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A Supplementary lemmas for the main text

In the main paper, owing to the space constraints, we stated some arguments without giving

detailed proofs. In this section, we revisit and prove these arguments.

A.1 The simplex geometry and the oracle procedure

In Section 3, we considered the oracle case where A = Ω and claimed that there is a simplex

geometry associated with the rows of R̂. The next lemma makes this argument rigorous:

Lemma A.1 (The simplex geometry). Consider a DCMM model, where each community k

has at least one pure node. Let H0 = E[H] and L0 = H
− 1

2
0 ΩH

− 1
2

0 . Let λk be the kth largest

eigenvalue (in magnitude) of L0, and let ξk be the corresponding eigenvector. If we pick

the sign of ξ1 such that
∑n

i=1 ξ1(i) > 0, then ξ1 is a strictly positive vector. Furthermore,

consider the matrix R ∈ Rn×(K−1), where R(i, k) = ξk+1(i)/ξ1(i), 1 ≤ i ≤ n, 1 ≤ k ≤ K − 1.

Write R = [r1, r2, . . . , rn]
′.
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• There exists a simplex S ⊂ RK−1 with K vertices v1, v2, . . . , vK, such that r1, r2, . . . , rn

are contained in S. If node i is a pure node, then ri falls on one vertex of this simplex;

if node i is a mixed node, then ri is in the interior of the simplex (it can be on an edge

or a face, but cannot be on any of the vertices).

• Each ri is a convex combination of the K vertices, ri =
∑K

k=1wi(k)vk. The combination

coefficient vector is wi = ∥πi ◦ b1∥−1
1 (πi ◦ b1), where ◦ is the Hardarmart product and

b1 is a K-dimensional vector with b1(k) = 1/
√

λ1 + v′kdiag(λ2, . . . , λK)vk, 1 ≤ k ≤ K.

Proof of Lemma A.1. The proof largely follows the one in [6], except that they considered a

special case of H = In while we allow for a general diagonal matrix H here.

Recall that L0 = H
− 1

2
0 ΘΠ(PΠ′ΘH

− 1
2

0 ). Under the condition that each community has

at least one pure node, L0 has a rank K. It follows that L0 has the same column space as

H
− 1

2
0 ΘΠ. Meanwhile, Ξ = [ξ1, ξ2, . . . , ξK ] also has the same column space as L0. Therefore,

there exists a non-singular matrix B ∈ RK×K such that

Ξ = H
− 1

2
0 ΘΠB.

Write B = [b1, b2, . . . , bK ]. Define v1, v2, . . . , vK ∈ RK−1 by vk(ℓ) = bℓ+1(k)/b1(k), for 1 ≤

k ≤ K, 1 ≤ ℓ ≤ K − 1. Write V = [v1, v2, . . . , vK ]
′ ∈ RK×(K−1). It follows that

B = diag(b1)[1K , V ].

By definition of R, [1n, R] = [diag(ξ1)]
−1Ξ. It follows that

[1n, R] = [diag(ξ1)]
−1Ξ = [diag(ξ1)]

−1H
− 1

2
0 ΘΠB

= [diag(ξ1)]
−1H

− 1
2

0 ΘΠdiag(b1)[1K , V ].

Define W = [diag(ξ1)]
−1H

− 1
2

0 ΘΠdiag(b1). The above equation implies that 1n = W1K and

R = WV . Denote by w′
i the ith row of W . It follows that w′

i1K = 1 and ri =
∑K

k=1 wi(k)vk.
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Furthermore, under Condition 2.1(c), we can show that both ξ1 and b1 are strictly positive

vectors; the proof is similar to the proof of Lemma B.4 of [6], which we omit. It suggests

that W is also a nonnegative matrix. Combining the above, each ri is a convex combination

of v1, v2, . . . , vK . This proves the simplex structure.

We now derive the connection between wi and πi. Write αi = ξ−1
1 (i)H

− 1
2

0 (i, i)θi. Then,

w′
i = αi · π′

idiag(b1) = αi · (πi ◦ b1). Since ∥wi∥1 = 1, we immediately have αi = 1/∥πi ◦ b1∥1.

