SUPPLEMENTARY MATERIAL FOR "QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION"

By Jianqing Fan^{[∗](#page-0-0)}, Zheng Tracy Ke^{*}, Han Liu^{[†](#page-0-1)} and Lucy Xia^{*}

Princeton University

In this supplement we present the technical proofs and numerical tables for simulation, for the main article. Section [A](#page-0-2) contains proofs of Propositions 2.1, 5.1 and 6.2. Section [B](#page-5-0) contains proofs of Lemmas [A.1,](#page-0-3) 9.1, 9.2 and 9.3. Section [C](#page-8-0) contains numerical tables corresponding to Figure 3 and Figure 4 in the main article.

APPENDIX A

A.1. Proof of Proposition 2.1. We first present a lemma which is proved in Section [B.](#page-5-0)

LEMMA A.1. If U follows a uniform distribution on S^{d-1} , for any $d \times d$ diagonal matrix **S** and any vector $\boldsymbol{\beta} \in \mathbb{R}^d$, we have

- $\bullet \ \ \mathbb{E}(\boldsymbol{U}^\top \mathbf{S} \boldsymbol{U}) = \frac{\mathrm{tr}(\mathbf{S})}{d}, \ \mathbb{E}[(\boldsymbol{U}^\top \mathbf{S} \boldsymbol{U})^2] = \frac{2 \, \mathrm{tr}(\mathbf{S}^2) + [\mathrm{tr}(\mathbf{S})]^2}{d^2 + 2d}$ $\frac{d^2+2d}{dt^2+2d}$;
- $\mathbb{E}(\boldsymbol{U}^\top \boldsymbol{\beta}) = 0, \, \mathbb{E}[(\boldsymbol{U}^\top \boldsymbol{\beta})^2] = \frac{\|\boldsymbol{\beta}\|^2}{d}$ $\frac{2\|\mathcal{L}|}{d}$;
- $\mathbb{E}(\boldsymbol{U}^\top \mathbf{S} \boldsymbol{U} \boldsymbol{U}^\top \boldsymbol{\beta}) = 0.$

Now, we show the claim of Proposition 2.1. Let $Y = \Sigma^{-1/2} (Z - \mu)$, then $Y = \xi U$ where U follows a uniform distribution on \mathcal{S}^{d-1} and is independent of ξ . The quadratic form $Q(\mathbf{Z})$ can be rewritten as

$$
Q(\mathbf{Z}) = \mathbf{Z}^{\top} \mathbf{\Omega} \mathbf{Z} - 2\delta^{\top} \mathbf{Z}
$$

= $\mathbf{Y}^{\top} \mathbf{\Sigma}^{1/2} \mathbf{\Omega} \mathbf{\Sigma}^{1/2} \mathbf{Y} + 2\mathbf{Y}^{\top} \mathbf{\Sigma}^{1/2} (\mathbf{\Omega} \boldsymbol{\mu} - \delta) + \boldsymbol{\mu}^{\top} \mathbf{\Omega} \boldsymbol{\mu} - 2\boldsymbol{\mu}^{\top} \delta$
= $\bar{Q}(\mathbf{Y}) + c$,

where $c = \mu^\top \Omega \mu - 2\mu^\top \delta$. Therefore, $\mathbb{E}[Q(Z)] = \mathbb{E}[\bar{Q}(Y)] + c$ and $\text{var}[Q(Z)] =$ $var[\bar{Q}(\boldsymbol{Y})].$

[∗]Supported in part by NSF Grant DMS-1206464 and NIH Grants R01GM100474 and R01-GM072611.

[†]Supported in part by NSF Grant III-1116730, NSF III-1332109, an NIH sub-award and a FDA sub-award from Johns Hopkins University, and an NIH-subaward from Harvard University.

Furthermore, we let

$$
\boldsymbol{\Sigma}^{1/2}\boldsymbol{\Omega}\boldsymbol{\Sigma}^{1/2} = \mathbf{K}\mathbf{S}\mathbf{K}^\top
$$

be the eigenvalue decomposition of $\Sigma^{1/2} \Omega \Sigma^{1/2}$, where **K** is an orthogonal matrix and S is a diagonal matrix. We also define

$$
\boldsymbol{\beta} = \mathbf{K}^{\top} \mathbf{\Sigma}^{1/2} (\boldsymbol{\Omega} \boldsymbol{\mu} - \boldsymbol{\delta}).
$$

Notice that $\mathbf{Y}^{\top} \Sigma^{1/2} \Omega \Sigma^{1/2} \mathbf{Y} = \xi^2 U^{\top} \mathbf{K} \mathbf{S} \mathbf{K}^{\top} U = \xi^2 U_1^{\top} \mathbf{S} U_1$, where $U_1 =$ $\mathbf{K}^{\top}U$. Since **K** is an orthogonal matrix, U_1 follows the same distribution as U and is also independent of ξ . Moreover, we can write $\boldsymbol{Y}^\top \boldsymbol{\Sigma}^{1/2} (\boldsymbol{\Omega} \boldsymbol{\mu} - \boldsymbol{\delta}) =$ $\xi U_1^{\top} \beta$. To save notation, we still use U to represent U_1 . It follows that

$$
\bar{Q}(\boldsymbol{Y}) = \xi^2 \boldsymbol{U}^\top \mathbf{S} \boldsymbol{U} + 2\xi \boldsymbol{U}^\top \boldsymbol{\beta}.
$$

Let's calculate $\mathbb{E}[\bar{Q}(\boldsymbol{Y})]$ first.

$$
\mathbb{E}[\bar{Q}(\boldsymbol{Y})] = \mathbb{E}(\xi^2)\mathbb{E}(\boldsymbol{U}^\top \mathbf{S} \boldsymbol{U}) + 2\mathbb{E}(\xi)\mathbb{E}[\boldsymbol{U}^\top \boldsymbol{\beta}]
$$

