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This supplemental material provides computations for examples and remarks, as well as proofs of theorems,
corollaries and propositions. Appendix A covers the computations of τn and δn in Example 1, while Appendix B
contains the calculation of the Intrinsic Number of Communities of the rank-1 model of Example 2, along with
computations of τn and δn for that model. Appendix C shows the signal-to-noise ratios of the order-m Signed
Path and Signed Cycle statistics, for m arbitrary. In Appendix D, we derive the asymptotic joint null distribution
of Theorem 2.1. Appendix E shows the proof of Theorem 2.2, which consists in providing a lower bound for the
expectation of the χ2 test statistic and an upper bound for its variance under the alternative hypothesis. Likewise,
Appendix F derives the lower bound for the expectation of the oSQ test statistic and the upper bound for its
variance under the alternative hypothesis, presented in Theorem 2.3. Appendix G and Appendix H respectively
report the proofs of Corollary 2.2 and Corollary 2.3 about the level and the power of the χ2 test and the oSQ test.
The proof of Theorem 2.4 about the power and the level of the PE test is provided in Appendix I. Appendix J
shows the proof of the lower bound, which corresponds to Theorem 2.5, and Appendix K contains the proof of the
minimax result of Theorem 2.6. Finally, Appendix L shows the proof of Proposition 3.1 and Proposition 3.2 which
examine the identifiability of MMSBM and give an alternative definition of the Intrinsic Number of Communities.
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Appendix A: Calculations in Example 1

Introduce

yn = 1− 2εn, zn = (dn − an)/2.

Recall that ān = (an + dn)/2, and zn = (dn − an)/2. Then,

P = (ān − bn)I2 − zne1e
′
1 + zne2e

′
2 + bn121

′
2, h=

1

2
(1− yn,1 + yn)′.

We calculate α0, ‖Mh‖2 and ‖M‖2 in general cases.
First, consider α0. Note that ‖h‖2 = h2

1 + h2
2 = (1 + y2

n)/2 and h2
2 − h2

1 = yn. We have

α0 = h′Ph= h′
[
(ān − bn)I2 − zne1e

′
1 + zne2e

′
2 + bn121

′
2

]
h

= (ān − bn)‖h‖2 + zn(h2
2 − h2

1) + bn

= ān(1 + y2
n)/2 + znyn + bn(1− y2

n)/2. (A.1)

Next, we calculate ‖Mh‖2. It follows from (A.1) that

α0 − bn = (ān − bn)(1 + y2
n)/2 + znyn. (A.2)

We plug it into the expression of Mh to get

Mh= Ph− α012 =
[
(ān − bn)I2 − zne1e

′
1 + zne2e

′
2 + bn121

′
2

]
h− α012

= (ān − bn)

[
h1

h2

]
− zn

[
h1

0

]
+ zn

[
0
h2

]
+ bn12 − α012

=

[
(ān − bn − zn)h1

(ān − bn + zn)h2

]
− (α0 − bn)12

=
1

2

[
(ān − bn − zn)(1− yn)
(ān − bn + zn)(1 + yn)

]
− (α0 − bn)12

=
1

2

[
ān − bn − zn
ān − bn + zn

]
+
yn
2

[
−(ān − bn − zn)
ān − bn + zn

]
− (α0 − bn)12

=
1

2

[
ān − bn − zn
ān − bn + zn

]
+
yn
2

[
−(ān − bn − zn)
ān − bn + zn

]
−1

2

[
2znyn
2znyn

]
− 1

2

[
ān − bn
ān − bn

]
− 1

2

[
y2
n(ān − bn)
y2
n(ān − bn)

]
=
zn + yn(ān − bn)

2

[
−1
1

]
− ynzn + y2

n(ān − bn)

2

[
1
1

]
.

The two vectors, 12 and (1,−1)′, are orthogonal to each other. It follows that

‖Mh‖2=
1

2

[
zn + yn(ān − bn)

]2
+
y2
n

2

[
zn + yn(ān − bn)

]2
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=
1

2
(1 + y2

n)
[
zn + yn(ān − bn)

]2
. (A.3)

Last, we calculate ‖M‖2. We have seen that

M = (ān − bn)I2 − zne1e
′
1 + zne2e

′
2 − (α0 − bn)121

′
2.

Introduce M0 = (ān − bn)I2 − (α0 − bn)121
′
2. Then,

M =M0 − zndiag(1,−1). (A.4)

We compute the two eigenvalues of M0. Write v = (1,−1)′. It is seen that v is orthogonal to 12;
furthermore,

M0v =
[
(ān − bn)I2 − (α0 − bn)121

′
2

]
v = (ān − bn)v ∝ v,

M012 =
[
(ān − bn)I2 − (α0 − bn)121

′
2

]
12 = [(ān − bn)− 2(α0 − bn)]12 ∝ 12.

It follows that 12 and v are two eigenvectors of M∗, with the associated eigenvalues as

λ1(M0) = (ān − bn),

λ2(M0) = (ān − bn)− 2(α0 − bn)

= (ān − bn)− [(ān − bn)(1 + y2
n) + 2znyn]

=−(ān − bn)y2
n − 2znyn, (A.5)

where we have applied (A.2) in the last equality. Combining (A.4)-(A.5), we have

‖M‖ ∼

{
|zn|, if |zn| � |ān − bn|,
|ān − bn|, if |zn| � |ān − bn|.

(A.6)

We now combine (A.1), (A.3) and (A.6). In Case (S), zn = 0 and yn = 0. It follows that

α0 =
an + bn

2
, ‖Mh‖2 = 0, ‖M‖2 = (ān − bn)2.

Plugging them into the definitions of δn and τn and noting that ān = an in this case, we immediately
get the claims for Case (S). In Case (AS1), ān = an and zn = 0 but yn may be nonzero. It follows that

α0 =
(1 + y2

n)an + (1− y2
n)bn

2
, ‖Mh‖2 =

1

2
(1 + y2

n)y2
n(an − bn)2, ‖M‖2 = (an − bn)2.

Assuming that |an−bn|=O(an+bn), it follows that (1+y2
n)an+(1−y2

n)bn = (1+Cy2
n)(an+bn)

for some constant C > 0. We obtain

α0 �
an + bn

2
, ‖Mh‖2 � 1

2
y2
n(an − bn)2, ‖M‖2 = (an − bn)2.

In Case (AS2), yn = 0 and zn� |ān − bn|. It follows that

α0 =
ān + bn

2
, ‖Mh‖2 = z2

n/2, ‖M‖2 ∼ z2
n.
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In Case (AS3), yn = 0 and zn� |ān − bn|. It follows that

α0 =
ān + bn

2
, ‖Mh‖2 = z2

n/2, ‖M‖2 ∼ (ān − bn)2.

The claims follow directly.

Appendix B: Calculations in Example 2

We start by showing that the rank-1 model of Example 2 has Intrinsic Number of Communities (INC)
equal to 2, regardless ofK. We first recognize that the INC must be at least greater or equal to 2. Indeed,
suppose that the INC is equal to 1, then we can find η∗ ∈ [0,1] such that Ω = (η∗)21n1

′
n. From the

original model formulation we had Ω = Πηη′Π′, and we assumed that η 6∝ 1K . Thus, it is impossible
for Ω to have all equal entries if Π is eligible, which contradicts the earlier fact that Ω = (η∗)21n1

′
n,

QEA!
We now show that the INC is equal to 2. Define

η∗ = (η∗1 , η
∗
2)′ ∈ [0,1]2, where

{
η∗1 = maxk∈J1,KK ηk
η∗2 = mink∈J1,KK ηk.

We also define the matrix H ∈ [0,1]K×2 such that

H =
1

η∗1 − η∗2

 η1 − η∗2 η∗1 − η1
...

...
ηK − η∗2 η∗1 − ηK

 .

It is straightforward to check that Hη∗ = η and that Π∗ := ΠH is an eligible mixed membership
matrix. It follows that

Ω = ΠPΠ′ = Πηη′Π′ = ΠHη∗(η∗)′H ′Π′ = Π∗P ∗(Π∗)′, (B.1)

where we have defined the matrix P ∗ = η∗(η∗)′ ∈ [0,1]2×2. This shows that the INC of this rank-1
model is equal to 2, regardless of K ≥ 2.

Next, we compute the Signal-to-Noise Ratios (SNR) of both tests for the rank-1 model introduced
in Example 2. We start by computing the SNR of the degree test statistic, δn. Recall that

δn := n3/2α−1
0 ‖Ph− α01K‖2.

Direct calculations show that

P := ηη′ =
cn

a2
n + b2n

(
a2
n anbn

anbn b2n

)
, and α0 := h′Ph=

cn(an + bn)2

4(a2
n + b2n)

.

This allows computing

Ph− α01K =
cn(an + bn)(an − bn)

4(a2
n + b2n)

(
1
−1

)
.
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Together, the results for α0 and Ph− α01K yield the following expression of the SNR:

δn =
1

2
n3/2cn

(an − bn)2

(a2
n + b2n)

∝ n3/2cn
(an − bn)2

(a2
n + b2n)

. (B.2)

Then, we compute the SNR of the oSQ test statistic, τn. Recall that

τn := n2α−2
0 ‖P − α01K1′K‖

4.

We only need to compute ‖P − α01K1′K‖. Straightforward calculations reveal that

P − α01K1′K =
cn(an − bn)

4(a2
n + b2n)

(
3an + bn bn − an
bn − an 3bn + an

)
=:

cn(an − bn)

4(a2
n + b2n)

Q,

where we introduced the matrix Q for notational convenience. The eigenvalues λ+, λ− of Q are the
solutions to the following equation in the x-variable

x2 − Tr(Q)x+ det(Q) = 0, where

{
Tr(Q) = 4(an + bn)

det(Q) = 2(an + bn)2 + 8anbn.

We thus obtain that

λ± = 2(an + bn)± |an − bn|, so λ+ � an + bn,

where the last equivalence follows from our assumption that |an − bn|=O(an + bn). It follows that

‖P − α01K1′K‖ �
cn(an − bn)(an + bn)

4(a2
n + b2n)

.

As a consequence,

τn � n2c2n
(an − bn)4

(a2
n + b2n)2

� n−1δn. (B.3)

Appendix C: Calculations in Remark 2

C.1. SNR of Signed Path statistics

We consider the length-m Signed Path statistic V (m)
n defined as

V
(m)
n =

∑
i1,...,im+1(distinct)

(Ai1i2 − α̂n)(Ai2i3 − α̂n)...(Aimim+1 − α̂n), for m≥ 2,

where we recall that

α̂n =
1

n(n− 1)

∑
i 6=j

Aij .
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For simplicity, we study the corresponding ideal statistic V̄ (m)
n , where we replace α̂n by the population

null edge probability αn:

V̄
(m)
n =

∑
i1,...,im+1(distinct)

(Ai1i2 − αn)(Ai2i3 − αn)...(Aimim+1 − αn).

The following lemma derives the null mean and variance as well as the alternative mean of the ideal
length-m Signed Path statistic. It uses the following quantities, which are defined in the main text:

h=
1

n

n∑
i=1

πi, α0 = h′Ph, and G=
1

n
Π′Π.

In addition, we denote by E1[·] the expectation under the alternative distribution and by E0[·], Var0(·)
the expectation and variance under the null distribution, respectively.

Lemma C.1 (Moments of the ideal length-m Signed Path statistic). Suppose that conditions (3.4) and
(3.5) hold. In addition, let M = P − α01K1′K and suppose that n−1‖Mh‖−1‖M‖2 = o(1). Then,

E0

[
V̄

(m)
n

]
= 0, Var0

(
V̄

(m)
n

)
� nm+1αmn , and E1

[
V̄

(m)
n

]
� nm+1‖Mh‖2‖M‖m−2.

Proof
Under the null hypothesis, we can write

V̄
(m)
n =

∑
i1,...,im+1(distinct)

Wi1i2Wi2i3 ...Wimim+1 ,

where Wij = Aij − αn for all i 6= j. It is straightforward to obtain that E0

[
V̄

(m)
n

]
= 0. Next, we

compute the null variance of the ideal Signed Path statistic. We have, by direct calculations:

Var0
(
V̄

(m)
n

)
= Var0

 ∑
i1,...,im+1(distinct)

Wi1i2Wi2i3 ...Wimim+1



= E0

 ∑
i1,...,im+1(distinct)
j1,...,jm+1(distinct)

Wi1i2 ...Wimim+1Wj1j2 ...Wjmjm+1

� nm+1αmn . (C.1)

Under the alternative hypothesis, we choose P and h such that α0 := h′Ph = αn. This choice
ensures that the network will have the same average degree under the null and alternative hypotheses,
thus making the testing problem harder. As a result, we can write:

V̄
(m)
n =

∑
i1,...,im+1

(distinct)

(Wi1i2 + Ω̄i1i2)(Wi2i3 + Ω̄i2i3)...(Wimim+1 + Ω̄imim+1),

where Wij =Aij −Ωij and Ω̄ij = Ωij − α0 = π′iMπj for all i 6= j. It follows that

E1

[
V̄

(m)
n

]
=

∑
i1,...,im+1

(distinct)

Ω̄i1i2Ω̄i2i3 ...Ω̄imim+1
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=
∑

i1,...,im+1

Ω̄i1i2Ω̄i2i3 ...Ω̄imim+1 −
∑

i1,...,im+1
(not distinct)

Ω̄i1i2Ω̄i2i3 ...Ω̄imim+1

= 1′nΩ̄m1n −O(nm‖M‖m) = 1n(ΠMΠ′)m1′n −O(nm‖M‖m)

= nm−11n(ΠMGM...MGMΠ′)1n −O(nm‖M‖m)

= nm+1h′M(GM...MG)Mh−O(nm‖M‖m)

Since we have assumed that ‖G‖,‖G−1‖< c and n−1‖Mh‖−1‖M‖2 = o(1), we obtain that

E1

[
V̄

(m)
n

]
� nm+1‖Ph− α01K‖2‖P − α01K1K‖m−2. (C.2)

The results in Lemma C.1 allow us to compute the SNR for the length-m Signed Path statistic. We
derive the SNR assuming that the null variance dominates the alternative variance. Thus,

SNR
(
V̄

(m)
n

)
=

∣∣∣E1

[
V̄

(m)
n

]
−E0

[
V̄

(m)
n

]∣∣∣√
max

{
Var0

(
V̄

(m)
n

)
,Var1

(
V̄

(m)
n

)} �
∣∣∣E1

[
V̄

(m)
n

]∣∣∣√
Var0

(
V̄

(m)
n

)
� nm+1‖Mh‖2‖M‖m−2

n(m+1)/2α
m/2
0

= δnτ
(m−2)/4
n .

Similar to our results in Theorem 3.2, there may be instances in which the alternative variance domi-
nates the null variance. In these cases, the SNR still depends on powers of δn and τn, and the detection
boundary is unchanged; details are omitted.

C.2. SNR of Signed Cycle statistics

We consider the length-m Signed Cycle statistic U (m)
n defined as

U
(m)
n =

∑
i1,...,im(distinct)

(Ai1i2 − α̂n)(Ai2i3 − α̂n)...(Aimi1 − α̂n), for m≥ 3.

For simplicity, we study the corresponding ideal statistic Ū (m)
n , where we replace α̂n by the population

null edge probability αn:

Ū
(m)
n =

∑
i1,...,im(distinct)

(Ai1i2 − αn)(Ai2i3 − αn)...(Aimi1 − αn), for m≥ 3.

Lemma C.2 (Moments of the ideal length-m Signed Cycle statistic). Suppose that conditions (3.4)
and (3.5) hold. In addition, let M = P − α01K1′K and assume that |Tr(MG)| � ‖MG‖. Then,

E0

[
Ū

(m)
n

]
= 0, Var0

(
Ū

(m)
n

)
� nmαmn , and

∣∣∣E1

[
Ū

(m)
n

]∣∣∣� nm‖M‖m.
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Proof
Under the null hypothesis, we can write

Ū
(m)
n =

∑
i1,...,im(distinct)

Wi1i2Wi2i3 ...Wimi1 ,

where Wij = Aij − αn for all i 6= j. It is straightforward to obtain that E0

[
Ū

(m)
n

]
= 0. Next, we

compute the null variance of the ideal Signed Cycle statistic. We have, by direct calculations:

Var0
(
Ū

(m)
n

)
= Var0

 ∑
i1,...,im(distinct)

Wi1i2Wi2i3 ...Wimi1

 .

Similar to Equation (D.27), we can decompose the sum into a sum over uncorrelated cycles. It results
that

Var0
(
Ū

(m)
n

)
=Cm

(
n

m

)
αmn (1− αn)m � nmαmn ,

where Cm is a constant that depends on m.
Under the alternative hypothesis, we can write

Ū
(m)
n =

∑
i1,...,im
(distinct)

(Wi1i2 + Ω̄i1i2)(Wi2i3 + Ω̄i2i3)...(Wimi1 + Ω̄imi1),

where Wij =Aij −Ωij and Ω̄ij = Ωij − α0 for all i 6= j. Then, direct calculations show that:

E1

[
Ū

(m)
n

]
=

∑
i1,...,im
(distinct)

Ω̄i1i2Ω̄i2i3 ...Ω̄imi1

=
∑

i1,...,im

Ω̄i1i2Ω̄i2i3 ...Ω̄imi1 −
∑

i1,...,im
(not distinct)

Ω̄i1i2Ω̄i2i3 ...Ω̄imi1

= Tr(Ω̄m)−O
(
nm−1‖M‖m

)
= Tr

(
(ΠMΠ′)m

)
−O

(
nm−1‖M‖m

)
= nmTr ((MG)m)−O

(
nm−1‖M‖m

)
� nm‖MG‖m −O

(
nm−1‖M‖m

)
.

Since we have assumed that ‖G‖,‖G−1‖< c by condition (3.4), we obtain that∣∣∣E1

[
Ū

(m)
n

]∣∣∣� nm‖P − α01K1′K‖
m. (C.3)

The results in Lemma C.2 allow us to compute the SNR for the length-m Signed Cycle statistic. We
derive the SNR assuming that the null variance dominates the alternative variance. Thus,

SNR
(
Ū

(m)
n

)
=

∣∣∣E1

[
Ū

(m)
n

]
−E0

[
Ū

(m)
n

]∣∣∣√
max

{
Var0

(
Ū

(m)
n

)
,Var1

(
Ū

(m)
n

)} �
∣∣∣E1

[
Ū

(m)
n

]∣∣∣√
Var0

(
Ū

(m)
n

)
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� nm‖M‖m

nm/2α
m/2
n

= τ
m/4
n .

Similar to our results in Theorem 3.3, there may be instances in which the alternative variance dom-
inates the null variance. In these cases, the SNR still depends on powers of τn, and the detection
boundary is unchanged; details are omitted.

Appendix D: Proof of Theorem 3.1

Write ϕDCn = (Xn − n)/
√

2n and ψSQn =Qn/(2
√

2n2α̂2
n). We aim to show that (ψDCn ,ψ

SQ
n ) con-

verges to N (0, I2) in distribution. By the Cramér-Wold theorem, it suffices to show that

u ·ψDCn + v ·ψSQn
L−−−−→

n→∞
N (0,1), for any u, v ∈R with u2 + v2 = 1. (D.1)

Below, we first study the null distribution of ψDCn and ψSQn respectively. These analyses produce useful
intermediate results. We then use them to show the desirable claim in (D.1).

D.1. Proof of the null distribution of ψDC
n

We aim to show that

ϕDCn =
Xn − n√

2n

d−→ N (0,1). (D.2)

First, we derive an equivalent expression of Xn. Let T̂n =
∑
i,j,k dist.(Aik − α̂n)(Ajk − α̂n), where

α̂n is the same as in the definition of Xn. We claim that

Xn = n+
T̂n

(n− 1)α̂n(1− α̂n)
. (D.3)

We now show (D.3). By definition,

Xn =

n∑
i=1

(di −d)2

(n− 1)α̂n(1− α̂n)
,

where

α̂n =
1

n(n− 1)
1′nA1n, d=A1n, d=

1

n
1′nA1n = (n− 1)α̂n.

