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Abstract  

The use of external controls in genome-wide association study (GWAS) can significantly increase the size 

and diversity of the control sample, enabling high-resolution ancestry matching and enhancing the power 

to detect association signals. However, the aggregation of controls from multiple sources is challenging 

due to batch effects, difficulty in identifying genotyping errors, and the use of different genotyping 

platforms. These obstacles have impeded the use of external controls in GWAS and can lead to spurious 

results if not carefully addressed. We propose a unified data harmonization pipeline that includes an 

iterative approach to quality control (QC) and imputation, implemented before and after merging cohorts 

and arrays. We apply this harmonization pipeline to aggregate 27,517 European control samples from 16 

collections within dbGaP. We leverage these harmonized controls to conduct a GWAS of Crohn's disease. 

We demonstrate a boost in power over using the cohort samples alone, and that our procedure results in 

summary statistics free of any significant batch effects. This harmonization pipeline for aggregating 

genotype data from multiple sources can also serve other applications where individual level genotypes, 

rather than summary statistics, are required. 

 

 

 

 

 

 

 

 

 

 

 

 



3 

Introduction 

Genome-wide association studies (GWAS) have been successful in identifying genetic loci that confer 

some risk to disease (1–6). A key factor that determines the ability of GWAS to detect disease-associated 

variants is sample size. Leveraging external controls that have already been genotyped and shared 

publicly can increase power for discovery while allowing resources to be focused on collecting and 

genotyping only cases (7). Integrating external control samples can also supplement existing controls and 

increase the number of ancestrally matched controls in a study. 

Despite these clear advantages, external control resources have not been widely adopted. One reason is 

the significant administrative and technical barriers to obtaining permission and then acquiring multiple 

different publicly available data sets (8,9). Furthermore, it is critical to ensure that any allele frequency 

differences between controls and cases are indeed attributable to the disease or trait being studied, and not 

due to systematic biases caused by insufficient ancestry matching, technical artifacts, or batch effects 

(10). 

The use of external controls typically requires merging genotype data from multiple sources in order to 

maximize control sample size and provide a large pool of controls from which to match the ancestry of 

the cases. In this process, many factors such as genotyping error, batch effects, and the use of different 

genotyping platforms can yield spurious correlations between cases and controls (11). As such, it is 

crucial to conduct careful quality control and data harmonization that is targeted towards these different 

sources of error when merging external controls. Even when genotyping data is derived from a single 

cohort, its use in GWAS first requires some analyses to ensure the data is of sufficient quality to be 

employed in association testing. This quality control (QC) usually involves a series of analytic filters 

aimed at removing poor quality samples and problematic single nucleotide polymorphisms (SNPs) (12). 

To this aim, we have developed a data harmonization pipeline to reliably leverage external genotyped 

controls, aggregated from multiple sources, to boost power in GWAS without introducing spurious 



4 

associations. The design of the pipeline addresses two key issues in merging such heterogeneous data -- 

one is errors driven by batch effects, and the other is spurious signals introduced by imputation. Our 

pipeline iterates through a series of QC filters and imputation to examine samples at the levels of cohort 

and genotyping platform. We demonstrate the utility of our harmonization pipeline by aggregating 27,517 

European control samples from 16 data collections within dbGaP (13,14), and use these as controls in a 

GWAS of Crohn's disease. Our work demonstrates the plausibility of harmonizing genotyping data from 

multiple sources, and enables external controls to be reliably integrated in GWAS. 

