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This supplemental material provides computations for examples and remarks, as well as proofs of theorems,
corollaries and propositions. Appendix A covers the computations of 7, and dn, in Example 1, while Appendix B
contains the calculation of the Intrinsic Number of Communities of the rank-1 model of Example 2, along with
computations of 7, and dn, for that model. Appendix C shows the signal-to-noise ratios of the order-m Signed
Path and Signed Cycle statistics, for m arbitrary. In Appendix D, we derive the asymptotic joint null distribution
of Theorem 2.1. Appendix E shows the proof of Theorem 2.2, which consists in providing a lower bound for the
expectation of the x“ test statistic and an upper bound for its variance under the alternative hypothesis. Likewise,
Appendix F derives the lower bound for the expectation of the 0SQ test statistic and the upper bound for its
variance under the alternative hypothesis, presented in Theorem 2.3. Appendix G and Appendix H respectively
report the proofs of Corollary 2.2 and Corollary 2.3 about the level and the power of the X2 test and the 0SQ test.
The proof of Theorem 2.4 about the power and the level of the PE test is provided in Appendix 1. Appendix J
shows the proof of the lower bound, which corresponds to Theorem 2.5, and Appendix K contains the proof of the
minimax result of Theorem 2.6. Finally, Appendix L shows the proof of Proposition 3.1 and Proposition 3.2 which
examine the identifiability of MMSBM and give an alternative definition of the Intrinsic Number of Communities.
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Global Testing of MMSBM
Appendix A: Calculations in Example 1

Introduce
Yn =1 — 2¢p, zn = (dp, —an)/2.
Recall that a,, = (apn, + dy)/2, and 2z, = (dy, — ay)/2. Then,

~ 1
P = (an — bp) Iz — znere] + zneach + by 1215, h= 5(1 — Y, 14+ yn).

We calculate o, || Mh||? and ||M||? in general cases.
First, consider c. Note that || h||% = h? + h3 = (1 +y2)/2 and h — h? = y,,. We have

ap=h'Ph=H [(an —bp) o — znerel + zneacly + bn121’2] h
= (an — bn) 21> + 20 (k5 — B3) + bn,
= (1 +y2)/2+ 2nyn + bn(1 —y2) /2.
Next, we calculate || M hl||2. It follows from (A.1) that
ag —bp = (an — bp) (L +y2)/2 + 2nYn-
We plug it into the expression of M h to get

Mh = Ph—agle = [(C_Ln —bp)Iz — znelell + ZnGQCIQ + bnlglé]h —qapla
_ h h 0
= (ap — bp) [h;:| — Zn |:01:| + zn |:h2:| +bplo — agls

(dn_bn_zn)hl B B

I
1

L H(@n = bn — 2n)(1 = yn)
) — (ap —bp)1
2 [(@n —bp + 20) (1 + yn) (ag = bn)12
L@y —bn— 20| | Yn [—(@Gn —bn — 2n)
T2 5} — (g — bn)1
2 _(_Zn*bn+2n T 2 Gn — b + 2n (O[() bn) 2
_ L fan—bn—zn] , Yn [~(@n—bn—2n)
2 |Gn —bn +2n 9 Gn — bn + 2n
1 [2z0yn] 1 [an—bn] 1 [y2(@n — bn)
2 (2znyn 2 lan — by, 2 y'r21<@n_bn)
_ ontaln =) [<1] _ nzn +13n o) [1
B 2 1 9 nE

The two vectors, 12 and (1, —1)’ , are orthogonal to each other. It follows that

1 2 2 2
IMAIP= 5 20+ yn@n = bo)|+ 2 20+ yn @n — bu)|

(A1)

(A2)



= %(1 +y2) [Zn + yn(@n — bn) ’ (A.3)

Last, we calculate || M ||2. We have seen that
M = (@pn, — bp) Iy — znere)] + zneseh — (ag — by ) 1215,
Introduce My = (an — by)I2 — (g — bp)121%. Then,
M = My — zpdiag(1,—1). (A.4)

We compute the two eigenvalues of My. Write v = (1,—1)". It is seen that v is orthogonal to 15;
furthermore,

Mov = {(én —bn)Ia — (g — bn)lzllz}v = (an —bn)v < v,
Moly = {(t_m —bn)l2 — (a0 — bn)lzllz} 1y =[(@n —bn) = 2(a0 —bn)]12 o 1a.

It follows that 19 and v are two eigenvectors of M™*, with the associated eigenvalues as

(@y, — bp),

A1(Mp)

)\Q(MQ) = (dn - bn) - 2(&0 — bn)
= (an - bn) - [(&n - bn)(l + y%) + 2Znyn]
=—(an — bn)yr% — 22nYn, (A.S)

where we have applied (A.2) in the last equality. Combining (A.4)-(A.5), we have
if anp — b
| M]| ~ ‘f"" f ‘Z"|>>|C_L” nl (A.6)
|y, — bp|, if |zn| < |Gn — bp-

We now combine (A.1), (A.3) and (A.6). In Case (S), z, = 0 and y,, = 0. It follows that

_ap+by

MBI =0, M = (an — ba).

g
Plugging them into the definitions of J,, and 7;, and noting that a,, = a,, in this case, we immediately
get the claims for Case (S). In Case (AS1), a,, = a,, and z;,, = 0 but y,, may be nonzero. It follows that

L+ y2)an + (1 —y2)b 1
o = L Q=0 e = 20 22 a0 M = (an— b

Assuming that |a,, — by, | = O(ay, +by,), it follows that (1 +y2)an + (1 —y2)bn = (1+Cy2) (an +by)
for some constant C' > (0. We obtain

an + by,
ag < 5 s

1
MR = Zyh(an —ba)?, M = (an —bn)*.

In Case (AS2), yp, = 0 and zy, >> |Gy, — byp|. It follows that

_an+by

aQ 9 )

2 2 2 2
HMh” :Zn/27 HM” ~ Zp-
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In Case (AS3), yn, =0 and z, < |Gy, — by|. It follows that

 n +bn

5 IMR|? =272, M2~ (an —bn)?.

aQ

The claims follow directly. O

Appendix B: Calculations in Example 2

We start by showing that the rank-1 model of Example 2 has Intrinsic Number of Communities (INC)
equal to 2, regardless of K. We first recognize that the INC must be at least greater or equal to 2. Indeed,
suppose that the INC is equal to 1, then we can find n* € [0,1] such that Q = (*)?1,,1},. From the
original model formulation we had 2 = IInn'Il’, and we assumed that 1 o¢ 1. Thus, it is impossible
for Q) to have all equal entries if T is eligible, which contradicts the earlier fact that Q = (n*)?1,,1/,,
QEA!

We now show that the INC is equal to 2. Define

n = maXge(1,K] "k

n* = (nt.n3) €0, 1]2, where . _
15 = milgeq K] -

We also define the matrix H € [0,1]%*2 such that
. =y N —m
n =13

K — M5 N — 1K

It is straightforward to check that Hn* = n and that IT* := IIH is an eligible mixed membership
matrix. It follows that

Q=TIPII' = I/ TI" = WHn*(n*)' H'TI' = IT* P*(IT*)’, (B.1)

where we have defined the matrix P* = n*(n*)' € [0, 1]2><2. This shows that the INC of this rank-1
model is equal to 2, regardless of K > 2.

Next, we compute the Signal-to-Noise Ratios (SNR) of both tests for the rank-1 model introduced
in Example 2. We start by computing the SNR of the degree test statistic, §,,. Recall that

On = n3/2a61||Ph —aplgl?.

Direct calculations show that

2 2
c a? apb cn(an +bn)
P=m=—"T_ ( n "”), and ag:=h'Ph="12-2" 77
=02 02 \anb, 02 0 4(a2 +02)

This allows computing

Ph—aglg =

O}
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Together, the results for ag and Ph — agl g yield the following expression of the SNR:

3/2 (an — bn)? 3/2 (an — bn)? (B.2)

1
on==-n""“c xn e, —m——a—.
T2 T (a4 02) " (a2 +02)

Then, we compute the SNR of the 0SQ test statistic, 7,. Recall that
T, = n2a62|\P — aglKllK||4.

We only need to compute || P — o911 ||. Straightforward calculations reveal that

P—OZO].K].II(:M <3an+b” bn_a’n> Cn(an*bn)

202 782) \ bu—an 3bu+an) = A2 1 02)

where we introduced the matrix ) for notational convenience. The eigenvalues A, A_ of () are the
solutions to the following equation in the z-variable

Tr(Q) = 4(an, + bp)

2 —
x® —Tr(Q)x +det(Q) =0, where {det(Q):2(an+bn)2+8anbn-

We thus obtain that
M =2(an +bp) £ lap —bnl, so Ay =<ap+bn,

where the last equivalence follows from our assumption that |a,, — by, | = O(ay, + by,). It follows that

(an — bp)(an + bp)
A(a +0b7)

C
1P —aolplkll= =

As a consequence,

4
_.22(an—bn)"
Tn <N CnWAn 571 (B3)

Appendix C: Calculations in Remark 2

C.1. SNR of Signed Path statistics

We consider the length-m Signed Path statistic Vém) defined as

VTEm) — Z (Ai1i2 — dn)(A’Lglg — dn)---<Aimim+1 — @n), form > 2,
21,...,4m+1(distinct)
where we recall that

1
Gp=——-=> Ajj.
" n(nl); K



Global Testing of MMSBM 7

For simplicity, we study the corresponding ideal statistic Vém) , where we replace &, by the population
null edge probability a,:

VTSm) = Z (Aiyiy — O‘n)(AiQiB o a”)"'(Aimim+1 ~ om).

%1,...,2m+1(distinct)

The following lemma derives the null mean and variance as well as the alternative mean of the ideal
length-m Signed Path statistic. It uses the following quantities, which are defined in the main text:

1 < 1
h==- E i, ag = k' Ph, and G=-IIIL
n - n
=1
In addition, we denote by E;[-] the expectation under the alternative distribution and by Eq[-], Varg(+)
the expectation and variance under the null distribution, respectively.

Lemma C.1 (Moments of the ideal length-m Signed Path statistic). Suppose that conditions (3.4) and
(3.5) hold. In addition, let M = P — a1k 14 and suppose that n=1 || Mh||=1||M|> = o(1). Then,

Eq [_rsm)} =0, Varg (_,gm)) xnm+1a?, and Eq [_ém)} xnm+1|\Mh||2||M||m_2.

Proof
Under the null hypothesis, we can write

7 = S Wik Wi Wi

21,...,4m+1(distinct)

mim+1 )

where W;; = A;j — ap, for all i # j. It is straightforward to obtain that Eq V,gm) = 0. Next, we
compute the null variance of the ideal Signed Path statistic. We have, by direct calculations:

Var ( _,gm)) = Varg Z WivioWigis "'Wimim+1

21,...,4m+1(distinct)

=Ey Z Wilio ~~~Wimim+1Wj1j2ij = nm—HaZl. (C.1H

7njm+1
41 5.+-,%m 41 (distinct)
1 5+++,Jm 1 (distinct)

Under the alternative hypothesis, we choose P and h such that o := b/ Ph = ay,. This choice
ensures that the network will have the same average degree under the null and alternative hypotheses,
thus making the testing problem harder. As a result, we can write:

7™ = Z Wiris + Qiviy) Wigis + Qigis) - Wiinerr + Qiivrr )

115y im41
(distinct)

where Wij = Aij — Qij and Qij = Qij —Qap = 7T£M7Tj for all 4 # j. It follows that
BT =Y Qi i,

1150y bm41
(distinct)



= D Q%0 Qi — D QirisQigis e Qi1
U1yeesbma1 11,y bm 1
(not distinct)

=1,Q2"1y — O(n™||M|"™) = 1, (M) 15, — O(n™ || M]|™)

— 11, (IMGM...MGMIT)1,, — O(n™ | M|™)
— ™ M(GM...MG)Mh — O(n™ || M]||™)

Since we have assumed that |G|, |G~|| < cand n =1 ||MA||~1||M||?> = o(1), we obtain that
Er [VA™] < n™ 1 Ph— a1 2P — agl L™ 2. (€2

O
The results in Lemma C.1 allow us to compute the SNR for the length-m Signed Path statistic. We
derive the SNR assuming that the null variance dominates the alternative variance. Thus,

svr(7) - B [7)] o [0 ) I, [77)
\/max {Varo (V,fbm)) , Vary (}Em)) } \/VaIO (7n(m))

MBI oy
n(m+1)/2a6n/2 nTn .

Similar to our results in Theorem 3.2, there may be instances in which the alternative variance domi-
nates the null variance. In these cases, the SNR still depends on powers of d,, and 7,, and the detection
boundary is unchanged; details are omitted.

C.2. SNR of Signed Cycle statistics

We consider the length-m Signed Cycle statistic U,(Zm) defined as

UT(Lm) — Z (Ailig — OAzn)(AZﬂs — @n)(A’Lmzl — dn), for m > 3.

11 5...,0m (distinct)

For simplicity, we study the corresponding ideal statistic U,Sm), where we replace &, by the population
null edge probability «,:

U,,sm) = Z (A'i1i2 — O[n)(Ai27;3 - Oén)m(Aimil - an)a for m > 3.

i1 ,...,0m (distinct)

Lemma C.2 (Moments of the ideal length-m Signed Cycle statistic). Suppose that conditions (3.4)
and (3.5) hold. In addition, let M = P — o1 1 and assume that |Tr(MG)| < || MG)||. Then,

Eq {7,(17”)} =0, Varg (}gm)) =n"a)', and ’El [U,(Lm)} ’ =n"|M|"™.
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Proof
Under the null hypothesis, we can write

7™ = > WiriaWigig - Wiis
21 ,-..,0m (distinct)
where W;; = A;j — ap, for all i # j. It is straightforward to obtain that [Eq [’7({”)} = (. Next, we
compute the null variance of the ideal Signed Cycle statistic. We have, by direct calculations:

Var <U7(Lm)> = Varg Z WirisWisiz - Wiy

21 ,-..,2m (distinct)

Similar to Equation (D.27), we can decompose the sum into a sum over uncorrelated cycles. It results
that

Varg (Uflm)> =Cn (n>anm(1 —ap)"=n"a,
m

where Cy, is a constant that depends on m.
Under the alternative hypothesis, we can write

7™ = > Wiy + Qirin) Wigis + Qigis)--(Wiiy + Qi)
i1

(distinct)

where W;; = A;; — €2;; and Qij =Q;; — g for all i # j. Then, direct calculations show that:

,(m) — —
E, [Un = > Qi Qg Qi
il?"'aiTIL
(distinct)
= > Qi Qs = D irisQinig Qi
i17'~~7im

(ot disinen

=Te(Q™) — O (nm—l ||M||m) = Tr (IMTT')™) — O (nm—l ||M||m)

=™ T (MG)™) = O (0™~ [M[™) < 0™ | MGI™ = O (w™ | 21|™).
Since we have assumed that |G|, | G™!|| < ¢ by condition (3.4), we obtain that
’El [U}gm)HxanP—aolKllKHm. (C.3)

O

The results in Lemma C.2 allow us to compute the SNR for the length-m Signed Cycle statistic. We
derive the SNR assuming that the null variance dominates the alternative variance. Thus,

SNR (U = [, [727] B0 [0 _ £ ()]

- \/max {Varo (Uﬁm)) , Vary (Uém))} \/Varg <_T(Zm))
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_ UM s

Similar to our results in Theorem 3.3, there may be instances in which the alternative variance dom-
inates the null variance. In these cases, the SNR still depends on powers of 7, and the detection
boundary is unchanged; details are omitted.