We expand Xn into a sum of two terms that can be easily studied:

Xn =
‖d‖22 − nd

2

(n− 1)α̂n(1− α̂n)
=

1′nA
21n

(n− 1)α̂n(1− α̂n)
− n(n− 1)α̂n

1− α̂n
.

We can compute 1′nA
21n as follows:

1′nA
21n =

∑
i,j

(A2)ij = 1′nA1n +
∑

i,j,k dist.

AikAjk = n(n− 1)α̂n +
∑

i,j,k dist.

AikAjk.
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Hence we further reexpress Xn as

Xn =

∑
i,j,k dist.AikAjk

(n− 1)α̂n(1− α̂n)
+
n− n(n− 1)α̂n

1− α̂n
.

Recalling that T̂n =
∑
i,j,k dist.(Aik − α̂n)(Ajk − α̂n), we have∑

i,j,k dist.

AikAjk = T̂n + 2(n− 2)α̂n1
′
nA1n − n(n− 1)(n− 2)α̂2

n

= T̂n + n(n− 1)(n− 2)α̂2
n.

It follows that

Xn − n=
T̂n + n(n− 1)(n− 2)α̂2

n

(n− 1)α̂n(1− α̂n)
+
n− n(n− 1)α̂n

1− α̂n
− n=

T̂n
(n− 1)α̂n(1− α̂n)

.

This proves (D.3).
Next, we introduce an ideal counterpart to T̂n, Tn =

∑
i,j,k dist.(Aik −αn)(Ajk −αn). Direct com-

putations show that

E[Tn] = 0, Var(Tn) = 2n(n− 1)(n− 2)α2
n(1− αn)2.

Thus

Var
(

Tn
(n− 1)αn(1− αn)

)
=

2n(n− 2)

n− 1
.

Combining it with (D.3), we obtain

Xn − n√
2n

=

(
αn(1− αn)

α̂n(1− α̂n

)(
T̂n
Tn

)(
n− 2

n− 1

)1/2

 Tn
(n−1)αn(1−αn)√

2n(n−2)
(n−1)

 .

Define

Un =
αn(1− αn)

α̂n(1− α̂n)
, Vn =

T̂n
Tn

, Zn =

Tn
(n−1)αn(1−αn)√

2n(n−2)
(n−1)

.

We have the following decomposition:

Xn − n√
2n

=

(
n− 2

n− 1

)1/2

UnVnZn. (D.4)

Below, we study Un, Vn, and Zn, separately.
Consider Un. Note that

α̂n =
1

n(n− 1)
1′nA1n =

2

n(n− 1)

∑
i<j

Aij ,
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where (Aij)i<j are i.i.d. Bernoulli random variables with mean αn. By the Weak Law of Large Num-
bers we obtain that

α̂n
αn

=
2

n(n− 1)

∑
i<j

Aij
αn

P−→ 1, (D.5)

from which we conclude that Un
P−→ 1.

Consider Vn. Note that

T̂n − Tn =
∑

i,j,k dist.

(Aik − α̂n)(Ajk − α̂n)−
∑

i,j,k dist.

(Aik − αn)(Ajk − αn)

=
∑

i,j,k dist.

(αn − α̂n)(Aik +Ajk − αn − α̂n)

= (αn − α̂n)

2

 ∑
i,j,k dist.

Aik

− n(n− 1)(n− 2)(αn + α̂n)


= (αn − α̂n)

[
2(n− 2)1′nA1n − n(n− 1)(n− 2)(αn + α̂n)

]
= (αn − α̂n) [2n(n− 1)(n− 2)α̂n − n(n− 1)(n− 2)(αn + α̂n)]

=−n(n− 1)(n− 2)(αn − α̂n)2.

It follows that∣∣∣∣∣ T̂n − TnTn

∣∣∣∣∣=
∣∣∣∣n(n− 1)(n− 2)(αn − α̂n)2

Tn

∣∣∣∣
=

√
2(n− 2)

n(n− 1)

(√
n(n− 1)

2

α̂n − αn√
αn(1− αn)

)2
∣∣∣∣∣∣
√

2n(n−2)
n−1
Tn

(n−1)αn(1−αn)

∣∣∣∣∣∣
=

√
n− 2

2(n− 1)

(√
n(n− 1)

2

α̂n − αn√
αn(1− αn)

)2
1√
n|Zn|

.

Note that α̂n = 2
n(n−1)

∑
i<j A(i, j), where Aij are i.i.d. Bernoulli random variables with mean αn.

By the Central Limit Theorem,√
n(n− 1)

2

α̂n − αn√
αn(1− αn)

L−−−−→
n→∞

N (0,1).

We will show later that Zn
L−→N (0,1). It follows that (

√
n|Zn|)−1 P−→ 0 (by Slutsky’s theorem) and

we conclude by Slutsky’s theorem again that∣∣∣∣∣ T̂n − TnTn

∣∣∣∣∣ P−→ 0, (D.6)

which shows that Vn
P−→ 1.
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Consider Zn. We define

Im = {(i, j, k) ∈ J1,mK3 s.t. i, j, k are distinct},

and the following quantities for m ∈ J1, nK

Tn,m =
∑

(i,j,k)∈Im

WikWjk, and Tn,0 = 0,

Zn,m =

√
n− 1

2n(n− 2)

Tn,m
(n− 1)αn(1− αn)

, and Zn,0 = 0.

Consider the filtration {Fn,m}1≤m≤n with Fn,m = σ{Wij , (i, j) ∈ J1,mK2} for all m ∈ J1, nK,
Fn,0 = {Ω,∅} (where Ω denotes the sample space). It is straightforward to see that for all 0 ≤
m ≤ n, Zn,m is Fn,m-measurable, E[|Zn,m|] <∞ and E

[
Tn,m+1|Fn,m

]
= Tn,m. This shows that

{Zn,m}1≤m≤n is a martingale with respect to {Fn,m}1≤m≤n. Define the martingale difference se-
quence, for all m= 1, ..., n

Xn,m = Zn,m −Zn,m−1.

With these notations we have Zn ≡ Zn,n =
∑n
m=1Xn,m. Provided the following two conditions are

met

(a)
n∑

m=1

E[X2
n,m|Fn,m−1]

P−→ 1, (D.7)

(b) ∀ε > 0,

n∑
m=1

E[X2
n,m1{|Xn,m > ε|}|Fn,m−1]

P−→ 0, (D.8)

we conclude using the Martingale Central Limit Theorem that Zn
L−→N (0,1).

So far, we have shown that Zn
L−→N (0,1), Un

P−→ 1 and Vn
P−→ 1. We plug them into (D.4). Then,

(D.2) follows immediately from Slutsky’s theorem.
The only remaining steps are to verify that (D.7) and (D.8) are indeed satisfied.

Proof of Equation (D.7): It suffices to show that

E

[
n∑

m=1

E[X2
n,m|Fn,m−1]

]
= 1, (D.9)

and

Var

(
n∑

m=1

E[X2
n,m|Fn,m−1]

)
n→∞−−−−→ 0. (D.10)

First, we prove Equation (D.9). For notational convenience we write

Cn := (n− 1)αn(1− αn)

√
2n(n− 2)

n− 1
.
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It follows that for all n ∈N∗ and m ∈ J1, nK

CnXn,m =Cn(Zn,m −Zn,m−1) = Tn,m − Tn,m−1 =
∑

(i,j,k)∈Im\Im−1

WikWjk.

Triplets in Im \ Im−1 are such that one of the nodes is m: either one of the wingnodes {i, j}, or the
centernode k. Hence,

CnXn,m = 2
∑

1≤j,k≤m−1
j 6=k

WmkWjk +
∑

1≤i,j≤m−1
i 6=j

WimWjm. (D.11)

As a result (in the following, summations are all up to m− 1)

C2
nX

2
n,m = 4

∑
k 6=j
i 6=l

WmkWjkWmiWil + 4
∑
k 6=j
i 6=l

WmkWjkWimWlm +
∑
i 6=j
k 6=l

WimWjmWkmWlm.

It follows that

E[C2
nX

2
n,m|Fn,m−1] = 4

∑
k 6=j; i 6=l

WjkWilE [WmkWmi] + 4
∑

k 6=j; i 6=l
WjkE [WimWkmWlm]

+
∑

i 6=j; k 6=l
E
[
WimWjmWkmWlm

]
=4αn(1− αn)

∑
i

∑
j 6=i,l 6=i

WijWil + 2(m− 1)(m− 2)α2
n(1− αn)2

=4αn(1− αn)
∑

(i,j,l)∈Im−1

WijWil + 4αn(1− αn)
∑
i 6=j

W 2
ij

+ 2(m− 1)(m− 2)α2
n(1− αn)2

=4αn(1− αn)
(
Tn,m−1 +

∑
i 6=j

W 2
ij

)
+ 2(m− 1)(m− 2)α2

n(1− αn)2.

(D.12)

Let 1n,m ∈Rn be a vector whose m first entries are 1, and whose remaining entries are 0. Define

α̂n,m :=
1′n,mA1n,m
m(m− 1)

.

By direct calculations,∑
i 6=j

W 2
ij =

∑
i 6=j

(Aij − αn)2 =
∑
i 6=j

[
Aij(1− 2αn) + α2

n

]
= (m− 1)(m− 2)α2

n + (1− 2αn)
∑
i,j

Aij

= (m− 1)(m− 2)α2
n + (1− 2αn)(m− 1)(m− 2)α̂n,m−1.
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We plug the above equation into (D.12) to get

E[C2
nX

2
n,m|Fn,m−1] = 4αn(1− αn)Tn,m−1 + 2(m− 1)(m− 2)α2

n(1− αn)2

+ 4(m− 1)(m− 2)α3
n(1− αn)

+ 4(m− 1)(m− 2)αnα̂n,m−1(1− αn)(1− 2αn). (D.13)

It follows that

C2
n

n∑
m=1

E[X2
n,m|Fn,m−1] = 4αn(1− αn)

n∑
m=1

Tn,m−1

+
[
2α2

n(1− αn)2 + 4α3
n(1− αn)

] n∑
m=1

(m− 1)(m− 2)

+ 4αn(1− αn)(1− 2αn)

n∑
m=1

(m− 1)(m− 2)α̂n,m−1.

Recall that E[Tn,m−1] =
∑

(i,j,k)∈Im−1
E[WikWjk] =

∑
(i,k)∈Im−1

E[W 2
ik] =

(m−1)(m−2)
2 αn(1 −

αn). Additionally, E[α̂n,m−1] = αn. We thus have

C2
nE

[
n∑

m=1

E[X2
n,m|Fn,m−1]

]
= 2α2

n(1− αn)2
n∑

m=1

(m− 1)(m− 2)

+
[
2α2

n(1− αn)2 + 4α3
n(1− αn)

] n∑
m=1

(m− 1)(m− 2)

+ 4αn(1− αn)(1− 2αn)

n∑
m=1

αn(m− 1)(m− 2)

= 6α2
n(1− αn)2

n∑
m=1

(m− 1)(m− 2)

= 2α2
n(1− αn)2n(n− 1)(n− 2) =C2

n.

This proves (D.9).
Second, we prove Equation (D.10). In the second line of (D.12), we have seen that

C2
nE[X2

n,m|Fn,m−1] = 4αn(1− αn)
∑
k

∑
1≤i 6=j≤m−1
i 6=k,j 6=k

WkiWkj + 2(m− 1)(m− 2)α2
n(1− αn)2

= 8αn(1− αn)
∑
k

∑
1≤i<j≤m−1
i 6=k,j 6=k

WkiWkj + 2(m− 1)(m− 2)α2
n(1− αn)2.
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As a result,

Var

(
C2
n

n∑
m=1

E[X2
n,m|Fn,m−1]

)
≤ 64α2

nVar

 n∑
m=1

∑
k

∑
1≤i<j≤m−1
i 6=k,j 6=k

WkiWkj

 .

Recall that in the previous sums, summation over the indices i, j, k ranges from 1 to m− 1. We rear-
range the terms of the sums in order to facilitate the computation of the variance. Instead of summing
over the order m, then over centernodes k ranging from 1 to m− 1, and finally over wingnodes i, j
also ranging from 1 to m− 1, we now sum over centernodes k ranging from 1 to n− 1, wingnodes
ranging from 1 to n− 1, and finally over orders m>max (i, j, k).

Var

(
C2
n

n∑
m=1

E[X2
n,m|Fn,m−1]

)
≤ 64α2

nVar

n−1∑
k=1

∑
1≤i<j≤n−1
i 6=k,j 6=k

∑
m>max(i,j,k)

WkiWkj



≤ 64α2
nn

2Var

n−1∑
k=1

∑
1≤i<j≤n−1
i 6=k,j 6=k

WkiWkj

= 64α2
nn

2
n−1∑
k=1

Var

 ∑
1≤i<j≤n−1
i 6=k,j 6=k

WkiWkj

 ,

where the last equality comes from the fact that in the above sum, terms corresponding to different
values of the index k are uncorrelated. As a result

Var

(
C2
n

n∑
m=1

E[X2
n,m|Fn,m−1]

)
≤ 64α2

nn
2
n−1∑
k=1

∑
1≤i<j≤n−1
1≤u<v≤n−1
i,j,u,v 6=k

Cov(WkiWkj ,WkuWkv). (D.14)

We examine the possible cases for Cov(WkiWkj ,WkuWkv).

• Case 1: (i, j) = (u, v), then Cov(WkiWkj ,WkuWkv) = Var(WkiWkj) = α2
n(1− αn)2.

• Case 2: i= u, j 6= v or i 6= u, j = v, then Cov(WkiWkj ,WkuWkv) = 0.
• All other cases: Cov(WkiWkj ,WkuWkv) = 0.

It follows that

Var

(
C2
n

n∑
m=1

E[X2
n,m|Fn,m−1]

)
≤ 64α2

nn
2
n−1∑
k=1

∑
1≤i<j≤n−1

i,j 6=k

Var(WkiWkj)

= 64α2
nn

2
n−1∑
k=1

∑
1≤i<j≤n−1

i,j 6=k

α2
n(1− αn)2 ≤ 32α4

nn
5.

Hence

Var

(
n∑

m=1

E[X2
n,m|Fn,m−1]

)
≤ 32α4

nn
5

C4
n

=
1

n

(
n4

(n− 1)2(n− 2)2

)(
8

(1− αn)4

)
−−−−→
n→∞

0.
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This proves (D.10).

Proof of Equation (D.8): Notice that by the Cauchy-Schwarz and Markov inequalities we obtain the
following upper bound∣∣∣∣∣

n∑
m=1

E[X2
n,m1{|Xn,m > ε|}|Fn,m−1]

∣∣∣∣∣≤
n∑

m=1

√
E[X4

n,m|Fn,m−1]
√

P(|Xn,m|> ε|Fn,m−1)

≤ 1

ε2

n∑
m=1

E[X4
n,m|Fn,m−1].

Thus it suffices to show that
∑n
m=1 E[X4

n,m|Fn,m−1]
P−→ 0. Since these random variables are all non-

negative, we will equivalently show that

n∑
m=1

E[X4
n,m] = E

[
n∑

m=1

E[X4
n,m|Fn,m−1]

]
n→∞−−−−→ 0. (D.15)

We now show (D.15). Recall that (see (D.11))

CnXn,m = 2
∑

1≤i<j≤m−1

WimWjm + 2
∑

1≤i<j≤m−1

WijWjm

= 2
∑

1≤i<j≤m−1

Wjm(Wij +Wim).

Then (with summations ranging from 1 to m− 1)

C4
nX

4
n,m = 16

∑
i<j
u<v
k<l
r<s

Wjm(Wij +Wim)Wvm(Wuv +Wum)Wlm(Wkl +Wkm)Wsm(Wrs +Wrm).

Taking expectations, we consider 4 types of cases in which the expectation is non-zero:

• Case 1: i= u= k = r and j = v = l= s (1 instance),
• Case 2: i= k,u= r with i 6= u and j = l, v = s with j 6= v (3 instances),
• Case 3: i= u= k = r and j = l, v = s with j 6= v (3 instances),
• Case 4: i= k,u= r with i 6= u and j = v = l= s (3 instances),
• Other cases: E[Wjm(Wij +Wim)Wvm(Wuv+Wum)Wlm(Wkl+Wkm)Wsm(Wrs+Wrm] =

0.

It follows that

E[C4
nX

4
n,m] =16

[∑
i<j

E[W 4
jm]E[(Wij +Wim)4]

+ 3
∑

i<j,u<v
i 6=u,j 6=v

E[W 2
jm]E[(Wij +Wim)2]E[W 2

vm]E[(Wij +Wim)2]
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+ 3
∑
i<j,v
j 6=v

E[W 2
jm]E[W 2

vm]E[(Wij +Wim)2(Wiv +Wim)2]

+ 3
∑
i,u<j
i 6=u

E[(Wij +Wim)2]E[(Wuj +Wum)2]E[W 4
jm]

]
.

We provide upper bounds for the above expectations. Indeed for all (a, b) ∈ J1, nK2

E[W 4
ab] = (1− αn)4αn + α4

n(1− αn) = αn(1− αn)(α3
n + (1− αn)3).

It is then straightforward to show, taking c∗ > 0 to be a high enough constant, that

E[W 4
jm]≤ c∗αn, E[(Wij +Wim)4]≤ c∗αn, E[W 2

jm]2 ≤ c∗α2
n,

E[(Wij +Wim)2]2 ≤ c∗α2
n, E[(Wij +Wim)2(Wiv +Wim)2]≤ c∗αn.

It follows that

E[C4
nX

4
n,m]≤ 16

∑
i<j

c2∗α
2
n + 3

∑
i<j,u<v
i 6=u,j 6=v

c2∗α
4
n + 3

∑
i<j,v
j 6=v

c2∗α
3
n + 3

∑
i,u<j
i 6=u

c2∗α
3
n


≤ 16c2∗n

2α2
n

(
1 + 3n2α2

n + 6nαn

)
=O(n4α4

n), (D.16)

where in the last line we have used the assumption of nαn→∞ to identify the dominating term. Note
that Cn is at the order of n

√
nαn. We thus obtain

E

[
n∑

m=1

E[X4
n,m|Fn,m−1]

]
= n ·O

(
n4α4

n

(n
√
nαn)4

)
=O

(
n−1

)
.

This proves (D.15).

D.2. Proof of the null distribution of ψSQ
n

We aim to show that

ϕSQn =
Qn

2
√

2n2α̂2
n

L−−−−→
n→∞

N (0,1). (D.17)

Let δ̂n = αn−α̂n. We then haveAij−α̂n =Wij+ δ̂n. It follows thatQn =
∑

(i1,i2,i3,i4) dist.(Wi1i2 +

δ̂n)(Wi2i3 + δ̂n)(Wi3i4 + δ̂n)(Wi4i1 + δ̂n). We introduce an ideal version of Qn,

Q̃n =
∑

(i1,i2,i3,i4) dist.

Wi1i2Wi2i3Wi3i4Wi4i1 ,
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and re-express

ψSQn =
Qn

2
√

2n2α̂2
n

=
Qn − Q̃n
2
√

2n2α2
n

(
αn
α̂n

)2

+
Q̃n

2
√

2n2α2
n

(
αn
α̂n

)2

. (D.18)

If we can show that

(a)
Qn − Q̃n
2
√

2n2α2
n

P−→ 0, (D.19)

(b)
Q̃n

2
√

2n2α2
n

→d N (0,1), (D.20)

then (D.17) follows from Slutsky’s theorem and the fact that α̂n/αn
P−→ 1.

What remains is to prove (D.19) and (D.20).

Proof of Equation (D.19): Expanding Qn, we obtain:

Qn − Q̃n =n(n− 1)(n− 2)(n− 3)δ̂4
n + 4(n− 2)(n− 3)δ̂3

n

∑
i 6=j

Wij

+ 4(n− 3)δ̂2
n

∑
i,j,k dist.

WijWjk + 2δ̂2
n

∑
i,j,k,l dist.

WijWkl

+ 4δ̂n
∑

i,j,k,l dist.