This proves that wi =
1

∥πi◦b1∥1 (πi ◦ b1). To get the expression of B1, we notice that

Λ = Ξ′L0Ξ = (H
− 1

2
0 ΘΠB)′(H

− 1
2

0 ΘΠPΠ′ΘH
− 1

2
0 )(H

− 1
2

0 ΘΠB)

= B′(Π′ΘD−1
θ ΘΠ)P (Π′ΘD−1

θ ΘΠ)B′ = K−2 ·B′GPGB,

where Dθ and G are as defined in Section 2 and we note that Dθ is actually H0. Moreover,

G = K · (H− 1
2

0 ΘΠ)′(H
− 1

2
0 ΘΠ) = K · (ΞB−1)′(ΞB−1) = K · (BB′)−1. It follows that

BΛB′ = K−2 ·BB′GPGBB = P.

Write Λ = diag(λ1,Λ1), where Λ1 = diag(λ2, . . . , λK). Also, recall that B = diag(b1)[1K , V ].

We plug them into the above expression to get

P = diag(b1)[1K , V ]

λ1

Λ1


1′

K

V ′

 diag(b1).

It follows that P (k, k) = b1(k) · [λ1 + v′kΛ1vk] · b1(k). The identifiability condition of DCMM

model in Section 2.1 says that P (k, k) = 1. Therefore, b1(k) = 1/
√

λ1 + v′kΛ1vk.

A.2 Broadness of the θ-class G(ϱ, a0)

In Section 2, we introduced a technical condition on Fn(·) (see Definition 2.2) and defined

G(ϱ, a0), a class of θ. We claimed that this class is broad enough to include most interesting

cases of degree heterogeneity. This is justified by the following lemma:
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Lemma A.2. The requirements in Definition 2.2 are satisfied if θi’s are i.i.d. drawn from

κnF (·), where κn > 0 is a scalar and F (·) is a fixed, finite-mean distribution which has its

support in (0,∞) and satisfies one of the following conditions:

• F (·) is a discrete distribution;

• F (·) is a continuous distribution with support in [c,∞), for some c > 0;

• F (·) is a continuous distribution supported in (0,∞), and its density f(t) satisfies that

limt→∞ tbf(t) = C, for some b ̸= 1/2 and C > 0.

Proof of Lemma A.2. Recall that we assume θi’s i.i.d. generated from κnF (·), where κn > 0,

and F (·) is fixed distribution that is either continuous or discrete with finite mean m.

First, we consider the case that F (·) is a discrete distribution, i.e., F =
∑L

ℓ=1 ϵℓδxℓ
where

L is a fixed constant and 0 < x1 < x2 < . . . < xL, ϵℓ’s are all fixed, δx is a point mass at x,

and
∑L

ℓ=1 ϵℓxℓ = m. In this case, we simply set cn = xL−1/m, ρ = x1/xL−1 and a0 = minℓ ϵℓ.

One can easily check that with high probability,

Fn(cn) = F (xL−1) = 1− ϵL ≤ 1− a0,

L−1∑
ℓ=1

ϵℓ√
m−1xℓ ∧ 1

≥ (1− ϵL)
L∑

ℓ=1

ϵℓ√
m−1xℓ ∧ 1

≥ a0

L∑
ℓ=1

ϵℓ√
m−1xℓ ∧ 1

which indeed verify the condition in Definition 2.2 for the chosen (ρ, a0). This proves the

first bullet point of Lemma A.2.

Next, we consider the case that F (·) is a continuous distribution with density f(·) and

supp(f) ⊂ [0,+∞). Since
∫
tdFn(t) = 1, it is not hard to see that dFn(t) = mf(mt)dt. We

can rewrite

∫ ∞

err2n

1√
t ∧ 1

dFn(t) =

∫ ∞

err2nm

f(t)√
t/m ∧ 1

dt (A.1)
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The singularity of the integral on the RHS of (A.1) lies in the neighborhood of 0, or err2nm.