=
$$
\frac{\mathbb{E}(\xi^2)}{d} tr(\mathbf{S}) = tr(\boldsymbol{\Omega}\boldsymbol{\Sigma}).
$$

The first equality is due to the fact that ξ and U are independent; the second equality is from Lemma [A.1;](#page-0-3) and the last inequality is because $\mathbb{E}(\xi^2) = d$ and $\text{tr}(\mathbf{S}) = \text{tr}(\mathbf{\Sigma}^{1/2} \mathbf{\Omega} \mathbf{\Sigma}^{1/2}) = \text{tr}(\mathbf{\Omega} \mathbf{\Sigma})$. It follows that

$$
\mathbb{E}[Q(\boldsymbol{Z})] = \mathbb{E}[\bar{Q}(\boldsymbol{Y})] + c = \text{tr}(\boldsymbol{\Omega}\boldsymbol{\Sigma}) + \boldsymbol{\mu}^{\top}\boldsymbol{\Omega}\boldsymbol{\mu} - 2\boldsymbol{\mu}^{\top}\boldsymbol{\delta}.
$$

Next, we calculate var $[\bar{Q}(\mathbf{Y})]$. It follows that

$$
\begin{split} \text{var}[\bar{Q}(\mathbf{Y})] &= \text{var}(\xi^2 \mathbf{U}^\top \mathbf{S} \mathbf{U} + 2\xi \mathbf{U}^\top \boldsymbol{\beta}) \\ &= \text{var}(\xi^2 \mathbf{U}^\top \mathbf{S} \mathbf{U}) + 4 \, \text{var}(\xi \mathbf{U}^\top \boldsymbol{\beta}) + 4 \, \text{cov}(\xi^2 \mathbf{U}^\top \mathbf{S} \mathbf{U}, \xi \mathbf{U}^\top \boldsymbol{\beta}). \end{split}
$$

Let's look at them term by term. First,

$$
\begin{split} \text{var}(\xi^2 \mathbf{U}^\top \mathbf{S} \mathbf{U}) &= \mathbb{E}[\xi^4 (\mathbf{U}^\top \mathbf{S} \mathbf{U})^2] - \mathbb{E}^2 (\xi^2 \mathbf{U}^\top \mathbf{S} \mathbf{U}) \\ &= \mathbb{E}(\xi^4) \mathbb{E}[(\mathbf{U}^\top \mathbf{S} \mathbf{U})^2] - \mathbb{E}^2 (\xi^2) \mathbb{E}^2 (\mathbf{U}^\top \mathbf{S} \mathbf{U}) \\ &= \mathbb{E}(\xi^4) \frac{2 \operatorname{tr}(\mathbf{S}^2) + \operatorname{tr}^2(\mathbf{S})}{2d + d^2} - \mathbb{E}^2 (\xi^2) \frac{\operatorname{tr}^2(\mathbf{S})}{d^2} \\ &= 2(\gamma + 1) \operatorname{tr}(\mathbf{S}^2) + \gamma \operatorname{tr}^2(\mathbf{S}) \\ &= 2(\gamma + 1) \operatorname{tr}(\Omega \Sigma \Omega \Sigma) + \gamma [\operatorname{tr}(\Omega \Sigma)]^2. \end{split}
$$

The third equality comes from Lemma [A.1;](#page-0-3) the last equality follows from the fact that $tr(S^2) = tr(\Sigma^{1/2} \Omega \Sigma \Omega \Sigma^{1/2}) = tr(\Omega \Sigma \Omega \Sigma)$. Second,

$$
\text{var}(\xi \bm{U}^\top \bm{\beta}) = \mathbb{E}(\xi^2(\bm{U}^\top \bm{\beta})^2) - \mathbb{E}^2(\xi \bm{U}^\top \bm{\beta})
$$

$$
= \mathbb{E}(\xi^2)\mathbb{E}[(\boldsymbol{U}^\top \boldsymbol{\beta})^2] - \mathbb{E}^2(\xi)\mathbb{E}^2(\boldsymbol{U}^\top \boldsymbol{\beta})
$$

= $\mathbb{E}(\xi^2)\frac{\|\boldsymbol{\beta}\|^2}{d} = (\boldsymbol{\Omega}\boldsymbol{\mu} - \boldsymbol{\delta})^\top \boldsymbol{\Sigma}(\boldsymbol{\Omega}\boldsymbol{\mu} - \boldsymbol{\delta}).$

In the last equality, we have used $\mathbb{E}(\xi^2) = d$, $\boldsymbol{\beta} = \mathbf{K} \Sigma^{1/2} (\boldsymbol{\Omega} \boldsymbol{\mu} - \boldsymbol{\delta})$ and $\mathbf{K}^\top \mathbf{K} = \mathbf{I}_d$. Last,

$$
cov(\xi^2 \mathbf{U}^\top \mathbf{S} \mathbf{U}, \xi \mathbf{U}^\top \boldsymbol{\beta}) = \mathbb{E}(\xi^3) \mathbb{E}(\mathbf{U}^\top \mathbf{S} \mathbf{U} \mathbf{U}^\top \boldsymbol{\beta}) - \mathbb{E}(\xi^2) \mathbb{E}(\mathbf{U}^\top \mathbf{S} \mathbf{U}) \mathbb{E}(\xi \mathbf{U}^\top \boldsymbol{\beta})
$$

= $\mathbb{E}(\xi^3) \mathbb{E}(\mathbf{U}^\top \mathbf{S} \mathbf{U} \mathbf{U}^\top \boldsymbol{\beta}) = 0$