WijWjkWkl.

It follows that∣∣∣∣Qn − Q̃nn2α2
n

∣∣∣∣≤n2 δ̂
4
n

α2
n

+ 4
|δ̂n|3

α2
n

∣∣∣∣∑
i 6=j

Wij

∣∣∣∣+ 4|δ̂n|
n2α2

n

∣∣∣∣ ∑
i,j,k,l dist.

WijWjkWkl

∣∣∣∣
+
δ̂2
n

α2
n

 4

n

∣∣∣∣ ∑
i,j,k dist.

WijWjk

∣∣∣∣+ 2

n2

∣∣∣∣ ∑
i,j,k,l dist.

WijWkl

∣∣∣∣
 . (D.21)

We will bound each of the terms on the right hand side of (D.21).
Consider the first term in (D.21). Note that

n2 δ̂
4
n

α2
n

= 4
(1− αn)2

(n− 1)2

(√
n(n− 1)

2

α̂n − αn√
αn(1− αn)

)4

.

By Central Limit Theorem,
√

n(n−1)
2

α̂n−αn√
αn(1−αn)

→N (0,1). It follows from Slutsky’s theorem that

n2δ̂4
n/α

2
n

P−→ 0. (D.22)
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Consider the second term in (D.21). Since δ̂n = α̂n−αn, using the definition of α̂n, we immediately
have

∑
i<jWij =

n(n−1)
2 δ̂n. As a result,

|δ̂3
n|
α2
n

∣∣∣∣∑
i 6=j

Wij

∣∣∣∣= n(n− 1)
δ̂4
n

α2
n
≤ n2 δ̂

4
n

α2
n

P−→ 0. (D.23)

Consider the fourth term in (D.21). First, letAn = 1
n3αn

∑
i,j,k dist.WijWik. Applying Chebyshev’s

inequality, we have that for any λ > 0,

P(|An|> λ)≤ E[A2
n]

λ2
≤ 62

n6α2
nλ

2

∑
i<j<k
u<v<w

E[WijWjkWuvWvw]

=
36

n6α2
nλ

2

∑
i<j<k

E[W 2
ijW

2
jk]≤ 36

n3λ2
n→∞−−−−→ 0,

which shows that An
P−→ 0. Furthermore,

δ̂2
n

nα2
n

∣∣∣∣ ∑
i,j,k dist.

WijWjk

∣∣∣∣= 2(1− αn)
( n

n− 1

)[√n(n− 1)

2

α̂n − αn√
αn(1− αn)

]2

|An|.

By Slutsky’s theorem, we have

δ̂2
n

nα2
n

∣∣∣∣ ∑
i,j,k dist.

WijWjk

∣∣∣∣ P−→ 0. (D.24)

Second, let Bn = 1
αnn4

∑
i,j,k,l dist.WijWkl. We apply Chebyshev’s inequality: For any λ > 0,

P(|Bn|> λ)≤ E[B2
n]

λ2
≤ 1

α2
nn

8λ2

∑
i,j,k,l dist.
s,t,u,v dist.

E[WijWklWstWuv]

=
242

α2
nn

8λ2

∑
i<j<k<l
s<t<u<v

E[WijWklWstWuv] =
242

α2
nn

8λ2

∑
i<j<k<l

E[W 2
ijW

2
kl]

=
242

α2
nn

8λ2

∑
i<j<k<l

E[W 2
ij ]E[W 2

kl]≤
242

n4λ2
n→∞−−−−→ 0,

which shows that Bn
P−→ 0. Furthermore,

δ̂2
n

n2α2
n

∣∣∣∣ ∑
i,j,k,l dist.

WijWkl

∣∣∣∣= 2(1− αn)n

n− 1

[√
n(n− 1)

2

α̂n − αn√
αn(1− αn)

]2

|Bn|.

We conclude by Slutsky’s theorem that

δ̂2
n

n2α2
n

∣∣∣∣ ∑
i,j,k,l dist.

WijWkl

∣∣∣∣ P−→ 0. (D.25)
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Consider the third term in (D.21). Write Dn = 1

α
3/2
n n3

∑
i,j,k,l dist.WijWjkWkl. By Chebyshev’s

inequality, for any λ > 0,

P(|Dn|> λ)≤ E[D2
n]

λ2
=

1

α3
nn

6λ2
E

[ ∑
i,j,k,l dist.
u,v,w,z dist.

WijWjkWklWuvWvwWwz

]

=
2

α3
nn

6λ2
E

[ ∑
i,j,k,l dist.

W 2
ijW

2
jkW

2
kl

]
≤ 2

n2λ2
−−−−→
n→∞

0,

which implies that Dn
P−→ 0. Furthermore,

δ̂n
n2α2

n

∣∣∣∣ ∑
i,j,k,l dist.

WijWjkWkl

∣∣∣∣=
√

2n(1− αn)

n− 1

[√
n(n− 1)

2

α̂n − αn√
αn(1− αn)

]
|Dn|.

We conclude by Slutsky’s theorem that

δ̂n
n2α2

n

∣∣∣∣∣∣
∑

i,j,k,l dist.

WijWjkWkl

∣∣∣∣∣∣ P−→ 0. (D.26)

We plug (D.22)-(D.26) into (D.21) to get (D.19).

Proof of Equation (D.20): We introduce some notation to simplify the computations. Given 4 distinct
nodes, there are 3 different possible cycles, denoted as

CC(i1, i2, i3, i4) = {(i1, i2, i3, i4), (i1, i2, i4, i3), (i1, i3, i2, i4)}.

Moreover, for B ⊂ {1,2, ..., n}4, let CC(B) = ∪(i1,i2,i3,i4)∈BCC(i1, i2, i3, i4). For 1 ≤m ≤ n, let
Im be the collection of (i1, i2, i3, i4) such that 1≤ i1 < i2 < i3 < i4 ≤m. We thus have

Q̃n = 8
∑

CC(In)

Wi1i2Wi2i3Wi3i4Wi4i1 . (D.27)

It is straightforward to see that E[Q̃n] = 0. In addition, notice that the terms in the sum are un-
correlated, since they all correspond to different cycles: to obtain a non-zero correlation between
Wi1i2Wi2i3Wi3i4Wi4i1 and Wi′1i

′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
, we would need to uniquely match each factor

in Wi1i2Wi2i3Wi3i4Wi4i1 with a factor in Wi′1i
′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
, which is equivalent to overlaying

the two cycles [i1i2i3i4] and [i′1i
′
2i
′
3i
′
4]. Let’s compute the variance

Var(Q̃n) = 64Var

 ∑
CC(In)

Wi1i2Wi2i3Wi3i4Wi4i1


= 64α4

n(1− αn)4 × 3

(
n

4

)
= 8α4

n(1− αn)4n(n− 1)(n− 2)(n− 3).
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Let Zn := 2
√

2n(n− 1)(n− 2)(n− 3)α2
n(1 − αn)2. It is easy to see that n2α2

n/Zn
n→∞−−−−→ 1. By

Slutsky’s theorem, to show (D.20), it suffices to show that

Q̃n
Zn

L−−−−→
n→∞

N (0,1). (D.28)

We now prove (D.28). For each 1≤m≤ n, we define

Xn,m =
Q̃n,m − Q̃n,m−1

Zn
, where Q̃n,m =

∑
CC(Im)

Wi1i2Wi2i3Wi3i4Wi4i1 .

By default, we let Q̃n,0 = 1. Recall that we previously defined the filtration {Fn,m : 0≤m≤ n} such
that Fn,m = σ{Wij : (i, j) ∈ J1,mK2} for m ≥ 1 and Fn,0 = {Ω,∅} (where Ω denotes the sample
space). It is easy to see that E[|Q̃n,m|] <∞. Hence, Q̃n,m is Fn,m-measurable. It is also straight-
forward to show that E[Q̃n,m+1|Fn,m] = Q̃n,m. Therefore, the sequence {Qn,m : m ∈ J1, nK} is a
martingale with respect to {Fn,m :m ∈ J1, nK}. It follows that the sequence {Xn,m :m ∈ J1, nK} is a
martingale difference sequence. Note that

Q̃n/Zn = Q̃n,n/Zn =

n∑
m=1

Xn,m.

By the martingale Central Limit Theorem, to show (D.28), it suffices to show:

(b1)
n∑

m=1

E[X2
n,m|Fn,m−1]

P−→ 1, (D.29)

(b2) ∀ε > 0,

n∑
m=1

E[X2
n,m1{|Xn,m > ε|}|Fn,m−1]

P−→ 0. (D.30)

Below, we show (D.29) and (D.30) separately.
In the first part, we prove (D.29). It suffices to show:

E

[
n∑

m=1

E[X2
n,m|Fn,m−1]

]
= 1, (D.31)

and

Var

(
n∑

m=1

E[X2
n,m|Fn,m−1]

)
n→∞−−−−→ 0. (D.32)

Consider (D.31) first. Recall that by definition

Xn,m =
Q̃n,m − Q̃n,m−1

Zn
=

8

Zn

∑
CC(Im)\CC(Im−1)

Wi1i2Wi2i3Wi3i4Wi4i1 .

An alternative way to enumerate all cycles inCC(Im)\CC(Im−1) is to first select a set of two indices
{i, j} (we take, wlog, i < j) from {1, ...,m− 1} and use them as the neighboring nodes of m in the
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cycle. Then select k ∈ {1, ...,m− 1} \ {i, j} as the last node of the cycle.

Xn,m =
8

Zn

∑
1≤i<j≤m−1

WmiWmjYm−1,ij , where Ym−1,ij =
∑

1≤k≤m−1
k/∈{i,j}

WkiWkj .

It follows that

E[X2
n,m|Fn,m−1] =

64

Z2
n

∑
1≤i<j≤m−1
1≤u<v≤m−1

E[WmiWmjYm−1,ijWmuWmvYm−1,uv|Fn,m−1]

=
64

Z2
n

∑
1≤i<j≤m−1
1≤u<v≤m−1

Ym−1,ijYm−1,uvE[WmiWmjWmuWmv]

=
64

Z2
n

∑
1≤i<j≤m−1

Y 2
m−1,ijE[W 2

miW
2
mj ] =

64α2
n(1− αn)2

Z2
n

∑
1≤i<j≤m−1

Y 2
m−1,ij .

Hence

E

[
n∑

m=1

E[X2
n,m|Fn,m−1]

]
=

64α2
n(1− αn)2

Z2
n

n∑
m=1

∑
1≤i<j≤m−1

E[Y 2
m−1,ij ],

where

E[Y 2
m−1,ij ] =

∑
1≤k,l≤m−1
k,l/∈{i,j}

E
[
WkiWkjWliWlj

]
=

∑
1≤k≤m−1
k/∈{i,j}

E
[
W 2
kiW

2
kj

]

= (m− 3)α2
n(1− αn)2.

It follows that

E

[
n∑

m=1

E[X2
n,m|Fn,m−1]

]
=

64α2
n(1− αn)2

Z2
n

n∑
m=1

(m− 1)(m− 2)(m− 3)

2
α2
n(1− αn)2 = 1.

This proves (D.31).
Consider (D.32) next. We decompose

∑n
m=1 E[X2

n,m|Fn,m−1] into a sum of two components, then
calculate its variance. Note that

Y 2
m−1,ij =

( ∑
1≤k≤m−1
k/∈{i,j}

WkiWkj

)2

=
∑

1≤k≤m−1
k/∈{i,j}

W 2
kiW

2
kj + 2

∑
1≤k<l≤m−1
k,l/∈{i,j}

WkiWkjWliWlj .

Hence

n∑
m=1

E[X2
n,m|Fn,m−1] =

64α2
n(1− αn)2

Z2
n

n∑
m=1

∑
1≤i<j≤m−1

Y 2
m−1,ij =

16n4α4
n

Z2
n

(Ia + Ib),
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where we denote

Ia =
4(1− αn)2

n4α2
n

n∑
m=1

∑
1≤i<j≤m−1

∑
1≤k≤m−1
k/∈{i,j}

W 2
kiW

2
kj ,

Ib =
8(1− αn)2

n4α2
n

n∑
m=1

∑
1≤i<j≤m−1

∑
1≤k<l≤m−1
k,l/∈{i,j}

WkiWkjWliWlj .

Using the Cauchy-Schwarz inequality we obtain

Var

(
n∑

m=1

E[X2
n,m|Fn,m−1]

)
=

256n8α8
n

Z4
n

(Var(Ia) + Var(Ib) + 2Cov(Ia, Ib))

≤ 256n8α8
n

Z4
n

(
√

Var(Ia) +
√

Var(Ib))
2.

Hence, it suffices to show that Var(Ia)
n→∞−−−−→ 0 and Var(Ib)

n→∞−−−−→ 0 separately. For Var(Ia), we first
rearrange the sums in the expression of Ia

Ia =
4(1− αn)2

n4α2
n

n−1∑
k=1

∑
1≤i<j≤n−1

i,j 6=k

∑
m>max{i,j,k}

W 2
kiW

2
kj

=
4(1− αn)2

n4α2
n

n−1∑
k=1

∑
1≤i<j≤n−1

i,j 6=k

(n−max{i, j, k}+ 1)W 2
kiW

2
kj .

Note that the terms of the first sum over k = 1, ..., n are pairwise independent, which will facilitate
variance computations. Hence

Var(Ia) =
16(1− αn)4

n8α4
n

n−1∑
k=1

Var

 ∑
1≤i<j≤n−1

i,j 6=k

(n−max{i, j, k}+ 1)W 2
kiW

2
kj


≤ 16(1− αn)4

n6α4
n

n−1∑
k=1

∑
1≤i<j≤n−1

i,j 6=k

∑
1≤u<v≤n−1

u,v 6=k

Cov(W 2
kiW

2
kj ,W

2
kuW

2
kv).

We can consider four cases for Cov(W 2
kiW

2
kj ,W

2
kuW

2
kv):

1. (i, j) = (u, v), then Var(W 2
kiW

2
kj)≤ E[W 4

kiW
4
kj ] = E[W 4

ki]
2 ≤ cα2

n,
2. i= u, j 6= v, then Cov(W 2

kiW
2
kj ,W

2
kiW

2
kv)≤ E[W 4

kiW
2
kjW

2
kv] = E[W 4

ki]E[W 2
kj ]

2 ≤ cα3
n,

3. The previous bound will also hold for the case i 6= u, j = v, the case i= v, and the case j = u,
4. For any other case, Cov(W 2

kiW
2
kj ,W

2
kiW

2
kv) = 0.
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Here, c > 0 is a high enough constant. It follows that

Var(Ia) =
16(1− αn)4

n8α4
n

n−1∑
k=1

∑
1≤i<j≤n−1

i,j 6=k

Var(W 2
kiW

2
kj) +

n−1∑
v=i+1
v/∈{k,j}

Cov(W 2
kiW

2
kj ,W

2
kiW

2
kv)

+

j−1∑
u=1

u/∈{k,i}

Cov(W 2
kiW

2
kj ,W

2
kuW

2
kj) +

i−1∑
u=1
u6=k

Cov(W 2
kiW

2
kj ,W

2
kuW

2
ki) +

n−1∑
v=j+1
v 6=k

Cov(W 2
kiW

2
kj ,W

2
kjW

2
kv)


≤ 16c(1− αn)4

n8α4
n

n−1∑
k=1

∑
1≤i<j≤n−1

i,j 6=k

{
α2
n + 4nα3

n

}
≤ 8c

n3(nαn)

(
4 +

1

nαn

)
n→∞−−−−→ 0.

Let’s now show that Var(Ib)
n→∞−−−−→ 0. Recall that

Ib =
8(1− αn)2

n4α2
n

n∑
m=1

∑
1≤i<j≤m−1

∑
1≤k<l≤m−1
k,l/∈{i,j}

WkiWkjWliWlj

=
2(1− αn)2

n4α2
n

n∑
m=1

∑
1≤i,j,k,l≤m−1
i,j,k,l dist.

WkiWkjWliWlj

=
2(1− αn)2

n4α2
n

∑
1≤i,j,k,l≤n−1
i,j,k,l dist.

∑
m>max{i,j,k,l}

WkiWkjWliWlj

=
2(1− αn)2

n4α2
n

∑
1≤i,j,k,l≤n−1
i,j,k,l dist.

(n+ 1−max{i, j, k, l})WkiWkjWliWlj .

Therefore,

Var(Ib) =
4(1− αn)4

n8α4
n

Var

 ∑
1≤i,j,k,l≤n−1
i,j,k,l dist.

(n+ 1−max{i, j, k, l})WikWkjWjlWli



=
4(1− αn)4

n8α4
n

Var

8
∑

CC(In−1)

(n+ 1−max{i, j, k, l})WikWkjWjlWli


=

32(1− αn)4

n8α4
n

∑
1≤i,j,k,l≤n−1
i,j,k,l dist.

(n+ 1−max{i, j, k, l})2Var(WikWkjWjlWli)
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≤ 32(1− αn)4

n6α4
n

∑
1≤i,j,k,l≤n−1
i,j,k,l dist.

α4
n(1− αn)4 ≤ 32

n2
n→∞−−−−→ 0.

This gives Var(Ib)
n→∞−−−−→ 0. Recall that we had:

Var

(
n∑

m=1

E[X2
n,m|Fn,m−1]

)
≤ 256n8α8

n

Z4
n

(√
Var(Ia) +

√
Var(Ib)

)2
.

Since 256n8α8
n

Z4
n

n→∞−−−−→ 4, we obtain (D.32). In combination with (D.31), this proves (D.29).

In the second part, we prove (D.30). We have, using the Cauchy-Schwarz and Markov inequalities

n∑
m=1

E[X2
n,m1{|Xn,m > ε|}|Fn,m−1]≤

n∑
m=1

√
E[X4

n,m|Fn,m−1]
√
P(|Xn,m| ≥ ε|Fn,m−1])

≤ 1

ε2

n∑
m=1

E[X4
n,m|Fn,m−1].

Hence it suffices to show that

E

[
n∑

m=1

E[X4
n,m|Fn,m−1]

]
=

n∑
m=1

E[X4
n,m]

n→∞−−−−→ 0. (D.33)

Recall that for all n ∈N∗, for all m ∈ J1, nK

Xn,m =
2

Zn

∑
1≤i<j≤m−1

WmiWmjYm−1,ij with Ym−1,ij =
∑

1≤k≤m−1
k/∈{i,j}

WkiWkj .

It follows that

E[X4
n,m|Fn,m−1]

=
16

Z4
n

∑
i<j,u<v
k<l,r<s

Ym−1,ijYm−1,uvYm−1,klYm−1,rs ×E[WmiWmjWmuWmvWmkWmlWmrWms]

=
16

Z4
n


∑
i<j

Y 4
m−1,ijE[W 4

miW
4
mj ] + 3

∑
i

∑
j,v

j,v>i and j 6=v

Y 2
m−1,ijY

2
m−1,ivE[W 4

miW
2
mjW

2
mv]

+3
∑
j

∑
i,u

i,u<j and i 6=u

Y 2
m−1,ijY

2
m−1,ujE[W 4

mjW
2
miW

2
mu] + 9

∑
i<j,u<v

Y 2
m−1,ijY

2
m−1,uvE[W 2

miW
2
mjW

2
muW

2
mv]


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≤ 16

Z4
n


∑
i<j

Y 4
m−1,ijcα

2
n + 3

∑
i

∑
j,v

j,v>i and j 6=v

Y 2
m−1,ijY

2
m−1,ivcα

3
n

+3
∑
j

∑
i,u

i,u<j and i 6=u

Y 2
m−1,ijY

2
m−1,ujcα

3
n + 9

∑
i<j,u<v

Y 2
m−1,ijY

2
m−1,uvcα

4
n

 ,

where c > 0 is a high enough constant. Hence,

E[X4
n,m]≤ 16c

Z4
n

α2
n

∑
i<j

E[Y 4
m−1,ij ] + 3α3

n

∑
i

∑
j,v

j,v>i and j 6=v

E[Y 2
m−1,ijY

2
m−1,iv]

+3α3
n

∑
j

∑
i,u

i,u<j and i 6=u

E[Y 2
m−1,ijY

2
m−1,uj ] + 9α4

n

∑
i<j,u<v

E[Y 2
m−1,ij ]E[Y 2

m−1,uv]

 .