If f(t)t
1
2
−ϵ0 → C as t → 0 for some ϵ0 > 0, C > 0, then the integral on the RHS of (A.1)

converges and can be bounded by some constant C1 > 0. Since F (·) is a fixed continuous

distribution with finite mean m, we can always find c̃ > 0, ã ∈ (0, 1) and ρ ∈ (0, 1) such that

F (c̃)−F (ρc̃) > C2 and F (c̃) ≤ 1− ã for some constant 0 < C2 < C1. We then set cn = c̃/m

and a0 = min{ã, C2/C1}. As a result,

Fn(cn) = F (c̃) ≤ 1− ã ≤ 1− a0,∫ cn

ρcn

1√
t ∧ 1

dFn(t) ≥
Fn(c̃n)− Fn(ρc̃n)√

cn ∧ 1
≥ C2 ≥ a0

∫ ∞

err2n

1√
t ∧ 1

dFn(t).

Here errn can be replaced by any other sequence xn → 0. We remark that the case F (·) has

a support bounded below from zero is also included in the current discussion. This proves

the second bullet point in Lemma A.2 and part of the third bullet point.

If f(t)t
1
2
+ϵ0 → C as t → 0 for some ϵ0 > 0 and C > 0, then the RHS of (A.1) is of

the order err−2ϵ0
n and its mass is located in the neighborhood of err2nm. Therefore, we can

simply set cn = C3 err
2
n for some large C3 > 1 such that F (C3err

2
nm) ≤ 1− ã for some ã > 0

(this can be always achieved since F (·) is a fixed distribution with mean m). Let ϱ = C−1
3 .

Then,

Fn(cn) = F (C3 err
2
n m) ≤ 1− ã,∫ cn

ϱcn

1√
t ∧ 1

dFn(t) =

∫ C3 err2n m

err2n m

f(t)√
t/m

dt > C4

∫ ∞

err2nm

f(t)√
t/m ∧ 1

dt,

for some C4 > 0. We thus take a0 = min{ã, C4}. The arguments also hold if we replace errn

by any other sequence xn → 0. The condition in Definition 2.2 is satisfied for the chosen

(ρ, a0). This proves the remaining part of the third bullet point.
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Algorithm B.1: Mixed-SCORE-Laplacian.

Input: K, A, tuning parameters (τ, c, γ) = (1, 0.5, 0.05) (default), and a given VH
algorithm.

1. Let L be the normalized graph Laplacian in (9). Let λ̂k be the kth largest eigenvalue
(in magnitude) of L, and let ξ̂k be the associated eigenvector, 1 ≤ k ≤ K. Define an
n× (K − 1) matrix R̂ by

R̂(i, k) = ξ̂k+1(i)/ξ̂1(i), 1 ≤ i ≤ n, 1 ≤ k ≤ K − 1.

Denote by r̂′1, r̂
′
2, . . . , r̂

′
n the rows of R̂.

2. Let δ̂n = K|λ̂K | and Ŝn(c) = {1 ≤ i ≤ n : diδ̂
2
n ≥ cK3 log(n)}. For any i /∈ Ŝn(c), set

π̂i = K−11K .

3. Let Ŝ∗
n(c, γ) = Ŝn(c) ∩ {1 ≤ i ≤ n : di ≥ γd̄}. Run the given VH algorithm on the

point cloud {r̂i}i∈Ŝ∗
n(c,γ)

. Denote the output by v̂1, v̂2, . . . , v̂K .

4. Let Λ̂1 = diag(λ̂2, . . . , λ̂K) and obtain b̂1 ∈ RK from

b̂1(k) = [λ̂1 + v̂′kΛ̂1v̂k]
−1/2, 1 ≤ k ≤ K,

For each i ∈ Ŝn(c), solve ŵi ∈ RK from the linear equation set:

K∑
k=1

ŵi(k)v̂k = r̂i, and
K∑
k=1

ŵi(k) = 1.

Let π̂∗
i ∈ RK be such that π̂∗

i (k) = max{ŵi(k)/b̂1(k), 0}, for 1 ≤ k ≤ K. Output
π̂i = π̂∗

i /∥π̂∗
i ∥1, for each i ∈ Ŝn(c).

Output: Π̂.

B The Mixed-SCORE-Laplacian (MSL) algorithm

In Section 3, we explained the membership estimation steps in Figure 2 and gave a high-level

description of the MSL algorithm in Algorithm 1. We now present Algorithm B.1, a detailed

version of Algorithm 1. In this algorithm, we assume there is a given vertex hunting (VH)

algorithm. The choices of the VH algorithm are discussed in Section B.1.
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Algorithm B.2: Successive projection (SP).

Input: K and x1, x2, . . . , xm ∈ Rd (d ≥ K).

