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In this supplement we present the technical proofs and numer-
ical tables for simulation, for the main article. Section A contains
proofs of Propositions 2.1, 5.1 and 6.2. Section B contains proofs of
Lemmas A.1, 9.1, 9.2 and 9.3. Section C contains numerical tables
corresponding to Figure 3 and Figure 4 in the main article.

APPENDIX A

A.1. Proof of Proposition 2.1. We first present a lemma which is
proved in Section B.

LEMMA A.1. IfU follows a uniform distribution on S*1, for any d x d
diagonal matriz S and any vector B € R, we have

e BUTSU) = "8 E(UTSU)?] = 2SS,

2 d2+2d
° IE(UTB) =0, E[(UTI@)Q] _ @;
e EU'SUU'B) =0.

Now, we show the claim of Proposition 2.1. Let Y = 2_1/2(Z — ), then
Y = €U where U follows a uniform distribution on S%~! and is independent
of £. The quadratic form Q(Z) can be rewritten as

QZ)=2"QZ-2"2
=Y 2203012y 42y TEV2(Qu - 8) + p' Qu — 26
=Q(Y) +¢,

where ¢ = pu T Qu—2p" 8. Therefore, E[Q(Z)] = E[Q(Y)]+c and var[Q(Z)] =

var[Q(Y)].
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Furthermore, we let
»!/2031/? = KSKT

be the eigenvalue decomposition of 3/2QX1/2 where K is an orthogonal
matrix and S is a diagonal matrix. We also define

B=K'=V2(Qu—9).

Notice that YT X/2QX12Y = 2UTKSK'U = ¢2U, SU,, where U; =
K'U. Since K is an orthogonal matrix, U; follows the same distribution as
U and is also independent of £. Moreover, we can write Y ' £1/2(Qu — §) =
£ Ul—r 3. To save notation, we still use U to represent U;. It follows that

QY)=¢U'SU +2¢U'3.

Let’s calculate E[Q(Y)] first.
E[Q(Y)] = E(¢*)E(U'SU) + 2E(E[U ' 3]
_E@)

d

The first equality is due to the fact that £ and U are independent; the second
equality is from Lemma A.1; and the last inequality is because E(£?) = d
and tr(S) = tr(T/2Qx1/2) = tr(QX). It follows that

E[Q(Z)] = E[Q(Y)] + ¢ = tr(Q) + p' Qu — 2u" 6.

Next, we calculate var[Q(Y)]. It follows that

tr(S) = tr(QX).

var[Q(Y)] = var(¢2U "SU + 2¢U ' B)
= var(£2U TSU) + 4var(EU ' B) + 4cov(2U TSU, U ' B).
Let’s look at them term by term. First,
var(£2U T SU) = E[¢}(U TSU)?] — E2(2U "SU)

=E(¢HE(UTSU)?] - E(€)E* (U TSU)
o4 2tr(8?) 4 tr%(S) 5 9. tr%(S)
—E(f) 2d—|—d2 - (E) d2

= 2(y 4 1) tr(S?) + ytr3(S)

= 2(y + 1) tr(QTQX) 4 ~[tr(QX)]2.

The third equality comes from Lemma A.1l; the last equality follows from
the fact that tr(S?) = tr(Z/2Q3ZQX/?) = tr(QXQX). Second,

var(€U ' B) = E(3(U ' B)?) — E*(¢U ' B)
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=E(E(U'B8)% - E*(OE*(U'B)

e 1B _ o, syT ~
B(e) E = (@ - 6)TS(0 - ).

In the last equality, we have used E(£2) = d, 8 = KX/2(Qu — §) and
K"K =1,. Last,
cov(§?UTSU,EU T B) = E(E)E(UTSUU ' B) — E(6*)E(UTSU)E((U' 8)
=E(EE)EU'SUUB) =0
Combining the above gives
var[Q(2)] = var[Q(Y)] = 2(y + 1) tr( BT + A[tr(2)]?
+4(Qu —8)TZ(Qu — J).
O

A.2. Proof of Proposition 5.1. For any d x 1 vector v and d X d
matrix A, we denote by Supp(v) the support of v, which is contained
in {1,---,d}, and by Supp(A) the support of A, which is contained in
{1,---,d} x {1,--- ,d}. Let 0 = \/1+v1(1+~)/2 > 1 and

¢ = (1+x)min {(1+7)v2?, 4(1—1/6%)vs}.

The claim then becomes O(.5,0) > ¢, or in other words,
x' Qx> c[x|?, when Supp(x) C S.