We will now compute upper bounds on E[Y 4
m−1,ij ], E[Y 2

m−1,ijY
2
m−1,iv] and E[Y 2

m−1,ij ]. We have

E[Y 4
m−1,ij ] = E

 ∑
k,l,u,v /∈{i,j}

WkiWkjWliWljWuiWujWviWvj


= 3

∑
k,u/∈{i,j}

E[W 2
kiW

2
kjW

2
uiW

2
uj ]

= 3

 ∑
k/∈{i,j}

E[W 4
kiW

4
kj ] +

∑
k 6=u; k,u/∈{i,j}

E[W 2
kiW

2
kjW

2
uiW

2
uj ]


≤ 12mα2

n + 3m2α4
n ≤ c1(mα2

n +m2α4
n),

where c1 > 0 is a constant. Similarly

E[Y 2
m−1,ij ] = E

 ∑
k,l/∈{i,j}

WkiWkjWliWlj

=
∑

k/∈{i,j}
E[W 2

kiW
2
kj ]≤mα

2
n,

and

E[Y 2
m−1,ijY

2
m−1,iv] = E

 ∑
k,l,r,s:k,l/∈{i,j},r,s/∈{i,v}

WkiWkjWliWljWriWrvWsiWsv


= E

 ∑
k,r:k/∈{i,j},r /∈{i,v}

W 2
kiW

2
kjW

2
riW

2
rv

=
∑

k,r:k/∈{i,j},r /∈{i,v}
E[W 2

kiW
2
kjW

2
riW

2
rv]
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=
∑

k/∈{i,j,v}
E[W 4

kiW
2
kjW

2
kv] +

∑
k 6=r;k/∈{i,j},r /∈{i,v}

E[W 2
kiW

2
kjW

2
riW

2
rv]

≤ 2mα3
n +m2α4

n ≤ c2m2α3
n,

for n big enough (since αn
n→∞−−−−→ 0), where c2 > 0 is a constant. It follows that, for some constant

γ >max{1, c, c1, c2}, we have

E[X4
n,m]≤ 16c

Z4
n

α2
n

∑
i<j

E[Y 4
m−1,ij ] + 3α3

n

∑
i

∑
j,v

j,v>i and j 6=v

E[Y 2
m−1,ijY

2
m−1,iv]

+3α3
n

∑
j

∑
i,u

i,u<j and i 6=u

E[Y 2
m−1,ijY

2
m−1,uj ] + 9α4

n

∑
i<j,u<v

E[Y 2
m−1,ij ]E[Y 2

m−1,uv]


≤ 16γ2

Z4
n

(m3α4
n +m4α6

n + 6m5α6
n + 9α8

nm
6)

≤ 16γ2

Z4
n

(n3α4
n + n4α6

n + 6n5α6
n + 9α8

nn
6).

As a result,

n∑
m=1

E[X4
n,m]≤ 16γ2

n2(n− 1)2(n− 2)2(n− 3)2α8
n(1− αn)8

(n4α4
n + n5α6

n + 6n6α6
n + 9α8

nn
7)

=

(
144γ2n6

(n− 1)2(n− 2)2(n− 3)2(1− αn)8

)(
1

n4α4
n

+
1

n3α2
n

+
1

n2α2
n

+
1

n

)
n→∞−−−−→ 0.

This gives (D.33). Then, (D.30) follows immediately.

D.3. Proof of the joint null distribution

We now show the desirable claim (D.1). We shall use the previously defined notations:

Tn =
∑

i,j,k dist.

(Aik − αn)(Ajk − αn), T̂n =
∑

i,j,k dist.

(Aik − α̂n)(Ajk − α̂n),

Q̃n =
∑

(i1,i2,i3,i4) dist.

Wi1i2Wi2i3Wi3i4Wi4i1 .

We have seen the decomposition of ψDCn in (D.3) and the decomposition of ψSQn in (D.18). We plug
them into the definition of Sn to get:

Sn = u

[
T̂n

(n− 1)α̂n(1− α̂n)

]
+ v

[
Qn − Q̃n
2
√

2n2α2
n

(
αn
α̂n

)2

+
Q̃n

2
√

2n2α2
n

(
αn
α̂n

)2
]



Global Testing of MMSBM 29

= εn + u

Tn
(n−1)αn(1−αn)√

2n(n−2)
(n−1)

+ v
Q̃n

2
√

2n2α2
n

, (D.34)

where

εn = u

Tn
(n−1)αn(1−αn)√

2n(n−2)
(n−1)

[√
n− 1αn(1− αn)T̂n√
n− 2α̂n(1− α̂n)Tn

− 1

]
+v

[
α2
n

α̂2
n

(Qn − Q̃n)

2
√

2n2α2
n

+
(α2

n

α̂2
n
− 1
) Q̃n

2
√

2n2α2
n

]
.

In Sections D.1-D.2, we have shown that

α̂n
αn

P−→ 1,
T̂n
Tn

P−→ 1,

Tn
(n−1)αn(1−αn)√

2n(n−2)
(n−1)

d−→N (0,1),
Qn − Q̃n
2
√

2n2α2
n

d−→N (0,1). (D.35)

It follows immediately that εn
P−→ 0. By Slutsky’s theorem, it suffices to show that

Cn
∆
= u

Tn
(n−1)αn(1−αn)√

2n(n−2)
(n−1)

+ v
Q̃n

2
√

2n2α2
n

L−−−−→
n→∞

N (0,1). (D.36)

Below, we show (D.36). In Section D.1, we have defined Im as the collection of all distinct {(i, j, k)
such that 1≤ i, j, k ≤m; in Section D.2, we have defined CC(Im). For each 1≤m≤ n, let

Tn,m =
∑

(j1,j2,j3)∈Im

Wj1j3Wj2j3 , Q̃n,m =
∑

CC(Im)

Wi1i2Wi2i3Wi3i4Wi4i1 ,

where Tn,0 = Q̃n,0 = 0 by default. Introduce

Cn,m = u

Tn,m
(n−1)αn(1−αn)√

2n(n−2)
(n−1)

+ v
Q̃n,m

2
√

2n2α2
n

, for all 0≤m≤ n.

We have seen that {Tn,m}0≤m≤n and {Q̃n,m}0≤m≤n are both martingales with respect to the filtra-
tion {Fn,m}0≤m≤n defined before. It is easy to see that {Cn,m}0≤m≤n is also a martingale. Write

Cn =

n∑
m=1

Dn,m, where Dn,m ≡Cn,m −Cn,m−1.

To show Cn
d−→N (0,1), we apply the martingale Central Limit Theorem. It suffices to show:

(a)
n∑

m=1

E[D2
n,m|Fn,m−1]

P−→ 1, (D.37)

(b) ∀ε > 0,

n∑
m=1

E[D2
n,m1{|Dn,m > ε|}|Fn,m−1]

P−→ 0. (D.38)
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It remains to show (D.37)-(D.38). Consider (D.38). Write

D
(1)
n,m =

Tn,m−Tn,m−1

(n−1)αn(1−αn)√
2n(n−2)
(n−1)

, and D
(1)
n,m =

Q̃n,m − Q̃n,m−1

2
√

2n2α2
n

.

Then, Dn,m = uD
(1)
n,m + vD

(2)
n,m. It follows that D4

n,m ≤ 8u4(D
(1)
n,m)4 + 8v4(D

(2)
n,m)4. As a result, for

any ε > 0, by the Cauchy-Schwarz inequality and the Markov inequality, we have( n∑
m=1

E[D2
n,m1{|Dn,m > ε|}|Fn,m−1]

)2

≤
( n∑
m=1

E[D4
n,m|Fn,m−1]

)
· P
(
|Dn,m|> ε|Fn,m−1

)
≤

n∑
m=1

E[D4
n,m|Fn,m−1]

≤ 8u4
n∑

m=1

E[(D
(1)
n,m)4|Fn,m−1] + 8v4

n∑
m=1

E[(D
(2)
n,m)4|Fn,m−1].

With significant efforts, we have shown
∑n
m=1 E[(D

(1)
n,m)4|Fn,m−1]

P−→ 0 in Section D.1, and we have

shown
∑n
m=1 E[(D

(2)
n,m)4|Fn,m−1]

P−→ in Section D.2. Plugging them into the above inequality, we
immediately obtain (D.38).

Consider (D.37). Write

An =

n∑
m=1

E[(D
(1)
n,m)2|Fn,m−1], Bn =

n∑
m=1

E[(D
(2)
n,m)2|Fn,m−1],

Mn =

n∑
m=1

E[(D
(1)
n,m)D

(2)
n,m|Fn,m−1].

Then,
n∑

m=1

E[D2
n,m|Fn,m−1] = u2An + v2Bn + 2uvMn,

In Sections D.1-D.2, we have shown that An
P−→ 1 and Bn

P−→ 1. We claim that

Mn
P−→ 0. (D.39)

Then, it follows that
∑n
m=1 E[D2

n,m|Fn,m−1]
P−→ u2 · 1 + v2 · 1 + 2uv · 0 = 1. This gives (D.37).

It remains to show (D.39). Using the expressions of D(1)
n,m and D(2)

n,m, we have

Mn =
M̃n

n2α3
n(1− αn)

√
n(n− 1)(n− 2)

,
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where M̃n =
∑n
m=1 E[(Tn,m − Tn,m−1)(Q̃n,m − Q̃n,m−1)|Fn,m−1]. We plug in the definitions of

Tn,m and Q̃n,m to get

M̃n =

n∑
m=1

 ∑
(j1,j2,j3)∈
Im\Im−1

∑
(i1,i2,i3,i4)∈

CC(Im)\CC(Im−1)

E
[
Wj1j3Wj2j3 ·Wi1i2Wi2i3Wi3i4Wi4i1

∣∣Fn,m−1
]
 .

Let’s see when E[Wj1j3Wj2j3Wi1i2Wi2i3Wi3i4Wi4i1 |Fn,m−1] 6= 0. Since (i1, i2, i3, i4) ∈CC(Im)\
CC(Im−1), exactly one of the four indices must be m. We assume i1 =m without loss of generality.
Since (j1, j2, j3) ∈ Im \ Im−1, exactly one of the three indices must be m. Without loss of generality,
we assume either j1 =m or j3 =m. If j1 =m (and recall that we have assumed i1 =m), then

E[Wj1j3Wj2j3Wi1i2Wi2i3Wi3i4Wi4i1 |Fn,m−1]

= Wj2j3Wi2i3Wi3i4 ·E[Wmj3Wmi2Wi4m|Fn,m−1].

It is nonzero only if j3 = i2 = i4. However, this is impossible, because i2 and i4 need to be distinct. If
j3 =m (and recall that we have assumed i1 =m), we have

E[Wj1j3Wj2j3Wi1i2Wi2i3Wi3i4Wi4i1 |Fn,m−1]

= Wi2i3Wi3i4 ·E[Wj1mWj2mWmi2Wi4m|Fn,m−1].

Note that j1 6= j2 and i2 6= i4. For the above to be nonzero, we must have {i2, i4}= {j1, j2}. It follows
that

M̃n = 8

n∑
m=1

∑
1≤i2,i3,i4≤m−1

(distinct)

Wi2i3Wi3i4 ·E[W 2
mi2W

2
mi4 |Fn,m−1]

= 8α2
n(1− αn)2

n∑
m=1

∑
(i2,i3,i4)∈Im−1

Wi2i3Wi3i4

= 8α2
n(1− αn)2

∑
(i2,i3,i4)∈In−1

(n−max{i2, i3, i4})Wi2i3Wi3i4 . (D.40)

As a result,

E[M2
n] =

E[M̃2
n]

n5(n− 1)(n− 2)α6
n(1− αn)2

=
64α4

n(1− αn)4

n5(n− 1)(n− 2)α6
n(1− αn)2

×E

( ∑
(i2,i3,i4)∈In−1

(n−max{i2, i3, i4})Wi2i3Wi3i4

)2


≤ C

n7α2
n

∑
i2,i3,i4

n2 ·E[W 2
i2i3W

2
i3i4 ]

≤ C

n7α2
n
× n5α2

n
n→∞−−−−→ 0.
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Then, (D.39) follows directly. This completes the proof of Theorem 3.1.

Appendix E: Proof of Theorem 3.2

Define

Un =
α̂n(1− α̂n)

α0(1− α0)
− 1, and Z∗n =

∑n
i=1(di − d̄)2

(n− 1)α0(1− α0)
− n.

By definition, Xn = (1 +Un)−1(n+Z∗n). It follows that

ψDCn ≡ Xn − n√
n

=
1√

n(1 +Un)
(Z∗n − nUn). (E.1)

The asymptotic behavior of ψDCn is mainly determined by Z∗n. Below, we first calculate the mean and
variance of Z∗n; then, we use these results to study the mean and variance of ψDCn .

The mean and variance of Z∗n. We introduce a matrix

Ω̃ = Ω− α01n1
′
n, where α0 = h′Ph.

Then, Aij =Wij + Ω̃ij + α0, for all i 6= j. Write Ω̃∗ = Ω̃− diag(Ω̃). It follows that

n∑
i=1

(
di − d̄

)2
=

n∑
i=1

∑
j:j 6=i

(Wij + Ω̃ij + α0)− 1

n

∑
(k,`):k 6=`

(Wk` + Ω̃k` + α0)

2

=

n∑
i=1

(
e′iW1n + e′iΩ̃

∗1n −
1

n
1′nW1n −

1

n
1′nΩ̃∗1n

)2

=

n∑
i=1

(
e′iΩ̃
∗1n −

1

n
1′nΩ̃∗1n

)2

+ 2

n∑
i=1

(
e′iΩ̃
∗1n −

1

n
1′nΩ̃∗1n

)
(e′iW1n)

− 2

n∑
i=1

(
e′iΩ̃
∗1n −

1

n
1′nΩ̃∗1n

)(
1

n
1′nW1n

)
+

n∑
i=1

(e′iW1n)2

+
1

n
(1′nW1n)2 − 2

n∑
i=1

(e′iW1n)

(
1

n
1′nW1n

)

=

n∑
i=1

(
e′iΩ̃
∗1n −

1

n
1′nΩ̃∗1n

)2

+ 2

n∑
i=1

(
e′iΩ̃
∗1n −

1

n
1′nΩ̃∗1n

)
(e′iW1n)

+

n∑
i=1

(e′iW1n)2 − 1

n
(1′nW1n)2. (E.2)

We further combine the last two terms of (E.2):

n∑
i=1

(e′iW1n)2 − 1

n
(1′nW1n)2
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=

n∑
i=1

∑
j:j 6=i

Wij

2

− 1

n

∑
i 6=j

Wij

2

=
∑
i 6=j

W 2
ij +

∑
i,j,k dist

WijWik −
2

n

∑
i 6=j

W 2
ij −

1

n

∑
i 6=j

∑
k 6=l

{k,l}6={i,j}

WijWkl

=
n− 2

n

∑
i 6=j

W 2
ij +

∑
i,j,k, dist

WijWik −
1

n

∑
i 6=j

∑
k 6=l

{k,l}6={i,j}

WijWkl.

We plug it into (E.2) to get

(n− 1)α0(1− α0)Z∗n ≡
n∑
i=1

(
di − d̄

)2 − n(n− 1)α0(1− α0)

= Y1 + 2Y2 + Y3 + Y4 − Y5, (E.3)

where

Y1 =

n∑
i=1

(
e′iΩ̃
∗1n −

1

n
1′nΩ̃∗1n

)2

,

Y2 =

n∑
i=1

∑
j 6=i

(
e′iΩ̃
∗1n −

1

n
1′nΩ̃∗1n

)
Wij ,

Y3 =

n− 2

n

∑
i 6=j

W 2
ij

− n(n− 1)α0(1− α0),

Y4 =
∑

i,j,k, dist

WijWik,

Y5 =
1

n

∑
i 6=j

∑
k 6=l

{k,l}6={i,j}

WijWkl.

We now compute the mean of Z∗n. It is easy to see that

E[Z∗n] =
Y1 +E[Y3]

(n− 1)α0(1− α0)
. (E.4)

For Y1, note that Ω̃∗ = Ω̃− diag(Ω̃). Since Π1K = 1n, we can re-write

Ω̃ = Ω− α0Π1K1′KΠ′ = Π
(
P − α01K1′K

)
Π′ = ΠMΠ′.

As a result, Ω̃1n = nΠMh, and 1′nΩ̃1n = 0. We plug them into the expression of Y1 and note that
(a+ b)2 ≥ a2

2 − b
2, for any a, b ∈R. It follows that

Y1 = ‖Ω̃∗1n‖2 −
1

n
(1′nΩ̃∗1n)2
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= ‖Ω̃1n − diag(Ω̃)1n‖2 −
1

n
(1′ndiag(Ω̃)1n)2

≥ 1

2
‖Ω̃1n‖2 − ‖diag(Ω̃)1n‖2 −

1

n
(1′ndiag(Ω̃)1n)2

=
n2

2
‖ΠMh‖2 −

n∑
i=1

Ω̃2
ii −

1

n

(
n∑
i=1

Ω̃ii

)2

.

Note that maxi |Ω̃ii| ≤maxk,l |Mkl|= C‖M‖. Moreover, since G= n−1Π′Π and λmin(G)≥ c, we
have ‖ΠMh‖2 = n(h′MGMh) ≥ Cn‖Mh‖2, and ‖ΠMh‖2 ≤ ‖Π‖2‖Mh‖2 ≤ Cn‖Mh‖2. It fol-
lows that

Y1 =
n2

2
‖ΠMh‖2 −O(n‖M‖2)� n3‖Mh‖2. (E.5)

For Y3, we have

E[Y3] =
n− 2

n

∑
i 6=j

Ωij(1−Ωij)− n(n− 1)α0(1− α0).

Write Ωij(1−Ωij) = α0(1−α0)+(1−2α0)(Ωij−α0)−(Ωij−α0)2. Recalling that Ωij−α0 = Ω̃ij ,
we plug these results into E[Y3] to get

E[Y3] =
n− 2

n

∑
i 6=j

[
α0(1− α0) + (1− 2α0)Ω̃ij − Ω̃2

ij

]
− n(n− 1)α0(1− α0)

=−2(n− 1)α0(1− α0) +
n− 2

n

(1− 2α0)

(
1′nΩ̃1n −

∑
i

Ω̃ii

)
−
∑
i 6=j

Ω̃2
ij


=−2(n− 1)α0(1− α0)− n− 2

n

(1− 2α0)
∑
i

Ω̃ii +
∑
i 6=j

Ω̃2
ij

 .
Then, |E[Y3]| ≤Cnα0 +Cn‖M‖+Cn2‖M‖2. Recall that by assumption, ‖M‖ ≤C‖Mh‖, nα0 → ∞
and δn = n−3/2α−1

0 ‖Mh‖2→∞. It follows that

|E[Y3]|
n3‖Mh‖2

≤ C√
nδn

+
C

n3/4
√
nα0δn

+
C

n
→ 0.

It yields that

E[Y3] = o(n3‖Mh‖2). (E.6)

We plug (E.5)-(E.6) into (E.4) to get

E[Z∗n] =
(n/2)‖ΠMh‖2 − o(n3‖Mh‖2)

(n− 1)α0(1− α0)
� n2α−1

0 ‖Mh‖2. (E.7)

We then compute the variance of Z∗n, it is easy to see that

Var(Z∗n)≤ CVar(Y2) +CVar(Y3) +CVar(Y4) +CVar(Y5)

(n− 1)2α2
0(1− α0)2

.



Global Testing of MMSBM 35

By direct calculations, we know that

Var(Y3)≤C
∑
i<j

E[W 4
ij ]≤C

∑
i 6=j

Ωij ≤Cn2α0,

Var(Y4)≤C
∑

i,j,k dist

E[W 2
ij ]E[W 2

ik]≤Cn3α2
0,

Var(Y5)≤ C

n2

∑
i 6=j,k 6=l
{i,j}6={k,l}

E[W 2
ij ]E[W 2

k,l]≤Cn
2α2

0.