For each 1 ≤ k ≤ K, run the following steps:

• If k ≥ 2, compute P = Y (Y ′Y )−1Y ′, where Y = [xi1 , xi2 , . . . , xik−1
] ∈ Rd×(k−1).

• If k ≥ 1, find i1 = argmaxi∥xi∥; otherwise, find ik = argmaxi∥(Id − P)xi∥.

Output: v̂k = xik , for 1 ≤ k ≤ K.

Algorithm B.3: Sketched vertex search (SVS).

Input: K, x1, x2, . . . , xm ∈ Rd, and a tuning integer L ≥ K.

• Run k-means clustering on x1, x2, . . . , xm, assuming there are L clusters. Denote by
ŷ1, ŷ2, . . . , ŷL the estimated cluster centers.

• Input ŷ1, ŷ2, . . . , ŷL to Algorithm B.2 to obtain v̂1, v̂2, . . . , v̂K .

Output: v̂1, v̂2, . . . , v̂K .

B.1 Choices of the plug-in VH algorithm

In our theoretical analysis and most simulations, we use successive projection (SP) [2] as the

plug-in VH algorithm. The details of SP are presented in Algorithm B.2. When plugging

this algorithm into Algorithm B.1, we need to pay attention to the dimension: Algorithm B.2

requires that the input point cloud is in a dimension d ≥ K. However, each r̂i is in dimension

K − 1. To resolve this issue, we follow [6] to let

xi = (1, r̂′i)
′, 1 ≤ i ≤ n.

Now, each xi is in dimensional K. We input xi’s to Algorithm B.2. The output v̂1, v̂2, . . . , v̂K

will also be in dimension K. Since the first entry of each xi is 1, the first entry of each v̂k is

also 1. We then remove this first entry and output the (K − 1)-dimensional sub-vectors of

v̂1, v̂2, . . . , v̂K . As argued in [6], this has no effect on the vertex estimation accuracy.

SP performs well when the noise level in x1, x2, . . . , xm is relatively low. When the noise

level is relatively high, [6] recommended to ‘de-noise’ before running SP. They proposed the

sketched vertex search (SVS) algorithm, which uses k-means to denoise. The details of SVS

9



can be found in Algorithm B.3. We also refer the readers to [7, Section 3.4] and [5] for more

options of VH algorithms. In our simulation studies, we use SVS only in Experiment 2. This

experiment studies the node-wise errors. Compared to the ℓ1-loss used in other experiments,

node-wise errors are more sensitive to the noise level. This motivates us to replace SP by

SVS. SVS has one tuning integer L, which is set as L = 5 in Experiment 2.

Remark: In Algorithm B.1, we apply the plug-in VH algorithm on the trimmed point

cloud: {r̂i : di ≥ γd̄}. Our rationale is that the noise level on low-degree nodes is too high, so

these points should be trimmed to improve performance. This trimming can also be viewed

as a ‘denoising’ step. Therefore, when we plug SVS into Algorithm B.1, we actually conduct

two rounds of denoising (trimming and k-means) before running SP.

C Additional simulation results

In this section, we present the additional simulation results, which are omitted in the main

paper due to the space constraint.

C.1 The weighted ℓ1-loss

We recall that most results in the main text are for the unweighted ℓ1-loss. In Section 4.3, we

extend the theoretical results to a general loss function parametrized by p and q. A special

case of p = 1/2 and q = 1 is called the weighted ℓ1-loss:

Lw(Π̂,Π) = min
T

{
1

n

n∑
i=1

√
θi
θ̄
∥T π̂i − πi∥1

}
. (C.1)

Compared to the unweighted ℓ1-loss, this performance metric down-weights those errors in

low-degree nodes. In Figure 3, we report the unweighted ℓ1-loss of MSL and Mixed-SCORE

in four different cases of degree heterogeneity and various levels of network sparsity. We now

provide more results of these simulations by reporting the weighted ℓ1-loss in Figure C.1.

The conclusions for the weighted ℓ1-loss are similar to those for the unweighted ℓ1-loss:
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Figure C.1: MSL v.s. MSCORE (n = 2000, K = 2, x-axis is
√
nθ̄2, and y-axis represents the

unweighted ℓ1-loss in (C.1)). This figure complements Figure 3 in the main text by reporting
the unweighted ℓ1-loss.