Appendix D: Proof of Theorem 3.1

Write D¢ = (X,, —n)/v/2n and @ = Qn/(2v/2n%42). We aim to show that (2€ SQ) con-
verges to N'(0, I2) in distribution. By the Cramér-Wold theorem, it suffices to show that
w- PO v ySQ % N(0,1),  foranyu,v € R with u® + 22 = 1. (D.1)
n—oo

Below, we first study the null distribution of wf? C and 1/)5 Q respectively. These analyses produce useful
intermediate results. We then use them to show the desirable claim in (D.1).

D.1. Proof of the null distribution of 1)2P¢

We aim to show that

pc_ Xn—n d
© =— - 0,1). D.2

First, we derive an equivalent expression of X,. Let T, = 3", 5k dist.(Aik — 6n ) (Ajg — 6 ), where
(v, 1S the same as in the definition of X,,. We claim that

T
Xn=nt A (D.3)

We now show (D.3). By definition,

X,
n ; n—lan —Gp)’

where
1

) -1 A
Qn = m].;u‘lln, d=Al,, d= glglAln = (TL - 1)an'

We expand X, into a sum of two terms that can be easily studied:

oo MB-nd 1A, - Dan
(n—Dan(l—dn) (m—Dan(l—dn)  1—adn

We can compute 1/, A?1,, as follows:

1,421, =3 (A%);; =1,A1,+ > AgAj=n(n—Dan+ Y AgAj,.
2,J 4,7,k dist. 1,7,k dist.
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Hence we further reexpress X, as

Zi,j,k dist. AikAjk: n— n(n _ 1)6%
(n — 1) (1 — dm) L —a,

=
Recalling that T), = 2k dist. (Aik — 6n)(Ajx, — Gn), we have

> AgAjp=Tn+2(n - 2)an1, AL, —n(n —1)(n - 2)4;

1,7,k dist.
=T +n(n—1)(n—2)a2.
It follows that
(n—1)an(1—ép) 1—an (n—1)an(1—dp)

This proves (D.3).
Next, we introduce an ideal counterpart to Tr, Tn = 3 j 1, dist. (Aik — n) (A — o). Direct com-
putations show that

E[T,] =0, Var(T,) = 2n(n — 1)(n — 2)a2 (1 — ay)?.
Thus
ar Tn :2n(n—2)
v ((n—l)an(l—an)> no1

Combining it with (D.3), we obtain

Xn_n_ (%(1 — an)) L <n 2>1/2 4<n—1>5;"—(1_%)
V2n B an(1—dn Ty n—1 2n(n—2)

(n—1)
Define
. T,
U, — an(l — Oln) Vv, = & 7, = (n—1)an(l—an) .
(1 — ay) Ty 2n(n—2)
(n—1)
We have the following decomposition:
Xn—n n—2\2
\’}% = <n — 1> UnVinZn,. (D.4)

Below, we study U,,, V;,, and Z,,, separately.
Consider U,,. Note that

. 1 , _ 2 -
b A D 2 A
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where (A;;)i<; are i.i.d. Bernoulli random variables with mean c,. By the Weak Law of Large Num-
bers we obtain that
8 2 Ay
Gn_ = N TRy (D.5)
ap  n(n—1) = on
from which we conclude that U, K 1.
Consider V,,. Note that

T — T = Z (A, — b ) (Ajg — ) — Z (Ai, — an)(Ajg — on)

1,7,k dist. 1,7,k dist.
= Z (an — @n)(Aik + Ajk — Oy — dn)
1,7,k dist.

=(an—an) |2 D Ay | —nn—1)(n—2)(an+ dn)
1,7,k dist.

= (an — ) [2(n — 2)17, AL, — n(n — 1)(n — 2) (o + &)
= (ap — an) 2n(n —1)(n — 2)a&p, —n(n —1)(n — 2)(ay, + én)]
=—n(n—1)(n—2)(on — én)?

It follows that

T Van(-an L.

n—1)an(1—an)

_ 2(n2)< nn—1)  an—an )2 Ve
(

2
_ n—2 nn—1) dn—an 1
2(n—1) 2 Van(l—an) ) VnlZal
Note that &y, = ﬁ dic j A(i,j), where A;; are i.i.d. Bernoulli random variables with mean a,.

By the Central Limit Theorem,

nn—1) bn—ay c N(0,1).

2 ap(l—ay) nooe

We will show later that Z,, 5N (0,1). It follows that (\/n|Zy,|) ™! Lo (by Slutsky’s theorem) and
we conclude by Slutsky’s theorem again that

o, (D.6)

which shows that Vj, < 1.
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Consider Z,,. We define
I, ={(i,4,k) € [1, m]]3 s.t. i, j, k are distinct},
and the following quantities for m € [1,n]

Tom= Y, WaWp,  and  Tno=0,
(ivjvk)el’m

n—1 Thom
Z, = ! d Zn.o=0.
A\ 2n(n—2) (n— Dan(l—an)’ n,0

Consider the filtration {Fp, m}1<m<n With Fpm = o{W;j, (i,5) € [1,m]*} for all m € [1,n],
Fno = {Q,0} (where 2 denotes the sample space). It is straightforward to see that for all 0 <
m < n, Znm is Fp,m-measurable, E[|Zy, || < 0o and E [T}, pm-1|Fn,m] = Tn,m- This shows that
{Zn,m}1<m<n is a martingale with respect to {Fp m }1<m<n. Define the martingale difference se-
quence, forallm=1,....,n

Xn,m = Zn,m - Zn,mfl-

With these notations we have Z,, = Z,, , = Z%:l Xn,m. Provided the following two conditions are
met

n
P
@ Y E[X2,.|Fnm-1] — 1, (D.7)
m=1
- P
(b)Ve>0, > E[X2 , 1{|Xnm > e[ HFnm—1] — 0, (D.8)
m=1

we conclude using the Martingale Central Limit Theorem that Z, N N(0,1).

So far, we have shown that 7, £> /\/(07 1), Uy E) 1and V,, g 1. We plug them into (D.4). Then,
(D.2) follows immediately from Slutsky’s theorem.
The only remaining steps are to verify that (D.7) and (D.8) are indeed satisfied.

Proof of Equation (D.7): It suffices to show that

n
E|> E[Xﬁ,mlfn,mﬂ] =1, (D.9)
m=1
and
n
Var (Z E[X?L,mp:n,m—l]) 12000, (D.10)
m=1

First, we prove Equation (D.9). For notational convenience we write

2n(n —2)

Cp:=(n—1Dap(l—ay) 1
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It follows that for all n € N* and m € [1,n]

Can,m = Cn<Zn,m - Zn,m—l) = Tn,m - Tn,m—l = Z Wiijk-
(ivjvk)elm\lmfl

Triplets in Iy, \ I,—1 are such that one of the nodes is m: either one of the wingnodes {i,j}, or the
centernode k. Hence,

CoXnm=2 Y. WuWit+ Y. WinWjm. (D.11)
1<j,k<m—1 1<i,j<m—1
j#k i

As a result (in the following, summations are all up to m — 1)

C2Xr2L m =4 Z WinkW. k:szWzl +4 Z WinkW. szlem + Z WimWimWim Wi,
k#j k#j i#]

i#l i#l k#l
It follows that
E[C2X2 | Fam—1]=4 > WiWaB W Wi +4 > WikE Wi Wi Wign]
k#j;i#l k#j;i#l
+ Z W'LmW]kalem]
i#7; k#l
=don(1—an) Y Y WyWi+2(m —1)(m - 2)az (1 — an)?
S RE)
=don(l—an) Y WyuWy+dan(l—on) Y WP
(i,j,l)Elmfl Z#]

+2(m —1)(m—2)a2(1 — ay)?
~tan (1= an) (Tm-1 + > WE) +2(m = 1)(m — 2)ad (1 - az)*

i#j
(D.12)

Let 1, ;, € R™ be a vector whose m first entries are 1, and whose remaining entries are 0. Define

nomAlnm
m(m—1)

Qnm =

By direct calculations,
W2 =% (4 - an) =3 [Aiju ~2ay) +ag}
i#j i#j i#j
=(m—1)(m—2)op + (1 -20n) > _ Ay
7:7j
= (m—1)(m —2)a2 + (1 — 2ap)(m — 1) (m — 2)an m—1.
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We plug the above equation into (D.12) to get
E[C2X2 1l Fnm—1] = 4an(1 — an)Tnm—1 +2(m — 1)(m — 2)az (1 — ay)?

+4(m —1)(m—2)a3 (1 — an)

+4(m —1)(m — 2)anbpn m—1(1 — apn)(1 = 2ap). (D.13)
It follows that
n n
Ca > EIXZ | Fam—1]=4an(l = an) Y Tum—1
m=1 m=1
n
n [2%%(1 —ap)? 443 (1 — an)] 3 (m—1)(m - 2)
m=1
n
+dan(1—an)(1 —2ay) Z (m —2)bm m—1-
m=1
—1 —2
Recall that B[Tom—1] = ;i myer, o EWat Wikl = i pyer, , EIWA] = (m=)m=2) (1 —
ap). Additionally, E[Gy, pm—1] = o, We thus have
n n
CAE| > E[Xg’m|}‘n7m_1]1 =2ap(1—an)* > (m —2)
m=1 m=1

n

+ [204 (1—ayp)? +4a (1—an)} Z(m—l)(m—Z)

m=1

n
+an(l = an)(1=2an) Y an(m—1)(m—2)
m=1

n
=6a2 1—an22 —2)

m=1

=202 (1—an)®n(n—1)(n—2)=C2.

This proves (D.9).
Second, we prove Equation (D.10). In the second line of (D.12), we have seen that

CRE[Xp ol Frm—] =dan(l—an) Y > WiWij+2(m —1)(m — 2)ap (1 — an)?
k 1<i#j<m—1
ik j#k

=8on(l—om)d Y WiWij+2(m—1)(m—2)a2(1—an)?.

k 1<i<j<m-—1
i#k,j#k
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As a result,

n n
Var (cg > E[X,%,mu-‘n,m_l]) <GdapVar | DS D" WyWy,
k

m=1 m=1 k 1<i<j<m—1
itk 2k
Recall that in the previous sums, summation over the indices i, j, k ranges from 1 to m — 1. We rear-
range the terms of the sums in order to facilitate the computation of the variance. Instead of summing
over the order m, then over centernodes k ranging from 1 to m — 1, and finally over wingnodes i, j
also ranging from 1 to m — 1, we now sum over centernodes k ranging from 1 to n — 1, wingnodes
ranging from 1 to n — 1, and finally over orders m > max (4, j, k).

n n—1
Var <Cg > E[X,%’mm,m_l]) <GdajVar | > N S WiWiy

m=1 k=11<i<j<n—1 m>max(i7j,kj)
i#k,j#k

n—1 n—1
<6dapn®Var [ > N W Wy | =64apn® > Var S Wiy |
k=11<i<j<n—1 k=1 1<i<j<n—1
ik, j#k ik, ik

where the last equality comes from the fact that in the above sum, terms corresponding to different
values of the index k are uncorrelated. As a result

n n—1
Var <C§ > E[X?l,m]-‘n,m_l]) <64apn®> - Y Cov(Wi Wi, Wi Wiy).  (D.14)
k=1 1<i<j<n—1
1§;<jv_§7:z—1
Z’,j,’u,,'l);ék

m=1

We examine the possible cases for Cov(W,; Wy, Wi, Wiy, ).

* Case 1: (i,7) = (u,v), then Cov(Wy,; Wy, Wi, Wi, ) = Var(Wy,;Wy;) = a2 (1—ap)?
* Case 2:i=wu,j#vori#u,j=uv,then Cov(Wy; Wy, Wy,,Wp,) = 0.
* All other cases: Cov(Wj,; Wi, Wi Wi,) = 0.

It follows that

n n—1
Var (C,% > E[X27m|Fn7m_1]> <6dapn®> Y Var(Wy; Wy;)

m=1 k=11<i<j<n—1

n—1
=6402n? Z Z a2 (1—ap)? <32aknd.
k=11<i<j<n—1
ik
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This proves (D.10).

Proof of Equation (D.8): Notice that by the Cauchy-Schwarz and Markov inequalities we obtain the
following upper bound

n n
> EX2 1 X > el Fnm )| € 0 VB ol Fo 1]\ /P Xl > €l Fm 1)
m=1 m=1
1 n
< ? Z E nm|}—n,mfl]~
m=1

Thus it suffices to show that " _; E[Xf{,m|-7'—n,m—1] L, 0. Since these random variables are all non-
negative, we will equivalently show that

n n
STEXL=E| Y EXE | Fam-1]| 0. (D.15)
m=1 m=1

We now show (D.15). Recall that (see (D.11))

CnXnm =2 Z WimWijm + 2 Z WiiWim

1<i<j<m—1 1<i<j<m—1
=2 > Win(Wij + W)
1<i<j<m—1

Then (with summations ranging from 1 to m — 1)

Cr X =16 Win(Wij + Win) Wom (Waw + Warm) Wi (Wit + W) Wam (Wes + Wem).
i<j
u<v

k<l
r<s

Taking expectations, we consider 4 types of cases in which the expectation is non-zero:

e Case l: i=u=k=rand j =v=1[=s (] instance),

* Case2:i=k,u=r withi# v and j =[,v = s with j # v (3 instances),

e Case3:i=u=k=randj=1[,v=s with j # v (3 instances),

* Case 4: i =k,u=r withi# v and j = v =1 = s (3 instances),

¢ Other cases: E[ij(Wij + Wim)va(Wuv + Wum)Wlm(szl + ka)Wsm(Wrs + Wrm] =
0.

It follows that

E[Cry X m] =16 {Z]E E[(Wij + Win)'|
1<)
+3 > EW2,E[(Wij + Wim) 2 E[W2, ] E[(Wij + Win)?]
1<J,u<v

iU, jFV
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+3 Z E[Wj2m] E[szm] E[(sz + Wim)Q(Wiv + Wzm)2]
1<J,v
J#Fv
+3) " E[(Wij + Win) I E[(Waj + Wam)?| E[W},,] |
1, u<j
We provide upper bounds for the above expectations. Indeed for all (a,b) € [1,n]?
E[ij] =(1- O‘n)40‘n + O‘fz(l —ap) =oan(l— an)(ai +(1- Oén)B)-
It is then straightforward to show, taking c4 > 0 to be a high enough constant, that

EWh]<cian,  E[(Wij+Wim) ] <csan,  E[W2]? < cval,
]E[(Wz] + Wim)2]2 = C*Oz%, E[(W’LJ + W’im)Q(Wiv + Wzm)z] < cyxOp.

It follows that

E[CﬁXﬁ,m} <16 Zcza,% +3 Z 2ok +3 Z 2ad +3 Z 2ol
1<j 1<jJ,u<v 1<j,v 1, u<j
i#u,jF#v JFv i#u
< 160271204721 (1 + 3n2a,21 + Gnan)
= O(n4afl), (D.16)

where in the last line we have used the assumption of na,, — oo to identify the dominating term. Note
that C), is at the order of n+/na,. We thus obtain

E [Zn: E[sz,m|]:n7m—l]‘| =n-0 (%) =0 (n‘l) .

m=1

This proves (D.15).