In the previous steps, we have seen that Ω̃∗ = Ω̃ − diag(Ω̃), 1′nΩ̃1n = 0, ‖Ω̃1n‖2 = n3h′MGMh,
Ωij ≤Cα0, and |Ω̃ii| ≤C‖M‖. It follows that

Var(Y2)≤C
∑
i 6=j

(
e′iΩ̃
∗1n −

1

n
1′nΩ̃∗1n

)2

×Ωij(1−Ωij)

=C
∑
i 6=j

[
e′iΩ̃1n + Ω̃ii −

1

n

(
1′ndiag(Ω̃)1n

)]2

×Ωij(1−Ωij)

≤C

[
n‖Ω̃1n‖2 + n

∑
i

Ω̃2
ii +

(
1′ndiag(Ω̃)1n

)2
]
×Cα0

≤Cn4α0‖Mh‖2 +Cn2α0‖diag(M)‖2

≤Cn4α0‖Mh‖2.

We combine the above results and note that for n big enough, nα0 ≥ c. It gives

Var(Z∗n)≤ C

n2α2
0

(
n4α0‖Mh‖2 + n3α2

0

)
≤Cn2α−1

0 ‖Mh‖2 +Cn. (E.8)

In conclusion, the mean and variance of Z∗n are characterized by (E.7) and (E.8), respectively.

The mean and variance of ψDCn . We now show the claims of this theorem. First, consider the mean
of ψDCn . Recalling (E.1) and letting ∆n = (1 +Un)−1Un, we have

√
nE[ψDCn ]≥ E[Z∗n]−E

∣∣∣ Un
1 +Un

Z∗n

∣∣∣− nE∣∣∣ Un
1 +Un

∣∣∣
≥ E[Z∗n]−

√
E[∆2

n]
√
E[(Z∗n)2]− n

√
E[∆2

n]. (E.9)

The mean and variance of Z∗n have been analyzed above. We now study ∆n, which is a function of α̂n
and α0. Note that

max
i,j

Ωij ≤max
k,`

Pk` ≤ 1′KP1K ≤Ch
′Ph=Cα0,
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where 1′KP1K ≤ Ch′Ph is because mink hk ≥ c. Since α̂n = 1
n(n−1)

1′nA1n and α0 = h′Ph =

n−21′nΩ1n, we have

|E[α̂n]− α0|=
1

n(n− 1)

∣∣1′nΩ1n − 1′ndiag(Ω)1n − n(n− 1)α0

∣∣
=

1

n(n− 1)

∣∣∣n2α0 − 1′ndiag(Ω)1n − n(n− 1)α0

∣∣∣ ≤Cn−1α0,

Var(α̂n) =
4

n2(n− 1)2

∑
i<j

Ωij(1−Ωij) ≤Cn−2α0. (E.10)

Furthermore, we write α̂n − E[α̂n] = 2
n(n−1)

∑
i<jWij , where {Wij}i<j is a collection of indepen-

dent, bounded, zero-mean variables. We apply Bernstein’s inequality and use (E.10) to get

P
(∣∣α̂n −E[αn]

∣∣> t
)
≤ exp

(
− t2/2

Cn−2α0 +Cn−2t

)
, for all t > 0. (E.11)

Consider the event E = {|α̂n−α0|< δ ·α0}, for a sufficiently small constant δ > 0 to be determined.
Using the above inequality, P(Ec) ≤ exp(−Cδ · n2α0) for big enough n. On the event E, we can
derive a bound for |∆n|. Recalling that Un =

α̂n(1−α̂n)
α0(1−α0)

, we have

∆n =
Un

1 +Un
=

(α̂n − α0)(1− α̂n − α0)

α̂n(1− α̂n)
.

Since α0 ≤ 1− c for a constant c ∈ (0,1), when δ is chosen properly small, |∆n| ≤ Cα−1
0 |α̂n − α0|

on the event E, where the constant C > 0 here does not depend on δ. On the event Ec, according to
the footnote on Page 3, |∆n| ≤Cn2. It follows that

E[∆2
n]≤Cn4 · P(Ec) +Cα−2

0 E[(α̂n − α0)2]

≤Cn4 · P(Ec) +Cα−2
0

[
(E[α̂n]− α0)2 + Var(α̂n)

]
≤Cn4 exp(−Cδn2α0) +Cα−2

0 (n−2α2
0 + n−2α0)

≤Cn−2α−1
0 . (E.12)

We plug (E.12) into (E.9) and then utilize (E.7)-(E.8). Recalling that we have defined δn = n3/2α−1
0 ‖Mh‖2,

it yields that

E[ψDCn ]≥ C√
n

(
n2α−1

0 ‖Mh‖2 −
√
Cn−2α−1

0 ×√
(n2α−1

0 ‖Mh‖2)2 +
(
n2α−1

0 ‖Mh‖2 + n
)
− n
√
Cn−2α−1

0

)
=

C√
n

(√
nδn −

√
Cn−2α−1

0

√
nδ2
n +
√
nδn + n− n

√
Cn−2α−1

0

)

≥Cδn

(
1− C√

n2α0

− C√
n5/2α0δn

− C√
n2α0δ2

n

)
− C
√
nα0
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≥Cδn
[
1−O

(
n−5/4α

−1/2
0 δ

−1/2
n + n−1α

−1/2
0 δ−1

n

)]
−O

(
n−1/2α

−1/2
0

)
.

Now, assume that δn ≥C. Then, there exists a constant c1 > 0 such that

E[ψDCn ]≥ c1δn −O
(
n−1/2α

−1/2
0

)
. (E.13)

This gives the first claim.
Next, consider the variance of ψDCn . Note that (1 +Un)−1 = 1−∆n and (1 +Un)−1Un = ∆n. It

follows from (E.1) that
√
nψDCn = Z∗n −∆nZ

∗
n − n∆n. Therefore,

Var(ψDCn )≤Cn−1[Var(Z∗n) + Var(∆nZ
∗
n) + n2Var(∆n)]

≤Cn−1(Var(Z∗n) + E[∆2
n(Z∗n)2] + n2E[∆2

n]
)

≤Cn−1
(
n2α−1

0 ‖Mh‖2 + n+E[∆2
n(Z∗n)2] + α−1

0

)
, (E.14)

where we have used (E.8) and (E.12) in the last inequality.
We calculate E[∆2

n(Z∗n)2]. For a large enough constant B0 > 0, we define an event

E1 =
{
|α̂n −E[α̂n]| ≤B0n

−1
√
α0 log(n)

}
.

By (E.11), P(Ec1)≤ exp(−B log(n)), where the constant B > 0 is a monotone increasing function of
B0. With a properly large B0, we can make exp(−B log(n)) = o(n8α−2

0 ). Now, on the event E1, we

have |∆n| ≤Cα−1
0 |α̂n−α0| ≤Cn−1α

−1/2
0

√
log(n). On the eventEc, we note that |∆n| ≤Cn2 and

|Z∗n| ≤Cn2α−1
0 hold uniformly. It follows that

E[∆2
n(Z∗n)2] = E[∆2

n(Z∗n)2 · IEc1 ] + E[∆2
n(Z∗n)2 · IE1

]

≤Cn8α−2
0 · exp(−B log(n)) +Cn−2α−1

0 log(n)E
[
(Z∗n)2 · IEc

]
≤ o(1) +Cn−2α−1

0 log(n)
[
(E[Z∗n])2 + Var(Z∗n)

]
≤ o(1) +

C log(n)

n2α0

[
(n2α−1

0 ‖Mh‖2)2 + n2α−1
0 ‖Mh‖2 + n

]
, (E.15)

where in the last inequality we have used (E.7)-(E.8). We plug (E.15) into (E.14) to get

Var(ψDCn )≤C
(

1 + n−1α−1
0 + n−1/2δn +

log(n)

n3α0
(nδ2

n +
√
nδn + n)

)
≤C

[
1 + n−1/2δn + n−2α−1

0 δ2
n log(n)

]
. (E.16)

This gives the second claim.

Appendix F: Proof of Theorem 3.3

Write α1 = E[α̂n], Ω = Ω− α11n1
′
n and ∆n = α1 − α̂n. It follows that

Qn =
∑

i,j,k,l dist.

(Aij − α̂n)(Ajk − α̂n)(Akl − α̂n)(Ali − α̂n)
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Table 1. The 21 different types of the 81 post-expansion sums ofQn. The order of the mean and variance of each
term will be derived in the proofs.

Type # (NW ,N
Ω̃
,N∆) Representative Mean Variance

X1 1 (4,0,0)
∑

i,j,k,l dist.WijWjkWklWli 0 O(n4α4
0)

X2 4 (3,1,0)
∑

i,j,k,l dist.WijWjkWklΩli 0 O(n4α3
0‖M‖

2)

X3 4 (3,0,1)
∑

i,j,k,l dist.WijWjkWkl∆n 0 O(n2α4
0)

X4 4 (2,2,0)
∑

i,j,k,l dist.WijWjkΩklΩli 0 O(n4α2
0‖M‖

4)

X5 2 (2,2,0)
∑

i,j,k,l dist.WijΩjkWklΩli 0 O(n4α2
0‖M‖

4)

X6 8 (2,1,1)
∑

i,j,k,l dist.WijWjkΩkl∆n 0 O(n3α3
0‖M‖

2)

X7 4 (2,1,1)
∑

i,j,k,l dist.WijΩjkWkl∆n 0 O(n2α3
0‖M‖

2)

X8 4 (2,0,2)
∑

i,j,k,l dist.WijWjk∆2
n O(n1/2α2

0) O(nα4
0)

X9 2 (2,0,2)
∑

i,j,k,l dist.WijWkl∆
2
n O(α2

0) O(α4
0)

X10 4 (1,3,0)
∑

i,j,k,l dist.WijΩjkΩklΩli 0 O(n6α0‖M‖6)

X11 8 (1,2,1)
∑

i,j,k,l dist.WijΩjkΩkl∆n O(n2α0‖M‖2) O(n4α2
0‖M‖

4)

X12 4 (1,2,1)
∑

i,j,k,l dist.WijΩjk∆nΩli O(n2α0‖M‖2) O(n4α2
0‖M‖

4)

X13 8 (1,1,2)
∑

i,j,k,l dist.WijΩjk∆2
n O(n2α

3/2
0 ‖M‖) O(n4α3

0‖M‖
2)

X14 4 (1,1,2)
∑

i,j,k,l dist.WijΩkl∆
2
n O(n2α

3/2
0 ‖M‖) O(n4α3

0‖M‖
2)

X15 4 (1,0,3)
∑

i,j,k,l dist.Wij∆3
n O(α2

0) O(α4
0)

X16 1 (0,4,0)
∑

i,j,k,l dist. ΩijΩjkΩklΩli n4‖M‖4 0
X17 4 (0,3,1)

∑
i,j,k,l dist. ΩijΩjkΩkl∆n 0 O(n6α0‖M‖6)

X18 4 (0,2,2)
∑

i,j,k,l dist. ΩijΩjk∆2
n O(n2α0‖M‖2) O(n4α2

0‖M‖
4)

X19 2 (0,2,2)
∑

i,j,k,l dist. ΩijΩkl∆
2
n O(n2α0‖M‖2) O(n4α2

0‖M‖
4)

X20 4 (0,1,3)
∑

i,j,k,l dist. Ωij∆3
n 0 0

X21 1 (0,0,4)
∑

i,j,k,l dist. ∆4
n O(α2

0) O(α4
0)

=
∑

i,j,k,l dist.

(Wij + Ωij + ∆n)(Wjk + Ωjk + ∆n)(Wkl + Ωkl + ∆n)(Wli + Ωli + ∆n).

Expanding the sum gives 34 = 81 terms. Combining equal-valued terms, we have the following de-
composition:

Qn =X1 + 4X2 + 4X3 + 4X4 + 2X5 + 8X6 + 4X7 + 4X8 + 2X9 + 4X10 + 8X11

+ 4X12 + 8X13 + 4X14 + 4X15 +X16 + 4X17 + 4X18 + 2X19 + 4X20 +X21, (F.1)

where the expressions of X1-X21 are presented in Column 4 of Table 1. In this table, we also list other
information of each term, such as the degree inW (NW ), in Ω (NΩ) and in ∆n (N∆). We plan to study
the mean and variance of each of X1-X21 and then combine them to show the claims.

In preparation, we derive some useful results. First, we study |Ωij |. WriteM = P −α01K1′K . Then,

|α1 − α0|= |E[α̂n]− α0|=

∣∣∣∣∣∣ 1

n(n− 1)

∑
i 6=j

π′iMπj

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

n(n− 1)

∑
i,j

π′iMπj −
1

n(n− 1)

∑
i

π′iMπi

∣∣∣∣∣∣
≤ n

n− 1

∣∣h′Mh
∣∣+ ‖M‖

n− 1
≤ C‖M‖

n
, (F.2)

where we have used in the last line that h′Mh= h′Ph− α0h
′1K1′Kh= 0.
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Note that Ωij = π′iPπj − α1 = π′iMπj + α0 − α1. It follows that

|Ωij | ≤ |π′iMπj |+ |α0 − α1| ≤C‖M‖. (F.3)

Next, we study ∆n. By definition,

∆n = E[α̂n]− α̂n =− 1

n(n− 1)

∑
i 6=j

(Aij −Ωij) =− 1

n(n− 1)

∑
i 6=j

Wij .

Using properties of Bernoulli variables, we have E[W 2
ij ] = Ωij(1−Ωij)≤Ωij and |E[Wm

ij ]| ≤CΩij ,
for any fixed m≥ 3 (the constant C may depend on m). Note that

Ωij = π′iPπj ≤ 1′KP1K ≤Cα0,

where we have used that mink hk >C/K, which is a consequence of (3.4). Additionally,∑
i,j

Ωij =
∑
i,j

π′iPπj = n2h′Ph= n2α0.

It follows that

E[∆2
n] =

4

n2(n− 1)2

∑
i<j

E(W 2
ij)≤Cn

−4
∑
i 6=j

Ωij ≤Cn−2α0,

|E[∆3
n]|= 8

n3(n− 1)3

∣∣∣∣E[ ∑
i<j,k<l,u<v

WijWklWuv

]∣∣∣∣= 8

n3(n− 1)3

∣∣∣∣E[∑
i<j

W 3
ij

]∣∣∣∣
≤Cn−6

∑
i<j

Ωij ≤ Cn−4α0,

E[∆4
n] =

16

n4(n− 1)4

(∑
i<j

E[W 4
ij ] + 3

∑
i<j,k<l

(i,j)6=(k,l)

E[W 2
ij ]E[W 2

kl]

)

≤Cn−8

[∑
i<j

Ωij +
(∑
i<j

Ωij

)(∑
k<`

Ωk`

)]
≤Cn−4α2

0,

E[∆8
n]≤Cn−16

( ∑
i<j,k<l,m<s,q<t

E[W 2
ij ]E[W 2

kl]E[W 2
ms]E[W 2

qt]

)

≤Cn−16
(∑
i<j

Ωij

)4
≤Cn−8α4

0. (F.4)

We shall frequently use (F.3) and (F.4) in the proof below.

Mean and variance of Qn. We study the mean and variance of each of X1-X21, and combine them to
get the mean and variance of Qn.
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Consider X1 =
∑
i,j,k,l dist.WijWjkWklWli. It is easy to see that

E[X1] = 0. (F.5)

Furthermore, let CC(In) be collection of equivalent classes of 4-tuples (i, j, k, l) (see the proof of
(D.20) for details). By elementary probability,

Var(X1) = Var

(
8
∑

CC(In)

WijWjkWklWli

)

= 64
∑

CC(In)

E[W 2
ij ]E[W 2

jk]E[W 2
kl]E[W 2

li]

≤C
∑
i,j,k,l

ΩijΩjkΩklΩli ≤CTr(Ω4).

Note that Ω = ΠPΠ′ and Π1n = 1K . Also, we have defined G= n−1Π′Π in Section 3.2. It follows
that

Tr(Ω4) = n4Tr(PGPGPGPG) = n4Tr
(

(G1/2PG1/2)4
)
≤Kn4

∥∥∥G1/2PG1/2
∥∥∥4
.

From the definition of G, we have Gkl = n−1∑
i,j πi(k)πj(l)≤ 1 for all 1≤ k, l≤K. Hence ‖G‖ ≤

K2. In addition, recall that α0 = h′Ph. By our assumption (3.4), all the entries of h are lower bounded
by a constant C > 0. It follows that α0 ≥C1′KP1K . We immediately have

Tr(Ω4)≤K9n4‖P‖4 ≤K9n4(1′KP1K)4 ≤Cn4α4
0,

where we have used that ‖P‖ ≤ 1′KP1K since P is a nonnegative matrix. Combining the above gives

Var(X1)≤Cn4α4
0. (F.6)

Next, consider X2 =
∑
i,j,k,l dist.WijWjkWklΩli. It is easy to see that

E[X2] = 0. (F.7)

Furthermore,

Var (X2) = Var

2
∑

i,j,k,l dist.
i<l

WijWjkWklΩli

≤C ∑
i,j,k,l dist.

i<l

E[W 2
ij ]E[W 2

jk]E[W 2
kl]Ωli,

where we have used that summands in the expression above are pairwise independent. It follows that

Var(X2)≤Cn4α3
0‖M‖2. (F.8)

Next, consider X3 =
∑
i,j,k,l dist.WijWjkWkl∆n. Recall that

∆n = α1 − α̂n =− 2

n(n− 1)

∑
i<j

Wij .
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It follows that

E[X3] =− 2

n(n− 1)
E

 ∑
i,j,k,l dist.

∑
s<t

WijWjkWklWst

= 0. (F.9)

Furthermore,

Var(X3) =
1

n2(n− 1)2
Var

 ∑
i,j,k,l dist.
s 6=t

WijWjkWklWst



≤ C

n4
E


∑

i,j,k,l dist.
a,b,c,d dist.
s6=t,u6=v

WijWjkWklWstWabWbcWcdWuv


≤ C

n4

 ∑
i,j,k,l,s,t dist.

E[W 2
ijW

2
jkW

2
klW

2
st] +

∑
i,j,k,l,t dist.

E[W 2
ijW

2
jkW

2
klW

2
lt]

∑
i,j,k,l,t dist.

E[W 2
ijW

2
jkW

2
klW

2
kt] +

∑
i,j,k,l dist.

E[W 2
ijW

2
jkW

2
klW

2
lj ]+

∑
i,j,k,l dist.

E[W 2
ijW

2
jkW

2
klW

2
li] +

∑
i,j,k,l dist.

E[W 4
ijW

2
jkW

2
kl]+

+
∑

i,j,k,l dist.

E[W 2
ijW

4
jkW

2
kl]

 .

It follows that

Var(X3)≤ C

n4
(n6α4

0 + n5α4
0 + n4α4

0 + n4α3
0)≤Cn2α4

0. (F.10)

Next, consider X4 =
∑
i,j,k,l dist.WijWjkΩklΩli. It is straightforward to see that

E[X4] = 0. (F.11)

Furthermore,

Var(X4) = E

 ∑
i,j,k,l dist.
u,v,s,t dist.

WijWjkWuvWvsΩklΩliΩstΩtu


≤C‖M‖4

∑
i,j,k,l dist.

E[W 2
ij ]E[W 2

jk],
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from which we obtain that

Var(X4)≤Cn4α2
0‖M‖4. (F.12)

Next, consider X5 =
∑
i,j,k,l dist.WijΩjkWklΩli. It is straightforward to see that

E[X5] = 0. (F.13)

Furthermore,

Var(X5) = E

 ∑
i,j,k,l dist.
u,v,s,t dist.

WijWklWuvWstΩjkΩliΩvsΩtu


≤C‖M‖4

∑
i,j,k,l dist.