MSL greatly improves the conventional MSCORE in the last three cases, Pareto, Gamma,

and Two-point mixture, which are the cases of severe degree heterogeneity. Furthermore, if

we compare each panel in Figure C.1 with the corresponding panel in Figure 3, we find that

the value of the weighted loss is significantly smaller than the value of the unweighted loss in

the case of Pareto and Gamma. This is because the node-wise error is a decreasing function

of θi; when low-degree nodes are down-weighted and high-degree nodes are up-weighted, the

loss will decrease.

C.2 Other values of K

The simulation experiments in Section 6 focus on K = 2. We now consider other values of

K and investigate how the performance of MSL changes with K.

Fix n = 5000 and let K range in {3, 4, . . . , 10, 11}. Given any βn ∈ (0, 1) and bn > 0, we

let P = βnIK +(1−βn)1K1
′
K and generate θ as follows: Draw θ01, θ

0
2, . . . , θ

0
n

iid∼ Uniform(0, 1)

and let θi = bn ·nθ0i /∥θ0∥1 for 1 ≤ i ≤ n. We remark that this is a severe-degree-heterogeneity

case: Since the support of Uniform(0, 1) contains the neighborhood near zero, θmax/θmin can

be potentially large. We generate Π in the same way as in Experiments 1-2: Set πi = (1, 0)′

and πi = (0, 1)′ each for 15% of nodes, and let πi = (ti, 1 − ti)
′ for the remaining 70% of

nodes, with ti
iid∼ Uniform(0, 1). Write SNR :=

√
nθ̄2(1−P (1, 2)) = bnβn

√
n. We set bn(= θ̄)

such that nb2n = 800 and select βn accordingly such that SNR =
√
500. Figure C.2 reports
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Figure C.2: The ℓ1-loss of MSL under different values of K (n = 5000).

the ℓ1-loss (averaged over 100 repetitions) of MSL for different K.

The results suggest that the ℓ1-loss of MSL increases with K. We recall that the minimax

rate is proportional toK
√
K “asymptotically.” However, for these “finite”K here, we observe

that the error grows with K approximately linearly.

D Auxiliary lemmas on regularized graph Laplacian

Given θ = (θ1, θ2, . . . , θn), recall that θ̄ = n−1
∑n

i=1 θi. We introduce two disjoint index sets:

S1 = {1 ≤ i ≤ n : θi ≥ θ̄}, S2 = {1 ≤ i ≤ n : θi < θ̄}. (D.1)

D.1 Properties of L0

Recall that L0 = H
− 1

2
0 ΩH

− 1
2

0 . We state the following three lemmas which give the spectrum

properties of L0 and also the estimates of the degree regularization matrix H0.

Lemma D.1. Under the conditions of Theorem 4.1,

λ1 > 0, λ1 ≍ 1, |λK | ≍ K−1λK(PG), λ1 − max
2≤k≤K

|λk| ≥ cλ1. (D.2)

Lemma D.2. Under the conditions of Theorem 4.1,

ξ1(i) ≍
1√
n


√

θi/θ̄, i ∈ S1,

θi/θ̄, i ∈ S2,

∥Ξ(i)∥ ≤ C
√
K√
n


√

θi/θ̄, i ∈ S1,

θi/θ̄, i ∈ S2,

(D.3)
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and

H0(i, i) ≍


nθiθ̄, i ∈ S1,

nθ̄2, i ∈ S2.

(D.4)

Lemma D.3. Under the conditions of Theorem 4.1, with probability 1− o(n−3),

∥In −H−1
0 H∥ ≤

C
√

log(n)√
nθ̄2

, ∥H−1/2
0 (A− Ω)H

−1/2
0 ∥ ≤ C√

nθ̄2
. (D.5)

The proof of Lemma D.1 is straightforward by noting that Dθ = H0 (see the definition

of Dθ in Section 2) and therefore L0 share the same eigenvalues as K−1PG. Immediately,

one can conclude (D.2) from Condition 2.1(b) and also the fact that λ1(PG) ≍ K which is

derived from Condition 2.1(a) and (b). In the sequel, we show the proof of the Lemmas D.2

and D.3. Before that, we introduce the Bernstein inequality which we will use frequently to

bound sum of independent Bernoulli entries.