D.2. Proof of the null distribution of 15%

We aim to show that

sQ_  Q@n L
A Vo r N(0,1). (D.17)

Let &y, = oy, — G, We then have Ajj— by =W + . It follows that Q,, = E(il,iz,is,u) dist Wiyio +
5n)(Wi2i3 + Sn)(VVw4 + 5n)(W,~4Z~1 + 6,). We introduce an ideal version of Q,,

Qn = E Wilig Wi2i3Wi3i4Wi4ila

(41,42,13,14) dist.
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and re-express

oL QGG ()
" 2v2n262  2v/2n202 \Gn 2v2n2a2 \an) '
If we can show that
Qn Qn P
— 0, D.19
(@) 2[n2a2 ( )
@ —q N(0,1), (D.20)
2\[112042

then (D.17) follows from Slutsky’s theorem and the fact that &y, /cvp, 5
What remains is to prove (D.19) and (D.20).

Proof of Equation (D.19): Expanding @);,, we obtain:

Qn — Qn=n(n — 1)(n—2)(n - 3)0, +4(n —2)(n—3)3; > _ Wi

i#]
+4(n—3)(§% Z Wijok-l-QgTQL Z W; ;Wi
1,7,k dist. 1,7,k,l dist.
> Wi Wi W
ikl dist.

It follows that

On —Gn| 2 54 Wi Wi Wi W,
202 | = Z ij Z A LA
n i#£j 1,7,k,l dist.
Z Wz‘jok + — Z WijWkl (D.21)
1,7,k dist. 4,9,k dist.

We will bound each of the terms on the right hand side of (D.21).
Consider the first term in (D.21). Note that

25&_4(1—0@)2 nn—1) ap—ap !
aZ  (n—1)2 Von(l—an) )

n

TL(TL—].) Gpn—an

By Central Limit Theorem, Van(—am)

— N(0,1). It follows from Slutsky’s theorem that

n26% /a2 5 0. (D.22)
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Consider the second term in (D.21). Since Sn = Gy, — iy, USing the definition of &;,, we immediately

have Zi<j Wi = n(”2_1) 5n. As aresult,

AR

i#]
Consider the fourth term in (D.21). First, let A,, = ﬁ Do ok dist. W; ;Wi Applying Chebyshev’s

inequality, we have that for any A > 0,

E[A2 62
P(|An‘ >>\) < [ n} < Z E[Wijwjkwuvwvw]

4
2% P, g (D.23)

53| o
‘ n(n—1)—5 <n“—5
an an

A2 T nba2Za2 4
1<j<k
u<v<w
> EWEW 30 no
n6 2/\2 3/\2 ’
1<j<k

which shows that A, E) 0. Furthermore,

(52 n n(n—l) bn—an 12
§j WiiWik| =2(1 - an) [ ﬁ]An.
1,7,k dist. <n_1) 1—oan

By Slutsky’s theorem, we have
Eo. (D.24)

ez 2 W

1,7,k dist.

Second, let By, = ﬁ > i,k 1 dist. W;;Wy;. We apply Chebyshev’s inequality: For any A > 0,

E[B2] 1
n i,,k,l dist.
s,t,u,v dist.

242 242 9
> E[WijWlesthv]:W > EWEWE

20,8)\2 8
azns\ n
n i<j<k<l n i<j<k<l
s<t<u<v
242 3 9 9, 247 oo
= .-
1<j<k<l

which shows that B, i 0. Furthermore,

> WiiWi|=

1,5,k dist.

ﬂl—amn{ wn D) _én —an ]2Bn

-1 Van(l—ap)

We conclude by Slutsky’s theorem that

32
nZa2

S WyWe| o (D.25)

1,7,k dist.
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Consider the third term in (D.21). Write Dy, = —— 3", - 1.1 aisr. Wij Wik Wi By Chebyshev’s
ay' “n vy .
inequality, for any A > 0,

E[D2 1
P(|Dn| > X) < [)\2n] =—52E| 2 Wz‘jokaWquvwsz]
n i,7,k,1 dist.
u,v,w,z dist.
2
aa n6)\2 Z kal 202 oo 0,
4,5,k,l dist.

which implies that D,, ﬂ 0. Furthermore,

> WyWi Wi | =

,7,k,l dist.

R o

We conclude by Slutsky’s theorem that

B P
—5s § Wii W Wi | = 0. (D.26)
T 4.4,k dist.

We plug (D.22)-(D.26) into (D.21) to get (D.19).

Proof of Equation (D.20): We introduce some notation to simplify the computations. Given 4 distinct
nodes, there are 3 different possible cycles, denoted as

CC(i1,12,13,14) = { (1,192,173, 14), (i1, 72, 14,13), (i1, 13, 92,74) }.

Moreover, for B C {1,2,....,n}4, let CC(B) = (11 i 13,“)6300(1'1,2'2,1'3,2'4). For 1 <m <mn, let
Iy, be the collection of (i1, i2,73,44) such that 1 < iy < iy < i3 <ig < m. We thus have

Qn=38 Z WiriaWigis Wigis Wigiy - (D.27)
CC(In)

It is straightforward to see that E[Qn] = 0. In addition, notice that the terms in the sum are un-
correlated, since they all correspond to different cycles: to obtain a non-zero correlation between
Wiris WigisWigia Wigiy and Wiy Wis i Wir o Wy v, we would need to uniquely match each factor

1223 ih Z 1477
in Wiy ioWigiaWisiy Wiy, witha %actor n Wi Wi it Wirin Wi o, which is equivalent to overlaying

the two cycles [i1i2i3i4] and [¢}i5i5i)]. Let’s compute the Varlance

Var(Qn) = 64Var | > Wiy, Wigis Wigi, Wisi,
cC(I,)

=640t (1 — o)t x 3(2) =8at (1 —an)*n(n—1)(n—2)(n—3).
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n—o0

Let Zp, :=2y/2n(n — 1)(n — 2)(n — 3)a2 (1 — ay)?. It is easy to see that n?a2/Z, ~—> 1. By
Slutsky’s theorem, to show (D.20), it suffices to show that
On £ zr0,1). (D.28)

Ly M—00

We now prove (D.28). For each 1 < m < n, we define

Qn,m_é m—1
Xnm:—"m

, 7 s where Qn,m = E Wilig Wi2i3Wi3i4Wi4i1-
n

CC(Im)

By default, we let Qmo = 1. Recall that we previously defined the filtration {F;, s, : 0 < m < n} such
that Fp mm = o{W;j : (i,5) € [1,m]?} for m > 1 and F;, o = {Q2,0} (where Q denotes the sample
space). It is easy to see that E[|Qn7m|} < oo. Hence, Qmm is Fp m-measurable. It is also straight-
forward to show that E[Qy m-+1|Fn,m] = Qn,m. Therefore, the sequence {Qn m : m € [1,n]} is a
martingale with respect to {Fy, m : m € [1,n]}. It follows that the sequence { X, ;, :m € [1,n]} is a
martingale difference sequence. Note that

Qn/Zn = Qn,n/Zn = Z Xn,m~

m=1

By the martingale Central Limit Theorem, to show (D.28), it suffices to show:

n
1) > EX2 | Fam-1] & 1, (D.29)
m=1
n
®2) Ve >0, Y E[X2 ,, 1{| Xnm > e[} Fnm—1] -+ 0. (D.30)
m=1

Below, we show (D.29) and (D.30) separately.
In the first part, we prove (D.29). It suffices to show:

n
E|> ]E[Xﬁ,mlfn,mﬂ] =1, (D.31)
m=1
and
n
Var (Z E[X?L’mp-“n’m_l]) nooo, (D.32)
m=1

Consider (D.31) first. Recall that by definition

Q m— Q m—1 8
Xnm = 2 —— . — — > WitioWigiaWigia Wigi, -

Zn, Zn,
CCIm)\CC(Im-1)

An alternative way to enumerate all cycles in CC(I,) \ CC/(I,—1) is to first select a set of two indices
{i,j} (we take, wlog, i < j) from {1,...,m — 1} and use them as the neighboring nodes of m in the



Global Testing of MMSBM 23

cycle. Then select k € {1,...,m — 1} \ {4, 7} as the last node of the cycle.

Xn,m:7 Z WiniWimi Ym—1,4, where  Yp,_1 = Z WiiWi;j.
" 1<i<j<m—1 1<k<m—1

k¢{i.j}
It follows that

64
E[X72L7m|}—n,mfl] = 7>9 Z E[Wmiijym—l,iijquvafl,uv|}—n,mfl]
1<i<j<m—1
1<u<v<m-—1
64
= ﬁ Z mel,ijYm—l,qu[Wminijquv]
T 1<i<i<m—1
1<u<v<m-—1

3

64 2 2 2 640{%(1 — O[n)2 2
= 72 Z Y1 Jij [szWmJ] = 2 Z Y1 Jije

72

N 1<i<j<m—1 n 1<i<j<m-—1

Hence

n n

6402 (1 — ap)? 9
E Z E[X, m|]:nm ]| = 72 . Z E[mel,lj]’
m=1 n m=11<i<j<m—1

where

2 2 2

EYp_150= D  E[WuWyWiWyl= > E {Wkiwkj}
1<k,l<m—1 1<k<m—1
ki¢{i,j} k¢ {ij}

=(m—3)a2(1—an)?.

It follows that

= « —« 2 m—1)(m—2)(m —
E[ZE[ X2l 1]] Gai(l—an)® § (= Dm=2)m=3) 2y o 2y
m=1

2

This proves (D.31).

Consider (D.32) next. We decompose > ., E[X %,m | Fn,m—1] into a sum of two components, then
calculate its variance. Note that

2
Yo 1= < > Wkiij> = D WERWE+2 Y WiW Wy W
1<k<m—1 1<k<m—1 1<k<I<m—1

k¢{i,j} kg{i.j} kl¢{i.j}

Hence

n 2 4 4
64a 1 -« 16n*ay,
2 2
§ E[X; | Frm—1] = 6dai (1~ an)” § § A " R (Ig+ Ip),
m=1 m=11<i<j<m—1 n
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where we denote

41— op)? & 2 1172
="z 2 2 Wil
nme11<i<j<m—11<k<m—1
ke{i.g}
8(1 — ap)? -
- TL
I, = Tz Z > > WiWi Wiy,
m=11<i<j<m—11<k<i<m—1
kg {i,j}

Using the Cauchy-Schwarz inequality we obtain

- 9 25671804§Z
ar | Y E[X7 [ Fam-] | = = (Var(Ia) + Var(Iy) +2Cov(La, 1))
— n
2
< 56;70[ V/Var(I,) + /Var(I}))?
n

Hence, it suffices to show that Var(I,) === 0 and Var(I;) —— ( separately. For Var(I,), we first

rearrange the sums in the expression of I,

in

=0l oy S wEwg

k=11<i<j<n—1m>max{i,j,k}
i,J#k

1 - an 2 sy .. 2 11,2
Z Z (n —max{i, j, k} + L)W, W..
" k=11<i<j<n—1
i,j#k
Note that the terms of the first sum over k = 1,...,n are pairwise independent, which will facilitate
variance computations. Hence

16(1 —
Var(l,) = 16(1 — an)” Z Var Z (n —max{i,j,k} + 1)W,§iW,?j
k=1 1<i<j<n—1
i,j#k

16(1 — o) 2172 T2 T2
= 7} > > Cov(WR Wi, Wi, WE,).
n i<j<n—11<u<v<n—1
i,j7#k u,v#k

i
—
—
IA

: 2 /2 2 2.
We can consider four cases for Cov(W;, W P Wi Wi ):

1. (i,5) = (u,v), then Var(W2, W) <E[WEWiL] = EW},]? < cag,

2. i=wu,j# v, then Cov(WZ W2, W2 W2 ) <EWLWZWE | =E[WLIEWL]? < caj,

3. The previous bound will also hold for the case i # u, j = v, the case i = v, and the case j = u,
4. For any other case, Cov(W,?ingj, W,?ZWI?U) =
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Here, ¢ > 0 is a high enough constant. It follows that

n—1
Var(Ig) = n8a4 Z Do AVar(WE W)+ > Cov(WEWi, WEWE)
k=11<i<j<n—1 v=i+1
i,j#k vg{k.j}
j—1 i—1 n—1
+ > COV(WigiWigjaWiguWigj)"‘ZCOV(WigiWigywi?uWi?i)‘*‘ > COV(ngingjvwlgjwlgv)
u=1 u=1 v=j+1

4n1

166 1— ozn 2 3 8¢ 1 n—00
= n8 4 Z Z {a” —|—4nozn} = n3(nay,) it nom, 0

k=11<i<j<n—1

Let’s now show that Var(I,) 2= 0. Recall that

8(1 — ap)?

n
hh==—5=> > Yo WWi Wl
T m=11<i<j<m—11<k<i<m—1
k1g{ij}

21 —an)? &
=i > > WiiWii WiiWi;
" m=11<0,5,kl<m—1

1,7,k dist.
2(1 — ap)?
= (n4a2n) > > WiiWii Wi Wi,
" 1<4,5,k,l<n—1m>max{i,j,k,}
4,7,k dist.
2(1 — ap)? .
— 7714@2” Z (n+ 1 —max{i,j, k, I}) Wg;Wy; W W,

n 1<i,jk,l<n—1
,7,k,l dist.

Therefore,
4(1 — ap)?
Var([p,) = WVar Z (n+1—max{i, j, k,1}) Wy Wi;W; Wy,
n 1<i,j,k,l<n—1
i,7,k,1 dist.
4(1 — ap)t
= Fal Var (8 > (n+1—max{i,j,k,1}) Wiy Wi, W W

CC(Ipn-1)

32(1 — )t 9
=——=71 Z (n+1—max{i,j,k,1})“Var(W;, Wy, W;; Wy;)

8,4

n-«o
n 1<i,j,k,I1<n—1
i,7,k,1 dist.
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32(1 — ap)? 32
S% > ab(-ant< 2o,
o 1<i,j,k,l<n—1

1,5,k,1 dist.

n—o0

This gives Var(l) —— 0. Recall that we had:

n
2
ar (Z E[X%7m|]-"n,m1]> < 256% (\/Var (Io) + \/Var(I) )
m=1

n

. 2 n—00
Since 2367 oz

71 — 4, we obtain (D.32). In combination with (D.31), this proves (D.29).