E[W 2
ij ]E[W 2

kl],

from which we obtain that

Var(X5)≤Cn4α2
0‖M‖4. (F.14)

Next, consider X6 =
∑
i,j,k,l dist.WijWjkΩkl∆n. Using the definition of ∆n, we have

X6 =− 1

n(n− 1)

∑
i,j,k,l dist.

∑
s 6=t

WijWjkΩklWst.

It follows that

E[X6] = 0. (F.15)

Furthermore,

Var(X6) =
1

n2(n− 1)2

∑
i,j,k,l dist.
a,b,c,d dist.
s 6=t,u6=v

ΩklΩcdE[WijWjkWstWabWbcWuv]

≤ C‖M‖2

n2

∑
i,j,k dist.
a,b,c dist.
s 6=t,u 6=v

E[WijWjkWstWabWbcWuv]

≤ C‖M‖2

n2

4
∑

i,j,k,s,t dist.

E[W 2
ijW

2
jkW

2
st] + 4

∑
i,j,k,t dist.

E[W 2
ijW

2
jkW

2
kt]+

2
∑

i,j,k,t dist.

E[W 2
ijW

2
jkW

2
jt] +

∑
i,j,k dist.

E[W 2
ijW

2
jkW

2
ki] + 4

∑
i,j,k dist.

E[W 2
ijW

4
jk]+

4
∑

i,j,k dist.

E[W 3
ijW

3
jk]

 .
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As a result, we obtain

Var(X6)≤ C‖M‖2

n2
(n5α3

0 + n4α3
0 + n3α3

0 + n3α2
0)≤Cn3α3

0‖M‖2. (F.16)

Next, consider X7 =
∑
i,j,k,l dist.WijΩjkWkl∆n. Similarly to X6, it is easy to see that

E[X7] = 0. (F.17)

Furthermore,

Var(X7) =
1

n2(n− 1)2

∑
i,j,k,l dist.
a,b,c,d dist.
s 6=t,u6=v

ΩjkΩbcE[WijWklWstWabWcdWuv]

≤ C‖M‖2

n4

 ∑
i,j,k,l,s,t dist.

E[W 2
ijW

2
klW

2
st] +

∑
i,j,k,l,t dist.

E[W 2
ijW

2
klW

2
lt]+

∑
i,j,k,l dist.

E[W 2
ijW

2
jkW

2
kl] +

∑
i,j,k,l dist.

E[W 2
ijW

4
kl] +

∑
i,j,k,l dist.

E[W 3
ijW

3
kl]

 .

As a result, we obtain

Var(X7)≤ C‖M‖2

n4
(n6α3

0 + n5α3
0 + n4α3

0 + n4α2
0)≤Cn2α3

0‖M‖2. (F.18)

Next, consider X8 =
∑
i,j,k,l dist.WijWjk∆2

n. We have

|E[X8]|= (n− 3)

∣∣∣∣∣∣E
∆2

n

∑
i,j,k dist.

WijWjk

∣∣∣∣∣∣≤ nE[∆4
n]1/2E


 ∑
i,j,k dist.

WijWjk

2


1/2

.

It follows that

|E[X8]| ≤Cn−1α0n
3/2α0 ≤Cn1/2α2

0. (F.19)

Furthermore,

Var(X8)≤Cn2E

∆4
n

 ∑
i,j,k dist.

WijWjk

2


≤Cn2E[∆8
n]1/2E


 ∑
i,j,k dist.

WijWjk

4


1/2

.

The summands above can be grouped into 6 categories, where each category corresponds to a specific
upper bound in terms of n and α0. We obtain

Var(X8)≤Cn−2α2
0(n6α4

0 + n5α4
0 + n4α4

0 + n4α3
0 + n3α3

0 + n3α2
0)1/2 ≤Cnα4

0. (F.20)
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Next, consider X9 =
∑
i,j,k,l dist.WijWkl∆

2
n. We have

|E[X9]|=

∣∣∣∣∣∣E
∆2

n

∑
i,j,k,l dist.

WijWkl

∣∣∣∣∣∣≤ E[∆4
n]1/2E


 ∑
i,j,k,l dist.

WijWkl

2


1/2

.

It follows that

|E[X9]| ≤Cn−2α0n
2α0 ≤Cα2

0. (F.21)

Furthermore,

Var(X9)≤CE

∆4
n

 ∑
i,j,k,l dist.

WijWkl

2


≤CE[∆8
n]1/2E


 ∑
i,j,k,l dist.

WijWkl

4


1/2

.

As for X8, the summands above can be grouped into 6 categories, where each category corresponds to
a specific upper bound in terms of n and α0. We obtain

Var(X9)≤Cn−4α2
0(n8α4

0 + n7α4
0 + n6α4

0 + n5α4
0 + n4α4

0 + n4α2
0)1/2 ≤Cα4

0. (F.22)

Next, consider X10 =
∑
i,j,k,l dist.WijΩjkΩklΩli. It is straightforward to see that

|E[X10]|= 0. (F.23)

Furthermore,

Var(X10) =
∑

i,j,k,l dist.
a,b,c,d dist.

ΩjkΩklΩliΩbcΩcdΩdaE[WijWab]

≤Cα0

∑
i,j,k,l dist.

c6=d,c,d/∈{i,j}

|ΩjkΩklΩliΩjcΩcdΩdi|.

As a result,

Var(X10)≤Cα0n
6‖M‖6. (F.24)

Next, consider X11 =
∑
i,j,k,l dist.WijΩjkΩkl∆n. Using the definition of ∆n, we obtain

|E[X11]|=

∣∣∣∣∣∣∣∣
1

n(n− 1)

∑
i,j,k,l dist.
u6=v

ΩjkΩklE[WijWuv]

∣∣∣∣∣∣∣∣≤C‖M‖
2
∑

i 6=j,u6=v
|E[WijWuv]|.
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As a result,

|E[X11]| ≤Cn2α0‖M‖2. (F.25)

Furthermore,

Var(X11)≤CE


 1

n(n− 1)

∑
i,j,k,l dist.
u6=v

ΩjkΩklWijWuv


2

≤ C

n4

∑
i,j,k,l dist.
a,b,c,d dist.
u6=v,r 6=s

|ΩjkΩklΩbcΩcd||E[WijWuvWabWrs]|

≤C‖M‖4
∑

i 6=j,a6=b
u6=v,r 6=s

|E[WijWuvWabWrs]|

≤C‖M‖4
 ∑
i,j,a,b dist.

E[W 2
ijW

2
ab] +

∑
i,j,b dist.

E[W 2
ijW

2
jb] +

∑
i,j dist.

E[W 4
ij ]

 .

As a result,

Var(X11)≤C‖M‖4(n4α2
0 + n3α2

0 + n2α0)≤Cn4α2
0‖M‖4. (F.26)

Next, consider X12 =
∑
i,j,k,l dist.WijΩjk∆nΩli. Computations in this case are exactly equivalent

to those for X11, so we obtain:

|E[X12]| ≤Cn2α0‖M‖2. (F.27)

and

Var(X12)≤C‖M‖4(n4α2
0 + n3α2

0 + n2α0)≤Cn4α2
0‖M‖4. (F.28)

Next, consider X13 =
∑
i,j,k,l dist.WijΩjk∆2

n. We have for the mean:

|E[X13]| ≤
∑

i,j,k,l dist.

|Ωjk|E[Wij∆
2
n]≤

∑
i,j,k,l dist.

|Ωjk|E[W 2
ij ]

1/2E[∆4
n]1/2

≤Cn4‖M‖α1/2
0 E[∆4

n]1/2.

It follows that

|E[X13]| ≤Cn2α
3/2
0 ‖M‖. (F.29)

Furthermore,

Var(X13)≤ E

 ∑
i,j,k,l dist.
a,b,c,d dist.

WijWabΩjkΩbc∆
4
n

≤Cn4‖M‖2
∑

i 6=j,a6=b
E[WijWab∆

4
n]
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≤Cn4‖M‖2
∑

i 6=j,a6=b
E[W 2

ijW
2
ab]

1/2E[∆8
n]1/2 ≤Cα2

0‖M‖2
∑

i 6=j,a6=b
E[W 2

ijW
2
ab]

1/2

≤Cα2
0‖M‖2

 ∑
i,j,a,b dist.

E[W 2
ij ]

1/2E[W 2
ab]

1/2 +
∑

i,j,b dist.

E[W 2
ij ]

1/2E[W 2
jb]

1/2+

∑
i,j dist.

E[W 4
ij ]

1/2

 .

As a result,

Var(X13)≤Cα2
0‖M‖2(n4α0 + n3α0 + n2α

1/2
0 )≤Cn4α3

0‖M‖2. (F.30)

Next, consider X14 =
∑
i,j,k,l dist.WijΩkl∆

2
n. Computations in this case are exactly equivalent to

those for X13, so we obtain:

|E[X14]| ≤Cn2α
3/2
0 ‖M‖. (F.31)

and

Var(X14)≤Cα2
0‖M‖2(n4α0 + n3α0 + n2α

1/2
0 )≤Cn4α3

0‖M‖2. (F.32)

Next, consider X15 =
∑
i,j,k,l dist.Wij∆

3
n. Using the definition of ∆n, note that

X15 = (n− 2)(n− 3)∆3
n

∑
i 6=j

Wij =−n(n− 1)(n− 2)(n− 3)∆4
n.

It follows that

|E[X15]| ≤ n4E[∆4
n]≤Cα2

0. (F.33)

and

Var(X15)≤ n8E[∆8
n]≤Cα4

0. (F.34)

Next, consider X16 =
∑
i,j,k,l dist. ΩijΩjkΩklΩli. This is a non-stochastic term, whose variance is

zero. We the focus on deriving a lower bound for E[X16] =X16. Note that

X16 =
∑
i,j,k,l

ΩijΩjkΩklΩli −
∑

i,j,k,l not dist.

ΩijΩjkΩklΩli

= Tr(Ω4
)−

∑
i,j,k,l not dist.

ΩijΩjkΩklΩli

= Tr(Ω4
)−O

(
n3‖M‖4

)
, (F.35)

where the last equality comes from (F.3) and the observation that (i, j, k, l) has at most 3 distinct
values in this sum. In the derivation of (F.3), we have seen that Ωij = π′iPπj − α1 = π′iMπj , where
M = P − α11K1′K =M + (α0 − α1)1K1′K . This implies that

Ω = ΠMΠ′.



Global Testing of MMSBM 47

Recall that G= n−1Π′Π. We have

Tr(Ω4
) = Tr((ΠMΠ′)4) = n4Tr((G1/2MG1/2)4)

= n4‖(G1/2MG1/2)2‖2F

� n4‖(G1/2MG1/2)2‖2

� n4‖G1/2MG1/2‖4.

Note that ‖G1/2MG1/2‖ ≤ ‖M‖‖G‖. Additionally, ‖M‖ ≤ ‖G−1‖‖G1/2MG1/2‖. By the definition
of G and our assumption (3.4), ‖G‖ ≤C and ‖G−1‖ ≤C. It follows that ‖G1/2MG1/2‖ � ‖M‖. We
thus have

Tr(Ω4
)� n4‖M‖4 = n4‖M + (α0 − α1)1K1′K‖

4.

Recall now from (F.2) that |α0 − α1|=O(n−1‖M‖). Hence, by Weyl’s inequality

∣∣‖M‖ − ‖M‖∣∣≤K|α0 − α1| ≤
CK‖M‖

n
,

which implies that ‖M‖ � ‖M‖, so Tr(Ω4
)� n4‖M‖4. Plugging it into (F.35) gives

X16 = E[X16]� n4‖M‖4. (F.36)

Next, consider X17 =
∑
i,j,k,l dist. ΩijΩjkΩkl∆n. It is straightforward to see that

E[X17] = 0. (F.37)

Furthermore,

Var(X17)≤

 ∑
i,j,k,l dist.

ΩijΩjkΩkl

2

E[∆2
n]≤Cα0n

6‖M‖6. (F.38)

Next, considerX18 =
∑
i,j,k,l dist. ΩijΩjk∆2

n. We first note thatX18 = (n−3)∆2
n
∑
i,j,k dist. ΩijΩjk.

Hence,

|E[X18]| ≤ Cα0

n

∣∣∣∣∣∣
∑

i,j,k dist.

ΩijΩjk

∣∣∣∣∣∣≤Cα0n
2‖M‖2. (F.39)

Furthermore,

Var(X18)≤ n2

 ∑
i,j,k dist.

Ω̃ijΩ̃jk

2

E[∆4
n]≤Cα2

0n
4‖M‖4. (F.40)

Next, consider X19 =
∑
i,j,k,l dist. ΩijΩkl∆

2
n. We have

|E[X19]| ≤ Cα0

n2

∣∣∣∣∣∣
∑

i,j,k,l dist.

ΩijΩkl

∣∣∣∣∣∣≤Cα0n
2‖M‖2. (F.41)
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Furthermore,

Var(X19)≤

 ∑
i,j,k,l dist.

Ω̃ijΩ̃kl

2

E[∆4
n]≤Cα2

0n
4‖M‖4. (F.42)

Next, consider X20 =
∑
i,j,k,l dist. Ωij∆

3
n. Notice that

X20 = ∆3
n(n− 2)(n− 3)

∑
i 6=j

Ωij = ∆3
n(n− 2)(n− 3)

∑
i 6=j

Ωij − n(n− 1)α1

= 0.

It follows that

E[X20] = 0, (F.43)

and

Var(X20) = 0. (F.44)

Next, consider X21 =
∑
i,j,k,l dist. ∆

4
n. Note that X21 = n(n− 1)(n− 2)(n− 3)∆4

n. As a result,

E[X21]≤Cα2
0, (F.45)

and

Var(X21)≤Cα4
0. (F.46)

Mean and variance of Qn/(2
√

2n2α2
0). We use the results stored in Table 1 in order to provide a

lower bound for E[Qn/(2
√

2n2α2
0)] and an upper bound for Var(Qn/(2

√
2n2α2

0)). Recall that we
defined

τn =

(
n‖M‖2

α0

)2

.

We obtain that

E

[
Qn

2
√

2n2α2
0

]
� n4‖M‖4 +O(n1/2α2

0 + n2α0‖M‖2 + n2α
3/2
0 ‖M‖)

� τn

(
1 +O

(
1

n3/2τn
+

1

nτ
1/2
n

+
1

n1/2τ
3/4
n

))
. (F.47)

Similarly, we observe that

Var

(
Qn

2
√

2n2α2
0

)
=O

(
n4α4

0 + n4α3
0‖M‖2 + n4α2

0‖M‖4 + n6α0‖M‖6

n4α4
0

)

=O

(
1 +

τ
1/2
n

n
+
τn
n2

+
τ

3/2
n

n

)
. (F.48)
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Assuming that τn ≥C, then we can write

E

[
Qn

2
√

2n2α2
0

]
� τn, and Var

(
Qn

2
√

2n2α2
0

)
=O

(
1 +

τ
3/2
n

n

)
. (F.49)

Mean and variance of ψSQn . Recall that

ψSQn =
Qn

2
√

2n2α̂2
n

.

In the sequel, we let Z∗n =Qn/(2
√

2n2α2
0) for ease of notation. First, we compute a lower bound on

the mean of ψSQn . Note that

E[ψSQn ] = E

[(
α0

α̂n

)2

Z∗n

]
≥ E[Z∗n] + 2E

[(
α0 − α̂n
α̂n

)
Z∗n

]
+E

[(
α0 − α̂n
α̂n

)2

Z∗n

]

≥ E[Z∗n]−C
√

E [(Z∗n)2]


√√√√E

[(
α0 − α̂n
α̂n

)2
]

+

√√√√E

[(
α0 − α̂n
α̂n

)4
] .

Under the eventE defined in Appendix E, it holds that |α̂n−α0|< δα0, so we can derive the following
upper bound: ∣∣∣∣α0 − α̂n

α̂n

∣∣∣∣≤ |α0 − α̂n|
(1− δ)α0

.

Under Ec, it holds that ∣∣∣∣α0 − α̂n
α̂n

∣∣∣∣≤Cn2.

We thus have

E

[(
α0 − α̂n
α̂n

)2
]
≤Cn4P(Ec) +Cα−2

0 E[(α0 − α̂n)2]

≤Cn4P(Ec) +Cα−2
0 (α0 −E[α̂n])2 +Cα−2

0 Var(α̂n)

≤Cn4P(Ec) +
C

(n− 1)2
+

C

n2α0
≤ C

n2α0
= o(1).

Similarly,

E

[(
α0 − α̂n
α̂n

)4
]
≤Cn8P(Ec) +Cα−4

0 E[(α0 − α̂n)4]

≤Cn8P(Ec) +Cα−4
0 E[(α̂n −E[α̂n])4] +Cα−4

0 (E[α̂n]− α0)4

≤Cn8P(Ec) +
C

n4
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+
Cα−4

0

n8
E

 ∑
i<j,k<l
u<v,r<t

(Aij −Ωij)(Akl −Ωkl)(Auv −Ωuv)(Ars −Ωrs)


≤Cn8P(Ec) +

C

n4
+
Cα−4

0

n8
(n4α2

0 + n2α0)≤ C

α2
0n

4
= o(1).

It follows that, for n big enough,

E[ψSQn ]≥ E[Z∗n]− o
(√

E [(Z∗n)2]

)
= E[Z∗n]− o

(√
Var(Z∗n) + E[Z∗n]2

)
= E[Z∗n]− o

(√
1 + n−1τ

1/2
n + n−2τn + n−1τ

3/2
n +E[Z∗n]2

)
≥ E[Z∗n](1− o(1))− o

(
1 + n−1/2τ

1/4
n + n−1τ

1/2
n + n−1/2τ

3/4
n

)
.

Assuming that τn ≥C, we know from (F.49) that there exists a constant c2 > 0 such that

E[ψSQn ]≥ c2τn − o
(

1 + n−1/2τ
3/4
n

)
. (F.50)

Next, we compute an upper bound on the variance of ψSQn . We have

Var(ψSQn ) = Var

((
α0

α̂n

)2

Z∗n

)
= Var

((
α0 − α̂n
α̂n

+ 1

)2

Z∗n

)

≤CVar(Z∗n) +CE

[(
α0 − α̂n
α̂n

)2

(Z∗n)2

]
+CE

[(
α0 − α̂n
α̂n

)4

(Z∗n)2

]
.

Recall the event E1 defined in Appendix E. We had that P(Ec1)≤ exp(−B log(n)), where B is a con-

stant chosen large enough. Then, on the eventE1, we have that |(α0−α̂n)/α̂n| ≤Cn−1α
−1/2
0

√
log(n).

On the event Ec1, it holds uniformly that |(α0 − α̂n)/α̂n| ≤Cn2 and |Z∗n| ≤ n2α−2
0 . It follows that

E

[(
α0 − α̂n
α̂n

)2

(Z∗n)2

]
≤Cn8α−4

0 P(Ec1) +Cn−2α−1
0 log(n)E[(Z∗n)2],

E

[(
α0 − α̂n
α̂n

)4

(Z∗n)2

]
≤Cn12α−4

0 P(Ec1) +Cn−4α−2
0 log(n)2E[(Z∗n)2].

So we obtain that

Var(ψSQn )≤CVar(Z∗n) +Cn−2α−1
0 log(n)E[(Z∗n)2] + o(1)

≤CVar(Z∗n) +Cn−2α−1
0 log(n)E[(Z∗n)]2 + o(1). (F.51)
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Recall from (F.49) that when τn ≥C, E[Z∗n]� τn and Var(Z∗n) =O(1 + n−1τ
3/2
n ). It follows that

Var(ψSQn ) =O

(
1 +

τ
3/2
n

n
+

log(n)τ2
n

n2α0

)
. (F.52)

Appendix G: Proof of Corollary 3.2
Let ψDCn denote the degree test statistic as in the proof of Theorem 3.2. Let ε ∈ (0,1) and qε be the
(1− ε)-quantile of the standard normal distribution.

Under the alternative hypothesis, we suppose that δn→∞. It follows from Theorem 3.2 that

E[ψDCn ]≥ c1δn, and Var(ψDCn ) =O(1 + n−1/2δn + n−2α−1
0 δ2

n log(n)).

