.1, we find that for each x, there exits unique
(Ω, δ) such that x = x(Ω, δ) and x>Qx = L(Ω, δ). Second, by definition of
U ′ and V , Supp(x) ⊂ S implies that Supp(Ω) ⊂ U ′ ×U ′ and Supp(δ) ⊂ V .
Therefore, it suffices to show
(A.1)
L(Ω, δ) ≥ c(|Ω|2 + |δ|2), when Supp(Ω) ⊂ U ′ × U ′ and Supp(δ) ⊂ V.

Now, we show (A.1). From (5) and that γ ≥ 0,

Lk(Ω, δ) ≥ 2(1 +γ) tr(ΩΣkΩΣk) + 4(Ωµk−δ)>Σk(Ωµk−δ), k = 1, 2.

Let Ω̃ be the submatrix of Ω by restricting rows and columns to the set
U ′ ∪ V , and δ̃ be the subvector of δ by restricting the elements to the set
U ′ ∪ V . It is easy to see that when Supp(Ω) ⊂ U ′ × U ′ and Supp(δ) ⊂ V ,

tr(ΩΣkΩΣk) = tr(Ω̃Σ̃kΩ̃Σ̃k),
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(Ωµk − δ)>Σk(Ωµk − δ) = (Ω̃µ̃k − δ̃)>Σ̃k(Ω̃µ̃k − δ̃),

where we recall that Σ̃k is the submatrix of Σk by restrcting rows and
columns to the set U ′ ∪ V , µ̃k to the set U ′ ∪ V . It follows that

Lk(Ω, δ)

≥ 2(1 + γ) tr(Ω̃Σ̃kΩ̃Σ̃k) + 4(Ω̃µ̃k − δ̃)>Σ̃k(Ω̃µ̃k − δ̃)

= 2(1 + γ) tr(Ω̃Σ̃kΩ̃(Σ̃k − v1µ̃kµ̃
>
k )) + 4(1− 1/θ2)δ̃>Σ̃kδ̃

+4(θΩ̃µ̃k − θ−1δ̃)>Σ̃k(θΩ̃µ̃k − θ−1δ̃)

≥ 2(1 + γ) tr(Ω̃Σ̃kΩ̃(Σ̃k − v1µ̃kµ̃
>
k )) + 4(1− 1/θ2)λmin(Σ̃k)|δ̃|2.(A.2)

Denote by I1 the first term in (A.2). We aim to derive a lower bound for I1. It
is well known that tr(A>BCD>) = vec(A)>(D⊗B) vec(C), where vec(A)
be the vectorization of A by stacking all the columns, D⊗B is the Kronecker
product of D and B. Using this formula and that Σk is symmetric, we find
that

I1 = 2(1 + γ) vec(Ω̃)>[(Σ̃k − v1µ̃kµ̃
>
k )⊗ Σ̃k] vec(Ω̃)

≥ 2(1 + γ)|Ω̃|2λmin((Σ̃k − v1µ̃kµ̃
>
k )⊗ Σ̃k)

≥ (1 + γ)λ2
min(Σ̃k)|Ω̃|2.

The last inequality is from the property that λmin(A⊗B) = λmin(A)λmin(B)
when A and B are positive semi-definite, and also the assumption that
λmin(Σ̃k − v1µ̃kµ̃k) ≥ 1

2λmin(Σ̃k). Plugging I1 into (A.2), we have

L1(Ω, δ) + κL2(Ω, δ)

≥ (1 + γ)[λ2
min(Σ̃1) + κλ2

min(Σ̃2)]|Ω̃|2 + 4(1− 1/θ2)[λmin(Σ̃1) + κλmin(Σ̃2)]|δ̃|2
≥ (1 + γ)(1 + κ)v2

2|Ω̃|2 + 4(1− 1/θ2)(1 + κ)v2|δ̃|2
≥ c(|Ω̃|2 + |δ̃|2) = c(|Ω|2 + |δ|2).

This proves (A.1).

A.3. Proof of Proposition 6.2. Given (Ω, δ, t), recall that Rk =

Rk(Ω, δ), for k = 1, 2. Let x1 =
[
(1 − t)2R1

]−1
, x2 =

[
t2R2

]−1
, and

x = πx1 + (1− π)x2. By direct calculation,
(A.3)

Err(Ω, δ, t) = πH(x1) + (1− π)H(x2), H

(
π

(1− t)2Rκ(t)

)
= H(x).