Combining the above gives

$$
\begin{aligned} \text{var}[Q(\boldsymbol{Z})] &= \text{var}[\bar{Q}(\boldsymbol{Y})] = 2(\gamma + 1) \, \text{tr}(\boldsymbol{\Omega} \boldsymbol{\Sigma} \boldsymbol{\Omega} \boldsymbol{\Sigma}) + \gamma [\text{tr}(\boldsymbol{\Omega} \boldsymbol{\Sigma})]^2 \\ &+ 4(\boldsymbol{\Omega} \boldsymbol{\mu} - \boldsymbol{\delta})^\top \boldsymbol{\Sigma} (\boldsymbol{\Omega} \boldsymbol{\mu} - \boldsymbol{\delta}). \end{aligned}
$$

A.2. Proof of Proposition [5.1.](#page-0-4) For any $d \times 1$ vector **v** and $d \times d$ matrix **A**, we denote by Supp(\mathbf{v}) the support of \mathbf{v} , which is contained in $\{1, \dots, d\}$, and by Supp(A) the support of A, which is contained in $\{1, \dots, d\} \times \{1, \dots, d\}$. Let $\theta = \sqrt{1 + v_1(1 + \gamma)/2} > 1$ and

$$
c = (1 + \kappa) \min \{(1 + \gamma)v_2^2, 4(1 - 1/\theta^2)v_2\}.
$$

The claim then becomes $\Theta(S, 0) \geq c$, or in other words,

 $\mathbf{x}^\top \mathbf{Q} \mathbf{x} \geq c |\mathbf{x}|^2$, when $\text{Supp}(\mathbf{x}) \subset S$.

First, using (13) and Lemma [9.1,](#page-0-4) we find that for each x, there exits unique (Ω, δ) such that $\mathbf{x} = \mathbf{x}(\Omega, \delta)$ and $\mathbf{x}^\top \mathbf{Q} \mathbf{x} = L(\Omega, \delta)$. Second, by definition of U' and V, Supp(\mathbf{x}) $\subset S$ implies that Supp(Ω) $\subset U' \times U'$ and Supp(δ) $\subset V$. Therefore, it suffices to show $(A₁)$

$$
L(\Omega, \delta) \ge c(|\Omega|^2 + |\delta|^2), \quad \text{when } \operatorname{Supp}(\Omega) \subset U' \times U' \text{ and } \operatorname{Supp}(\delta) \subset V.
$$

Now, we show [\(A.1\)](#page-2-0). From [\(5\)](#page-0-4) and that $\gamma \geq 0$,

$$
L_k(\Omega, \delta) \geq 2(1+\gamma) \operatorname{tr}(\Omega \Sigma_k \Omega \Sigma_k) + 4(\Omega \mu_k - \delta)^{\top} \Sigma_k (\Omega \mu_k - \delta), \qquad k = 1, 2.
$$

Let Ω be the submatrix of Ω by restricting rows and columns to the set $U' \cup V$, and $\widetilde{\boldsymbol{\delta}}$ be the subvector of $\boldsymbol{\delta}$ by restricting the elements to the set $U' \cup V$. It is easy to see that when $\text{Supp}(\mathbf{\Omega}) \subset U' \times U'$ and $\text{Supp}(\mathbf{\delta}) \subset V$,

$$
\mathrm{tr}(\boldsymbol{\Omega}\boldsymbol{\Sigma}_k\boldsymbol{\Omega}\boldsymbol{\Sigma}_k) = \mathrm{tr}(\widetilde{\boldsymbol{\Omega}}\widetilde{\boldsymbol{\Sigma}}_k\widetilde{\boldsymbol{\Omega}}\widetilde{\boldsymbol{\Sigma}}_k),
$$

$$
(\Omega \mu_k - \delta)^\top \Sigma_k (\Omega \mu_k - \delta) = (\widetilde{\Omega} \widetilde{\mu}_k - \widetilde{\delta})^\top \widetilde{\Sigma}_k (\widetilde{\Omega} \widetilde{\mu}_k - \widetilde{\delta}),
$$

where we recall that Σ_k is the submatrix of Σ_k by restricting rows and columns to the set $U' \cup V$, $\widetilde{\mu}_k$ to the set $U' \cup V$. It follows that

$$
L_k(\Omega, \delta)
$$

\n
$$
\geq 2(1+\gamma) \operatorname{tr}(\widetilde{\Omega} \widetilde{\Sigma}_k \widetilde{\Omega} \widetilde{\Sigma}_k) + 4(\widetilde{\Omega} \widetilde{\mu}_k - \widetilde{\delta})^{\top} \widetilde{\Sigma}_k (\widetilde{\Omega} \widetilde{\mu}_k - \widetilde{\delta})
$$

\n
$$
= 2(1+\gamma) \operatorname{tr}(\widetilde{\Omega} \widetilde{\Sigma}_k \widetilde{\Omega} (\widetilde{\Sigma}_k - v_1 \widetilde{\mu}_k \widetilde{\mu}_k^{\top})) + 4(1 - 1/\theta^2) \widetilde{\delta}^{\top} \widetilde{\Sigma}_k \widetilde{\delta}
$$

\n
$$
+ 4(\theta \widetilde{\Omega} \widetilde{\mu}_k - \theta^{-1} \widetilde{\delta})^{\top} \widetilde{\Sigma}_k (\theta \widetilde{\Omega} \widetilde{\mu}_k - \theta^{-1} \widetilde{\delta})
$$

\n(A.2)
$$
\geq 2(1+\gamma) \operatorname{tr}(\widetilde{\Omega} \widetilde{\Sigma}_k \widetilde{\Omega} (\widetilde{\Sigma}_k - v_1 \widetilde{\mu}_k \widetilde{\mu}_k^{\top})) + 4(1 - 1/\theta^2) \lambda_{\min} (\widetilde{\Sigma}_k) |\widetilde{\delta}|^2.
$$