Several methods were proposed to remove the technical batch effects in using external controls for 

GWAS. Lee et al. (15) developed iECAT, a method for case-control analysis that corrects batch effects by 

comparing the odds ratio estimates using internal controls versus using the combination of internal and 

external controls. Li and Lee (16) further generalized iECAT to allow for covariate adjustment. Hendricks 

et al. (17) proposed ProxECAT, which does not need internal controls and uses allele counts of non-

functional variants as a proxy to adjust the differences between studies. Other related developments 

include Derkach et al. (18), Hu et al. (19) and Chen and Lin (20). These methods are designed for next 

generation sequencing data, but we consider in this paper the use of data from SNP arrays. Since the 

causes of batch effects are different for sequencing-based and array-based genotype data, most of the 

above methods are not directly applicable. Furthermore, the aforementioned methods assume that there is 

no batch effect within the external control, so that the focus is only adjusting the batch effects between 

case and control. However, our aim is to aggregate external controls from multiple sources, where severe 

batch effects exist within the control sample. 

To merge array-based genotype data, a standard QC procedure applies a series of filters on samples and 

SNPs and then imputes data on a common reference panel. However, this is insufficient to control false 

positives when we aggregate multiple control samples from different genotype platforms. NSG Network 

et al. (21) recognized this issue in aggregating 31 collections of ischaemic stroke studies and had to 

modify the standard QC procedure (see their Supplementary Material). While they aggregated controls 
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from different arrays, all those arrays belong to the Illumni platforms. The 16 collections we aim to 

aggregate come from HumanHap, Affymetrix, and Axiom platforms. Neither a standard QC procedure 

nor the refined one in NSG Network et al. (21) works satisfactorily. In contrast, our proposed pipeline can 

harmonize genotype data from completely different platforms. 

The application of our data harmonization pipeline is not limited to GWAS, but may be useful for many 

other analysis methods that require individual-level genotype data rather than summary statistics. One 

example is the knockoff method for controlling false discovery rates (22,23) and its application to genetic 

association studies. This method creates surrogate genes (“knockoff variables”) from individual-level 

genotypes, handling linkage disequilibrium in a principled manner (24). Another type of analysis utilizes 

the genetic relationship matrix to capture the pairwise relationship among individuals to compute 

estimates of heritability, the genetic correlation between traits, and genetic risk scores (25,26). When 

computing genetic risk scores for highly polygenic traits such as autism spectrum disorder, for which 

GWAS discoveries have been limited, this approach is more sensitive than traditional polygenic risk score 

approaches that instead utilize summary statistics (27). Despite the tremendous progress leveraging 

summary statistics, many valuable avenues of analysis require the aggregation of genotypes, thus a 

reliable harmonization pipeline is essential to remove batch effects. Although we demonstrate the 

performance of our pipeline in the context of GWAS, the proposed data harmonization method is also 

promising for these other applications. 

Results 

The data harmonization pipeline 

The pipeline contains four modules: (i) Within-array processing, (ii) Imputation, (iii) Cross-array 

comparison, and (iv) Re-imputation. The Within-array processing module aims to group samples by 

array, cohort, and ancestry, so that each group contains homogeneous samples. Within this module, 
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multiple QC filters are applied to samples and variants, within and across cohort. Next, Imputation is 

conducted in each homogeneous group. The post-imputation data are merged within each array, followed 

by a few standard QC filters. The first two modules resolve issues such as genotyping errors and missing 

values; however, two issues remain. First, batch effects still exist, which prohibit us from merging data 

across different arrays. The Cross-array comparison module detects batch effects via “pseudo-GWAS”, 

where samples from one array are treated as cases and samples from each other array are treated as 

controls. Significant variants in this pseudo case-control comparison will be removed. Second, the 

imputation quality is low for some variants, possibly due to low coverage in the reference panel or high 

recombination rate. Such low-quality imputation can drive false association signals in GWAS. In the Re-

imputation module, we aim to detect such spurious signals and remove them, before re-imputing in the 

surrounding region to recover those QC-failed variants and improve imputation quality. A summary of 

the data harmonization pipeline is shown in Figure 1. The description of each module is given in 

Materials and Methods.  