First, using (13) and Lemma 9.1, we find that for each x, there exits unique
(22, 6) such that x = x(£2,6) and x ' Qx = L(£, §). Second, by definition of
U’ and V, Supp(x) C S implies that Supp(©2) C U’ x U’ and Supp(d) C V.
Therefore, it suffices to show

(A1)

L(Q,8) > c(|Q*+16/%),  when Supp(Q) C U’ x U’ and Supp(d) C V.

Now, we show (A.1). From (5) and that v > 0,
Li,(€2,8) > 2(147) tr(QTp Q) +4(Qpuy, — 6) ' Ty (i —6),  k=1,2.

Let € be the submatrix of €2 by restricting rows and columns to the set
U’ UV, and & be the subvector of § by restricting the elements to the set
U'UV. It is easy to see that when Supp(2) C U’ x U’ and Supp(d) C V,

tr(QS0Q5,) = tr(Q5,05)),
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(i — 0) " (i — ) = (i, — 8) ' T (Qty, — 9),

where we recall that f)k is the submatrix of X, by restrcting rows and
columns to the set U’ UV, py to the set U’ U V. It follows that

2(1 + ) tr(QRQTy) + 4Qiy, — 0) " S (Qty, — 0)

2(1 + ) tr(QTp Qg — vifirfiy ) + 4(1 — 1/6%)6 ' .6
+4(0 i, — 0718) T X4 (0921, — 0716)

(A2) > 201+ ) tr(QZpQ(Zp — vifirfiy ) + 4(1 — 1/6%) Amin (Z5)]6]2
Denote by I the first term in (A.2). We aim to derive a lower bound for I;. It
is well known that trf(ATBCDT) = vec(A)T (D ® B) vec(C), where vec(A)
be the vectorization of A by stacking all the columns, D®B is the Kronecker

product of D and B. Using this formula and that Xj is symmetric, we find
that

I = 2(1 +7) vee(Q) T [(Zk — vifirfay ) @ 3] vec(€)
> 2(1 + )| Ain (B — vififiy, ) ® i)
> (149 A (Ze) Q.

min

The last inequality is from the property that Apin(A®B) = Apin(A) Amin (B)
when A and B are positive semi-definite, and also the assumption that
Amin (g — v bg) > %)\min(Ek). Plugging I; into (A.2), we have

L4 (Q, 5) + HLQ(Q, 6)

> (14 7)Min(Z1) + mX 00 (Z2)]I QP 4+ 4(1 = 1/60%) Ain(Z1) + £ ()]0
> (1+7)(1+ r)w’|Q +4(1 = 1/6%)(1 + £)va| 6
> (1P +18%) = c(IQf* + [8]).

This proves (A.1). O

A.3. Proof of Proposition 6.2. Given (£2,4,t), recall that Ry =
Ry(€,8), for k = 1,2 Let o1 = [(1 — £)2R:] ™, @2 = [1*Ro] ™"
x =z + (1 — m)xe. By direct calculation,

(A.3)

Er(Q,6,t) = nH(z) + (1 — m)H(z), H <(1_52R(t)> = H(x).

, and

Since H is twice continuously differentiable, from the Taylor expansion,

H(z1) = H(z) + H (2)(z1 — ) + %H”(zl)(xl ety
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1
H(x9) = H(z) + H'(z)(z2 — x) + iH//(ZQ)(Z'Q — x)z,
where z; is a number between x; and z, and 25 is a number between x5 and
x. Noticing that 7(z1 — x) + (1 — 7)(z2 — ) = 0, we further obtain

TH (1) + (1 — 7)H(z2) = H(z) + gH”(zl)(xl — )%+ 1_7”1%"(22)(%2 —1)?

=H(z)+ 7T(12_7T)

[(1 — W)H’l(zl) + TI'H”(ZQ)](.Tl — x2)2.
Here, the second equality is because 1 —x = (1 —7)(x1 — z2) and 29 —z =
m(x2 — 71). Let A = sup, H"(z)|. Tt follows that

min{z1,x2},max{z1,x2}] ‘

(Ad)  |wH(z1) + (1 —m)H(xs) — H(z)| < w(l—m)

S 9 . A(.%'l — xQ)Q.

Now, we bound A(z; — x2)%. Write for short zp;, = min{zy, 22} and
Tmax = max{xi,z2}. It is easy to see that

2
(A.5) Az —22)2 < sup  |22H"(2)|- (ml - ”““2> .

1S [Imin7xmax] wmin

By direct calculation, the function 22 H”(z) has the expression

1 1 11
2 " _ - 2z
ZH<2)4\/%<2 3>e221/2.