Denote by I_1 the first term in $(A.2)$. We aim to derive a lower bound for I_1 . It is well known that $tr(A^\top BCD^\top) = vec(A)^\top (D \otimes B) vec(C)$, where $vec(A)$ be the vectorization of **A** by stacking all the columns, $\mathbf{D}\otimes\mathbf{B}$ is the Kronecker product of **D** and **B**. Using this formula and that Σ_k is symmetric, we find that

$$
I_1 = 2(1+\gamma) \operatorname{vec}(\widetilde{\Omega})^{\top} [(\widetilde{\Sigma}_k - v_1 \widetilde{\mu}_k \widetilde{\mu}_k^{\top}) \otimes \widetilde{\Sigma}_k] \operatorname{vec}(\widetilde{\Omega})
$$

\n
$$
\geq 2(1+\gamma) |\widetilde{\Omega}|^2 \lambda_{\min} ((\widetilde{\Sigma}_k - v_1 \widetilde{\mu}_k \widetilde{\mu}_k^{\top}) \otimes \widetilde{\Sigma}_k)
$$

\n
$$
\geq (1+\gamma) \lambda_{\min}^2 (\widetilde{\Sigma}_k) |\widetilde{\Omega}|^2.
$$

The last inequality is from the property that $\lambda_{\min}(\mathbf{A}\otimes \mathbf{B}) = \lambda_{\min}(\mathbf{A})\lambda_{\min}(\mathbf{B})$ when A and B are positive semi-definite, and also the assumption that $\lambda_{\min}(\widetilde{\boldsymbol{\Sigma}}_k - v_1 \widetilde{\boldsymbol{\mu}}_k \widetilde{\boldsymbol{\mu}}_k) \geq \frac{1}{2}$ $\frac{1}{2}\lambda_{\min}(\Sigma_k)$. Plugging I_1 into $(A.2)$, we have

$$
L_1(\Omega, \delta) + \kappa L_2(\Omega, \delta)
$$

\n
$$
\geq (1 + \gamma)[\lambda_{\min}^2(\widetilde{\Sigma}_1) + \kappa \lambda_{\min}^2(\widetilde{\Sigma}_2)]|\widetilde{\Omega}|^2 + 4(1 - 1/\theta^2)[\lambda_{\min}(\widetilde{\Sigma}_1) + \kappa \lambda_{\min}(\widetilde{\Sigma}_2)]|\widetilde{\delta}|^2
$$

\n
$$
\geq (1 + \gamma)(1 + \kappa)v_2^2|\widetilde{\Omega}|^2 + 4(1 - 1/\theta^2)(1 + \kappa)v_2|\widetilde{\delta}|^2
$$

\n
$$
\geq c(|\widetilde{\Omega}|^2 + |\widetilde{\delta}|^2) = c(|\Omega|^2 + |\delta|^2).
$$

 \Box

This proves [\(A.1\)](#page-2-0).

A.3. Proof of Proposition [6.2.](#page-0-4) Given (Ω, δ, t) , recall that $R_k =$ $R_k(\mathbf{\Omega}, \boldsymbol{\delta})$, for $k = 1, 2$. Let $x_1 = [(1 - t)^2 R_1]^{-1}$, $x_2 = [t^2 R_2]^{-1}$, and $x = \pi x_1 + (1 - \pi)x_2$. By direct calculation, (A.3)

$$
\overline{\mathrm{Err}}(\Omega, \delta, t) = \pi H(x_1) + (1 - \pi)H(x_2), \qquad H\left(\frac{\pi}{(1 - t)^2 R_{\kappa(t)}}\right) = H(x).
$$

Since H is twice continuously differentiable, from the Taylor expansion,

$$
H(x_1) = H(x) + H'(x)(x_1 - x) + \frac{1}{2}H''(z_1)(x_1 - x)^2,
$$

$$
H(x_2) = H(x) + H'(x)(x_2 - x) + \frac{1}{2}H''(z_2)(x_2 - x)^2,
$$

where z_1 is a number between x_1 and x , and z_2 is a number between x_2 and x. Noticing that $\pi(x_1 - x) + (1 - \pi)(x_2 - x) = 0$, we further obtain

$$
\pi H(x_1) + (1 - \pi)H(x_2) = H(x) + \frac{\pi}{2}H''(z_1)(x_1 - x)^2 + \frac{1 - \pi}{2}H''(z_2)(x_2 - x)^2
$$

=
$$
H(x) + \frac{\pi(1 - \pi)}{2}[(1 - \pi)H''(z_1) + \pi H''(z_2)](x_1 - x_2)^2.
$$

Here, the second equality is because $x_1 - x = (1 - \pi)(x_1 - x_2)$ and $x_2 - x =$ $\pi(x_2 - x_1)$. Let $A = \sup_{z \in [\min\{x_1, x_2\}, \max\{x_1, x_2\}]} |H''(z)|$. It follows that

(A.4)
$$
\left|\pi H(x_1) + (1-\pi)H(x_2) - H(x)\right| \le \frac{\pi(1-\pi)}{2} \cdot A(x_1 - x_2)^2.
$$

Now, we bound $A(x_1 - x_2)^2$. Write for short $x_{\min} = \min\{x_1, x_2\}$ and $x_{\text{max}} = \max\{x_1, x_2\}.$ It is easy to see that

(A.5)
$$
A(x_1 - x_2)^2 \le \sup_{z \in [x_{\min}, x_{\max}]} |z^2 H''(z)| \cdot \left(\frac{x_1 - x_2}{x_{\min}}\right)^2.
$$

By direct calculation, the function $z^2H''(z)$ has the expression

$$
z^{2}H''(z) = \frac{1}{4\sqrt{2\pi}}\left(\frac{1}{z} - 3\right)e^{-\frac{1}{2z}}\frac{1}{z^{1/2}}.
$$

