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Appendix A: The 16 genotype data collections in the harmonized control dataset 

In the Results section, we created a resource of external controls using genotype data taken from 27,517 

individuals of self-reported European-descent in 16 studies in the dbGaP repository. Information 

regarding these cohorts can be found in Table S1. 

Table S1. The 16 studies used for creating a resource of external controls, taken from the dpGAP 

repository. 

Study dbGaP Accession 
Number 

Ancestry #Samples Genotyping Chip 

Late Onset Alzheimer’s Disease Family 
Study: Genome-Wide Association Study 
for Susceptibility Loci 

phs000168.v2.p2 European 1292 HumanHap 610 

GENEVA Genes and Environment 
Initiatives in Type 2 Diabetes 

phs000091.v2.p1 European 3148 Affymetrix 6.0 

National Eye Institute Glaucoma Hu- 
man Genetics Collaboration (NEIGH- 
BOR) Consortium Glaucoma Genome-
Wide Association Study 

phs000238.v1.p1 European 1240 HumanHap 610 

A Study of the Genetic Causes of Complex 
Pediatric Disorders 

phs000490.v1.p1 European 2631 
HumanHap 610/ 
HumanHap 550 

Genome-Wide Association Study of 
Schizophrenia 

phs000021.v3.p2 
African/ 
European 

2332 Affymetrix 6.0 

Neurodevelopmental Genomics: 
Trajectories of Complex Phenotypes 

phs000607.v2.p2 European 5715 
HumanHap 610/ 
HumanHap 550 

Sweden-Schizophrenia Population-Based 
Case-Control Exome Sequencing 

phs000473.v2.p2 European 773 HumanHap550 

National Human Genome Research Insti- 
tute (NHGRI) GENEVA Genome-Wide 
Association Study of Venous Thrombosis 

phs000289.v2.p1 European 1310 HumanHap 610 

Whole Genome Scan for Pancreatic 
Cancer Risk in the Pancreatic Cancer 
Cohort Consortium and Pancreatic Cancer 
Case- Control Consortium (PanScan) 

phs000206.v5.p3 European 4133 
HumanHap 610/ 
HumanHap 550 

Research Program on Genes, Environment 
and Health (RPGEH) 

phs000788.v1.p2 European 10000 Axiom KP 

NIH Exome Sequencing of Familial 
Amyotrophic Lateral Sclerosis Project 

phs000101.v4.p1 European 773 HumanHap 550 

 

 

 



Appendix B: The complete QC Pipeline for data harmonization 

We give a step-by-step description of the QC pipeline. All the details are summarized in Figure S1.  

First, we conducted pre-processing: 

(1) All cohorts were lifted over from hg18 to hg19 using the liftOver tool. Marker names across all 

cohorts were made consistent with the HRC reference panel based on chromosome, position, and 

alleles. Indels and missing alleles, duplicated markers, and non-matching SNPs were excluded.  

Next, we conducted cohort-level pre-imputation QC: 

(2) Sample QC: Samples with missing rate greater than 2% or with mismatching sex information 

between genotypes and provided phenotype information were excluded. Samples with abnormal 

inbreeding coefficients (3 standard deviations away from the mean) were removed. Related 

samples (pi-hat > 0.0625) were identified and the sample in each related pair with higher 

missingness was removed from the dataset.  

(3) Variant QC: Variant-level missingness was calculated and variants with missing rate > 1% were 

excluded. Additionally, all A/T and C/G SNPs were excluded at this point to avoid downstream 

issues related to strandness.  

(4) Ancestry Inference: We built a random forest classifier (see below for details) with the first six 

PCs from 1000 genomes to determine broad ancestry grouping. We then further separate 

population isolates from major European within the European ancestry cluster by building a 

second random forest classifier using the first four PCs calculated from a merged set of the 1000 

genomes Europeans and controls from an Ashkenazi Jewish cohort. We then projected each 

sample onto the 1000 genomes PC space, and assigned broad ancestry-group labels using the first 

random forest classifier. Each sample was assigned to one continental ancestry group. A similar 

procedure was applied to samples assigned a European ancestry label to determine its finer 



ancestral origin. Within each ancestral group, variants with minor allele frequencies lower than 

0.01 or with p-values for Hardy-Weinberg Equilibrium test less than 1e-4 were excluded. 

Random forest classifier details: We used the following Random Forest algorithm to perform 

ancestry assignment. We first assigned individuals into one of five super-populations: East Asian, 

South Asian, African, American, and European. To do so, we first calculated the PCs of the 1000 

Genomes dataset. We then apply RandomForestClassifier from scipy package and train a random 

forest classifier with 100 bootstrap draws using the first six PCs as input. All parameters of the 

random forest training function were set at their defaults. We then used the output classifier to 

predict the population label of each individual. For individuals that are assigned as European, we 

further assigned them into major European Ancestry, Finnish Ancestry and Ashkenazi Jewish 

Ancestry. To do this, we merged 1000 Genomes European genotype data with genotype data 

from an Ashkenazi Jewish cohort as there are no Ashkenazi Jewish individuals among the 1000 

genomes samples. We then evaluate PCs in this merged dataset. Non-Finnish Europeans are 

assigned the Major European population group label. The first four PCs are used to train another 

the random forest model. Again, all parameters of the random forest training function in 

RandomForestClassifier are set at their defaults. The resultant classifier was used to assign finer 

structure in the European subset.  