In the second part, we prove (D.30). We have, using the Cauchy-Schwarz and Markov inequalities

n n
> EIXZ 11X > el Fnm 1] £ 3 B sl Frn 1] P Xnm] > €l Fo1])
m=1

m=1
1 n
? Z E| nm“Fn,m—l}'
m=1
Hence it suffices to show that
n n
E|> E[thm]-"n,m_l]] =Y E[X; ] 0. (D.33)
m=1 m=1

Recall that for all n € N*, for all m € [1,n]

2 .
Xn,m:Z Z WiniWmiYm—1,; with Yy _q,5 = z Wi Wi
1<i<j<m—1 1<k<m—1
k¢{i,j}

It follows that

]E[sz,mp:n,m—l]

16
:ﬁ Z Ym—1,inm71,uva—1,lemfl,rs X ]E[WmiijWmquUkaWmleTWmS]

" i<ju<v
k<lir<s
16 4 14 2 4 2 12
*ﬁ Z —1,i3 W W +3Z Z Y 11]Ym 1,3v [Wminijv]
n 1<J

7,0>1 and jFv

2 2 4 2 2 2 2 2 2 2
+3Z Z Ym—l,inm—l,qu[ijWmiW + 9 Z Ym 1 ijm 1uv [Wminijquv]
j i 1<J,u<v
1,u<j and i#u
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16
< Z lz]ca +3Z Z Y2 lz]Ym 1“}0043

=77
noli<y
j,u>1 and];év
2 2 3 4
+SZ Z Ym—l,inm—l,ujcan +9 Z —1 Zij 1,uvCn (>

R 1<J,u<v
1,u<j and i#u

where ¢ > 0 is a high enough constant. Hence,

16¢
4 o2 3 2 2
E[Xpm] < 75 ZE —1,45] +3ap, Z Z E[Yy—14Ym—1,i0]

1<J
j,u>1 and jFv

3 2 2 2
+3anz Z E[Ym—l,ijym—l,uj +9a Z E lz] [Ym—l,uv]

s 1<j,u<v
1,u<j and i£u
We will now compute upper bounds on E[Y,+ b E[Yn%—l,in%—l,iv] and E[Y2 ij]- We have
E[Yy 1] =E Z WieiWi i Wi Wi Wi Wi Wi W 5
kLuwd{i,j}
=3 > EWLWZWaLW2)]
kyug{i.j}
=3| > EWEWil+ > EWEWELWLWZ]
k¢{i,5} ku; kué{ij}
<12ma? +3m2ai < c1(ma? +m2a}),
where c¢1 > 0 is a constant. Similarly
E[Y,2 ;;]=E Z WiiWi;WiiWy; | = Z E[W%W;?j} <ma?,
k,l¢{i,j} kg{ig}
and
]E[YZ 1 z]Ym 1 w] =K Z WkiijWlineriWTUWsiWSU
klrs:kl¢{i,g},rs¢{i,v}
=E > WEWEWEWS, | = > E[WE W WEWE,]

k,r:kg{i,j},ré¢{i,v} k,r:kg{i,j},ré¢{i,v}
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= Z E[Wéiwlgjwlgv] + Z E[ngiWI?ijiWEU]
k¢{i.jv} k#rik¢{i,j}r¢{iv}
< 2ma% + mzai < CQmQOé%,

for n big enough (since o, n—oo, 0), where co > 0 is a constant. It follows that, for some constant
~v>max{l,¢,cq,co}, we have

16¢

4 22 : 4 32 : 2 : 2 2

E[Xn,m] < Qnp E[mel,ij} + 3an E[mel,ijymfl,iv]
n 1<J i ) >'j,vd 9

J,u>1 and jF£v

3 2 2 4 2 2
+3a, E E ElY, 1,45 Yim—1,u5] + 905, E E[Y 14 EYm—1,u0l
J U 1<jJ,u<v

3,u<j and i£u

16
< ZZ (m3at +m*al +6m°al 4+ 9a8mb)
n

162
Zy

< (n®a +n*al 4+ 6n°a8 +9a8n0).

As a result,

n 1672
2 Bl ] < e 22 3R o

m=1
_ 144~2nS L, b 1 1) noe
S \(n—=1)2(n—-2)2(n—-3)2(1 —ay)8 ) \ntad  nd3a2  n2a2 n ’

This gives (D.33). Then, (D.30) follows immediately.

E (ntal +n%al 4 6n°a8 +9a8nT)

D.3. Proof of the joint null distribution

We now show the desirable claim (D.1). We shall use the previously defined notations:

Th = Z (Aix — an)(Ajk —ap), T = Z (A, — an)(Ajg — an),
1,5,k dist. 4,7,k dist.
Q” - Z WiriaWigis Wigia Wiy -

(i1,2,i3,14) dist.

We have seen the decomposition of 1/1713 Cin (D.3) and the decomposition of z/}g Qin (D.18). We plug
them into the definition of S, to get:

_ Tn Qn — Qn 77} 2 Qn Qn 2
S = l(” —Dén(1— CAYn)] T [2\@71204% (07n> i 2\/57120(% <€V71> ]
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Ty

Do (—an) Qn

=€ptUu v , (D.34)
" 2n(n—2) 2\/5771201%
“(n-1)
where
Ty ~ ~ ~
€ —u (n—Dan(l—an) | VU — 10671(1 — an)Tn — 1| 4 04721 (Qn - Qn) (ﬁ _ 1) Qn
" an(n—2) | Vn—2an(l—dn)Ty 4% 2vn2a2 ' \aZ  /2yan2a2 |
(n—1)
In Sections D.1-D.2, we have shown that
i 7 V) Qn—Q
Qn P n P n—1)an(l—« d n—Wn d
— — 1, = — 1 — - " s N(0,1), =" 3 N(0,1). (D.35)
Qn T, 2n(n—2) ( ) 2\/?712&% ( )

(n—1)

It follows immediately that €, o By Slutsky’s theorem, it suffices to show that

Tn

A, =Don(0=an) Qn c
Cn= 0,1). D.36
" 2n(n—2) T 2\@7120(% n—00 N( ) ( )
(n=T)

Below, we show (D.36). In Section D.1, we have defined I,,, as the collection of all distinct {(¢, j, k)
such that 1 <4, j, k <m; in Section D.2, we have defined CC(I,y,). For each 1 <m <n, let

Tn,m = Z Wj1j3 ngjga Qn,m = Z Wiliz W’LQZ3 Wi3i4Wi4i1a
(jlaj2»j3)elm CC(Im)

where T}, o = Qn’o = 0 by default. Introduce

Tn,m

(n_l)an(l_an) Qn,m
C, =u v , forall 0 <m <n.
o 2n(n—2) 2\/57120[%
(n—1)

We have seen that {7 1 }o<m<p and {Qn,m}ogmgn are both martingales with respect to the filtra-
tion {Fy m }o<m<n defined before. It is easy to see that {Cy, m fo<m<n is also a martingale. Write

n
C, = Z Dipm, where Dy = Chm — Cpym—1-

m=1

To show C, LN N(0,1), we apply the martingale Central Limit Theorem. It suffices to show:

n
(a) Z E[D?z,mu:n,m—l] & 1, (D.37)
m=1
$ P
(b)Ve>0, > E[D} ,,1{|Dn.m > €[} Fpm—1] — 0. (D.38)

m=1
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It remains to show (D.37)-(D.38). Consider (D.38). Write

Tnm—Tnm=1_ ~ ~
p) _Dal-a 4 p) _ @nm = CQnm-t
o 2n(n—2) o 2\@7L2Oz%
(n—1)

Then, Dy, = uDp, + D). Tt follows that D2 ., < 8ut(DSh,)4 + 84 (DIE),)%. As a result, for
any € > 0, by the Cauchy Schwarz inequality and the Markov inequality, we have

n 2 n
(Z E[DZ ,,1{|Dnm > e|}|]-'n7m_1]) < (Z E[Dfl7m|]-‘n7m_1]> P(|Dp,m| > €l Fpm—1)
m=1 m=1
< Z E[Di,mp:n,m—l]

<8ut 3 E(DS ) Fami] +80% Y E(D0)  Fmi].

m=1 m=1

With significant efforts, we have shown Y " _; I[*][(Dglﬂ)n)4 | Frm—1] . 0in Section D. 1, and we have

shown > 7" E[(Dg%)‘l\fn,m_ﬂ L, in Section D.2. Plugging them into the above inequality, we
immediately obtain (D.38).
Consider (D.37). Write

n n
2)
ZE ‘]:nm 1} ZE DSLm |]:nm 1]
m=1 m=1
n
Mn Z]E nm|-7:nm 1]
m=1

Then,
n
Z E[D?L,ml]:n,m—l] = UQAn + ’UQBTL + 2uv My,
m=1

In Sections D.1-D.2, we have shown that A, ﬂ 1 and B, E) 1. We claim that
P
My — 0. (D.39)

Then, it follows that 37 E[D2 .| Fom—1] = u2 -1+ 214 2uv - 0= 1. This gives (D.37).
It remains to show (D.39). Using the expressions of D,(l Bn and D,SL 2n, we have

My,

Mn = n2a3 (1 —ap)y/nin —1)(n—2)’
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where M, = 1 E[(Th,m — Tn,m_l)(Qmm — Qn’m_1)|fn,m_1]. We plug in the definitions of
T,m and Qnm to get

n
My = Z Z Z E [lejSszjs “Wirio Wigis Wisis Wigiy ‘]:n,m—l]
m=1\ (j1,j2,53)€  (i1,02,i3,i4)€
Im\lmfl CC(I"L)\CC(IM71)

Let’s see when ]E[lejs Wj2j3 Wilig Wi2i3 Wi3i4 W’i4i1 ‘Fn,m—l} 75 0. Since (il, iQ, ig, i4) S CC(Im) \
CC(Im—1), exactly one of the four indices must be m. We assume i1 = m without loss of generality.
Since (j1,j2,73) € Im \ Im—1, exactly one of the three indices must be m. Without loss of generality,
we assume either j; = m or j3 = m. If j; = m (and recall that we have assumed i1 = m), then
BW; 35 Wiz js Wivrio Wigis Wiis Wiy [Fnm—1]
= Wj2j3 Wigig Wi3i4 : ]E[ijg WmiQ Wi4m|]:n,m—1]-

It is nonzero only if j3 = io = 4. However, this is impossible, because ¢9 and ¢4 need to be distinct. If
j3 =m (and recall that we have assumed 77 = m), we have

E[lejs Wia s Wiria Wigis Wigis Wiiy ‘]:n,m—l]
= Wi2i3 Wi3i4 : E[Wj1ij2mei2 Wi4m|}—n,m71]~

Note that j; # jo and i9 # i4. For the above to be nonzero, we must have {ig,i4} = {j1, jo}. It follows
that

n
Y 2 2
My =8 Z Z WigizWigiy - E[WmiQWmi4 ‘fn,m—l}
m=11<1i92,i3,04<m—1
(distinct)

n
= 804%(1 - an)2 Z Z WisiaWisia
m=1 (i2,i3,ia)€Im—1

=8a2(1—ap)? (n — max{io, i3,i4}) Wiyis Wisi, (D.40)

(12,i3,54)Eln—1
As a result,
E[M]
n®(n—1)(n—2)ab (1 — ay)?

E[M2] =

2
6dap (1 — ap)? o
= n( n) x E ( Z (n—max{zg,23,14})Wi2i3Wi3i4>
(

n®(n—1)(n —2)ab (1 — ay)? o4
12,03,94) €11

C

1213 "V 1314
™ 203,14
C n—oo
< xnda? T .
n’a2 n

n
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Then, (D.39) follows directly. This completes the proof of Theorem 3.1. O

Appendix E: Proof of Theorem 3.2

Define
(1 —ém) _1 and 7% Z?:l(di — @2 _n

Un= ao(l—ag) 7 " (n—1ap(l—ap)

By definition, X,, = (1 + Uy,) "1 (n + Z}). It follows that

DC _ Xn — 1 *
o = \F \F(l-i-Un) (Zy, —nUp). (E.1)

The asymptotic behavior of w is mainly determined by Z. Below, we first calculate the mean and
variance of Z;¥; then, we use these results to study the mean and variance of 1)’

The mean and variance of Z;:. We introduce a matrix
Q=0- aglpll, where ag = h'Ph.

Then, A;; = W;; + Qij + g, for all i # j. Write Q* = Q — diag(Q). It follows that

n

S(di-a)?=Y Z(Wij‘FQij"'aO)_% > (Wike+ O + o)

i=1 i=1 \jiji (ke 0): k0

2
~ 1 1 ~
=> <e;W1n +e, Q" 1, — —1,W1, — 1;LQ*1n>
n n
—

~

n

- 1 - 2 n - 1 -
=> <e;Q*1n - nlm*ln> +2>° <e;Q*1n — nlm*ln) (eiW1y,)

i=1 =1

n n
- 1., ~ 1
-2> <e;Q*1n - n1;19*1n> <n1gW1n> > (eiW1y,)
=1 =1
1 / 1 !/
—(1,W1,)" -2 § eiW1y) ) (-1,

n _ 1 ~ 2 n ~ 1 ~
=y <e;Q*1n - 1@9*171) +2)° <e;9*1n - 1;19*1,1) (elW1y,)
- n N n
i=1 i=1
- 1
+ ;(62W1n)2 - E(lan1n)2' (E2)
1=

We further combine the last two terms of (E.2):

n

1
S (W L) (1, W L)

i=1
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2 2
. 1
= Z DoWi | = | 2wy
i=1 \jij#i i#]
2 1
2 2
=D Wi+ > Wi Wi - EZWM - > Z WiiWii
it i,k dist i i#j
{, 1}75{%,]}
= +y L Wi Wi — Z > WiiWa
z;éj 1,7,k, dist 1;&] k#l
{k, l#{w’}
We plug it into (E.2) to get
n
(n—1)ap(l —ag)Z EZ (di —@Q—n(n—l)ao(l—ao)
i=1
=Y1+2Yo+Y3+Ys— Y5, (E.3)
where
n ~ 1 R 2
Y=Y <e;Q*1n - 1;1(2*171) ,
i=1 n
n ~ 1 ~
Yo = Z Z (e;Q*ln - n]-;LQ*1H> Wij,
i=1 j#i

n—2

- > Wi | =n(n—1)ag(1—ap),
i7#]

> Wi Wi,

i,7,k, dist

Y5=%Z Z Wii Wiy

iti kAl
{k, 1}75{1,3}
We now compute the mean of Z;:. It is easy to see that
Y1 + E[Y3]
(n—1)ao(l —ag)’

For Y7, note that Q* = ) — diag(€Q2). Since IT1 ¢ = 1,,, we can re-write

E[Z;] = (E.4)

Q=0Q— a1 I =TI (P — apl g 1) ' = IMTIT'.

As a result, Q1,, = nIIMh, and 1%@171 = (0. We plug them into the expression of Y7 and note that
(a+b)?> %2 — b2, for any a,b € R. It follows that

- 1 -
1= ||Q*1n||2 - E(l%ﬂ*ln)Q
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- L~ 1 .
= |15, — diag()1n|* - — (1}, diag(2)15)?

1~ N 1 A
> 1010 — [[diag()1n]|* - E(lﬁqdlag(ﬁ)lnf
n2 nooo ()
= 7||HMhH2 -y 0 - - <ZQH> :
=1 =1
Note that max; [€;;] < maxy, ; | My;| = C[|M||. Moreover, since G' = n T and Apin (G) > ¢, we
have ||[TIMh||? = n(h’ MGMHh) > Cn||Mh||?, and |[TIMA||> < ||TT||%||Mh||? < Cn|/Mh]|?. 1t fol-
lows that

2
n
Y1=7||HMh||2—O(HHMIIZ)X"?’IIM/”L|I2~ (E.5)

For Y3, we have

n

-2
" ZQij(l - Qij) — n(n — l)ao(l — ao).
i#]
Write Qij(l — Qij) =ap(l—ag)+(1— 2040)(9@' —ag) — (Qij —a0)2. Recalling that Qz’j —ap = Q
we plug these results into E[Y3] to get

E[Y3] =

i
_9 B _
E[Y3] = nT [ao(l —ap) + (I = 20)85 — Q?J] —n(n—1)ag(l —ap)
i)

n—2 ~ - ~
=-2(n—1Dap(l —ag) + W (1 —-2a9) <1;1an — ZQ”> — Z ng
@ 1#]

n—2 ~ ~
= =2(n — Dag(1 - ag) = — | (1 - 2a0) > Qi+ > 03
I i i#j

Then, [E[Y3]| < Cnag+Cn|| M| +Cn?||M||?. Recall that by assumption, || M|| < C||Mh/, nag — oo
and 0, = n*3/2a61 | Mh||? = oco. It follows that

Ey _ ¢, ¢ .Cc
n3|Mhl|2 = /nén  n3/4\/nags, n
It yields that
E[Y3] = o(n®|| Mh]]?). (E.6)
We plug (E.5)-(E.6) into (E.4) to get
i) = NP o MHP) _ o 0 )

(n —1ap(l —agp)
We then compute the variance of Z}, it is easy to see that

CVar(Ys) + CVar(Y3) + C'Var(Yy) + CVar(Ys)

Var(Z}) < (n— 1)20%(1 —ap)?
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By direct calculations, we know that

Var(Y3) <C Y E[W] < C ;5 < Cnlag,
i<j i#]
2 2 2
Var(Yy) <C > EWZIE[W;] < Cnlag,
1,7,k dist
C
Var(Ys) < 2 Z E[WZQJ]]E[W,?J] <Cn?ad.
i,k
{ig}#{k 1}
In the previous steps, we have seen that Q* = Q — diag(Q), 1,01, = 0, ||Q1,||? = n® K’ MGMHh,
Q;; < Cayp, and [Q;;| < C||M]|. It follows that

. 1 - 2
Var(Ys) <C Y <e;§z*1n — n1g9*1n> x Qi5(1— Q)
i#j

- - 1 o 2
oy {egﬂln + Qi — (1%d1ag(Q)1n)} x Qi (1— Q)
i

x Cag

~ ~ ~ 2
C [nLa ]2+ 0 + (1) diag(@)1, )
7

< Cn*ag||Mh||? + Cn2agl|diag(M)]|?
< Cn'ag|Mh|%.