Creating a resource of harmonized external controls 

We aggregated genotyped data on 27,517 individuals of self-reported European-descent from 16 studies 

in the dbGaP repository. These cohorts had been genotyped using a plethora of technologies including 

various Illumina and Affymetrix arrays. A summary of external controls is in Table 1, and a detailed 

description of 16 cohorts is provided in Table S1 of Supplementary Material. 

We applied the harmonization pipeline. Module 1 removed 5,007 samples, where 1,570 were filtered due 

to removal of non-European samples (the majority of non-European samples are from the GERA cohort, 

while other cohorts contain very few non-European individuals), 579 due to high sample missing rate, and 

2,858 because of family relatedness or abnormal inbreeding coefficients. A total of 22,510 samples were 

retained. The QC steps in Modules 2-4 only removed variants but not samples. In addition to standard QC 

filters (missing rate, minor allele frequencies and Hardy-Weinberg Equilibrium) the cross-array pseudo-
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GWAS removes around 500 variants on average from each genotyping platform. We merged across the 

different platforms, retaining any SNPs with missing rate < 1%, to obtain the final harmonized dataset of 

5,524,462 variants. 

Figure 2 shows the projection of the harmonized controls onto the first two PC’s of the 1000 Genomes 

(1KG) data and onto the first two PCs of its European subset. The left panel shows that the majority of 

harmonized controls are indeed of European descent, and the right panel shows that they represent a range 

of European ancestry, including British, Italian, Northern European and Spanish, and are distinct from 

Finland. The set of harmonized public controls provide a much richer resource of European genotypes as 

it is approximately ten times larger than the European subset of 1KG and represents a more continuous 

sample along the cline of European ancestry. While this particular dataset was developed in the first 

instance as a European ancestry control resource, due to the availability of larger sample numbers, the 

same pipeline may be applied to studies of other ancestries to generate harmonized controls for more 

broad collection of genome-wide association studies. A list of SNPs that were removed in the 

harmonization pipeline, along with details of the step in which each was filtered out, is available in our 

GitHub repository (https://github.com/mikkoch/unicorn-qc). 

Performance of GWAS using the external control resource 

To assess the quality and utility of the harmonized public control data set, we conducted a comparison of 

GWAS using the Crohn's disease data of the CHOP study (28), obtained from the IBD Genetics 

Consortium. The case-control analysis was implemented on the software Hail. We computed the first 20 

PC’s of the LD-pruned data matrix (i.e., pooling case and control samples and only retaining SNPs with 

MAF > 0.05, Hardy-Weinberg p-value > 1e-4, and r^2 < 0.2). For each SNP, we fit a logistic regression 

with these 20 PC’s as covariates to calculate the p-value. 

The IBD Crohn's disease study collected 1,589 cases and 5,950 internal controls. We examined p-values 

calculated from comparing the IBD cases to (i) the harmonized controls with those obtained from using 
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(ii) the IBD study internal controls, as well as (iii) p-values from the IBD consortium’s meta-analysis, 

which included 5,956 case subjects and 14,927 control subjects (28). The meta-analysis results serve as 

our best picture of the truth. We applied the same harmonization pipeline to the Crohn's disease data, but 

Module 3 (the cross-array comparison) is not required as all of the IBD study data is typed on a single 

chip (see Materials and Methods). 

We consider two performance characteristics: (a) a boost in power for true signals and (b) the elimination 

of spurious signals. We compare the association results generated from the harmonized controls and those 

obtained from using the internal controls in the Manhattan plots of Figure 3 and see that in general they 

are highly concordant across the whole genome. The QQ plot in the bottom right panel shows that there is 

very little evidence of inflation in either version of the GWAS (𝜆"# = 1. .011 using harmonized controls 

and 1.004 using internal controls). The QQ plot also shows the increase in significance of the most highly 

associated SNPs when using the harmonized controls compared to the internal controls. The bottom left 

panels show a zoomed-in view of two regions of genome-wide significant signal in the meta-analysis (on 

Chromosomes 3 and 5) where, even at this finer scale, the concordance is still very good. Furthermore, 

the minimum p-value at these loci is lower when using the harmonized controls for GWAS instead of the 

internal controls. These loci provide examples of regions where there is a boost in power to detect true 

signals of association when using the harmonized controls. 