On one hand, as $z \to \infty$, $|z^2H''(z)| \leq Cz^{-1/2}$; on the other hand, as $z \to z$ $(0, |z^2H''(z)| \leq Ce^{-1/(2z)}z^{-3/2} \leq Cz^{1/2}$. Therefore, we have $|z^2H''(z)| \leq C$ $C \min\{\sqrt{z}, 1/\sqrt{z}\}.$ Plugging it into $(A.5)$, we have

$$
A(x_1 - x_2)^2 \le C \big[\max \big\{ x_1 \wedge (1/x_1), \ x_2 \wedge (1/x_2) \big\} \big]^{1/2} \cdot \bigg(\frac{x_1 - x_2}{x_{\min}} \bigg)^2.
$$

Note that $x_1 \wedge (1/x_1) = V_1$, $x_2 \wedge (1/x_2) = V_2$ and $|x_1 - x_2|/x_{\min} = |V - 1|$. It follows that

(A.6)
$$
A(x_1 - x_2)^2 \le C \big[\max\{V_1, V_2\} \big]^{1/2} \cdot |V - 1|^2.
$$

We combine [\(A.3\)](#page-3-1), [\(A.4\)](#page-4-1) and [\(A.6\)](#page-4-2), and note that $\pi(1-\pi) \leq 1/4$. The first claim then follows.

When $t = 1/2$, we find $V - 1 = \Delta R/R_0$. The second claim follows immediately. \Box

APPENDIX B

B.1. Proof of Lemma [A.1.](#page-0-3) Consider $\boldsymbol{Y} \sim \mathcal{N}(\boldsymbol{0}, \mathbf{I}_d)$. Then $\boldsymbol{Y} \stackrel{(d)}{=} RU,$ where $R^2 \sim \chi_d^2$ and it is independent of U. Since $\mathbb{E}(R^2) = d$ and $\text{var}(R^2) =$ 2d, it follows that

$$
\mathbb{E}(\mathbf{Y}^{\top} \mathbf{S} \mathbf{Y}) = \mathbb{E}(R^2) \mathbb{E}(\mathbf{U}^{\top} \mathbf{S} \mathbf{U}) = d\mathbb{E}(\mathbf{U}^{\top} \mathbf{S} \mathbf{U}),
$$

\n
$$
\mathbb{E}[(\mathbf{Y}^{\top} \mathbf{S} \mathbf{Y})^2] = \mathbb{E}(R^4) \mathbb{E}[(\mathbf{U}^{\top} \mathbf{S} \mathbf{U})^2] = (d^2 + 2d)\mathbb{E}[(\mathbf{U}^{\top} \mathbf{S} \mathbf{U})^2],
$$

\n
$$
\mathbb{E}(\mathbf{Y}^{\top} \boldsymbol{\beta}) = \mathbb{E}(R) \mathbb{E}(\mathbf{U}^{\top} \boldsymbol{\beta}),
$$

\n
$$
\mathbb{E}[(\mathbf{Y}^{\top} \boldsymbol{\beta})^2] = \mathbb{E}(R^2) \mathbb{E}[(\mathbf{U}^{\top} \boldsymbol{\beta})^2] = d\mathbb{E}[(\mathbf{U}^{\top} \boldsymbol{\beta})^2],
$$

\n
$$
\mathbb{E}(\mathbf{Y}^{\top} \mathbf{S} \mathbf{Y} \mathbf{Y}^{\top} \boldsymbol{\beta}) = \mathbb{E}(R^3) \mathbb{E}(\mathbf{U}^{\top} \mathbf{S} \mathbf{U} \mathbf{U}^{\top} \boldsymbol{\beta}).
$$

First, note that $\mathbf{Y}^\top \boldsymbol{\beta} \sim N(0, ||\boldsymbol{\beta}||^2)$. So $\mathbb{E}(\mathbf{Y}^\top \boldsymbol{\beta}) = 0$ and $\mathbb{E}[(\mathbf{Y}^\top \boldsymbol{\beta})^2] =$ $\|\boldsymbol{\beta}\|^2$. We immediately have

$$
\mathbb{E}(\boldsymbol{U}^\top \boldsymbol{\beta}) = 0, \qquad \mathbb{E}[(\boldsymbol{U}^\top \boldsymbol{\beta})^2] = ||\boldsymbol{\beta}||^2/d.
$$

Second, write $\mathbf{S} = \text{diag}(s_1, \dots, s_d)$ and $\mathbf{Y}^\top \mathbf{S} \mathbf{Y} = \sum_{i=1}^d s_i Y_i^2$, where $Y_i \stackrel{iid}{\sim}$ $N(0, 1)$. Therefore,

$$
\mathbb{E}(\mathbf{Y}^\top \mathbf{S} \mathbf{Y}) = \sum_{i=1}^d s_i \mathbb{E}(Y_i^2) = \sum_{i=1}^d s_i = \text{tr}(\mathbf{S}),
$$

$$
\text{var}(\mathbf{Y}^\top \mathbf{S} \mathbf{Y}) = \sum_{i=1}^d s_i^2 \text{var}(Y_i^2) = \sum_{i=1}^d 2s_i^2 = 2 \text{tr}(\mathbf{S}^2).
$$

We immediately have

$$
\mathbb{E}(\boldsymbol{U}^\top \mathbf{S} \boldsymbol{U}) = \text{tr}(\mathbf{S})/d, \qquad \mathbb{E}[(\boldsymbol{U}^\top \mathbf{S} \boldsymbol{U})^2] = \frac{[\text{tr}(\mathbf{S})]^2 + 2 \text{tr}(\mathbf{S}^2)}{d^2 + 2d}.
$$