We have, for n big enough,

P
(
ψDCn < qε

)
= P

(
E[ψDCn ]−ψDCn > E[ψDCn ]− qε

)
≤ CVar(ψDCn )

E[ψDCn ]2
� 1

SNR(ψDCn )2
,

where we have seen that SNR(ψDCn )→∞ if δn→∞ under the alternative (see the paragraph before
the statement of Corollary 3.2). It follows that under the alternative, the power of the test

P
(
ψDCn > qε

)
−−−−→
n→∞

1. (G.1)

Furthermore, under the null hypothesis, we know from Corollary 3.1 that ψDCn
L−→N (0,1), hence

the level of the test tends to ε as n→∞.

Appendix H: Proof of Corollary 3.3

Let ψSQn denote the degree test statistic as in the proof of Theorem 3.3. Let ε ∈ (0,1) and qε be the
(1− ε)-quantile of the standard normal distribution.

Under the alternative hypothesis, we suppose that τn→∞. It follows from Theorem 3.2 that

E[ψSQn ]≥ c2τn, and Var(ψSQn ) =O(1 + n−1τ
3/2
n + n−2α−1

0 τ2
n log(n)).

We have, for n big enough,

P
(
ψSQn < qε

)
= P

(
E[ψSQn ]−ψSQn > E[ψSQn ]− qε

)
≤ CVar(ψSQn )

E[ψ
SQ
n ]2

� 1

SNR(ψ
SQ
n )2

,

where we have seen that SNR(ψSQn )→∞ if τn→∞ under the alternative (see the paragraph before
the statement of Corollary 3.3). It follows that under the alternative, the power of the test

P
(
ψSQn > qε

)
−−−−→
n→∞

1. (H.1)

Furthermore, under the null hypothesis, we know from Corollary 3.1 that ψSQn
L−→N (0,1), hence

the level of the test tends to ε as n→∞.
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Appendix I: Proof of Theorem 3.4

As in the proofs of Theorem 3.2 and Theorem 3.3, we let ψDCn denote the degree chi-squared test
statistic and ψSQn denote the oSQ statistic. Recall that the PET statistic is

Sn =
(
ψDCn

)2
+
(
ψSQn

)2
.

Let A> 0, ε > 0 be arbitrary constants. Then,

P(Sn <A)≤min
{
P
(
ψDCn <

√
A
)
,P
(
ψSQn <

√
A
)}

≤min
{
P
(
E[ψDCn ]−ψDCn > E[ψDCn ]−

√
A
)
,P
(
E[ψSQn ]−ψSQn > E[ψSQn ]−

√
A
)}

.

In the regime where max{δn, τn} →∞, for any constant B > 0, there exists N > 0 such that for all
n >N , δn >B or τn >B. We will denote by N(B) the smallest such constant. We choose B�

√
A

and N >N(B) such that for all n >N ,

1

B2
+

1

n1/2B
+

log(n)

n2α0
<
ε

C

1

B2
+

1

nB1/2
+

log(n)

n2α0
<
ε

C

Now, suppose that we are in the case δn >B. Then from Theorem 3.2, we know that

E[ψDCn ]> cδn > cB and Var(ψDCn )<C

(
1 +

δn

n1/2
+

log(n)

n2α0
δ2
n

)
.

Then,

P
(
E[ψDCn ]−ψDCn > E[ψDCn ]−

√
A
)
≤ Var(ψDCn )

E[ψDCn ]2
≤C

(
1

δ2
n

+
1

n1/2δn
+

log(n)

n2α0

)
< ε,

which implies that P(Sn <A)< ε.
Now, suppose that we are in the case τn >B. By Theorem 3.3, we have

E[ψSQn ]≥ cτn > cB and Var(ψSQn )<C

(
1 +

τ
3/2
n

n
+

log(n)τ2
n

n2α0

)
.

Then

P
(
E[ψSQn ]−ψSQn > E[ψSQn ]−

√
A
)
≤ Var(ψSQn )

E[ψSQn ]2
≤C

 1

τ2
n

+
1

nτ
1/2
n +

log(n)
n2α0

< ε,

which implies that P(Sn <A)< ε.
It follows that for all n >N , it holds that P(Sn <A)< ε. We have just shown that

Sn
P−−−−→

n→∞
∞. (I.1)
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Now, fix ε ∈ (0,1) and let q denote the (1−ε)-quantile of the χ2
2(0) distribution. From Corollary 3.1,

we know that as n→∞, the level of the test tends to ε. From (I.1), we know that under the alternative

P(Sn > q)−−−−→
n→∞

1,

so the power of the test tends to 1 as n→∞.

Appendix J: Proof of Theorem 3.5

Denote by Dχ2(P0‖P1) the chi-square divergence between two hypotheses, where P0 and P1 denote
the probability measures under two model, respectively. and then study the symmetric alternative and
the asymmetric alternative separately. By definition,

1 +Dχ2(P0‖P1) =

∫ (
dP1

dP0

)2

dP0.

Letting qij(Π) = π′iPπj , we can write

dP0 =
∏
i<j

αAij (1− α)1−Aij , dP1 = EΠ

∏
i<j

qij(Π)Aij (1− qij(Π))1−Aij

 .
Let Π̃ be an independent copy of Π. Then it follows that

(
dP1

dP0

)2

= EΠ,Π̃

∏
i<j

(
qij(Π)qij(Π̃)

α2

)Aij (
(1− qij(Π))(1− qij(Π̃))

(1− α)2

)1−Aij
 .

We denote

Σ(A,Π, Π̃) =
∏
i<j

(
qij(Π)qij(Π̃)

α2

)Aij (
(1− qij(Π))(1− qij(Π̃))

(1− α)2

)1−Aij
,

and further obtain using the Tonelli theorem that

1 +Dχ2(P0‖P1) = E0[EΠ,Π̃[Σ(A,Π, Π̃)]] = EΠ,Π̃[E0[Σ(A,Π, Π̃)]].

Recalling that for all i < j theAij’s are mutually independent, we can calculate E0[Σ(A,Π, Π̃)] easily.
The calculations yield that

1 +Dχ2(P0‖P1) = EΠ,Π̃

[∏
i<j

(
1 +

∆ij∆̃ij

α(1− α)

)]
,

where for i < j we have ∆ij = π′iPπj − α and ∆̃ij = π̃′iPπ̃j − α . Since for all x in R it holds that
1 + x≤ ex, we can bound the above by

1+Dχ2(P0‖P1)≤ EΠ,Π̃

[
exp
(∑
i<j

∆ij∆̃ij

α(1− α)

)]
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= EΠ,Π̃

[
exp

(
S

2(1− α)

)]
, where S ≡ α−1

∑
i 6=j

∆ij∆̃ij . (J.1)

Recall that we chose α = h′Ph for the null model. Let yi = πi − h for i = 1, ..., n, hence E[yi] = 0.
We obtain, for all i 6= j

∆ij = π′iPπj − α= y′iPyj + h′Pyi + h′Pyj + h′Ph− α

= y′iPyj + h′Pyi + h′Pyj .

Hence, E[∆ij ] = 0. We define the matrix M = P − α1K1′K . For all i ∈ J1, nK, π′i1K = h′1K = 1,
which implies that y′i1K = 0. It follows that

∆ij = y′iMyj + h′Myi + h′Myj . (J.2)

We plug (J.2) into (J.1) to decomposition ∆ij∆̃ij into 9 terms:

∆ij∆̃ij = (y′iMyj)(ỹ
′
iMỹj) +

[
(h′Myi)(h

′Mỹi) + (h′Myj)(h
′Mỹj)

]
+
[
(y′iMyj)(h

′Mỹ′i) + (y′iMyj)(h
′Mỹ′j) + (h′Myi)(ỹ

′
iMỹj) + (h′Myj)(ỹ

′
iMỹj)

]
+
[
(h′Myi)(h

′Mỹj) + (h′Myj)(h
′Mỹi)

]
.

Summing over (i, j) such that i 6= j gives a total of 9 partial sums, which we denote by S1, S21, S22,
S31, S32, S33, S34, S41 and S42, respectively. For example,

S1 = α−1
∑
i 6=j

(y′iMyj)(ỹ
′
iMỹj),

S21 = α−1(n− 1)
∑
i

(h′Myi)(h
′Mỹi),

S31 = α−1
∑
i 6=j

(y′iMyj)(h
′Mỹi),

S41 = α−1
∑
i 6=j

(h′Myi)(h
′Mỹj). (J.3)

It follows that

S = S1 +

2∑
m=1

S2m +

4∑
m=1

S3m +

2∑
m=1

S4m.

Combining (J.1) and (J.4) with Jensen’s inequality, we have

1 +Dχ2(P0‖P1)≤ E

[
exp

(
S1 +

∑
m=2 S2m +

∑4
m=1 S3m +

∑2
m=1 S4m

2(1− α)

)]

≤ 1

9
exp

(
9|S1|

2(1− α)

)
+

1

9

2∑
m=1

exp

(
9|S2m|

2(1− α)

)
+
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+
1

9

4∑
m=1

exp

(
9|S3m|

2(1− α)

)
+

1

9

2∑
m=1

exp

(
9|S4m|

2(1− α)

)
.

Write cα = 9/[2(1− α)]. To show the claim, it suffices to show that

E
[
exp(cα|X|)

]
= 1 + o(1), for each X ∈ {S1, S21, S22, S31, . . . , S34, S41, S42}. (J.4)

Below, we show (J.4) for each of X listed above.
First, consider X = S1. Let δ1, δ2, . . . , δK be the K eigenvalues of M , arranged in the descending

order of magnitude, and let b1, b2, . . . , bK be the associated eigenvectors. Then, M =
∑K
k=1 δkbkb

′
k. It

follows that

S1 = α−1
∑
k,l

δkδl

(∑
i

(y′ibk)(ỹ′ibl)

)2

− α−1
∑
k,l

δkδl
∑
i

(y′ibk)2(ỹ′ibl)
2.

Note that maxk |δk|= ‖M‖, where ‖M‖ is the operator norm of M . Therefore,

|S1| ≤ α−1‖M‖2
∑
k,l

(∑
i

(y′ibk)(ỹ′ibl)

)2

+
∑
k,l

∑
i

(y′ibk)2(ỹ′ibl)
2

 .
In addition, for any i ∈ J1, nK and k ∈ J1,KK, by the Cauchy-Schwarz inequality, we have (y′ibk)2 ≤
‖yi‖22‖bk‖22 = ‖yi‖22 ≤ ‖yi‖1 ≤ 2, given that ‖yi‖∞ ≤ 1 and that ‖yi‖1 ≤ ‖πi‖1 +‖h‖1 ≤ 2. It follows
that

|S1| ≤ 4nα−1K2‖M‖2 +R1, (J.5)

where

R1 ≡ α−1K2‖M‖2 max
k,l

(∑
i

(y′ibk)(ỹ′ibl)

)2

.

To boundR1, we fix a tuple (k, l) and provide an upper bound for Ykl :=
∑
i(y
′
ibk)(ỹ′ibl). Note that Ykl

is a sum of independent, zero-mean random variables. In addition, |(y′ibk)(ỹ′ibl)| ≤ ‖yi‖2‖ỹi‖2 ≤ 2.
We can apply Hoeffding’s inequality, for any t > 0:

P(|Ykl|> t)≤ 2 exp

(
− 2t2∑n

i=1(2‖yi‖2‖ỹi‖2)2

)
= 2 exp

(
− t

2

8n

)
.

Hence, denoting Y∗ := maxk,l |Ykl|, we have

P (Y∗ > t) = P

⋃
k,l

{|Ykl|> t}

≤∑
k,l

P(|Ykl|> t)≤ 2K2 exp

(
− t

2

8n

)
.

It follows that, for any t > 0,

P(R1 > t) = P
(
Y ∗ >

√
tα

K‖M‖

)
≤ 2K2 exp

(
− αt

8nK2‖M‖2

)
. (J.6)
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We now use (J.5) and (J.6) to bound E[exp(cα|S1|)]. For any non-negative variable X , it follows from
integration by part that E[exp(X)] = 1 +

∫∞
0 e′P(X > t)dt. It follows that

E
[
exp(cα|S1|)

]
≤ e4cαnα−1K2‖M‖2 ·E

[
exp(cαR1)

]
≤ e4cαnα−1K2‖M‖2

[
1 +

∫ ∞
0

e′P
(
R1 > c−1

α t
)
dt

]
≤ e4cαnα−1K2‖M‖2

[
1 +

∫ ∞
0

2e
−
(

α
8cαnK2‖M‖2

−1
)
t
dt

]
.

In our assumption, βn→ 0, which implies that

nα−1‖M‖2→ 0.

It follows that e4cαnα−1K2‖M‖2 = exp(o(1)) = 1 + o(1). Also, for n big enough, α
8cαnK2‖M‖2 −1>

0. Furthermore, we note that for any value z > 0,
∫∞
0 e−ztdt= z−1. Combining the above gives

E
[
exp(cα|S1|)

]
≤ e4cαK2nα−1‖M‖2

(
1 +

16cαK
2nα−1‖M‖2

1− 8cαK2nα−1‖M‖2

)
= 1 + o(1). (J.7)

This proves (J.4) for X = S1.
Second, consider X = S21 (the analysis of S22 is similar and thus omitted). We define a unit-norm

vector u= ‖Mh‖−1(Mh). Then,

S21 = α−1(n− 1)‖Mh‖2
∑
i

(y′iu)(ỹ′iu).

The variables {(y′iu)(ỹ′iu)}1≤i≤n are independent, with |(y′iu)(ỹ′iu)| ≤ ‖yi‖‖ỹi‖. We have seen that
‖yi‖2 ≤ 2 and ‖ỹi‖2 ≤ 2. It follows that |(y′iu)(ỹ′iu)| ≤ 2. Applying Hoeffding’s inequality, we obtain
that, for any t > 0,

P(|S21|> t) = P

(∣∣∣∣∣∑
i

(yiu)(ỹiu)

∣∣∣∣∣> tα

(n− 1)‖Mh‖2

)

≤ 2 exp

(
− t2α2

8n(n− 1)2‖Mh‖4

)
≤ 2 exp

(
− t2α2

8n3‖Mh‖4

)
.

Our assumption βn→ 0 implies that

n3α−2‖Mh‖4→ 0.

Furthermore, for z > 0, we have
∫∞

0 e−zt
2+t ≤

√
2πz−1e(4z)−1

. Combining these gives

E
[
exp(cα|S21|)

]
= 1 +

∫ ∞
0

e′P
(
|S21|> c−1

α t
)
dt

≤ 1 +

∫ ∞
0

2e
− α2

8c2αn
3‖Mh‖4

t2+ t
dt
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≤ 1 + 2
√

2π
√

8c2αn
3α−2‖Mh‖4 exp

(
−2c2αn

3α−2‖Mh‖4
)

= 1 + o(1). (J.8)

This proves (J.4) for X = S21.
Next, consider S31 (the analyses of S32-S34 are similar and omitted). Recall thatM =

∑K
k=1 δkbkb

′
k

is the eigen-decomposition of M ; additionally, we have defined u= ‖Mh‖−1(Mh). It follows that

S31 = α−1‖Mh‖
∑
i 6=j

(y′iMyj)(ỹ
′
iu)

= α−1‖Mh‖
∑
i 6=j

[∑
k

δk(y′ibk)(y′jbk)

]
(ỹ′iu)

= α−1‖Mh‖
∑
k

δk

[∑
i

(y′ibk)(ỹ′iu)

][∑
j

(y′jbk)

]

− α−1‖Mh‖
∑
k

δk

[∑
i

(y′ibk)2(ỹ′iu)

]
.

We have seen that ‖bi‖2 = 1, ‖yi‖2 ≤ 2, ‖ỹi‖ ≤ 2, ‖u‖= 1, and |δk| ≤ ‖M‖. It follows that

|S31| ≤R31 + 2
√

2nα−1K‖M‖‖Mh‖, (J.9)

where

R31 := α−1‖M‖‖Mh‖Kmax
k
Zk, with Zk =

[∑
i

(y′ibk)(ỹ′iu)

][∑
j

(y′jbk)

]
.

We can derive the tail probability bound for Zk: Since |y′ibk| ≤ ‖yi‖ ≤
√

2 and |ỹ′iu| ≤ ‖ỹi‖ ≤
√

2, the
Hoeffding’s inequality yields that

P(|Zk|> t)≤ P

(∣∣∣∣∣∑
i

(y′ibk)(ỹ′iu)

∣∣∣∣∣>√t
)

+ P

∣∣∣∣∣∣
∑
j

(y′jbk)

∣∣∣∣∣∣>√t


≤ 2 exp

(
− t

8n

)
+ 2 exp

(
− t

4n

)
≤ 4 exp

(
− t

8n

)
.

We thus have

P(|R31|> t) = P
(

max
k
Zk >

tα

K‖M‖‖Mh‖

)
≤ 4K exp

(
− tα

8nK‖M‖‖Mh‖

)
. (J.10)

We apply (J.9)-(J.10) to bound E[exp(cα|S31|)]. Our assumption βn→ 0 ensures that nα−1‖M‖2 → 0.
Note that ‖Mh‖ ≤ ‖M‖‖h‖ ≤ ‖M‖

√
‖h‖1‖h‖∞ ≤ ‖M‖. It follows that

nα−1‖M‖‖Mh‖→ 0.
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We then mimic the proof of (J.7) to get

E
[
exp(cα|S31|)

]
≤ e2

√
2cαnα−1K‖M‖‖Mh‖

[
1 +

∫ ∞
0

e′P
(
|R31|> c−1

α t
)
dt

]
≤ e2

√
2cαnα−1K‖M‖‖Mh‖

[
1 +

∫ ∞
0

4Ke
−
(

α
4cαnK‖M‖‖Mh‖−1

)
t
]

≤ e2
√

2cαnα−1K‖M‖‖Mh‖
(

1 +
16cαK

2nα−1‖M‖‖Mh‖
1− 4cαKnα−1‖M‖‖Mh‖

)
= 1 + o(1). (J.11)

This proves (J.4) for X = S31.
Last, consider S41 (the analysis of S42 is similar and omitted). Since u= ‖Mh‖−1Mh, we have

S41 = α−1‖Mh‖2
∑
i 6=j

(y′iu)(ỹ′ju)

= α−1‖Mh‖2
[∑
i

(y′iu)

][∑
j

(ỹ′ju)

]
− α−1‖Mh‖2

∑
i

(y′iu)(ỹi
′u).

Note that |(y′iu)(ỹi
′u)| ≤ ‖yi‖‖ỹi‖ ≤ 2. We immediately have

|S41| ≤R41 + 2nα−1‖Mh‖2, (J.12)

where

R41 = α−1‖Mh‖2
[∑
i

(y′iu)

][∑
j

(ỹ′ju)

]
.

We apply Hoeffding’s inequality to derive the tail probability bound: For all t > 0,

P(|R41|> t) = P

(∣∣∣∣∣∑
i

(y′iu)

∣∣∣∣∣>
√
αt

‖Mh‖

)
+ P

∣∣∣∣∣∣
∑
j

(ỹ′ju)

∣∣∣∣∣∣>
√
αt

‖Mh‖


≤ 4 exp

(
− αt

8n‖Mh‖2

)
. (J.13)

We have seen that ‖Mh‖ ≤ ‖M‖. Therefore, the assumption of βn→ 0 leads to

nα−1‖Mh‖2→ 0.

Using (J.12) and (J.13), we have

E
[
exp(cα|S41|)

]
≤ e2cαnα−1‖Mh‖2

[
1 +

∫ ∞
0

e′P
(
|R41|> c−1

α t
)
dt

]
≤ e2cαnα−1‖Mh‖2

[
1 +

∫ ∞
0

4e
−
(

α
8cαn‖Mh‖2

−1
)
t
]
.
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≤ e2cαnα−1‖Mh‖2
(

1 +
32cαnα

−1‖Mh‖2

1− 8cαnα−1‖Mh‖2

)
= 1 + o(1).

This proves (J.4) for X = S41.