We combine the above results and note that for n big enough, nag > c. It gives

Var(Zy,) < —— <ﬂ4a0HMh||2 + n3a2>
n ao
< On2ag || Mh|2 + Cn. (E.8)

In conclusion, the mean and variance of Z}; are characterized by (E.7) and (E.8), respectively.

The mean and variance of ) DC We now show the clalms of this theorem. First, consider the mean
of ¥y, DC . Recalling (E.1) and letting A, = (1+ Up)~ 1y, we have

Z*

VRERDC) > E(Z;) B "

ntE’

1+ Uy 1+Un'

E[Z;) - /E[AZ)\/E[(Z5)?) — ny/E[AZ]. (E9)
The mean and variance of Z have been analyzed above. We now study A, which is a function of &y,
and . Note that

maXQ,] < rr’iakag < lKPlK < CHWPh=Cay,
7.7
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where 1Pl < Ch/Ph is because ming hy, > c. Since Gy, = ﬁl%Aln and ag = W' Ph =

n=21/,Q1,, we have

. 1 .
|E[én] — ag| = e 17,01, — 17, diag() 1, — n(n — 1)ayg|
1 2 I3 -1
= a0 ‘n ag — 1, diag()1, — n(n — 1)040’ <Cn™"ay,
. 4 Z _

i<j
Furthermore, we write &, — E[ay,] = ﬁ >i<j Wij, where {W;;}; is a collection of indepen-

dent, bounded, zero-mean variables. We apply Bernstein’s inequality and use (E.10) to get

t2/2
Cn—2ag+ Cn—2t

P(|6n — Elom]| > t) gexp< > for all ¢ > 0. (E.11)

Consider the event E' = {|&n — ag| < § - ag}, for a sufficiently small constant § > 0 to be determined.
Using the above inequality, P(E€) < exp(—C4 - n%aq) for big enough n. On the event E, we can

. . _ an(1—an)
derive a bound for |Ay,|. Recalling that Uy, = ao(i=ag) Ve have
A U, _ (&n—ao)(l—dn—ao)
"1+ U, (1 — Gn) ‘

Since g < 1 — ¢ for a constant ¢ € (0,1), when ¢ is chosen properly small, |A,| < C’aal |G, — gl
on the event F, where the constant C' > 0 here does not depend on §. On the event E°€, according to
the footnote on Page 3, |A,| < Cn?. Tt follows that

E[A2] < Cnt - P(E®) + Cag 2E[(én — ag)?]
< Ont - P(E°) + Cag ?[(Elén] — ap)? + Var(dn)]
< Cnexp(—Con’ap) + Cay 2 (n™2ad +n"2ag)
<Cn"2ayt. (E.12)

We plug (E.12) into (E.9) and then utilize (E.7)-(E.8). Recalling that we have defined §,, = n%/2ag | Mh/|2,
it yields that

C _ _
E[yPC] > NG <n2a0 YMn|? -/ On—2a5t %

v 2ag IMR2)2 + (n2ag | M2 4 n) - n\/cn—2a51>

= % <\/ﬁc5n - \/Cn_2oz51\/n§% +Vndy, +n— n\/Cn_2ozal)
>co, (1 C B C B C B C
Vnlag  VndPags, VnPagdk) Voo



Global Testing of MMSBM 37
> C6, [1 — 040y 25,12 ¢ n—lagl/%;l)] —0(nY2ag ).
Now, assume that d,, > C'. Then, there exists a constant ¢; > 0 such that
E[WLC] > 16, — O(n~V2ag'/?). (E.13)

This gives the first claim.
Next, consider the variance of 77/;7?0. Note that (1 +Uy,) ' =1— Ay and (14 U,) U, =Ap. It
follows from (E.1) that \/n)PC = Z* — A, Z* — nA,,. Therefore,

Var(z/;,[l)c) < Cn~Y[Var(Z¥) + Var(An Z) + nzVar(An)]
< Cn~Y(Var(Z}) + E[A2(Z})?] + n’E[AZ])
<on~t (n2a51||MhH2 Fn+EA2(Z)?] + agl), (E.14)

where we have used (E.8) and (E.12) in the last inequality.
We calculate E[A2 (Z)?]. For a large enough constant By > 0, we define an event

Eq = {|én — E[ay]| < Bon~ '/ log(n)}.

By (E.11), P(EY]) < exp(—Blog(n)), where the constant B > 0 is a monotone increasing function of
By. With a properly large By, we can make exp(—Blog(n)) = 0(n8a0_2). Now, on the event F1, we

have |Ap| < Caal\&n —ag| < Cn_laalﬂwlog(n). On the event E°, we note that |A,,| < Cn? and
|Z| < Cn2ag ! hold uniformly. It follows that
E[AZ(Z5)?) =E[AL(Z))? - 1] + EIAY(Z5)? - Ik,
< Cn8a0_2 -exp(—DBlog(n)) + C’niQOzal 1og(n)]E[(Z;';)2 I pe]
<o(1) + Cn~%ag ' log(n)[(E[Z;))* + Var(Z;,)]

C'log(n _ _
<o(1) + rﬂi(o) [(n20z0 IMA|2)2 + n2ag || Mh||2 + n] (E.15)

where in the last inequality we have used (E.7)-(E.8). We plug (E.15) into (E.14) to get

1
Var(P) < 0(1 +ntagt 4012, + %?(néﬁ + /by, + n))
0
<C [1 +n 25, + n_2a615% log(n)} . (E.16)
This gives the second claim. O

Appendix F: Proof of Theorem 3.3
Write a1 = E[dy], Q= Q — a11,1/, and A,, = aq — éy,. It follows that

Qn = Z (Az‘j - dn)(Ajk - dn)(Akl - dn)(Ali - dn)
1,7,k dist.
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Table 1. The 21 different types of the 81 post-expansion sums of Q)y,. The order of the mean and variance of each
term will be derived in the proofs.

Type # (Nw,N, & NA)  Representative Mean Variance
X1 1 (4,0,0) 24,5k dist. Wig Wik Wit Wi 0 O(n*af)
Xo 4 (3,1,0) ik dist. Wi Wik Wi Sy, 0 om4ad|M|?)
X3 4 (3,0,1) 24,5k dist. Wig Wik Wi An 0 O(n%ad)
X, 4 (2,2,0) ikt dist. Wi Wi Qi Qi 0 om4ad| M|
X5 2 (2,2,0) 324k dist. Wi Qe Wi 0 O(n*ag||M|*)
Xe 8 (2,1,1) ikl dist WigWikQriBn 0 O(n3ag||M||?)
X7 4 (2,1,1) D kel dist. WuQ]kalAn 0 O(n2ag|| M%)
Xg 4 (2,0,2) ikl dis Wii W kA O(n/2a3) O(nad)
X9 2 (2,0,2) 24 gkl dist. Wi WklA 0(a3) 0(ag)
X10 4 (1,3,0) Z'L,j,k,ldls[ WZJQ]/CQMQZ’L 0 O(TLGQOHMHB)
X118 (1,2,1) i kel dist. Wi et An O(n2ap||M|?)  O(n*ad|M|*)
X2 4 (1,2,1) Sk dist. Wig Lk An O(n2ap|M|?)  O(ntag|M|*)
X138 (1,1,2) ikt ais Wii QrAd Om2al/? M) O(naf||M]|2)
Xig 4 (1,1,2) i gk i Wis A% 0<n2a3/ “larl) - omtadM|?)

X5 4 (1,0,3) 2 kel dist. Wi A3 O(ao) O(ao)
Xi6 1 (0,4,0) Z1,],k,]d|9[ gljg]kgklﬂll 77’4”MH4 0
X7 4 (0,3,1) 22i,4,k,1 dist. QZ/ijQk[A” 0 O(n® OéoHMH )
X18 4 (0,2,2) Zv,],k,]dw[ QZ]Q]kAn O(nQQO”M”Q) O(n ag HMH )
X9 2 (0,2,2) 22i.4,k,1 dist. QzJQuA O(n2ag||M|1?) 0("4a2)\\M\\4)
X20 4 (07 1,3) Zv,],k,l dist. Q A 0 0
Xo1 1 (0,0,4) 22i,4,k,1 dist. A4 0(a3) 0(a})

= > (Wij+ Qi+ An) Wik + Qg + D) Wiy + Qg + An) (Wy; + Qi + A).
4,7,k dist.

Expanding the sum gives 3* = 81 terms. Combining equal-valued terms, we have the following de-
composition:

Qn=X1+4Xo+4X3+4X1+2X5+8Xg+4X7+4Xg+2Xg+4X10+8X11
+4X190+8X13+4X14 +4X15+ X166 +4X17 +4X 18 +2X19 + 4 X909 + Xo1, (E.1)
where the expressions of X1-X2; are presented in Column 4 of Table 1. In this table, we also list other
information of each term, such as the degree in W (Vyy), in €2 (Ng) and in A;, (N ). We plan to study

the mean and variance of each of X1-X9; and then combine them to show the claims.
In preparation, we derive some useful results. First, we study |€; j |. Write M = P —aglg 1’K. Then,

|a1—a0|:|E[dn}—ao|— ZW MTFJ
#J

1 / 1 /
= Y p— izj:ﬂ'iij - n(n—1) Zi:ﬂ'iMﬂ'i

HMII < ClMi|

< — [WMh+ — -

(F2)

where we have used in the last line that A’ Mh = h' Ph — agh’1x 1. h = 0.
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Note that ﬁij = 7T£P7Tj —a] = 7T7/;M7Tj + ag — a1. It follows that
Q] < [miMmj| + |ag — a1 | < C|| M]]. (E3)

Next, we study Ay. By definition,

. . 1
i#] z#]
Using properties of Bernoulli variables, we have IE[WQ] Q;5(1 = Q45) < Q5 and [E[W]2]| < CQy5,

for any fixed m > 3 (the constant C' may depend on m) Note that
Qij :7T7/;P7Tj < ]-/K'P]-K < C’Oé(],

where we have used that miny by, > C'/ K, which is a consequence of (3.4). Additionally,

>0 = X Py — P = .

2% i,J
It follows that
E[A2] = peTpR— S EWE) <Cn ) Q5 < Cn”ay,
i<j i#]
8
1<j,k<lu<v 1<J
CTL_GZQZ‘]‘ < Cn_4a0,
1<j
EIAN = 1o 1 (ZE 143 > E[W%]E[Wé])
i<j i<jk<l
(4.5)#(k,0)
<COn~8 ZQU + (Z Q,Lj) (Z QkZ) < C’I’L_40é(2),
i<j i<j k<t
E[A%] < on—16< > E[WE]-]JE[W;?I]E[W%S]E[Wio
1<j,k<l,m<s,q<t
—16 4 -8 4
Cn (Z Qij) < COn~8ad. (F4)

1<J

We shall frequently use (F.3) and (F.4) in the proof below.

Mean and variance of (),,. We study the mean and variance of each of X-X51, and combine them to
get the mean and variance of @Q,.
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Consider X7 = Zi,j,k,l dist. Wi Wik WiiWy,. It is easy to see that
E[X;]=0. (FE5)

Furthermore, let CC(I,,) be collection of equivalent classes of 4-tuples (4,7, k,1) (see the proof of
(D.20) for details). By elementary probability,

Var(X1 Var( Z kalle>

CC(In)
=64y EWZEWIEWZIEWS]
CC(In)
<C Y 9590, <CTH(QY).
1,5,k,1

Note that Q = ITPII' and I11,, = 1. Also, we have defined G = n~!II'II in Section 3.2. It follows
that

Te(Q4) = i Te(PGPGPGPG) = nTr ((GI/ 2pgt/ 2)4) < Kn* HGl/ 2pgl/ 2H4 .

From the definition of G, we have Gj; =n~! >i;mi(k)mi(l) < 1forall1 <k,l<K.Hence |G| <

K2, In addition, recall that ag = h' Ph. By our assumption (3.4), all the entries of h are lower bounded
by a constant C > 0. It follows that ag > C1%- P1j. We immediately have

Tr(Q4) < K94 P|* < K904 (1) P1x)* < Cnag,
where we have used that || P|| < 1% P1 since P is a nonnegative matrix. Combining the above gives
Var(X1) < Cniog. (F.6)

Next, consider Xo =3, 5 1. 1 isr. WijWjkWiiSh;. 1tis easy to see that

E[X2] =0. FE7
Furthermore,
Var(Xp)=Var |2 Y WyWyWuQy; | <C Y EWZEWIEWZI,
1,7,k dist. .4,k dist.
z'<l i<l

where we have used that summands in the expression above are pairwise independent. It follows that
Var(Xs) < Cntod||M|%. (F8)
Next, consider X3 =23, i 1. ; disr. WijWjxWiiAn. Recall that

An:al—@n— ’I’L—l ZWZ]
7,<]
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It follows that

2
E[XS]:_WE Z ZWijokalet =0. (E9)
i,k dist. s<t

Furthermore,

1
Var(X3) = 7n2(n — 1)2Var ijkzldist Wii W Wi Wt
ekt

C
< QE Z Wii Wi WiaWst Wy W Weg W

,7,k,l dist.
a,b,c,d dist.
s#t u#v

¢ 21172 2 1172 21172 2 1,92

i,5,k,1,s,t dist. i,7,k,1,t dist.

2 172 112 112 2 172 (12 112
> EWRWRWEWEI+ D EWEWILWE WA+

1,5,k,1,t dist. i,7,k,1 dist.
2102 T2 112 47172 1172
> EWEWAWRWE+ > EWLWARWR+
1,7,k,l dist. 1,5,k dist.

+ D E[Wi%'W;‘Llegl]

i,9,k,1 dist.
It follows that
Var(X3) < %(nﬁaé +nlag +ntad +ntad) < Cn2af. (F.10)
Next, consider X4 = Zi, J.ke,L dist. Wi; ijﬁklﬁ”. It is straightforward to see that
(F11)

E[X4] =0.

Furthermore,

Var(X4) =E Z Wii Wi W Wos Qi i st Qs

,7,k,1 dist.
u,v,s,t dist.