Last, note that

$$
\boldsymbol{Y}^\top \mathbf{S} \boldsymbol{Y} \boldsymbol{Y}^\top \boldsymbol{\beta} = \left(\sum_{i=1}^d s_i Y_i^2 \right) \left(\sum_{j=1}^d \beta_j Y_j \right) = \sum_{i=1}^d s_i \beta_i Y_i^3 + \sum_{i \neq j} s_i \beta_j Y_i^2 Y_j.
$$

 $\text{So } \mathbb{E}(\boldsymbol{Y}^\top \mathbf{S} \boldsymbol{Y} \boldsymbol{Y}^\top \boldsymbol{\beta}) = 0. \text{ Since } \mathbb{E}(R^3) \neq 0 \text{, we immediately have } \mathbb{E}(\boldsymbol{U}^\top \mathbf{S} \boldsymbol{U} \boldsymbol{U}^\top \boldsymbol{\beta}) = 0.$ 0. \Box

B.2. Proof of Lemma [9.1.](#page-0-4) Recall that

$$
M(\Omega, \delta) = -\mu_1^{\top} \Omega \mu_1 + \mu_2^{\top} \Omega \mu_2 + 2(\mu_1 - \mu_2)^{\top} \delta - \text{tr}(\Omega(\Sigma_1 - \Sigma_2))
$$

= tr \left[\Omega(\Sigma_2 + \mu_2 \mu_2^{\top} - \Sigma_1 - \mu_1 \mu_1^{\top}) \right] + 2(\mu_1 - \mu_2)^{\top} \delta.

It is well known that for any matrices **A** and **B**, $tr(\mathbf{A}^T \mathbf{B}) = vec(\mathbf{A})^T vec(\mathbf{B}).$ So we have

$$
M(\mathbf{\Omega}, \boldsymbol{\delta}) = \text{vec}(\mathbf{\Omega})^{\top} \text{vec}(\mathbf{\Sigma}_2 + \boldsymbol{\mu}_2 \boldsymbol{\mu}_2^{\top} - \boldsymbol{\Sigma}_1 - \boldsymbol{\mu}_1 \boldsymbol{\mu}_1^{\top}) + 2\boldsymbol{\delta}^{\top}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)
$$

= $\mathbf{x}^{\top} \mathbf{q}$.

Moreover, for $k = 1, 2$,

$$
L_k(\Omega, \delta) = 2(1+\gamma) \operatorname{tr}(\Omega \Sigma_k \Omega \Sigma_k) + \gamma [\operatorname{tr}(\Omega \Sigma_k)]^2 + 4(\Omega \mu_k - \delta)^\top \Sigma_k (\Omega \mu_k - \delta)
$$

= 2(1+\gamma) \operatorname{tr}(\Omega \Sigma_k \Omega \Sigma_k) + \gamma [\operatorname{tr}(\Omega \Sigma_k)]^2 + 4\mu_k^\top \Omega \Sigma_k \Omega \mu_k - 8\delta^\top \Sigma_k \Omega \mu_k + 4\delta^\top \Sigma_k \delta
= 2 \operatorname{tr} [\Omega \Sigma_k \Omega((1+\gamma) \Sigma_k + 2\mu_k \mu_k^\top)] - 8 \operatorname{tr}(\delta^\top \Sigma_k \Omega \mu_k) + 4\delta^\top \Sigma_k \delta + \gamma [\operatorname{tr}(\Omega \Sigma_k)]^2.

From linear algebra, $tr(A^{\top}BCD^{\top}) = vec(A)^{\top}(D \otimes B) vec(C)$. It follows that

$$
L_k(\Omega, \delta) = 2 \operatorname{vec}(\Omega)^\top \left[((1 + \gamma) \Sigma_k + 2\mu_k \mu_k^\top) \otimes \Sigma_k \right] \operatorname{vec}(\Omega) - 8\delta^\top (\mu_k^\top \otimes \Sigma_k) \operatorname{vec}(\Omega)
$$

+ $4\delta^\top \Sigma_k \delta + \gamma \operatorname{vec}(\Omega)^\top \operatorname{vec}(\Sigma_k) \operatorname{vec}(\Sigma_k)^\top \operatorname{vec}(\Omega)$
= $2 \left[\operatorname{vec}(\Omega)^\top \delta^\top \right] \left[((1 + \gamma) \Sigma_k + 2\mu_k \mu_k^\top) \otimes \Sigma_k \right] - 2(\mu_k \otimes \Sigma_k) \right] \left[\operatorname{vec}(\Omega) \right]$
+ $\gamma \operatorname{vec}(\Omega)^\top \operatorname{vec}(\Sigma_k) \operatorname{vec}(\Sigma_k)^\top \operatorname{vec}(\Omega)$
= $\mathbf{x}^\top \mathbf{Q}_k \mathbf{x}.$

Note that $\mathbf{Q} = \mathbf{Q}_1 + \kappa \mathbf{Q}_2$ and $L = L_1 + \kappa L_2$. This immediately implies $L(\mathbf{\Omega},\boldsymbol{\delta})=\mathbf{x}^\top\mathbf{Q}\mathbf{x}.$ \Box

B.3. Proof of Lemma [9.2.](#page-0-4) Let $\Delta_n = \max\{|\Sigma_k - \Sigma_k|_{\infty}, |\hat{\mu}_k - \mu_k|_{\infty}, k = 0\}$ to gave notation. We recall that $|\hat{\mu}_k - \mu_k|_{\infty} \leq 1$ and $|\hat{\Sigma}_k|$ 1, 2} to save notation. We recall that $|\hat{\mu}_k - \mu_k|_{\infty} \leq |\mu_k|_{\infty} \leq 1$ and $|\Sigma_k - \Sigma_k|_{\infty} \leq |\Sigma_k|_{\infty}$ for $k = 1, 2$ as assumed in the beginning of Section 5.2. $\sum_{k\infty}$ \leq $|\sum_{k\infty}$, for $k=1,2$, as assumed in the beginning of Section [5.2.](#page-0-4)