Next, with the meta analysis as our best estimate of the truth, we directly compare the p-values obtained 

in GWAS (i) and (ii), examining separately SNPs that are significant and non-significant in meta-analysis 

(a p-value < 5e-8 is considered significant). For variants that are not significant in the meta analysis (left 

panel of Figure 4), both GWAS determined these SNPs to be non-significantly associated with IBD as 

well, suggesting that the use of harmonized controls does not result in a higher false positive rate. On the 

right panel of Figure 4, looking at variants that are significant in meta-analysis, the majority of these sites 

are more significant in the GWAS of harmonized controls than in the GWAS of the internal controls. In 

particular, there are a number of variants that are deemed significant using the harmonized controls but 
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missed using the internal controls. These results shown in Figures 3-4 suggest that the use of harmonized 

controls yields no apparent/strong p-value inflation at null SNPs and boosts power at signal SNPs.  

We next show examples of the ability of the harmonization pipeline to detect and correct for spurious 

associations that are driven by poor quality imputation, that otherwise would not be filtered in a standard 

GWAS pipeline. Figure 5 shows the Manhattan plots of the association results of analyses (i) and (iii) for 

two 20 Mb regions of Chromosome 1 (top row) and Chromosome 2 (bottom row). The left two plots 

show the results from GWAS (i) both before and after applying the Re-imputation module, against the 

background of those from the meta analysis (GWAS (iii)) shown in grey. The red points correspond to 

genotyped variants with EmpRsq < 0.1. A large fraction of these red variants indeed generate spurious 

signals in the surrounding region in the first round of imputation: the p-values based on aggregated 

controls (before re-imputation) are small, but the meta-analysis suggests that they are not true signals. 

Comparing the lower and upper halves of the Manhattan plots we can see that removal and re-imputation 

of these red SNPs  removes the spurious peaks around those points (these peaks were the consequence of 

poor imputation driven by the red variants). In the right two plots, we compare p-values calculated from 

the harmonized controls (GWAS (i)) with p-values from internal controls (GWAS (ii)) and observe that 

they are highly concordant. These results suggest that the Re-imputation module is effective in removing 

spurious signals that would otherwise appear when using the harmonized controls. 

Finally, we compare our approach with a more conventional QC procedure. The standard QC pipeline 

first filters out problematic samples and SNPs, next imputes data, and then removes the SNPs with low 

imputation quality. We mimic the standard procedure by applying Modules 1-2 of our harmonization 

pipeline, followed by removing the SNPs with low EmpRsq (using the same threshold as in the Filtering 

step of Module 4). This procedure is more refined than the standard procedure (because our Module 1 is 

more than merely applying QC filters on samples and SNPs), hence, its performance serves as an upper 

estimate of the performance of the standard QC procedure. The results are shown in Figure 6. The 

aforementioned ‘standard’ procedure yields a much more severe p-value inflation, where 𝜆"# is 1.320 for 
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this procedure and 1.011 for our procedure. It suggests that our proposed pipeline significantly improves 

the standard QC pipeline in terms of controlling false positives. 

Discussion 

We have shown that it is possible to aggregate disparate genotyping data sets, even those assayed using 

different genotyping arrays, through a harmonization pipeline that involves iterative QC and imputation 

steps to control for batch effects and technical artifacts. This approach is valuable in constructing a large 

harmonized data set of external controls for use in GWAS, and we have shown it can deliver more 

powerful association tests while being robust to spurious signals driven by batch effects or insufficient 

ancestry matching. 