On one hand, as z — oo, [22H"(z)| < Cz~Y?; on the other hand, as z —
0, |22H"(2)| < Ce /(2 2=3/2 < Cz1/2, Therefore, we have |22H"(z)| <
C'min{y/z,1/+/z}. Plugging it into (A.5), we have

2
Ay = 22)* < C[max {wr A (1), 22 A (1/a2)}] 7 (W) '
Note that z; A (1/$1) =V, z2 A (1/332) = V5 and ]:Ul — :C2|/xmin = |V — 1|.
It follows that

V2w -1

(A.G) A(J}l — 1‘2)2 S C[max{Vl, Vg}]
We combine (A.3), (A.4) and (A.6), and note that 7(1 — ) < 1/4. The first
claim then follows.

When t =1/2, we find V — 1 = AR/Ry. The second claim follows imme-
diately. n
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APPENDIX B

B.1. Proof of Lemma A.1. Consider Y ~ N(0,1;). Then Y @ RU,

where R? ~ x% and it is independent of U. Since E(R?) = d and var(R?) =
2d, it follows that

E(Y 'SY) =E(R)E(U'SU) = dE(U'SU),
E[(Y 'SY)?] = E(RY)E[(USU)?| = (d* + 2d)E[(U "SU)?],
E(Y'8) =EREU'S),
E[(Y '8)%] = E(R)E[(U'B)*] = dE[(U ' B)*,
E(Y'SYY 'B) =ER)EWU'SUU'P).

First, note that Y '8 ~ N(0, 18]12). So E(YTB) — 0 and E[(YTB)Q] _
|B|>. We immediately have

EU'B) =0, E(U'B)?*=|BI"/d
iid

Second, write S = diag(sy, - ,54) and Y'SY = Zle s;Y;2, where Y; ~
N(0,1). Therefore,

d

d
E(YTSY) =) sE(Y?) = Z s; = tr(S)

i=1

M‘L

var(Y 'SY) = stvar(Y;?) = 225 = 2tr(S?).

i=1
We immediately have

[tr(S)])* + 2tr(S?)

BUTSU) =u(S)/d,  E(UTSU)’| = == 5

Last, note that

d

Y'SYY 's= Zs,w Z,BJ =) siBYP 4+ siBYRY.

i=1 1#]

SoE(YTSYY T3) = 0. Since E(R?) # 0, we immediately have E(U TSUU ' B) =
0. O
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B.2. Proof of Lemma 9.1. Recall that
M(82,8) = —pf Qp1 + g Qpua + 2(p1 — p2) ' 6 — tr(Q(B1 — 22))
= tr [Q(Ta + popg — X1 — pap] )] +2(p1 — p2) 6.

It is well known that for any matrices A and B, tr(A TB) = vec(A) " vec(B).
So we have

M(£2,8) = vec(2) " vec(Sz + pops — S1 — pap] ) + 26" (1 — po)
= qu.
Moreover, for k = 1,2,
Li(92,8) = 2(1 + ) tr(QTp Q%) + y[tr(QER)]* + 4(Qpg — ) i (Qpy — 8)
=2(1 +7) tr(QTRQTL) + Y[tr(QZp)]? + 4p) QX Quy, — 80 ' T Quy, + 46 1.0
= 21tr [szﬂ((l + )3k + Q[Lk[j,;—)] — 8tr(5TEkQuk) + 46T2k(5 + W[tr(QEk)]Q.

From linear algebra, tr(ATBCD') = vec(A)" (D ® B) vec(C). It follows
that

Li(2,8) = 2vec(2) T [((147) Bk + 2pipf ) © B vec(2) — 88 (p) © i) vec(£2)
+ 48216 + yvec(Q) T vec(Zy) vee(Zg) | vec(Q)
_ 9 [VGC(Q)T 57] ((1 + ’Y)Zk + 2uku;€r) ® X —2(Nk & Ek):| [VGC(Q)]

—Z(Mg ® i) 23 o
+ yvec(Q) T vec(Zy) vec(Z) | vec(Q)
=x' Qix.
Note that Q = Q1 + kQo and L = L1 + kLs. This immediately implies
L(2,6) =x'Qx. O

B.3. Proof of Lemma 9.2. Let A, = max{|Z;—Zg|co, |k — k| oo, k=
1,2} to save notation. We recall that |fir — prloo < |kl < 1 and | Xy —
Ykloo < |Bk|oo, for £ = 1,2, as assumed in the beginning of Section 5.2.

Consider |q — q|c first. Note that | vec(A) — vec(B)|oo = |A — B|oo for

any matrices A and B. It follows that

2
A= dloo <D (1Zk — Bkloo + |Bllf — pabg |oo + 2|k — Bkloo)
k=1

IN

2
k=1
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Write puy, = p for short. We have |1u(4)1u(5) — p()u(5)| < [p(i)[1(2) — (i) +

(@7 = p()] < ([l + | 1loo) [ — loo- Since [Filoo < [ptloo+ | — ploc <
2|p)oo < 2, it follows that |f(i)m(f) — p(i)p(j)| < 3| — ploo < 3A,. As a
result,

(B.1) ‘ﬁkﬁ; - Nk/"f;woo < 3An, k=1,2.