Since H is twice continuously differentiable, from the Taylor expansion,

H(x1) = H(x) +H ′(x)(x1 − x) +
1

2
H ′′(z1)(x1 − x)2,
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H(x2) = H(x) +H ′(x)(x2 − x) +
1

2
H ′′(z2)(x2 − x)2,

where z1 is a number between x1 and x, and z2 is a number between x2 and
x. Noticing that π(x1 − x) + (1− π)(x2 − x) = 0, we further obtain

πH(x1) + (1− π)H(x2) = H(x) +
π

2
H ′′(z1)(x1 − x)2 +

1− π
2

H ′′(z2)(x2 − x)2

= H(x) +
π(1− π)

2
[(1− π)H ′′(z1) + πH ′′(z2)](x1 − x2)2.

Here, the second equality is because x1− x = (1− π)(x1− x2) and x2− x =
π(x2 − x1). Let A = supz∈[min{x1,x2},max{x1,x2}] |H

′′(z)|. It follows that

(A.4)
∣∣πH(x1) + (1− π)H(x2)−H(x)

∣∣ ≤ π(1− π)

2
·A(x1 − x2)2.

Now, we bound A(x1 − x2)2. Write for short xmin = min{x1, x2} and
xmax = max{x1, x2}. It is easy to see that

(A.5) A(x1 − x2)2 ≤ sup
z∈[xmin,xmax]

|z2H ′′(z)| ·
(
x1 − x2

xmin

)2

.

By direct calculation, the function z2H ′′(z) has the expression

z2H ′′(z) =
1

4
√

2π

(
1

z
− 3

)
e−

1
2z

1

z1/2
.

On one hand, as z → ∞, |z2H ′′(z)| ≤ Cz−1/2; on the other hand, as z →
0, |z2H ′′(z)| ≤ Ce−1/(2z)z−3/2 ≤ Cz1/2. Therefore, we have |z2H ′′(z)| ≤
C min{

√
z, 1/
√
z}. Plugging it into (A.5), we have

A(x1 − x2)2 ≤ C
[

max
{
x1 ∧ (1/x1), x2 ∧ (1/x2)

}]1/2 · (x1 − x2

xmin

)2

.

Note that x1 ∧ (1/x1) = V1, x2 ∧ (1/x2) = V2 and |x1 − x2|/xmin = |V − 1|.
It follows that

(A.6) A(x1 − x2)2 ≤ C
[

max{V1, V2}
]1/2 · |V − 1|2.

We combine (A.3), (A.4) and (A.6), and note that π(1−π) ≤ 1/4. The first
claim then follows.

When t = 1/2, we find V − 1 = ∆R/R0. The second claim follows imme-
diately.
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APPENDIX B

B.1. Proof of Lemma A.1. Consider Y ∼ N (0, Id). Then Y
(d)
= RU ,

where R2 ∼ χ2
d and it is independent of U . Since E(R2) = d and var(R2) =

2d, it follows that

E(Y >SY ) = E(R2)E(U>SU) = dE(U>SU),

E[(Y >SY )2] = E(R4)E[(U>SU)2] = (d2 + 2d)E[(U>SU)2],

E(Y >β) = E(R)E(U>β),

E[(Y >β)2] = E(R2)E[(U>β)2] = dE[(U>β)2],

E(Y >SY Y >β) = E(R3)E(U>SUU>β).

First, note that Y >β ∼ N(0, ‖β‖2). So E(Y >β) = 0 and E[(Y >β)2] =
‖β‖2. We immediately have

E(U>β) = 0, E[(U>β)2] = ‖β‖2/d.

Second, write S = diag(s1, · · · , sd) and Y >SY =
∑d

i=1 siY
2
i , where Yi

iid∼
N(0, 1). Therefore,

E(Y >SY ) =
d∑
i=1

siE(Y 2
i ) =

d∑
i=1

si = tr(S),

var(Y >SY ) =
d∑
i=1

s2
i var(Y 2

i ) =
d∑
i=1

2s2
i = 2 tr(S2).

We immediately have

E(U>SU) = tr(S)/d, E[(U>SU)2] =
[tr(S)]2 + 2 tr(S2)

d2 + 2d
.

Last, note that

Y >SY Y >β = (

d∑
i=1

siY
2
i )(

d∑
j=1

βjYj) =

d∑
i=1

siβiY
3
i +

∑
i 6=j

siβjY
2
i Yj .

So E(Y >SY Y >β) = 0. Since E(R3) 6= 0, we immediately have E(U>SUU>β) =
0.
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B.2. Proof of Lemma 9.1. Recall that

M(Ω, δ) = −µ>1 Ωµ1 + µ>2 Ωµ2 + 2(µ1 − µ2)>δ − tr(Ω(Σ1 −Σ2))

= tr
[
Ω(Σ2 + µ2µ

>
2 −Σ1 − µ1µ

>
1 )
]

+ 2(µ1 − µ2)>δ.