Appendix K: Proof of Theorem 3.6

Note: this proof requires Lemma K.1 and Lemma K.2, which are provided directly after the proof.

We start by studying the case t0 = 0. We consider a sequence of null hypotheses indexed by n, where
Ωn = αn1K1′K ∈M0n under H(n)

0 . For our sequence of alternatives, we consider Ωn = ΠnPnΠ′n
under H(n)

1 , with

Pn = αn
[
γnIK + (1− γn)1K1′K

]
, and π1, ..., πn

iid∼ F,

where for all k ∈ {1, ...,K},

Pπ∼F (π = ek) =
1

K
.

In the above definition, {ek}Kk=1 denotes the canonical basis of RK . It follows that

h := Eπ∼F [π] =
1

K
1K , and Σ := Eπ∼F [ππ′] =

1

K
IK .

Under this random mixed membership model, it is straightforward to verify that

α0 = αn

(
1− K − 1

K
γn

)
,

‖Pnh− α01K‖= 0,

‖Pn − α01K1′K‖= αnγn.

Hence

βn = max
{
n3/2α−1

0 ‖Pnh− α01K‖2, n2α−2
0 ‖Pn − α01K1′K‖

4}= n2α−2
0 α4

nγ
4
n.

By assumption, γn→ 0, hence for n sufficiently large, αn < 2α0, hence

βn =O(n2α2
nγ

4
n) = o(1),

under the assumption that n2α2
nγ

4
n = o(1). By Theorem 3.5, the χ2-distance between the two distribu-

tions satisfiesDχ2(f
(n)
0 ‖f (n)

1 ) = o(1). By connection between L1-distance and χ2-distance, it follows
that

‖f (n)
0 − f (n)

1 ‖1 = o(1).

We now slightly modify the alternative hypothesis. Let {Π0
n}n be a sequence of non-random member-

ship matrices such that (Pn,Π
0
n) ∈M1n(0). Such a sequence can be built e.g. by considering bn/Kc
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pure nodes in each community and all other nodes equally mixed across all communities. In the modi-
fied alternative hypothesis H̃(n)

1 ,

Π̃ =

{
Πn, if (Πn, Pn) ∈M1n(0),

Π0
n, otherwise.

Let f̃ (n)
1 be the probability measure associated with H̃(n)

1 . Under H̃(n)
1 , all realizations Π̃nPnΠ̃′n are

in the classM1n(0), by definition. By the Neyman-Pearson lemma and elementary inequalities,

Risk∗n(0)≥ 1− inf
f0∈M0n,f1∈M1n(0)

{‖f0 − f1‖1}

≥ 1− ‖f (n)
0 − f̃ (n)

1 ‖1

≥ 1− ‖f (n)
0 − f (n)

1 ‖1 − ‖f
(n)
1 − f̃ (n)

1 ‖1

≥ 1− o(1)− ‖f (n)
1 − f̃ (n)

1 ‖1.

It follows from Lemma K.1 that Π̃n = Πn with probability 1− o(1). As a result,

‖f (n)
1 − f̃ (n)

1 ‖1 = o(1),

from which we obtain that limn→∞{Risk∗n(0)}= 1.

Next, we study the case 0 < t0. Again, we consider a sequence of null hypotheses indexed
by n, where Ωn = αn1K1′K ∈ M0n under H(n)

0 . For our sequence of alternatives, we consider

Ωn = ΠnPnΠ′n under H(n)
1 , with

Pn = αn
[
γnIK + (1− γn)1K1′K

]
, and π1, ..., πn

iid∼ F,

where

Pπ∼F (π = e1) =
K + 1

2K
, and Pπ∼F (π = e1) =

1

2K
∀k ∈ {2, ...,K}.

It follows that

h := Eπ∼F [π] =
1

2K
(Ke1 + 1K), and Σ := Eπ∼F [ππ′] =

1

2K
(Ke1e

′
1 + IK).

Under this random mixed membership model, it is straightforward to verify that

α0 = αn

(
1− 3K − 3

4K
γn

)
,

‖Pnh− α01K‖= αnγn

√
(K − 1)(K + 3)

16K
,

‖Pn − α01K1′K‖= max

{
αnγn,

K − 1

4
αnγn

}
.



Global Testing of MMSBM 61

Recall that

βn = max
{
n3/2α−1

0 ‖Pnh− α01K‖2, n2α−2
0 ‖Pn − α01K1′K‖

4}.
Hence

βn = max

{
n3/2α−1

0 α2
nγ

2
n

(K − 1)(K + 3)

16K
, max

(
1,

(
K − 1

4

)4
)
n2α−2

0 α4
nγ

4
n

}

By assumption, γn→ 0, hence for n sufficiently large, αn < 2α0, hence

βn =O
(

max
{
n3/2αnγ

2
n, n2α2

nγ
4
n

})
=O

(
max

{
n3/2αnγ

2
n,

(n3/2αnγ
2
n)2

n

})
= o(1),

under the assumption that n3/2αnγ
2
n = o(1). By Theorem 3.5, the χ2-distance between the two dis-

tributions satisfies Dχ2(f
(n)
0 ‖f (n)

1 ) = o(1). By connection between L1-distance and χ2-distance, it
follows that

‖f (n)
0 − f (n)

1 ‖1 = o(1).

We now slightly modify the alternative hypothesis. Let {Π0
n}n be a sequence of non-random mem-

bership matrices such that (Pn,Π
0
n) ∈M1n(t0). Such a sequence can be built e.g. by considering

bn(K + 1)/2Kc pure nodes in community 1, bn/2Kc nodes in communities 2 to K and all other
nodes with mixed membership vector (2K)−1(Ke1 + 1K). In the modified alternative hypothesis
H̃

(n)
1 ,

Π̃ =

{
Πn, if (Πn, Pn) ∈M1n(t0),

Π0
n, otherwise.

Let f̃ (n)
1 be the probability measure associated with H̃(n)

1 . Under H̃(n)
1 , all realizations Π̃nPnΠ̃′n are

in the classM1n(t0), by definition. By the Neyman-Pearson lemma and elementary inequalities,

Risk∗n(0)≥ 1− inf
f0∈M0n,f1∈M1n(t0)

{‖f0 − f1‖1}

≥ 1− ‖f (n)
0 − f̃ (n)

1 ‖1

≥ 1− ‖f (n)
0 − f (n)

1 ‖1 − ‖f
(n)
1 − f̃ (n)

1 ‖1

≥ 1− o(1)− ‖f (n)
1 − f̃ (n)

1 ‖1.

It follows from Lemma K.2 that Π̃n = Πn with probability 1− o(1). As a result,

‖f (n)
1 − f̃ (n)

1 ‖1 = o(1),

from which we obtain that limn→∞{Risk∗n(t0)}= 1.
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Lemma K.1 (Case t0 = 0). FixK ≥ 2, a sequence {αn}n ∈ [0,1]N, and a sequence {γn}n ∈ (R+)N.
Denote by {ek}Kk=1 the canonical basis of RK . Consider the sequence of alternative probability ma-
trices Ωn = ΠnPnΠ′n, with

Pn = αn
[
γnIK + (1− γn)1K1′K

]
, and π1, ..., πn

iid∼ F,

where for all k ∈ {1, ...,K}, Pπ∼F (π = ek) = 1
K . Suppose that αn → 0, nαn →∞, and γn → 0.

Then, with probability 1− o(1), (Pn,Πn) ∈M1n(0).

Proof
From the proof of Theorem 3.6 for t0 = 0, we know that

h := Eπ∼F [π] =
1

K
1K , Σ := Eπ∼F [ππ′] =

1

K
I ′K and α0 = αn

(
1− K − 1

K
γn

)
.

We introduce the following random quantities:

h̃=
1

n

n∑
i=1

πi, G̃=
1

n

n∑
i=1

πiπ
′
i, and α̃0 = h̃Pnh̃

′.

To show that (P,Π) ∈M1n(0), we will check that

1. OSC(h̃)≤C and ‖G̃−1‖ ≤C,
2. α̃0 ≤ c, nα̃0 ≥ c−1, and α̃0 ≥ αn/2,
3. 2α̃−1

0 ‖Pn − α̃01K1′K‖ ≥ γn.

First, recognize that h̃ = n−1∑n
i=1 π̃i

as−→ K−11K by the Strong Law of Large Numbers. As a
consequence, for n sufficiently large, we have OSC(h̃)< C with probability at least 1− o(1). Next,
let yi = πi − h̃. We have

nG̃=

n∑
i=1

πiπ
′
i =

n∑
i=1

(h̃h̃′ + h̃y′i + yih̃
′ + yiy

′
i)

= nΣ +

n∑
i=1

(yiy
′
i −E[yiy

′
i]) +

n∑
i=1

(h̃y′i) +

n∑
i=1

(yih̃
′)

= nΣ +Z0 +Z1 +Z2.

Notice that Z0 is a sum of n independent mean-zero random matrices, so we can apply the matrix
Hoeffding inequality to bound its operator norm. Since ‖yiy′i −E[yiy

′
i]‖ ≤C, we obtain for t > 0,

P (‖Z0‖> t)≤ exp

(
−Ct

2

n

)
.

If we pick t = C
√
n log(n), then we have that ‖Z0‖< C

√
n log(n) with probability 1− o(1). Sim-

ilarly, it is straightforward to show that ‖Z1 + Z2‖ ≤ C
√
n log(n) with probability 1 − o(1). Now,

recall that λmin(Σ) =K−1. As a result,

λmin(nG̃) = λmin(nΣ +Z0 +Z1 +Z2)> λmin(nΣ)− ‖Z0 +Z1 +Z2‖>
n

K
−C

√
n log(n).
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It follows that

λmin(G̃)>
1

K
−C

√
log(n)

n
,

which shows that for n sufficiently large, ‖G̃−1‖<C with probability 1− o(1).

Next, we show that α̃0 < c and nα̃0 > c−1 with high probability. Denote z := h̃−h. We can rewrite

α̃0 = h̃′Ph̃= z′Pz + 2h′Pz + α0.

Notice that both ‖z′Pz‖ ≤ C‖Pz‖ and ‖h′Pz‖ ≤ C‖Pz‖. We now provide a high-probability bound
on the 2-norm of Pz, which can be written as a sum of mean-zero independent random variables

Pz =
1

n

n∑
i=1

(Pπi − Ph),

where for all i= 1, ..., n it holds that ‖Pπi−Ph‖ ≤C‖P‖ ≤Cαnγn. For t > 0, Hoeffding’s inequal-
ity yields

P (‖Pz‖> t)≤C exp

(
−Cnt

2

α2
nγ

2
n

)
.

Pick t = αnγn
√

log(n)/n. As a consequence, we obtain that ‖Pz‖ < αnγn
√

log(n)/n with proba-
bility 1− o(1). Hence with probability 1− o(1),

α̃0 = α0 +O

(
αnγn

√
log(n)

n

)
= αn −

K − 1

K
αnγn + o (αnγn) = αn +O(αnγn).

It follows that for n sufficiently large, α̃0 < c and nα̃0 > c−1 with probability 1− o(1). We also obtain
from this last equation that for n sufficiently large, α̃0 ≥ αn/2 with probability 1− o(1).

It remains to show that 2α̃−1
0 ‖Pn − α̃01K1′K‖ ≥ γn. With probability 1− o(1), the matrix (Pn −

α̃01K1′K) has eigenvalues

λ+ =K(αn − α̃0)− (K − 1)αnγn = o(αnγn),

λ− = αnγn.

hence for n sufficiently large, we must have ‖Pn − α̃01K1′K‖= αnγn ≥ α̃0γn/2. It follows that

2α̃−1
0 ‖P − α̃01K1′K‖ ≥ γn,

which concludes the proof.

Lemma K.2 (Case 0< t0). FixK ≥ 2, a sequence {αn}n ∈ [0,1]N, and a sequence {γn}n ∈ (R+)N.
Denote by {ek}Kk=1 the canonical basis of RK . Consider the sequence of alternative probability ma-
trices Ωn = ΠnPnΠ′n, with

Pn = αn
[
γnIK + (1− γn)1K1′K

]
, and π1, ..., πn

iid∼ F,
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where

Pπ∼F (π = e1) =
K + 1

2K
, and Pπ∼F (π = ek) =

1

2K
∀k ∈ {2, ...,K}.

Suppose that αn→ 0, nαn→∞, γn→ 0, and 0< t0 <
√

(K − 1)(K + 3)/(16K). Then, with prob-
ability 1− o(1), (Pn,Πn) ∈M1n(t0).

Proof
From the proof of Theorem 3.6 for t0 > 0, we know that

h : = Eπ∼F [π] =
1

2K
(Ke1 + 1K),

Σ : = Eπ∼F [ππ′] =
1

2K
(Ke1e

′
1 + IK),

and α0 = αn

(
1− 3K − 3

4K
γn

)
.

We introduce the following random quantities:

h̃=
1

n

n∑
i=1

πi, G̃=
1

n

n∑
i=1

πiπ
′
i, and α̃0 = h̃Pnh̃

′.

To show that (P,Π) ∈M1n(t0), we will check that

1. OSC(h̃)≤C and ‖G̃−1‖ ≤C,
2. α̃0 ≤ c, nα̃0 ≥ c−1, and α̃0 ≥ αn/2,
3. 2α̃−1

0 ‖P − α̃01K1′K‖ ≥ γn and ‖Ph̃− α̃01K‖ ≥ t0‖P − α̃01K1′K‖.

The first two points can be shown with probability at least 1− o(1) in the same way as in the proof of
Lemma K.1. We will focus on the third point. For n sufficiently large, αnγn is the largest eigenvalue
of (P − α̃01K1′K) in magnitude. Hence, we must have, for n sufficiently big

‖Pn − α̃01K1′K‖= αnγn ≥ α̃0γn/2.

Now, introduce the (continuous) function with support RK :

g(x) :=

∥∥∥∥∥∥∥∥∥


x1(1− x1)−

∑
k 6=1 x

2
k

x2(1− x2)−
∑
k 6=2 x

2
k

...
xK(1− xK)−

∑
k 6=K x2

k


∥∥∥∥∥∥∥∥∥ .

Notice that ‖Ph̃ − α̃01K‖ = αnγng(h̃) and g(h) =
√

(K − 1)(K + 3)/(16K). As a consequence,
for n sufficiently large,

‖Pnh̃− α̃01K‖
‖Pn − α̃01K1′K‖

=
αnγng(h̃)

αnγn

as−→ g(h) =

√
(K − 1)(K + 3)

16K
> t0.

It follows that for n sufficiently large, with probability at least 1− o(1),

‖Pnh̃− α̃01K‖ ≥ t0‖Pn − α̃01K1′K‖,
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which concludes the proof.

Appendix L: Proof of Propositions 4.1-4.2

L.1. Proof of Proposition 4.1

We suppose that there exists an eligible tuple (Π0, P0,K0) such that Ω = Π0P0Π′0. To show the first
point of the proposition, define the set:

S =
{
k ∈N∗

∣∣∣ ∃(Π, P ) ∈Rn×k ×Rk×k eligible such that Ω = ΠPΠ′
}
.

Note that S is a discrete set lower bounded by 0 which is non-empty since K0 ∈ S by assumption. It
follows that S has a lower bound, which we denote as kΩ. It corresponds to the INC defined in Defini-
tion 4.2.

Now, we proceed to showing that when K = kΩ, the matrix P is identifiable up to permutation.
Suppose that we have two pairs of eligible matrices (Π, P ), (Π∗, P ∗) ∈ Rn×kΩ × RkΩ×kΩ such that
Ω = ΠPΠ′ = Π∗P ∗(Π∗)′. Because Π,Π∗ are eligible, they contain the identity matrix as a submatrix.
We assume without loss of generality that the first kΩ rows of Π and Π∗ correspond to kΩ pure points,
one per community. The submatrices

Π̃ := Π|{1,...,kΩ},· and Π̃∗ := Π∗|{1,...,kΩ},·

are permutations matrix. We have

Ω|{1,...,kΩ}×{1,...,kΩ} = Π̃P Π̃′ = Π̃∗P ∗(Π̃∗)′,

which implies that P ∗ =DPD′, where D = (Π̃∗)′Π̃ is a permutation matrix.

If, in addition, we have that rank(P ) = kΩ, then P is invertible. It follows that

Π̃P = Π̃∗P ∗(Π̃∗)′Π̃ = Π̃∗P ∗D = Π̃∗DP =⇒ Π̃ = Π̃∗D.

In addition, since Ω = ΠPΠ′ = Π∗P ∗(Π∗)′, Π and Π∗ have full column rank, which means that there
must exist an invertible matrix B ∈ RK×K such that Π = Π∗B. This implies that Π̃ = Π̃∗B. As a
result that B = D, so Π = Π∗D. This shows that if rank(P ) = kΩ, then Π is also identifiable up to
permutation.

Finally, it holds by definition of kΩ that K0 ≥ kΩ. Since rank(P0) = rank(Ω) and kΩ = dim(P )≥
rank(Ω), we obtain that

K0 ≥ kΩ ≥ rank(P0).

Furthermore, if P0 is non-singular, then K0 = rank(P0), hence

K0 = kΩ = rank(P0).
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L.2. Proof of Proposition 4.2

By Proposition 4.1, there exists a pair of eligible Π ∈Rn×kΩ and P ∈RkΩ×kΩ such that Ω = ΠPΠ′,
where kΩ is the INC. Hence in the rest of the proof, we take K = kΩ.

Denote by Λ ∈Rr×r the matrix of eigenvalues of Ω. It follows that we can write Ω = ΞΛΞ′. Further-
more, note that the fact that r = rank(Ω) implies that we also have rank(P ) = r. We can thus denote by
X ∈ RkΩ×r the matrix of eigenvectors of P , and by L ∈ Rr×r the corresponding matrix of non-zero
eigenvalues, thus obtaining that P =XLX ′. As a consequence,

Ω = ΞΛΞ′ = ΠXL(ΠX)′.

Note that ΛΞ′ and L(ΠX)′ must have full row-rank r, so the column space of Ξ is equal to the column
space of ΠX . There must exist a matrix B ∈ Rr×r such that Ξ = ΠXB. Hence there exists a matrix
V ∈RkΩ×r such that

Ξ = ΠV. (L.1)

Since Π is a membership matrix, it follows that the rows of Ξ are convex combinations of the kΩ
rows of V . Because Π is eligible, the identity matrix is a submatrix of Π. Without loss of generality,
assume that Π|{1,...,kΩ},· = IkΩ

. It follows that V = Ξ{1,...,kΩ},·. This shows that C(Ξ) is a polytope
with at most kΩ vertices and at least r vertices.

In the case that kΩ = r, the desired result follows immediately. In the case that kΩ < r, hic jacet
lepus. Suppose by contradiction that V has only N distinct rows, where r ≤N < kΩ. This means that
we can write Ξ = ΠBṼ , where Ṽ ∈ RN×r is the matrix containing the unique rows of V and B ∈
RkΩ×N is a row-replication matrix (which admits the identity matrix IN as a submatrix). It follows
that we can write:

Ω = ΠBṼ ΛṼ ′B′Π′.

We denote Π̃ := ΠB and P̃ = Ṽ ΛṼ ′, and proceed to showing that these matrices are eligible. First, it
is straightforward to see that for any i ∈ {1, ..., n}, the i-th row of Π̃ is positive and verifies π̃′i1N =
π′iB1N = π′1K = 1. In addition, since both Π admits IkΩ

as a submatrix and B admits IN as a
submatrix, it follows that Π̃ admits IN as a submatrix. This shows that Π̃ is admissible.

Now, from Equation (L.1), we know that Ω = ΠV ΛV ′Π′, so P = V ΛV ′ = BṼ ΛṼ ′B′. By defini-
tion, B admits a left inverse, call it Q ∈ {0,1}N×kΩ , so that QB = I2. Then P̃ =QPQ′. Since both
Q and P are nonnegative, it follows that P̃ is nonnegative, thus eligible.

We have shown that we can write Ω = Π̃P̃ Π̃′, where (Π̃, P̃ ) ∈Rn×N×RN×N eligible andN < kΩ,
QEA.
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