<cIM|* Y EWZIEW],
1,9,k dist.
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from which we obtain that
Var(Xy) < Cntod||M|*.
Next, consider X5 = Zi,j,k,l dist. szﬁjkalﬁlz It is straightforward to see that
E[X5]=0.

Furthermore,

Var(Xs) =B | Y WiWuWuo W2 Qs Qu
1,7,k,l dist.
u,v,s,t dist.
4 2 2
<C|M|* Y EWZEWg,
i,5.,k,1 dist.
from which we obtain that
Var(Xs5) < Cn*ad| M||*.
Next, consider X =) _; j kel dist. Wij ijﬁklAn. Using the definition of A,,, we have

1 —
XGZ—m Z ZWijokalet~

,9,k,l dist. s#t

It follows that

E[Xg] =0.
Furthermore,
1 _
Var(Xﬁ):m > QB Wi W Wt Wy, Wi Warn |
1,7,k,l dist.
a,b,c,d dist.
s#t,u#v
C||M|?
< ”n2 ” > EWiy Wi Wt Wap Woe W
1,4,k dist.
a,b,c dist.
s#t uFv
CllM|? 2 2 2
<=4 > EWSWRWAI+4 Y EWIWRWEI+
i,3,k,s,t dist. 1,7,k t dist.

2 > [WQW AUAESSY) [W2Wkal}+4 > E[W%Wka

,4,k,t dist. 1,7,k dist. 1,7,k dist.

4y EWEwW3
.7,k dist.

(F.12)

(F.13)

(F.14)

(F.15)
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As a result, we obtain

_ M|

Var(Xg) (n®aid +nad + n3ad +n3ad) < Cn3ad|| M| 2. (F.16)

Next, consider X7 =3, ; 1 1 gist. Wi QWi Ay Similarly to X, it is easy to see that

E[X7] =0. (F.17)
Furthermore,
1 _
Var(Xﬂ:m > Qe EWe Wiy Wt Wop Wea W]

4,7,k dist.
a,b,c,d dist.
s#t uFv

C|IM|? 21172 112 2 1172 1172

<— 1 Z EW5WaWal + Z EW5WaWil+
,7,k,l,s,t dist. ,5,k,1,t dist.

21172 1172 21174 33
> EWEWAWRI+ > EWEWul+ Y EWiWR
i,j,k,l dist. Z'7j7k7l dist. ivjvkvl dist.

As a result, we obtain

clm?

Var(X7) < - (n®aid +ndad + ntad +ntad) < Cn2ad|| M| 2. (F.18)

; _ 2
Next, consider Xg =3, 5 . 1 gisr. WijWjk A5 We have

971/2
E[Xs]|=(n—3)|E A2 S WyWi| [<nBALNYZE [ S wi;Wy

3,3,k dist. i,5.k dist.
It follows that

[E[X3g]| < CnLagn®Pag < C’nl/2a(2). (F.19)
Furthermore,

2
Var(Xg) <Cn’E [Ag | Y- WiWy,
1,7,k dist.

471/2
< CHQE[A%]1/2]E Z Wijok:

1,7,k dist.

The summands above can be grouped into 6 categories, where each category corresponds to a specific
upper bound in terms of n and ag. We obtain

Var(Xg) < Cn2a3(n%ad + n’ad + ntagd + ntad + n3ad + n3a(2))1/2 < Cnag. (F.20)
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Next, consider Xo =3, ; 1 1 st WijWklA%. We have

EXol|=|E[AZ > Wi;Wy || <EALYE > WyWi
3,5,k dist. 3,5,k dist.
It follows that
|E[Xo]| < Cn2agn?ay < Cad. (F.21)
Furthermore,
2

Var(Xg) < CE A% Z Wi i Wi
6.5kl dist.
41172
< CE[AS]Y/2E > WiWy

i,5,k,1 dist.

As for Xg, the summands above can be grouped into 6 categories, where each category corresponds to
a specific upper bound in terms of n and cg. We obtain

Var(Xg) < Cn~*ad(n8ag + n"af + nbag + n’ag + ntad + n4a%)1/2 < Cag. (F.22)
Next, consider X19=>; okl dist. Wi]ﬁjkﬁklﬁh. It is straightforward to see that
[E[X10]| =0. (F23)
Furthermore,

Var(X10) = Y Qe 2c2eaaaBIWi Was]
i kL dist.
a,b,c,d dist.
<Cao Y [0 il
i,k L dist.
c#d7c7d¢{i7j}
As a result,

Var(X19) < Cagn®|| M. (F24)

Next, consider X11 = 3", 7 1. 1 gise. WijQjx2%1An. Using the definition of A, we obtain

1

IE[X11]| = w(n=1)

> U QEW, Wl | < CIMIZ > [EWi W],
1,7,k,l dist. 1#£j,u#v
uFv
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As a result,

E[X11]] < Cn®ag|| M][%. (F.25)
Furthermore,
2
1 _
Var(X11) < CE w1 Z Qe Qe Wig W
.9,k dist.
uFv
C o
< ﬁ Z |ijlechch‘|E[WiquvWabWrsH
i,5.k,1 dist.
a,b,c,d dist.
UFV,TFS
SCHM'H4 Z |]E[WiquvWame”
i#J,a#b
UFEV,rF£S

4 2112 21172 4
< C|M]|| g E[WUWab] + E E[Wijob] + E ]E[Wl]]
i,5,a,b dist. 4.7, dist. i,j dist.

As aresult,
Var(X11) < C||M|[*(n*ad + n3ad + n?ag) < Cn*ad| M|*. (F.26)

Next, consider X192 =), J.ke,d dist. Wi]ﬁj 1 AnQy;. Computations in this case are exactly equivalent
to those for X1, so we obtain:

[E[X12]| < Cn?ag||M]% (E27)
and
Var(X12) < C|M|*(n*ad + n?ad + n2ag) < Cntad|M|*. (F.28)
0 0 0
Next, consider X13 =3, ;1.1 st WijﬁjkA%. We have for the mean:
EX) < Y [QuEWGAL< YT [ EWE]YEEALY?
4,5,k dist. 1,7,k dist.
< Cnt|M|lol 2 E[AL)2,
It follows that
IE[X13)] < Cn2a2/? | M]. (F29)

Furthermore,

Var(X13) <E | > WiWaQuQeep | <Cnt M7 Y E[W WAL

0,7,k dist. i£j,a7b
a,b,c,d dist.
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<cnt|M|? Y EWRWE)VEIASV2 <codM|? Y EWEWA]Y?
i#j,a#b i#j,a#b

<cadIMIP | Y EWRIPEWEV+ ST EWAMEWEV2+

i,5,a,b dist. 1,5, dist.
E[WA /2
> EW]
4,7 dist.
As a result,
Var(X13) < Col | M2 (n*ag + ndag + n2ad’?) < Cnad|| M |12 (F.30)

Next, consider X14 =3, 5 1 1 gist. WMQMA%. Computations in this case are exactly equivalent to
those for X3, so we obtain:

IE[X14]| < Cn%a)/? | M]). (F31)
and
Var(X14) < Ca2 || M2 (n*ag + ndag + n2ad’?) < Cntal| M2 (F.32)

Next, consider X15 =3, ; 1. gise. Wij A3. Using the definition of A,,, note that

Xi5=(n—2)(n—3)A}> W;j=-n(n—1)(n—2)(n—3)A;.

i#j
It follows that
[E[X15]] < n*E[A}] < Cag. (F33)
and
Var(X15) < nSE[AS] < Cag. (F.34)

Next, consider X1 = ZL j kel dist. ﬁi]ﬁjkﬁklﬁh. This is a non-stochastic term, whose variance is
zero. We the focus on deriving a lower bound for E[X16] = X1¢. Note that

Xi6=Y_ 990:% - Y 990

1,5,k,1 ,4,k,l not dist.
74 J— J— J— J—
=Te(@) - >
1,7,k,l not dist.
=4
=Tr(Q) — O(n®|| M%), (F35)

where the last equality comes from (F.3) and the observation that (4,7,k,1) has at most 3 distinct
values in this sum. In the derivation of (F.3), we have seen that Q;; = 7, P71; — oy = m,Mn;, where
M =P — a1l =M + (g — 1)1 g1’ This implies that

Q=T1MII.
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Recall that G = n~ TI'II. We have
Te(Q) = Tr((ITMIT)4) = n*Tr((GY2 M GY/2)4)
=[GV G2
= n4H(G1/2MG1/2)2”2
=n*| GG,
Note that |GY/2MGY2| < |[M||||G||. Additionally, || M|| < ||G~||||GY/2M G/2||. By the definition

of G and our assumption (3.4), ||G|| < C and |G~ < C. It follows that ||GY/2MG/2|| < ||M]|. We
thus have

74 —_
Tr(Q7) = | M|* = 0| M + (ap — a1) 1 V||
Recall now from (F.2) that |y — a1| = O(n~1||M||). Hence, by Weyl’s inequality

Wi CK||M|
)~ 1] < Klag — o] < ZKIM
which implies that ||M]| < || M|, so Tr(h) = n|| M|, Plugging it into (F.35) gives
X16 =E[Xy6] =< n?|| M|*. (F.36)

Next, consider X7 = Zz okl dist. ﬁi]ﬁjkﬁkZAn. It is straightforward to see that

E[X7]=0. (F.37)
Furthermore,
2
Var(X17) < | Y Q4030 | E[A%] < Cagn®||M|°. (F.38)
0,7,k dist.
Next, consider X18 = 3=, 7 1 1 aise. Qi A%. We firstnote that X5 = (n—3)A2 3, ¢ gic. i Qe
Hence,
E[x 5] < S0 05,0, | < Cagn?| M| F.39
[E[X1s]] < == > Q0| < Cagn®(| M2 (F.39)
1,7,k dist.
Furthermore,
2
Var(Xig) <n® | Y QuQ | E[AR] < Cagn® | M|*. (F40)
3,5,k dist.
Next, consider X19 =3, ; 11 gist. Qi AZ. We have
Cayg =5 2 2
[EX][ <=5 | D 9iQu| < Cagn?| M| (F4L)

i,5,k,1 dist.



48

Furthermore,
2

Var(X19) < Z Qiijl E[Afl] < Ca%n4|\M||4. (F42)
1,7,k dist.

Next, consider X20 =3, ; 1 1 gist. {ij Ay Notice that

Xo0=A3(n—2)(n—3) Zﬁij =A3(n—2)(n—3) ZQU —n(n—1a; | =0.
i#j i#j
It follows that
E[X20] =0, (E43)
and
Var(Xs) = 0. (F.44)
Next, consider Xo1 =, i 11 gist. A% . Note that Xo1 =n(n — 1)(n — 2)(n — 3)A%. As aresult,

E[X21] < Cad, (F.45)

and

Var(X21) < Caj. (F.46)

Mean and variance of Q,,/(2v/2n?a2). We use the results stored in Table 1 in order to provide a
lower bound for E[Qr,/(2v/2n%a3)] and an upper bound for Var(Qy/(2v2n%a3)). Recall that we

defined
2
T<wMW)
" = .
g

Q 3/2
E l . =nd|M|* + 0(n'/2ad + n?ao|| M| + nQ%/ M)

2\/57120%
1 1 1
<t |14+ 0 + + . (F47)
(o (o )

We obtain that

Similarly, we observe that

var (2 ) o (hob rntaa e e+ ool
2\&1120%

7_1/2 - 7_3/2
=0<1+"+’;+”). (F.48)
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Assuming that 7,, > C, then we can write

3/2
IE[ Qn =Tp, and  Var <2\/§:2a(2)>=0<1+”;>. (F.49)

2\/§n2 a(z)
. 5Q
Mean and variance of v, *. Recall that

sQ__ Qn
" 2\/§n2d%

In the sequel, we let Z}) = Qn/ (2\/5112043) for ease of notation. First, we compute a lower bound on
the mean of ws @ Note that
ag — & 2
n *
— | Z
( m > "

() =
> B7;) - O\BIZ:)71 ] || [(“%7“)2 <a0a_a>4]

Under the event E defined in Appendix E, it holds that | &, — ag| < dag, so we can derive the following
upper bound:

E[y;9=E

>E[Z}] + 2E KO‘OQ%) Z:;} +E
n

+4|E

ag — ap ‘CVO - 0A¢n|
G, ~(1-0)ag’
Under E€, it holds that
(77)

We thus have

q[E=0)

< On*P(E®) + Cag *E[(ag — an)?]

< On'*P(E®) + Cag ?(ap — Elan])? + Cag 2Var(an)

C C c
< 4 C < — .
< Cn*P(E°) + =12 + Zag = 72 o(1)

Similarly,

N 4
E (aoaan> < OnBP(E®) + Cag *E[(ap — én)]
n

< OnSP(E®) + Cagy *E[(én — Elan))?] + Cag *(Elan] — ap)?

C
< 8 C
<Cn°P(E )+—n4
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Cat
+ ng E Z (Aij - Qij)(Akl - le)(Auv - qu)(Ars - Q,,S)
1<j,k<l
u<v,r<t
C  Caj? C
8 0 4 2 2 _
< Cn°P(E°) + -y + 3 (nag +nap) < o2t =o(1)

It follows that, for n big enough,

B[S 2 B123] - o (E[22)2) =El23] - oy Var(:) + BIZiP? )

—E[Z}] o (\/1 /2 2, 1 ]E[Z;;]2>
>E[Z}](1—0(1)) — o (1 + n’1/27'n1/4 + nflT%/Q + n’1/27'n3/4> .
Assuming that 7,, > C, we know from (F.49) that there exists a constant co > 0 such that
E[ EQ] > coTp — 0 (1 + n_1/27'g/4) ) (F.50)

Next, we compute an upper bound on the variance of 1/15 @, We have

2 . 2
Var(¢5?@) = Var <<g0> Z;) = Var ((ao&an + 1> Z;)
n n

(oY 2| vm | (20

Recall the event F defined in Appendix E. We had that P(EY) < exp(—Blog(n)), where B is a con-

stant chosen large enough. Then, on the event E', we have that |(ag — &) /din | < Cn_laal/2 log(n).
On the event E¥, it holds uniformly that |(cg — ) /| < Cn? and |Z};| < n2aa2. It follows that

(o)

Qn

(oY

So we obtain that

< CVar(Z?) + CE +CE

E < CnBagP(ES) + Cn2ag Hlog(n)E[(Z5)Y,

E < On'2ag P(ES) + Cn~lag 2 log(n) *EI(Z;)2).

Var(5 @) < OVar(Z;) + Cn~%ag Hog(n)E[(Z)?] + o(1)

< OVar(Z2) + Cn~2ag Mog(n)E[(Z2)]? + o(1). (F51)
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Recall from (F.49) that when 7, > O, E[Z}] = 7, and Var(Z;5) = O(1 + n~'72/%). It follows that
3/2 2
1
Var(15Q) = 0 (1 + g Og(Q”)T”> . (F52)
n ncog

O

Appendix G: Proof of Corollary 3.2

Let 2 C denote the degree test statistic as in the proof of Theorem 3.2. Let € € (0,1) and g¢ be the
(1 — e)-quantile of the standard normal distribution.
Under the alternative hypothesis, we suppose that §,, — oco. It follows from Theorem 3.2 that

E[¢PC) > ¢16,, and Var(yP¢) =01+ n=25, + n72a616,% log(n)).