It is well known that for any matrices A and B, tr(A>B) = vec(A)> vec(B).
So we have

M(Ω, δ) = vec(Ω)> vec(Σ2 + µ2µ
>
2 −Σ1 − µ1µ

>
1 ) + 2δ>(µ1 − µ2)

= x>q.

Moreover, for k = 1, 2,

Lk(Ω, δ) = 2(1 + γ) tr(ΩΣkΩΣk) + γ[tr(ΩΣk)]
2 + 4(Ωµk − δ)>Σk(Ωµk − δ)

= 2(1 + γ) tr(ΩΣkΩΣk) + γ[tr(ΩΣk)]
2 + 4µ>k ΩΣkΩµk − 8δ>ΣkΩµk + 4δ>Σkδ

= 2 tr
[
ΩΣkΩ((1 + γ)Σk + 2µkµ

>
k )
]
− 8 tr(δ>ΣkΩµk) + 4δ>Σkδ + γ[tr(ΩΣk)]

2.

From linear algebra, tr(A>BCD>) = vec(A)>(D ⊗ B) vec(C). It follows
that

Lk(Ω, δ) = 2 vec(Ω)>
[
((1 + γ)Σk + 2µkµ

>
k )⊗Σk

]
vec(Ω)− 8δ>(µ>k ⊗Σk) vec(Ω)

+ 4δ>Σkδ + γ vec(Ω)> vec(Σk) vec(Σk)
> vec(Ω)

= 2
[
vec(Ω)> δ>

] [((1 + γ)Σk + 2µkµ
>
k )⊗Σk −2(µk ⊗Σk)

−2(µ>k ⊗Σk) 2Σk

] [
vec(Ω)
δ

]
+ γ vec(Ω)> vec(Σk) vec(Σk)

> vec(Ω)

= x>Qkx.

Note that Q = Q1 + κQ2 and L = L1 + κL2. This immediately implies
L(Ω, δ) = x>Qx.

B.3. Proof of Lemma 9.2. Let ∆n = max{|Σ̂k−Σk|∞, |µ̂k−µk|∞, k =
1, 2} to save notation. We recall that |µ̂k − µk|∞ ≤ |µk|∞ ≤ 1 and |Σ̂k −
Σk|∞ ≤ |Σk|∞, for k = 1, 2, as assumed in the beginning of Section 5.2.

Consider |q̂ − q|∞ first. Note that | vec(A) − vec(B)|∞ = |A − B|∞ for
any matrices A and B. It follows that

|q̂− q|∞ ≤
2∑

k=1

(
|Σ̂k −Σk|∞ + |µ̂kµ̂>k − µkµ>k |∞ + 2|µ̂k − µk|∞

)
≤ C∆n +

2∑
k=1

|µ̂kµ̂>k − µkµ>k |∞.
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Write µk = µ for short. We have |µ̂(i)µ̂(j)−µ(i)µ(j)| ≤ |µ̂(j)||µ̂(i)−µ(i)|+
|µ(i)||µ̂(j)−µ(j)| ≤ (|µ̂|∞+ |µ|∞)|µ̂−µ|∞. Since |µ̂|∞ ≤ |µ|∞+ |µ̂−µ|∞ ≤
2|µ|∞ ≤ 2, it follows that |µ̂(i)µ̂(j) − µ(i)µ(j)| ≤ 3|µ̂ − µ|∞ ≤ 3∆n. As a
result,

(B.1) |µ̂kµ̂>k − µkµ>k |∞ ≤ 3∆n, k = 1, 2.

We immediately have |q̂− q|∞ ≤ C∆n.
Next, consider |Q̂−Q|∞. It is easy to see that

|Q̂k −Qk|∞ ≤ 2(1 + γ)|Σ̂k ⊗ Σ̂k −Σk ⊗Σk|∞ + 4|(µ̂kµ̂>k )⊗ Σ̂k − (µkµ
>
k )⊗Σk|∞

+ γ| vec(Σ̂k) vec(Σ̂k)
> − vec(Σk) vec(Σk)

>|∞
+ 4|µ̂k ⊗ Σ̂k − µk ⊗Σk|∞ + 4|Σ̂k −Σk|∞.