The strength of our pipeline comes from the thorough and agglomerative approach to QC, that first 

operates within an array type for a single ancestry, and then across different arrays. The identification of 

problematic SNPs (through the EmpRsq metric) that are driving poor quality imputation, and the re-

imputation after removing these sites is a key insight that allows the aggregation across different array 

types. Since multiple genotyping arrays have been used in human genetic studies, and as new arrays are 

developed over time, this step is essential to bring together different datasets from various sources. 

While our approach permits existing external controls to be integrated into GWAS, the extent to which 

these resources can be useful depends upon whether the ancestry spanned by the control set sufficiently 

covers that of the cases to which it is being compared. That is, for a case collection from a population that 

is underrepresented in publicly available controls, there will be a paucity of control samples of matched 

ancestry. If the harmonized control set does not sufficiently capture the ancestry space spanned by the 

cases, then the projection of cases on to the control-generated PC space (this can be used as a diagnostic 

plot) will be biased (29), giving an inaccurate depiction of their ancestry relative to the axes spanned by 

the control set. This mismatching of controls to cases can lead to spurious associations and subsequent 
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false findings, and highlights the unmet need for the inclusion of more ancestrally diverse samples in 

public genetic resources.  

We have not examined the application of this method to admixed samples, which pose a challenge as their 

ancestry is heterogeneous across the genome. This means that clustering individuals by PCA will group 

those that share similar proportions of ancestry genome-wide, and will not necessarily match samples by 

their ancestral origins at any specific genomic site. We propose the extension of this method to admixed 

populations as a future research direction. 

Although we have demonstrated that it is possible to leverage multiple different sources of genotyping 

data for their use in a unified GWAS, the extensive quality control pipeline that we developed speaks to 

the many challenges and potential pitfalls involved in this process. We advocate for broad consent and 

data use agreements that enable public sharing of individual-level data to enable direct GWAS for health-

related research. As public data sets grow increasingly larger, through biobanking efforts for example, 

there will be less need to harmonize between different sources of control samples. Until then, the careful 

aggregation of multiple smaller resources can be valuable in enabling well powered GWAS at no 

additional cost. 

Materials and Methods 

Description of the data harmonization pipeline 

We give a high-level description of each module of the pipeline. The details can be found in 

Supplementary Material. 

Module 1: Within-array processing consists of the following main steps:    

● Cohort-level QC. Remove samples with high missingness rate and abnormal inbreeding 

coefficients, as well as variants with a high missingness rate.  
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● Ancestry matching. Each sample is assigned to one of the five ancestries, East Asian, South 

Asian, African, American, and European. Here, we focus on European ancestry, where samples 

are further split into three sub-groups - major European, Finnish, and Ashkenazi Jewish. The 

ancestry assignment is determined by a pre-trained classifier, where the training data is 1000 

Genomes data (with self-reported ancestry labels) and the classification method is a standard 

random forest algorithm (30) on leading PC's. 

● Merging. Based on the first two steps, a stratum has been formed for each array-cohort-ancestry 

combination. For each stratum, we further remove variants with low minor allele frequencies and 

small Hardy-Weinberg Equilibrium p-values. We then merge samples of the same genotyping 

array and ancestry group. 

● Array-level QC. To remove batch effects, two rounds of pseudo-GWAS are performed iteratively 

within each array-ancestry stratum. In the first round, all the samples in this stratum are compared 

with the 1000 Genomes samples belonging to the same ancestry group. In the second round, the 

samples from one cohort are compared with those from each other cohort in the same array-

ancestry stratum. In these pseudo-GWAS comparisons, the first 20 principal components (PCs) 

are included as covariates to account for population structure. Significant variants identified in 

either round are removed.   

Module 2: Imputation. Module 1 produces a data stratum per array per ancestry. These strata are imputed 

separately. The motivation is that each stratum contains relatively homogeneous samples, which can 

improve the imputation quality compared with imputing all strata together. We use the Michigan 

Imputation server with 1000 Genomes data as the reference panel.  