We have, for n big enough,

C'Var(pPC) 1

DC _ DC DC DC n -

P( n <qe)_P(E[n ]_ n >E[n ]—qe)ﬁ E[ 7?0]2 ASNR(wEC)z,
where we have seen that SNR (¢, C) — o0 if §, — oo under the alternative (see the paragraph before
the statement of Corollary 3.2). It follows that under the alternative, the power of the test

IP’( Dc >qe> 1 (G.1)

n—o0

Furthermore, under the null hypothesis, we know from Corollary 3.1 that 1/),13 ¢ £> N (0,1), hence
the level of the test tends to € as n — oo. ]

Appendix H: Proof of Corollary 3.3

Let w;? @ denote the degree test statistic as in the proof of Theorem 3.3. Let € € (0,1) and g, be the
(1 — €)-quantile of the standard normal distribution.
Under the alternative hypothesis, we suppose that 7, — co. It follows from Theorem 3.2 that

E[?/}SQ] > comp, and Var( ;?Q) =0(1+ nilTS/Z + niZOzang log(n)).
We have, for n big enough,

SQ _ SQ)_ .,5Q SQ_ CVar(un?) _ :
P(vn? <ae) =P (B39 - v > B9 — o) < E[un?)?  SNR(Y;)2’

where we have seen that SNR( S Q) — o0 if 7, — oo under the alternative (see the paragraph before

the statement of Corollary 3.3). It follows that under the alternative, the power of the test

P (w;fQ > qe) —1 (H.1)

Furthermore, under the null hypothesis, we know from Corollary 3.1 that wﬁ Q £> N (0,1), hence
the level of the test tends to € as n — oo. O
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Appendix I: Proof of Theorem 3.4

As in the proofs of Theorem 3.2 and Theorem 3.3, we let 1/)713 C denote the degree chi-squared test
statistic and 1/)5 Q denote the 0SQ statistic. Recall that the PET statistic is

sue (48)" (59
Let A > 0,¢e > 0 be arbitrary constants. Then,
P(Sn < A) <min {P (D€ < VA) P (59 < Va)}
< min {P (B[] - vPC > EP) - VA) P (B39 - 5@ > By - VA) }.
In the regime where max{dy,, 7, } — oo, for any constant B > 0, there exists N > 0 such that for all

n> N, 8, > B or 7, > B. We will denote by N(B) the smallest such constant. We choose B > v/A
and N > N(B) such that for all n > N,

1 1 log(n) €
B2 * n12B " n2ay C
1 1 log(n) e
B2 B2 ey ~C

Now, suppose that we are in the case d,, > B. Then from Theorem 3.2, we know that

0 log(n)
DC DC n g 2
E[¢;, "] > c¢ép > cB and Var(¢,,~) < C (1 + ) + 2o 5n> .

Then,

DCy_,,DC DC Var(y¢) 1 1 log(n)

which implies that P(S, < 4) <e.
Now, suppose that we are in the case 7, > B. By Theorem 3.3, we have

3/2 2
]EW’EQ} >crm, >cB  and Var(q/’sQ) <C <1 + TnT + %) '
0
Then
SQ
Var (i, ) 1 1
P(Bn) - v > EWi®) - VA) < oo <O\ 24— gty | <©
( n n n ) K| SQ]Q T2 TLT711/2 + %

which implies that P(Sy, < 4) <e.
It follows that for all n > N, it holds that P(S;, < A) < e. We have just shown that

Sy —— 00, (I.1)
n—oo
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Now, fix € € (0, 1) and let g denote the (1 — ¢)-quantile of the x3(0) distribution. From Corollary 3.1,
we know that as n — oo, the level of the test tends to €. From (I.1), we know that under the alternative

n—oo

so the power of the test tends to 1 as n — co. O

Appendix J: Proof of Theorem 3.5

Denote by D, 2 (F|[P1) the chi-square divergence between two hypotheses, where P and P denote
the probability measures under two model, respectively. and then study the symmetric alternative and
the asymmetric alternative separately. By definition,

dPy\?
1+DX2(POHP1):/<dP;) dPy.

Letting ¢;;(IT) = 7, P, we can write

dPy=[Ja* (1 —a) =4,  dPy =Ry |[] ;A9 (1 - gi;(I)' 4
i< i<j

Let II be an independent copy of II. Then it follows that

<dPl)2 B H (qw(ﬂ)q”(ﬁ)> Aij ((1 —q;;(ID)(1 %j(ﬁ)))lAij
dPy T ILI

i<j a? (1-a)?
We denote
=\ A -\ 1-Ayj
(AL =] (W) <(1 - qz‘j((llT)_)(;); i (H))> |
i<j

and further obtain using the Tonelli theorem that

1+ Dya (Poll Pr) = Eo[Epy [S(A, IL 1)) = Epp 5 [Eo[S(A,IL D).

Recalling that for all i < j the A;;’s are mutually independent, we can calculate Eq[X (A4, II, IT)] easily.
The calculations yield that

AiiA;;
0+ 2522)]

1<J

1+ DX2 (Pole) = EH,I:I

where for i < j we have A;j = n/Pr; — a and A;j = #/ Pri; — . Since for all z in R it holds that
1+ z < €%, we can bound the above by

xp (Z ozA(i]—A Z) )}

i<j

1+DX2 (Pol|P1) < ]EHJ:[
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=E

exp (25)] ) where S=a ! ZAiinj- d.D
(1-a) py

I1,11
Recall that we chose o = h/ Ph for the null model. Let y; = m; — h for i = 1, ...,n, hence E[y;] = 0.
We obtain, for all 7 £ j

Ay =mPrj — a=y;Py; + K Py;+ h'Py; + "' Ph— a
=y;Py; + h' Py; + I’ Py;.

Hence, E[A;;] = 0. We define the matrix M = P — alg1%. Forall i € [1,n], mj1x = h'1g =1,
which implies that y; 1 =0. It follows that

Ajj=yiMy; + B My; + K My;. Jd.2)
We plug (J.2) into (J.1) to decomposition Aijﬁlj into 9 terms:
= (y;My;)(5;My;) + |(W My;) (W Mg;) + (h' My;) (h' M ;)
[ M) (W M) + (M) (B M) + (W M) (GM3) + (0 M) (5:M3) |
(W My (W M5 + (0 My (0 M) .

Summing over (4, j) such that ¢ # j gives a total of 9 partial sums, which we denote by S1, S21, S22,
S31, S32, S33, S34, S41 and Sy9, respectively. For example,

=a! Z(ngyj)(ﬂgng%
i#£]
Sor=a"(n—1) Z(h/Myi)(h/Mﬂi)’

i

Sa1 =01 (yiMy;) (W M),
i#£j

Sar =1 (W My;) (W Miy). (J.3)
i#j

It follows that

2 4 2
S=51+ ZSQm+ Z Sam + Z Sam.-
m=1 m=1 m=1

Combining (J.1) and (J.4) with Jensen’s inequality, we have

514> 2 S2m + Zizﬂ Sam + Z?n:l Sam )]

2(1—a)

2
1 9|51] 1 9|52m\
9exp(2( )—i—QZexp( ) +

m=1

1 +DX2(P0||P1) <E lexp (

IA
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Write ¢, = 9/[2(1 — «)]. To show the claim, it suffices to show that
]E[exp(ca|X|)] =14o0(1), for each X € {57, 521,522,531, .,534, 541,542} J.4)

Below, we show (J.4) for each of X listed above.

First, consider X = S7. Let §1,4d92,...,dx be the K eigenvalues of M, arranged in the descending
order of magnitude, and let by, ba, .. ., b be the associated eigenvectors. Then, M = Zle Orbi bz. It
follows that

2
=a™1> 60 <Z(y§bk)(§§bl ) - 12%&2 yibg) 2 (502
k.l i

Note that maxy, |0g| = || M ||, where ||M|| is the operator norm of M. Therefore,

|Sl| < O‘_l‘|]\4”2 Z <Z(y1bk y’Lbl ) +ZZ y’Lbk yzbl

k,l i

In addition, for any i € [1,n] and k € [1, K], by the Cauchy-Schwarz inequality, we have (ygbk)2
yill3116%[13 = lyill3 < llyill1 < 2. given that [|y;lcc < 1 and that [|y;[|1 < [|m;[1 +]|Al1 < 2. It follows
that

11| < 4na " K2|M|? + Ry, (1.5)
where

2
Ry =a” K?|[M|[* max <Z(y£bk)(§£bz)> :

1

To bound Ry, we fix a tuple (k,[) and provide an upper bound for Yy, := >~ (yiby) (7;b;). Note that Y
is a sum of independent, zero-mean random variables. In addition, |(y/bx)(@;b1)| < |lyill2lgill2 < 2.
We can apply Hoeffding’s inequality, for any ¢ > 0:

P(|Yi| > t) <2 ( 212 ) , < t2>
ki S2exp i — — =2exp|——|.
i1 2llyill219ill2)? 8n

Hence, denoting Yy := max, ; |Y},|, we have

t2
P(Ye>t)=P [ | J{[Viul >t} | <D P(Yi| > 1) 2K exp <—8n>.
k,l k,l

It follows that, for any ¢ > 0,

Via ot
P H=P|Y* > —— <2K2 - ]. .
(B >1) ( >KIIM||>‘ exP( 8nK2||M|2) 76
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We now use (J.5) and (J.6) to bound E[exp(cq|S1|)]. For any non-negative variable X, it follows from
integration by part that E[exp(X)] =1+ [;~ ¢/P(X > t)dt. It follows that

-1 2 2
E[exp(ca|51|)] < eleana™ K ll2]] -E[exp(caRl)]

dcana~ K2||M|2 < —1
< elea 1+ 6P<R1>ca t)dt
0

o0 @
< eleana” LM {H/ 26_(8CanK2IIM?‘1)tdt] .
0

In our assumption, 5, — 0, which implies that
na || M2 = 0.

It follows that e4cene™ KZIMI® — oxp(o(1)) = 1+ o(1). Also, for n big enough, SeanEC P 1>

0. Furthermore, we note that for any value z > 0, fooo e~ ?tdt = 2~ 1. Combining the above gives

16co K 2na~ || M|?
1 — 8co K 2na~—1|| M2

E[exp(ca|S1])] < elca K2 na~ | M|1? (1 I ) =1+o0(1). M)
This proves (J.4) for X = 5;.

Second, consider X = S9 (the analysis of S99 is similar and thus omitted). We define a unit-norm
vector u = | Mh||~Y(MAh). Then,

Sor=a” H(n—DIMA|*)_ (yiu)(Fu).
i
The variables {(y,u)(}u)}1<i<yn are independent, with |(y}w)(giu)| < ||y;||||7i]|. We have seen that

lyil|? < 2and ||7;]|> < 2. It follows that |(y}u)(jiu)| < 2. Applying Hoeffding’s inequality, we obtain
that, for any ¢ > 0,

> (i) (Giw)

i

P(]S21] > t) ZP(

ta
" - 1>||Mh2>

t2a? 202
<2 - <2 —_—].
. e"p( 8n<n1>2||Mh||4> - eXp( 8n3||Mh||4>
Our assumption 3,, — 0 implies that
n3a=2||Mh||* = 0.

2 —1 . . .
Furthermore, for z > 0, we have f(fo e Rt </ omz—le(42) ™ Combining these gives

o0
E [exp(calSa1])] =1 +/ P <|521| > cglt) dt
0

0o o? 2
———a—t“+1
<1+ / 9¢ SARMAE gt
0



Global Testing of MMSBM 57

<1+2v 2#\/8c3n3of2||MhH4eXp <720in3a72||MhH4>
=1+0(1). (1.8)

This proves (J.4) for X = So1.
Next, consider S31 (the analyses of S39-S534 are similar and omitted). Recall that M = Zi(:l 0by, b;g
is the eigen-decomposition of M; additionally, we have defined u = || M k|| ~1(Mh). It follows that

Sz1 =" MB| > (yiMy;) (fu)
i#]

=a—1||Mh|Z[Zék<y4bk><y;bk>] (i)

i#i Lk

=a~ Y| M| zkjék [Z@;bk)@;u)} [Z(y;bw]

? J

e 1 [Z(yéW(@éW] :
k

i

We have seen that ||b;]|? = 1, |Jy;]|? < 2,

7l <2,

u|| =1, and |6 | < || M. It follows that
|S31] < Rg1 +2v2na™ K| M]||[Mh], 1.9)

where

Ry = M K g2, with Z = | ) || Sl |

¢ J

We can derive the tail probability bound for Z: Since |y/bx| < ||ly;|| < V2 and |iu| < ||7;]| < V2, the
Hoeffding’s inequality yields that

P(|Zk| >1) <P ( > (wibr) (Gu)| > \/%> +P | D Wbk > Vi
i J
t t t
< - —— < —— .
_2exp( 8n>+26xp( 4n) _4exp< Sn)
We thus have
ta ta
P(|R31| >t)=P (maka > ) < 4K exp (—) . J.10)

k K| M| MR 8n K || M ||| Mn||

We apply (J.9)-(J.10) to bound E[exp(cq |S31])]. Our assumption (3, — 0 ensures that na ™1 || M2 — 0.
Note that | M| < ||M]|||R|| < | M|\ ]|RI1]|A]leo < || M. It follows that

na~ Y| M]||||Mh|| - 0.
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We then mimic the proof of (J.7) to get
2v2cana~ L K||M|||| Mh|| < 1
E[exp(ca|Sa1])] < €2V2¢e 1+ ep(|331\>ca t) dt
0

o a
< e2V2cana K| M| Mh]| [1 +/ 4Ke*(4canx|\M\|\|Mh|\ 1)"}
0

< (2VZeana K| M|IMA (¢ 4 16¢o K *na” || M||[|MA
- 1 —4dcq Kna=1||M||||Mh]|

=1+4o0(1). J.11)

This proves (J.4) for X = S31.
Last, consider Sy (the analysis of Sys is similar and omitted). Since u = || Mh|| ' Mh, we have

s =a MY (yhu) (§u

i#]
= a AR [ 00| [ )] - o A '
I :

Note that |(y}w)(7;'w)| < ||yill[|7 ] < 2. We immediately have
|S41] < Raq + 2na™ Y| Mh|?, (J.12)
where
Ry = h R | Y ] | 5|

i J
We apply Hoeffding’s inequality to derive the tail probability bound: For all ¢ > 0,

\/7
Flfal=) (’Z ||Mh|| ‘Z 7 TaZh]

at
<4 _— | . J.13
= eXp( 8n||Mh||2> 013

We have seen that || Mh|| < ||M||. Therefore, the assumption of 3, — 0 leads to
no Y| Mh||? = 0.

Using (J.12) and (J.13), we have
2cana! | Mh|2 >
E [exp(cal Su1])] < e A (M
0

2 “pn)? = ok
< 2Cana [ M A|| 1+/ de W .
0
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<e2cana_1||Mh||2 14 326ana71||MhH2
1 — 8cqna—1|Mh|?

=1+o(1).

This proves (J.4) for X = Sy;. O

Appendix K: Proof of Theorem 3.6

Note: this proof requires Lemma K.1 and Lemma K.2, which are provided directly after the proof.

We start by studying the case tg = 0. We consider a sequence of null hypotheses indexed by n, where
Qp =aply l’K € My, under H(()n). For our sequence of alternatives, we consider 2y, = I1,, P, 1T,
under H £") , with

Po= o [l + (1 —yn)lglh], and i, S F,

where forall k € {1, ..., K},

1
IPT(NF(TF = ek) = K

In the above definition, {ek}le denotes the canonical basis of R, Tt follows that

1 1
h::Eﬂ'NF[’/T]:?]-K; and EI:EWNF[WTF/]:?IK.