Consider $|\hat{\mathbf{q}} - \mathbf{q}|_{\infty}$ first. Note that $|\text{vec}(\mathbf{A}) - \text{vec}(\mathbf{B})|_{\infty} = |\mathbf{A} - \mathbf{B}|_{\infty}$ for any matrices A and B. It follows that

$$
\begin{aligned} |\widehat{\mathbf{q}}-\mathbf{q}|_\infty &\leq \sum_{k=1}^2 \left(|\widehat{\boldsymbol{\Sigma}}_k-\boldsymbol{\Sigma}_k|_\infty + |\widehat{\boldsymbol{\mu}}_k \widehat{\boldsymbol{\mu}}_k^\top - \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top|_\infty + 2|\widehat{\boldsymbol{\mu}}_k-\boldsymbol{\mu}_k|_\infty \right) \\ &\leq C\Delta_n + \sum_{k=1}^2 |\widehat{\boldsymbol{\mu}}_k \widehat{\boldsymbol{\mu}}_k^\top - \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top|_\infty. \end{aligned}
$$

Write $\mu_k = \mu$ for short. We have $|\hat{\mu}(i)\hat{\mu}(j) - \mu(i)\mu(j)| \leq |\hat{\mu}(j)||\hat{\mu}(i) - \mu(i)| +$ $|\mu(i)||\hat{\mu}(j)-\mu(j)| \leq (|\hat{\mu}|_{\infty}+|\mu|_{\infty})|\hat{\mu}-\mu|_{\infty}$. Since $|\hat{\mu}|_{\infty} \leq |\mu|_{\infty}+|\hat{\mu}-\mu|_{\infty} \leq$ $2|\mu|_{\infty} \leq 2$, it follows that $|\widehat{\mu}(i)\widehat{\mu}(j) - \mu(i)\mu(j)| \leq 3|\widehat{\mu} - \mu|_{\infty} \leq 3\Delta_n$. As a result,

(B.1)
$$
|\widehat{\mu}_k \widehat{\mu}_k^{\top} - \mu_k \mu_k^{\top}|_{\infty} \leq 3\Delta_n, \qquad k = 1, 2.
$$

We immediately have $|\hat{\mathbf{q}} - \mathbf{q}|_{\infty} \leq C\Delta_n$.

Next, consider $|\hat{\mathbf{Q}} - \mathbf{Q}|_{\infty}$. It is easy to see that

$$
|\widehat{\mathbf{Q}}_k - \mathbf{Q}_k|_{\infty} \leq 2(1+\gamma)|\widehat{\mathbf{\Sigma}}_k \otimes \widehat{\mathbf{\Sigma}}_k - \mathbf{\Sigma}_k \otimes \mathbf{\Sigma}_k|_{\infty} + 4|(\widehat{\boldsymbol{\mu}}_k \widehat{\boldsymbol{\mu}}_k^{\top}) \otimes \widehat{\mathbf{\Sigma}}_k - (\boldsymbol{\mu}_k \boldsymbol{\mu}_k^{\top}) \otimes \mathbf{\Sigma}_k|_{\infty} + \gamma |\text{vec}(\widehat{\mathbf{\Sigma}}_k) \text{vec}(\widehat{\mathbf{\Sigma}}_k)^{\top} - \text{vec}(\mathbf{\Sigma}_k) \text{vec}(\mathbf{\Sigma}_k)^{\top}|_{\infty} + 4|\widehat{\boldsymbol{\mu}}_k \otimes \widehat{\mathbf{\Sigma}}_k - \boldsymbol{\mu}_k \otimes \mathbf{\Sigma}_k|_{\infty} + 4|\widehat{\mathbf{\Sigma}}_k - \mathbf{\Sigma}_k|_{\infty}.
$$

Here $|\Sigma_k - \Sigma_k|_{\infty} \leq \Delta_n$, and using a similar argument as in $(B.1)$, we $\text{can show that } |\text{vec}(\widehat{\boldsymbol{\Sigma}}_k)\text{vec}(\widehat{\boldsymbol{\Sigma}}_k)^\top - \text{vec}(\boldsymbol{\Sigma}_k)\text{vec}(\boldsymbol{\Sigma}_k)^\top|_{\infty} \leq C |\text{vec}(\widehat{\boldsymbol{\Sigma}}_k) - \hat{\boldsymbol{\Sigma}}_k|$ $\text{vec}(\Sigma_k)|_{\infty} \leq C\Delta_n$. To bound the other terms, it suffices to show that

(B.2)
$$
|\mathbf{A} \otimes \mathbf{B} - \mathbf{A}' \otimes \mathbf{B}'|_{\infty} \leq C(|\mathbf{A} - \mathbf{A}'|_{\infty} + |\mathbf{B} - \mathbf{B}'|_{\infty}),
$$

when $|\mathbf{A} - \mathbf{A}'|_{\infty} \leq |\mathbf{A}|_{\infty} \leq C$ and $|\mathbf{B} - \mathbf{B}'|_{\infty} \leq |\mathbf{B}|_{\infty} \leq C$. To see this, note that $|A(i,j)B(k,l) - A'(i,j)B'(k,l)| \leq |B'(k,l)||A(i,j) - A'(i,j)| +$ $|A(i,j)||B(k,l) - B'(k,l)| \leq (|\mathbf{A}|_{\infty} + |\mathbf{B}'|_{\infty})(|\mathbf{A} - \mathbf{A}'|_{\infty} + |\mathbf{B} - \mathbf{B}'|_{\infty}) \leq$ $C(|\mathbf{A} - \mathbf{A}'|_{\infty} + |\mathbf{B} - \mathbf{B}'|_{\infty})$. This proves [\(B.2\)](#page-7-1). It follows immediately that $|{\bf Q}-{\bf Q}|_{\infty} \leq C\Delta_n.$ \Box