Next, we conducted array-level pre-imputation QC: 

(5) Matching: Cohorts from the same genotyping array and ancestry-group were merged together for 

downstream analysis. 

(6) Sample QC: Samples with missing rate greater than 2% and the member of related pairs (pi-hat > 

0.0625) of samples with higher missingness was removed. 

(7) Variant QC: Within each array group, variants with minor allele frequencies lower than 0.01 or 

with p-values for a Hardy-Weinberg Equilibrium test less than 1e-4 were excluded. To further 



identify variants susceptible to batch effects, a pseudo-GWAS comparison labelling array 

samples as cases and 1000 Genomes samples as controls was performed. Variants with p-value 

less than 1e-4 were excluded. Further pseudo-GWASes defeined by labelling samples from one 

cohort as cases and samples from all other cohorts as controls were carried out, and variants with 

p-values less than 1e-4 were also excluded. For pseudo-GWAS comparison, the first 20 PCs were 

included as covariates to control for population stratification. 

The next step is imputation:  

(8) We imputed each stratum separately using 1000 genomes as a reference panel via the Michigan 

Imputation server.  

Then, we have a few steps of post-imputation QC: multiple sources, and enables external controls to be 

reliably integrated in GWAS. 

(9) QC each array stratum: After imputation, 46.8M variants had been imputed in each array 

stratum. Variants with minor allele frequencies < 0.01, or Hardy-Weinberg Equilibrium p-value < 

1e-4, or an imputation info score < 0.8 were removed from the data.  

(10) Inner-join: A master imputed genotype dataset was generated through an inner join (i.e., taking 

the intersection of SNPs) across all stratum. 

(11) Cross-array comparison: For each genotyping array, samples that were genotyped on that array 

were coded as cases and samples that were genotyped on any other array were coded as controls 

to make a pseudo-case control comparison. To run association testing, we added first 20 PCs as 

covariates and drop variants found to be associated with any given array with p-value < 1e-4. 

(12) Re-imputation: We removed variants with empRsq < 0.6 from the typed data, and re-imputed 

them back so as to increase the number of SNPs as well as to improve the quality. The re-

imputation procedure repeats steps (8)-(11).  



Figure S1. The complete QC pipeline.  
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Appendix C: The QC pipeline on Cohron's disease data 

We conducted GWAS on five Crohn's disease genetics data sets from the IBD Genetics Consortium, to 

evaluate the quality of the collection of harmonized controls. We applied a QC pipeline to these five data 

sets. This QC pipeline is a subset of the data harmonization pipeline in Appendix A, where we skip the 

steps for cross-array comparison and re-imputation.  

We now describe the QC pipeline on Crohn's disease data.%It is also the QC pipeline we provide to users 

in the UNICORN framework: 

• We first conducted data pre-processing to align cases to hg19 Genome Build. This is the same as 

step (1) of the data harmonization pipeline in Appendix A.   

• Next, we conducted cohort-level pre-imputation QC: 

o Sample QC: We filtered out samples with high missing rate, mismatching sex, abnormal 

inbreeding coefficients and related individuals. This is the same as step (2) of the data 

harmonization pipeline. 

o Variant QC: We filtered out high missing rate and strand ambiguous SNPs. This is the same 

as step (3) of the data harmonization pipeline. 

o Ancestry Inference: In step (4) of the data harmonization pipeline, we built a Random Forest 

Classifier for classifying any sample into one of the five super populations: East Asian, South 

Asian, African, American, and European. We applied this classifier to assign each sample 

into a super population. In step (4) of the data harmonization pipeline, we also built a 

Random Forest Classifier to classify any European sample into one of the three groups, 

European Mainland, Finnish, and Ashkenazi Jewish. We applied this classifier to further 

divide those samples assigned to the European super population.  

o We removed the ‘blacklist’ of SNPs obtained in applying the harmonization pipeline on the 



public controls.  

• We then imputed case cohort against 1000 Genomes panel. This is the same as step (8) of the data 

harmonization pipeline.  

• Lastly, we performed post-imputation QC: We remove variants out of Hardy-Weinberg 

Equilibrium with low minor alleles frequency, or with low imputation info score. This is the same 

as step (9) of the data harmonization pipeline.  

After the above QC pipeline is completed, if the GWAS results still have many suspicious signals, the 

user can add a further re-imputation step, the same as step (12) in the data harmonization pipeline. In the 

case of the  Crohn's disease data, we do not require re-imputation. 