We immediately have |q — q|oc < CA,,.
Next, consider |Q — Q|- It is easy to see that

Qk — Qrloo < 214 7)[Z% @ Bk — Bp @ Siloo + 4/ (farky ) @ S — (pasty)) ® Sioo
+ 7| vee(Zp) vee(Zp) T — vee(Bg) vee(Zk) | oo
+ 4|7 @ Bk — ik @ Biloo + 4Zk — Ziloo-

Here ]2k — Ykloo S Ay, and usmg a similar argument as in (B. 1)
can show that |vec(2k) vec(Ek) — vec(Bg) vee(Bg) Moo < C]vec(Zk)
vec(Xg)|oo < CA,,. To bound the other terms, it suffices to show that

(B.2) A®B — A’ ®B/|oo < C(JA — A/l + B — B|0),

when |A — A'loc < |[A|oo < C and B — B[ < |B|x < C. To see this,
note that |A(i,j)B(k,l) — A'(i,7)B'(k, )| < |B'(k,1)||A(,75) — A'(4,5)] +
A DIIB(R, 1) — B'(k, )] < (|Aloo + [Bl|oo) (A = Alloo + [B = B'lo) <
C(JA — Al + |B — B'|). This proves (B.2). It follows immediately that
Q - Qlo < CA,. O

B.4. Proof of Lemma 9.3. Write x* = x} for short. From KKT
conditions, there exists a dual variable 6 such that

qa'x* =1, 2Qx" + \osign(x") = fq.

Here sTg;l(X*) is the vector whose j-th coordinate is —1, 1 or any value
between [—1, 1] when z7 < 0, zj > 0 and z} = 0, respectively. We multiply
both sides of the second equation by (x*)T, and note that (x*)sign(x*) =
Ix*|1. Tt follows that 6 = 2(x*) T Qx* + \g|x*|1 and

A Ao, &
Qx" = | ()T Qx" + |x 1| a — Fsign(x)

(B.3) =V'q+ 3 [Ix" g - sign(x")],
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where V* = (x*)TQx* = [R(x*)]"". Let V* = (V*)/2, Then I'(x) =
%]Qx* — V*q|xo, and (B.3) implies

\q!oo
oV *

(B4) Ik <

From the Cauchy-Schwartz inequality,

2 (X" 1o +1) = Xox*|1 + A2 [R(x*)]"/2.

1/2 |1/2

()T Qe = Ve
—/(x x* = —|x"|,/",

Vo Va0

where we have used the fact that (x*)TQx* > Amin(Qss)|x*|? > colx*|?.
Plugging it into (B.4) gives

x| < x| < [x

T'(x*) < ;}’iA x* |/ A2°
< Cy o[ max{|x*|o, R(x*)}] "/,

[R(x")]"/?

where C] is a positive constant that only depends on ¢y (noting that |q|e <
C max{|ptk]oos [Skloos k = 1,2} < O).

APPENDIX C

For the experiments for Gaussian distributions, the means and standard
deviations (in the parenthesis) of 100 replications are reported here. The
corresponding boxplots are in Figure 3.

QUADRO SLR L-SLR ROAD P-LDA FAIR

Moddl 1 0.179 0235 0.191 0246 0192 0.185
(0.016)  (0.028) (0.017) (0.074) (0.011) (0.018)

NModel 11, | 0162 0214 0172 0217 0170  0.162
(0.016)  (0.030) (0.017) (0.070) (0.011) (0.016)

Model 2 0.144 0224 0470 0491 0476  0.481
(0.016)  (0.018) (0.008) (0.010) (0.021) (0.017)

Model 3 0.109 0.164 0176  0.235 0202 0218
(0.013)  (0.018) (0.016) (0.068) (0.015) (0.018)

For the experiments for general elliptical distributions, the means and
standard deviations (in the parenthesis) of 100 replications are reported
here. The corresponding boxplots are in Figure 4.
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QUADRO QUADRO-0 SLR L-SLR ROAD P-LDA FAIR
Model 4 0.136 0.144 0.167 0.157 0.197 0.159 0.196
(0.015) (0.015) (0.019) (0.017) (0.069) (0.017) (0.028)
Model 5 0.161 0.173 0.184 0.184 0.232 0.174 0.210
(0.012) (0.014) (0.014) (0.016) (0.060) (0.010) (0.019)
Model 6 0.130 0.129 0.152 0.211 0.268 0.193 0.235
(0.017) (0.016) (0.018) (0.018) (0.055) (0.012) (0.023)
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