Here |Σ̂k − Σk|∞ ≤ ∆n, and using a similar argument as in (B.1), we
can show that | vec(Σ̂k) vec(Σ̂k)

> − vec(Σk) vec(Σk)
>|∞ ≤ C| vec(Σ̂k) −

vec(Σk)|∞ ≤ C∆n. To bound the other terms, it suffices to show that

(B.2) |A⊗B−A′ ⊗B′|∞ ≤ C(|A−A′|∞ + |B−B′|∞),

when |A − A′|∞ ≤ |A|∞ ≤ C and |B − B′|∞ ≤ |B|∞ ≤ C. To see this,
note that |A(i, j)B(k, l) − A′(i, j)B′(k, l)| ≤ |B′(k, l)||A(i, j) − A′(i, j)| +
|A(i, j)||B(k, l) − B′(k, l)| ≤ (|A|∞ + |B′|∞)(|A − A′|∞ + |B − B′|∞) ≤
C(|A −A′|∞ + |B −B′|∞). This proves (B.2). It follows immediately that
|Q̂−Q|∞ ≤ C∆n.

B.4. Proof of Lemma 9.3. Write x∗ = x∗λ0 for short. From KKT
conditions, there exists a dual variable θ such that

q>x∗ = 1, 2Qx∗ + λ0s̃ign(x∗) = θq.

Here s̃ign(x∗) is the vector whose j-th coordinate is −1, 1 or any value
between [−1, 1] when x∗j < 0, x∗j > 0 and x∗j = 0, respectively. We multiply

both sides of the second equation by (x∗)>, and note that (x∗)>s̃ign(x∗) =
|x∗|1. It follows that θ = 2(x∗)>Qx∗ + λ0|x∗|1 and

Qx∗ =
[
(x∗)>Qx∗ +

λ0

2
|x∗|1

]
q− λ0

2
s̃ign(x∗)

= V ∗q +
λ0

2

[
|x∗|1q− s̃ign(x∗)

]
,(B.3)
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where V ∗ = (x∗)>Qx∗ = [R(x∗)]−1. Let V̄ ∗ = (V ∗)1/2. Then Γ(x) =
1
V̄ ∗
|Qx∗ − V ∗q|∞, and (B.3) implies

(B.4) Γ(x∗) ≤ λ0

2V̄ ∗
(|x∗|1|q|∞ + 1) =

|q|∞
2V̄ ∗

λ0|x∗|1 +
λ0

2
[R(x∗)]1/2.

From the Cauchy-Schwartz inequality,

|x∗|1 ≤ |x∗|1/20 |x
∗| ≤ |x∗|1/20

1
√
c0

√
(x∗)>Qx∗ =

V̄ ∗
√
c0
|x∗|1/20 ,

where we have used the fact that (x∗)>Qx∗ ≥ λmin(QSS)|x∗|2 ≥ c0|x∗|2.
Plugging it into (B.4) gives

Γ(x∗) ≤ |q|∞
2
√
c0
λ0|x∗|1/20 +

λ0

2
[R(x∗)]1/2

≤ C1λ0

[
max{|x∗|0, R(x∗)}

]1/2
,

where C1 is a positive constant that only depends on c0 (noting that |q|∞ ≤
C max{|µk|∞, |Σk|∞, k = 1, 2} ≤ C).

APPENDIX C

For the experiments for Gaussian distributions, the means and standard
deviations (in the parenthesis) of 100 replications are reported here. The
corresponding boxplots are in Figure 3.

QUADRO SLR L-SLR ROAD P-LDA FAIR

Model 1
0.179 0.235 0.191 0.246 0.192 0.185

(0.016) (0.028) (0.017) (0.074) (0.011) (0.018)

Model 1L
0.162 0.214 0.172 0.217 0.170 0.162

(0.016) (0.030) (0.017) (0.070) (0.011) (0.016)

Model 2
0.144 0.224 0.470 0.491 0.476 0.481

(0.016) (0.018) (0.008) (0.010) (0.021) (0.017)

Model 3
0.109 0.164 0.176 0.235 0.202 0.218

(0.013) (0.018) (0.016) (0.068) (0.015) (0.018)

For the experiments for general elliptical distributions, the means and
standard deviations (in the parenthesis) of 100 replications are reported
here. The corresponding boxplots are in Figure 4.
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QUADRO QUADRO-0 SLR L-SLR ROAD P-LDA FAIR

Model 4
0.136 0.144 0.167 0.157 0.197 0.159 0.196

(0.015) (0.015) (0.019) (0.017) (0.069) (0.017) (0.028)

Model 5
0.161 0.173 0.184 0.184 0.232 0.174 0.210

(0.012) (0.014) (0.014) (0.016) (0.060) (0.010) (0.019)

Model 6
0.130 0.129 0.152 0.211 0.268 0.193 0.235

(0.017) (0.016) (0.018) (0.018) (0.055) (0.012) (0.023)
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