B.4. Proof of Lemma [9.3.](#page-0-4) Write $\mathbf{x}^* = \mathbf{x}_{\lambda_0}^*$ for short. From KKT conditions, there exists a dual variable θ such that

$$
\mathbf{q}^{\top}\mathbf{x}^* = 1, \qquad 2\mathbf{Q}\mathbf{x}^* + \lambda_0 \widetilde{\text{sign}}(\mathbf{x}^*) = \theta \mathbf{q}.
$$

Here $\widetilde{\text{sign}}(\mathbf{x}^*)$ is the vector whose j-th coordinate is -1 , 1 or any value between [-1, 1] when $x_j^* < 0$, $x_j^* > 0$ and $x_j^* = 0$, respectively. We multiply both sides of the second equation by $(\mathbf{x}^*)^{\top}$, and note that $(\mathbf{x}^*)^{\top}$ sign (\mathbf{x}^*) = $|\mathbf{x}^*|_1$. It follows that $\theta = 2(\mathbf{x}^*)^\top \mathbf{Q} \mathbf{x}^* + \lambda_0 |\mathbf{x}^*|_1$ and

(B.3)
\n
$$
\mathbf{Q}\mathbf{x}^* = \left[(\mathbf{x}^*)^{\top} \mathbf{Q} \mathbf{x}^* + \frac{\lambda_0}{2} |\mathbf{x}^*|_1 \right] \mathbf{q} - \frac{\lambda_0}{2} \widetilde{\text{sign}}(\mathbf{x}^*)
$$
\n
$$
= V^* \mathbf{q} + \frac{\lambda_0}{2} \left[|\mathbf{x}^*|_1 \mathbf{q} - \widetilde{\text{sign}}(\mathbf{x}^*) \right],
$$

where $V^* = (\mathbf{x}^*)^T \mathbf{Q} \mathbf{x}^* = [R(\mathbf{x}^*)]^{-1}$. Let $\bar{V}^* = (V^*)^{1/2}$. Then $\Gamma(\mathbf{x}) =$ $\frac{1}{V^*}|\mathbf{Q}\mathbf{x}^* - V^*\mathbf{q}|_{\infty}$, and [\(B.3\)](#page-7-2) implies

(B.4)
$$
\Gamma(\mathbf{x}^*) \leq \frac{\lambda_0}{2\bar{V}^*} (|\mathbf{x}^*|_1 |\mathbf{q}|_\infty + 1) = \frac{|\mathbf{q}|_\infty}{2\bar{V}^*} \lambda_0 |\mathbf{x}^*|_1 + \frac{\lambda_0}{2} [R(\mathbf{x}^*)]^{1/2}.
$$

From the Cauchy-Schwartz inequality,

$$
|{\bf x}^*|_1\le |{\bf x}^*|_0^{1/2}|{\bf x}^*|\le |{\bf x}^*|_0^{1/2}\frac{1}{\sqrt{c_0}}\sqrt{({\bf x}^*)^\top{\bf Q}{\bf x}^*}=\frac{\bar V^*}{\sqrt{c_0}}|{\bf x}^*|_0^{1/2},
$$

where we have used the fact that $(\mathbf{x}^*)^{\top} \mathbf{Q} \mathbf{x}^* \geq \lambda_{\min} (\mathbf{Q}_{SS}) |\mathbf{x}^*|^2 \geq c_0 |\mathbf{x}^*|^2$. Plugging it into [\(B.4\)](#page-8-1) gives

$$
\Gamma(\mathbf{x}^*) \le \frac{|\mathbf{q}|_{\infty}}{2\sqrt{c_0}} \lambda_0 |\mathbf{x}^*|_0^{1/2} + \frac{\lambda_0}{2} [R(\mathbf{x}^*)]^{1/2}
$$

\$\le C_1 \lambda_0 [\max\{|\mathbf{x}^*|_0, R(\mathbf{x}^*)\}]^{1/2},

where C_1 is a positive constant that only depends on c_0 (noting that $|{\bf q}|_{\infty} \leq$ $C \max\{|\boldsymbol{\mu}_k|_{\infty}, |\boldsymbol{\Sigma}_k|_{\infty}, k = 1, 2\} \leq C$.

APPENDIX C

For the experiments for Gaussian distributions, the means and standard deviations (in the parenthesis) of 100 replications are reported here. The corresponding boxplots are in Figure [3.](#page-0-4)

	QUADRO	SLR	$L-SLR$	ROAD	P-LDA	FAIR
Model 1	0.179	0.235	0.191	0.246	0.192	0.185
	(0.016)	(0.028)	(0.017)	(0.074)	(0.011)	(0.018)
Model 1L	0.162	0.214	0.172	0.217	0.170	0.162
	(0.016)	(0.030)	(0.017)	(0.070)	(0.011)	(0.016)
Model 2	0.144	0.224	0.470	0.491	0.476	0.481
	(0.016)	(0.018)	(0.008)	(0.010)	(0.021)	(0.017)
Model 3	0.109	0.164	0.176	0.235	0.202	0.218
	(0.013)	(0.018)	(0.016)	(0.068)	(0.015)	(0.018)

For the experiments for general elliptical distributions, the means and standard deviations (in the parenthesis) of 100 replications are reported here. The corresponding boxplots are in Figure [4.](#page-0-4)

J. Fan, H. Liu and L. Xia

DEPARTMENT OF OPERATIONS RESEARCH and Financial Engineering PRINCETON UNIVERSITY PRINCETON, NEW JERSEY, 08544 USA

E-MAIL: jqfan@princeton.edu hanliu@princeton.edu lxia@princeton.edu

Z. Ke DEPARTMENT OF STATISTICS University of Chicago Chicago, Illinois, 60637 USA E-mail: zke@princeton.edu