Module 3: Cross-array comparison. While Module 1 (through the array-level QC) is aimed at accounting 

for batch effects due to genotyping across independent studies, we include a second module to target 

batch effects that arise due to imputation. We expect that the quality of imputation at different regions of 

the genome will vary for different arrays, owing to the design of their particular backbone and to technical 
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characteristics. This will induce considerable batch effects due to the large number of variants that are 

imputed in Module 2 (about 46.8M per stratum in our experiment). This module aims to remove such 

batch effects by cross-array pseudo-GWAS.  

● Post-imputation QC. Remove variants with low minor allele frequencies, or small Hardy-

Weinberg Equilibrium p-values, or low imputation info scores. 

● Cross-array pseudo-GWAS. We first merge samples genotyped on the same array type and take 

the intersection of the SNP sets on these samples. Next, a pseudo-GWAS is performed for each 

array, where samples on this array are treated as cases and those on each other array are used as 

controls. Since ancestry groups have been merged, we include 20 leading PC's as covariates in the 

pseudo case-control comparison, to account for cross-ancestry heterogeneity. Significant variants 

are removed.  

Module 4: Re-imputation. The last module deals with spurious association signals introduced by poor 

quality imputation, first removing the poorly typed variants that drive the imputation and then re-imputing 

the surrounding region.  

● Filtering. There are multiple metrics to assess imputation quality (31–34). We use EmpRsq, 

which is the squared correlation between the leave-one-out imputed dosages and the observed 

(i.e. typed) genotypes. Any typed variant with EmpRsq below the minimum threshold is 

removed. 

● Re-imputation. With those poorly typed variants already removed, we re-do the whole imputation 

procedure, where we use the same strata as in Module 1, conduct imputation in a similar way as 

in Module 2, and then apply similar post-imputation steps as in Module 3. 

The strength of this pipeline comes from the division of QC procedures into steps that are aimed at 

capturing genotyping batch effects and those that are designed to identify bad sites arising from poor 

imputation. The order of modules in the pipeline makes this possible, and the cross-array pseudo-GWAS 
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ensures that the allele frequencies are consistent between chips. 

The Re-imputation module plays a key role in removing poorly genotyped SNPs that pass earlier QC 

filters but show evidence of driving low quality inference at nearby imputed sites. The first, rather strict, 

filter aims to ensure that the retained (typed) variants are of high quality. We then conduct a second 

imputation, so that the poorly imputed variants in the previous round are corrected.  Subsequent QC of the 

re-imputed data indeed removes much less variants, confirming the benefit of the re-imputation module. 

We have constructed our data harmonization pipeline as a series of modules containing multiple filters, 

the thresholds and parameters of which may be adjusted by the user. We have selected their values to be 

effective in our applications. The code to execute the pipeline is shared publicly in our GitHub repository 

(https://github.com/mikkoch/unicorn-qc). 

Using the harmonized controls for GWAS 

When our proposed pipeline is used to harmonize external control data, a similar process should be 

applied to the case data. We consider a common scenario where all the case samples come from one 

study. The four modules in the harmonization pipeline need minor modifications. In Module 1, we 

conduct Cohort-level QC using the same filters and Ancestry matching using the same classifier. We then 

merge data to create the array-ancestry strata. The step of Array-level QC is modified as follows: The 

previous harmonization pipeline produces a ‘blacklist’ consisting of the variants removed when 

aggregating public controls; we remove this ‘blacklist’ on the case data. Module 2 is the same as before. 

In Module 3, we implement Post-imputation QC using the same filters but skip Cross-array pseudo-

GWAS. Module 4 is optional: Since we already removed variants in the ‘blacklist’ (this list includes those 

variants removed in the re-imputaton of controls), the benefit of re-imputing the case data is relatively 

marginal, and we often skip this module.   