Under this random mixed membership model, it is straightforward to verify that

||Pnh — aO]-KH = 0,
1P — aolg 1| = anyn.
Hence

Bn = max{n?’/zaalHPnh - a01K||2, n2a52||Pn — aolKI’KHA‘} = nzaaQa%%%.

By assumption, v, — 0, hence for n sufficiently large, o, < 2cg, hence

= O(n*ayp) = o(1),

under the assumption that n2a2~2 = o(1). By Theorem 3.5, the y?-distance between the two distribu-

tions satisfies D, 2 fon) I fl(n)) = 0(1). By connection between L1 -distance and y2-distance, it follows
that

17 = £ = o(1).

We now slightly modify the alternative hypothesis. Let {II2 },, be a sequence of non-random member-
ship matrices such that (Py,,TI9) € M1,,(0). Such a sequence can be built e.g. by considering |n/K |
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pure nodes in each community and all other nodes equally mixed across all communities. In the modi-

fied alternative hypothesis H {n) R

fi— 11, if (I, P) € M15,(0),
o, otherwise.

Let fl(n) be the probability measure associated with H 1(n). Under H £n), all realizations lzlnPnl:I;1 are
in the class M, (0), by definition. By the Neyman-Pearson lemma and elementary inequalities,

_ inf _
fOEMOn,l;lleMln(O){”fo fall}

>1— £ =
I T
>1—o(1) — [ £ = 7™,

Risk’(0) > 1

It follows from Lemma K.1 that II,, = II,, with probability 1 — o(1). As a result,
1A = 7" =o(1),
from which we obtain that lim,, o { Risk};(0)} = 1.

Next, we study the case 0 < tg. Again, we consider a sequence of null hypotheses indexed
by n, where Q,, = anl Kl’K € My, under H(()n). For our sequence of alternatives, we consider
Qy, = I, P, 11/, under H{n), with

P, =ap [’anK +(1- ’yn)lKllK] , and m,.., Ty iid F,
where
K+1 1
Pﬂ-NF(ﬂ'Zel):W, and Pﬂ,\,F(ﬂ'Zel):ﬁ \V/kE{Q,,K}

It follows that

1
h:=E o p[rt]= =—=(Ke1 +1g), and Y:=FE, p[r7]=

=37 Kejel + Ix).

oK |
Under this random mixed membership model, it is straightforward to verify that
an=an | 1— 3K -3
00— Qn AK Tn |

(K —1)(K +3)

Poh—aplill =
| Pn aolkl| = anmn 16K )

K-1
1P — aolKllKH = max {an'yn, 4ozn'yn} .
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Recall that
Bn = max{n?’/QaalHPnh — aolKHQ, n2a62||Pn — aolKl'K||4}.

Hence

_ K—1)(K +3 K—1\* _
Bn = max {n3/2a0 1a%vﬁ+, max <1, (4> ) ”20‘0 20‘;117;‘2}

By assumption, v, — 0, hence for n sufficiently large, o, < 2c, hence

3/2 . 2\2
Bn =0 (max {n3/2anfyr%7 nQa%Vﬁ}) =0 (max {n3/2an'7721, (”W}) =o(1),

n

3/2

under the assumption that n oznfy,% = 0(1). By Theorem 3.5, the x2-distance between the two dis-

tributions satisfies D, 2 fon) I fl(n)) = o(1). By connection between L;-distance and x2-distance, it
follows that

178 = £ = o(1).

We now slightly modify the alternative hypothesis. Let {II? },, be a sequence of non-random mem-
bership matrices such that (Pp,,119) € M, (tg). Such a sequence can be built e.g. by considering
|n(K + 1)/2K | pure nodes in community 1, [n/2K | nodes in communities 2 to K and all other
nodes with mixed membership vector (2K)~'(Kej 4+ 1g). In the modified alternative hypothesis

fi— 11, if (I, P) € M1y (to),
o, otherwise.

Let fl(n) be the probability measure associated with H {n). Under H fn), all realizations f[nPnf[% are
in the class M1, (tg), by definition. By the Neyman-Pearson lemma and elementary inequalities,

Riski(0)>1 — inf -
n(0) > foGMon,ﬁGMm(to){”fO fillx}

>1- 175 = /"
2 1= 15" = A7 = 1A = 7
>1-0(1) |1 = ;.
It follows from Lemma K.2 that II,, = IT,, with probability 1 — o(1). As a result,
14" = 1" = o(1),

from which we obtain that lim,, o { Risk}: (to)} = 1. O
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Lemma K.1 (Case tg =0). Fix K > 2, a sequence {cou }p, € [0,1]N, and a sequence {v,},, € (R4)N.
Denote by {ek}szl the canonical basis of R’. Consider the sequence of alternative probability ma-
trices Qy, = 11, P11, with

/ iid
P, =ay [’YnIK +(1- ’Yn)lKlK] , and T1,...,mp ~ F,

where for all k€ {1,..., K}, Prop(m=¢) = % Suppose that oy, — 0, nay, — oo, and v, — 0.
Then, with probability 1 — o(1), (Pp,I1,,) € M1, (0).

Proof
From the proof of Theorem 3.6 for tg = 0, we know that

1 1 K -1
hZ:Eﬂ-NF[ﬂ']:?lK7 Z:zETWF[mT']:EI}( and aozan(l—Kvn).

We introduce the following random quantities:

>
I
SR
3
()]
Il
S|

n
> mmi, and Gg=hP,k.
=1

To show that (P, IT) € M1, (0), we will check that

1. 0SC(h) <Cand |G~ <C,
2. @ <c,nag>c L and ap > an/2,
3. 245 |Pp — aolg || > 7.

First, recognize that h=n1 Yo T B k1 i by the Strong Law of Large Numbers. As a

consequence, for n sufficiently large, we have OSC(h) < C with probability at least 1 — o(1). Next,
let y; = m; — h. We have

n n

nG =Y mml =3 (hh' + hy + yih' + y;y})
=1 =1
n noo n -
=nY + Z(yzy{ —Elyiy;]) + Z(hyg) + Z(yih/)
=1 =1 =1

=nX+Zo+ 21+ Zo.

Notice that Zj is a sum of n independent mean-zero random matrices, so we can apply the matrix
Hoeffding inequality to bound its operator norm. Since ||y;y; — E[y;y/]|| < C, we obtain for ¢ > 0,

Ct?
P(lz0] >0 <exn (- ).

If we pick t = C'\/nlog(n), then we have that || Zp|| < C'\/nlog(n) with probability 1 — o(1). Sim-
ilarly, it is straightforward to show that || Z1 + Z3|| < C'y/nlog(n) with probability 1 — o(1). Now,
recall that A, (2) = K~ 1. As a result,

n
Amin(NG) = Anin(ME 4+ Zo + Z1 + Z2) > Amin(nX) — || Zo + Z1 + Z2]| > an C+y/nlog(n).
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It follows that

~ 1 log(n)
Amin (G) > e -C s

which shows that for n sufficiently large, |G~ 1|| < C with probability 1 — o(1).

Next, we show that éig < ¢ and nég > ¢! with high probability. Denote z := h — h. We can rewrite
a0 =hPh=2Pz+2h Pz + ay.

Notice that both ||z’ Pz|| < C||Pz|| and ||h/ Pz|| < C||Pz||. We now provide a high-probability bound
on the 2-norm of Pz, which can be written as a sum of mean-zero independent random variables

n

1
Pz=— > (P — Ph),
=1

where for all 4 =1, ...,n it holds that || Pm; — Ph|| < C||P|| < Canyp. For t > 0, Hoeffding’s inequal-
ity yields
Cnt?
P(||Pz]| >t) < Cexp (—;2) .
an’}/n

Pick t = apyny/log(n)/n. As a consequence, we obtain that || Pz|| < apyn+/log(n)/n with proba-
bility 1 — o(1). Hence with probability 1 — o(1),

5 log(n K-1
ag=ag+0 (an'}/n gé)) =Opn — K anYn + 0 (anyn) = an + O(anyn).

It follows that for 7 sufficiently large, g < ¢ and nég > ¢! with probability 1 — o(1). We also obtain
from this last equation that for n sufficiently large, &g > v, /2 with probability 1 — o(1).

It remains to show that 2a, Y P, — aglg 1%|| > . With probability 1 — o(1), the matrix (P, —
a1 1) has eigenvalues
M = K(an — ag) — (K — Dapyn = olanyn),
A = apyn-
hence for n sufficiently large, we must have || P, — do1x 1 || = anyn > doyn /2. It follows that

1 -
200 | P — éolx k|l > v,

which concludes the proof. O

LemmaK.2 (Case 0 < tg). Fix K > 2, a sequence {ay}n, € [0,1]N, and a sequence {yn}n € (R4)N.
Denote by {ek}szl the canonical basis of R’. Consider the sequence of alternative probability ma-
trices Qy, = 11, P11, with

Py =ay [’YnIK—F (1 —’Yn)lKllK] , and T1,..,Tn lfl\glF,
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where

K+1 1
W, and PWNF(ﬂ':ek):ﬁ VkE{Q,,K}

Suppose that ap, — 0, noay, — 00, vy, — 0, and 0 < tg < \/(K — 1)(K + 3) /(16 K). Then, with prob-
ability 1 — o(1), (Pn,IIp) € Myy(to)-

Prop(m=e1)=

Proof
From the proof of Theorem 3.6 for tg > 0, we know that

1
h:=E; p[r] = ﬁ(Kel +1g),

1
% =Eroplnn’] = ﬁ(Kelell + 1K),

3K -3
and aozan(l— )

IK Tn

We introduce the following random quantities:

.1 .
h==3% m, G=
=1

S|

n
> mimj,and  ag = hPyh'.
=1

To show that (P, II) € M1, (tg), we will check that

1. 0SC(h)<Cand |Gt < C,
2. &g <ec,nép>c L and g > an/2,
3. 245 ||P — aolx 1| > vm and ||[Ph — Golgc|| > to]| P — Goli 1.

The first two points can be shown with probability at least 1 — o(1) in the same way as in the proof of
Lemma K.1. We will focus on the third point. For n sufficiently large, au, 7y, is the largest eigenvalue
of (P —aplg I’K) in magnitude. Hence, we must have, for n sufficiently big

[Pn — Goli 1|l = anyn > Govn/2-
Now, introduce the (continuous) function with support R
w1(1—21) = Y pp1 73
w1 —w2) = Y js0 Tk
g(z) = :

er(1—2K) = Ypir o4

Notice that || Ph — éaglg| = anyng(h) and g(h) = V(K —1)(K +3)/(16K). As a consequence,
for n sufficiently large,

P,h—apl h K—-1)(K+3
” n Qg KH _an'Yng( )gg ( )( +3)

— = h) = > 1p.
150 —aolicli]l ~  anmm () 16K

It follows that for n sufficiently large, with probability at least 1 — o(1),

| Pah — Gl > tol| Pn — dolr 1],
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which concludes the proof. O

Appendix L: Proof of Propositions 4.1-4.2

L.1. Proof of Proposition 4.1

We suppose that there exists an eligible tuple (IIg, Py, Kp) such that 2 = HOPOHG. To show the first
point of the proposition, define the set:

s={ken ‘ 3L, P) € R™E  RF<E eligible such that @ = ITPIT' .

Note that S is a discrete set lower bounded by 0 which is non-empty since Kg € S by assumption. It
follows that S has a lower bound, which we denote as kgq. It corresponds to the INC defined in Defini-
tion 4.2.

Now, we proceed to showing that when K = kg, the matrix P is identifiable up to permutation.
Suppose that we have two pairs of eligible matrices (IT, P), (IT*, P*) € R™**2 x RFexka such that
Q =TIPIl' = IT* P*(IT*)’. Because II, IT* are eligible, they contain the identity matrix as a submatrix.
We assume without loss of generality that the first k¢ rows of IT and IT* correspond to k¢ pure points,
one per community. The submatrices

H:: H|{177kﬂ}7 and H* = HT{177kQ}

are permutations matrix. We have
1, ko }x {1 ko) = LPI =TT P*(IT*),
which implies that P* = DPD’, where D = (1:[*)’1:[ is a permutation matrix.
If, in addition, we have that rank(P) = kq, then P is invertible. It follows that
P =I*P*(IT*)I=1*"P*D=11"DP — M =1I"D.

In addition, since 2 = I[TPII' = IT* P*(I1*)’, I and IT* have full column rank, which means that there
must exist an invertible matrix B € RE*X such that IT = IT* B. This implies that IT = IT*B. As a
result that B = D, so Il = IT*D. This shows that if rank(P) = kg, then II is also identifiable up to
permutation.

Finally, it holds by definition of k¢ that Ky > kq. Since rank(Py) = rank({2) and kg = dim(P) >
rank(€2), we obtain that

Ko > kq > rank(P).

Furthermore, if Py is non-singular, then Ky = rank(P,), hence

KQ = ]{Q = rank(PO).
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L.2. Proof of Proposition 4.2

By Proposition 4.1, there exists a pair of eligible IT € R"*k and P € RF <k such that Q = ITPIT,
where kq is the INC. Hence in the rest of the proof, we take K = kq.

Denote by A € R"*" the matrix of eigenvalues of (2. It follows that we can write Q = ZAZ’. Further-
more, note that the fact that » = rank(2) implies that we also have rank(P) = r. We can thus denote by
X € RF2XT the matrix of eigenvectors of P, and by L € R"*" the corresponding matrix of non-zero
eigenvalues, thus obtaining that P = X LX’. As a consequence,

QO =Z2AZ =X LX)

Note that A=’ and L(I1X )’ must have full row-rank , so the column space of = is equal to the column
space of T1.X. There must exist a matrix B € R"*" such that = = I1.X B. Hence there exists a matrix
V € RFaXT such that

= =T1IV. L.1)

Since II is a membership matrix, it follows that the rows of = are convex combinations of the kq
rows of V. Because 1I is eligible, the identity matrix is a submatrix of II. Without loss of generality,
assume that H|{17_”,,?“}7, = I, It follows. that V' =E(y 1}, This shows that C(Z) is a polytope
with at most k¢ vertices and at least r vertices.

In the case that ko = r, the desired result follows immediately. In the case that ko < r, hic jacet
lepus. Suppose by contradiction that V" has only NV distinct rows, where 7 < N < kq. This means that
we can write = = IIBV, where V € RV is the matrix containing the unique rows of V and B €
R¥2*N js a row-replication matrix (which admits the identity matrix I as a submatrix). It follows
that we can write:

O =TBVAV'B'II.

We denote IT := 1B and P = VAV’, and proceed to showing that these matrices are eligible. First, it
is straightforward to see that for any ¢ € {1,...,n}, the i-th row of II is positive and verifies ﬁgl N=
7r£B 1y = 7'1x = 1. In addition, since both II admits I, ko s a submatrix and B admits Iy as a
submatrix, it follows that IT admits I ~ as a submatrix. This shows that II is admissible.

Now, from Equation (L.1), we know that Q = IIVAV'II’, so P = VAV’ = BVAV'B’. By defini-
tion, B admits a left inverse, call it Q € {0,1}N >k 5o that QB = I5. Then P = QP(Q’. Since both
Q and P are nonnegative, it follows that P is nonnegative, thus eligible.

We have shown that we can write 2 = [LPII’, where (1:[7 ]3) € RN w RIVXN eligible and N < kg,
QEA. O
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