In this process, we deal with the batch effects between case and control by (i) using the same QC filters 
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on the case and control, (ii) imputing them to the same reference panel, and (iii) removing the ‘blacklist’ 

of SNPs. To see the role of (iii), we consider a common scenario where the external controls include some 

samples genotyped on the same array as the case data. The SNPs that suffer from batch effects between 

case and control will be blacklisted in the Cross-array comparison module of harmonizing external 

controls and thus removed from the case data. 

Given the harmonized control and processed case, we can conduct GWAS via standard statistical 

methods. Note that although the above processing of case and control includes ancestry matching,  it is 

only for QC purpose. We still need careful ancestry stratification in GWAS, for which several methods 

are available (7,35).  

To get reliable GWAS results, we need some minimum requirements on data. First, the ancestry space of 

the external controls should properly ‘cover’ the ancestry of the case data. This can be checked by 

projecting both case samples and harmonized control samples onto the PC space of 1000 Genomes (7). 

Second, the external controls should include at least some samples genotyped on the same array as the 

case data. As we have explained, this ensures that the SNPs causing batch effects between case and 

control will be included in the ‘blacklist’. If these requirements are violated, we should either expand the 

external controls (and re-apply the harmonization pipeline) or use a more stringent QC procedure. For 

example, suppose the cases come from an array not covered by the external controls. If an internal control 

is available, we can conduct a pseudo-GWAS between the internal control and the harmonized control to 

further identify those SNPs suffering batch effects between case and control. 
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Legends to Figures 

Figure 1. A high-level description of the data harmonization pipeline. 

Figure 2. Principal component (PC) analysis representation of the ancestry distribution of the harmonized 

public controls. Left: projection of harmonized controls onto the PC space of 1000 Genomes (1KG). 

Right: projection onto the PC space of 1KG European subset. 

Figure 3. Comparison of GWAS for the Crohn’s disease study using harmonized public controls versus 

internal controls. Top: whole genome Manhattan plot. Bottom left: zoom-in to regions in individual 

chromosomes. Bottom right: QQ-plot of p-values (with respect to theoretical null). 

Figure 4. Comparison of  p-values from using harmonized controls with those from using internal 

controls. Left: SNPs with p-values ≥ 5 × 10(8 in meta-analysis (for a better visualization, we plot the 

absolute Z-scores). Right: SNPs with p-values < 5 × 10(8 in meta-analysis (the dashed lines correspond 

to 5 × 10(8). 

Figure 5. Examples of spurious signals being removed in the harmonization pipeline (top: Chromosome 

1; bottom: Chromosome 2). The red dots are typed variants that drive poor quality imputation, flagged by 

their EmpRsq values, which co-localize with batch effects. These spurious signals are corrected by re-

imputation. 

Figure 6. Comparison of GWAS results using our harmonization pipeline versus using a standard QC 

pipeline. Left: QQ-plot of p-values. Right: zoom-in of the left panel. 
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Tables 

Table 1. Summary of controls from 16 genotyping studies, grouped by array type. For each array, the 

number of SNPs after harmonization includes the imputed ones. The number of SNPs in the combined 

data set is obtained by taking the intersection. 

 
Array              #Cohorts              Before harmonization             After harmonization 

               #Samples         #SNPs            #Samples       #SNPs 

Affy6 3 4,504 907K 2,936 6.18M 

Axiom 1 10,000 636K 9,080 5.73M 

Human300 1 219 300K 197 6.42M 

Human550 5 5,559 550K 4,449 6.33M 

Human610 4 4,672 610K 3,604 6.19M 

Human660 2 2,563 660K 2,244 6.25M 

Combined 16 27,517 – 22,510 5.52M 
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Abbreviations 

1KG - 1000 Genomes 

GWAS - Genome-Wide Association Study 

IBD - Inflammatory Bowel Disease 

PC - Principal Component 

QC - Quality Control 

SNP - Single Nucleotide Polymorphism 