Theorem D.1 (Bernstein inequality). Let X1, · · · , Xn be independent zero-mean random

variables. Suppose that |Xi| ≤ M almost surely, for all i. Then for all t > 0,

P
(∣∣∣ n∑

i=1

Xi

∣∣∣ ≥ t
)
≤ 2 exp

(
− t2/2

σ2 +Mt/3

)
,

with σ2 :=
∑n

i=1 E(X2
i ). In particular, taking t = C(σ

√
log(n)+M log(n)) for properly large

C, then ∣∣∣ n∑
i=1

Xi

∣∣∣ ≤ C(σ
√

log(n) +M log(n)) with probability 1− o(n−5).

Remark D.2. The exponent in the high probability 1 − o(n−5) can be replaced by −C̃ for

any large positive constant integer C̃ by appropriately adjusting the constant C, which

depends on C̃. Therefore, as long as we employ Bernstein inequality at most polynomial

times in n to obtain the ultimate upper bound, the result still holds with high probability by

adjusting the constant factor in the bound. Specifically, we can achieve a high probability

of 1 − o(n−3) by choosing a sufficiently large constant C in the upper bound. Throughout

the supplement, we sometimes omit specifying the high probability when applying Bernstein

13



inequality for simplicity. It should be noted that in our analysis, Bernstein inequality is

applied approximately O(Kn) times.

Proof of Lemma D.2. First, we show (D.4). Uniformly for all 1 ≤ i ≤ n,

Edi = θi
∑
j ̸=i

θjπ
′
jPπi = θi

∑
j ̸=i

θj
∑
k

πj(k)e
′
kPπi ≥ c1nθiθ̄/K · 1′

KPπi ≥ c1c2nθiθ̄ (D.6)

by the last inequalities in Condition 2.1(a) and (b). On the other hand, π′
jPπi ≤ maxt,s P (t, s)

for all i, j, then Edi = θi
∑

j ̸=i θjπ
′
jPπi ≤ cnθiθ̄ for all i. As a result, Edi ≍ nθiθ̄, Ed̄ ≍ nθ̄2;

and further

H0(i, i) = Edi + Ed̄ ≍


nθiθ̄, i ∈ S1,

nθ̄2, i ∈ S2.

This completes the proof of (D.4). Next, we turn to prove (D.3). By the definition L0 =

H
− 1

2
0 ΩH

− 1
2

0 , there exists a non-singular matrix B ∈ RK×K satisfying

Ξ = H
− 1

2
0 ΘΠB, BB′ = (Π′ΘH−1

0 ΘΠ)−1.

Using Condition 2.1(a) and H0 = Dθ, one gets ∥BB′∥ ≤ Kc, λmin(BB′) ≥ Kc−1. Write

B = (b1, · · · , bK). We have Kc−1 ≤ ∥bi∥2 ≤ Kc for 1 ≤ i ≤ K. Taking the i-th row of Ξ,

∥Ξ(i)∥ =
θi√

H0(i, i)
∥π′

iB∥ ≤ C

√
θi
nθ̄

∥πi∥∥BB′∥
1
2 ≤ C

√
K

√
θi
nθ̄

.

For the leading eigenvector ξ1, we have

ξ1(i) =
θi√

H0(i, i)
π′
ib1

It follows from L0Ξ = ΞΛ that H
− 1

2
0 ΘΠPΠ′ΘH−1

0 ΘΠB = H
− 1

2
0 ΘΠBΛ, which implies that

PΠ′ΘH−1
0 ΘΠB = BΛ. As a consequence, b1 is the first right eigenvector of PΠ′ΘH−1

0 ΘΠ,

and equivalently, the first right eigenvector of PG. Using Condition 2.1(c), we easily conclude

that b1(k) > 0, b1(k) ≍ 1 for all 1 ≤ k ≤ K. Then, π′
ib1 ≍ 1 for all 1 ≤ i ≤ n, and the

entrywise estimate of ξ1 simply follows from (D.4).
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Proof of Lemma D.3. Recall the definition of H0, H. We write

H(i, i)

H0(i, i)
− 1 =

di − Edi + d̄− Ed̄
H0(i, i)

, di − Edi =
∑
j ̸=i

Aij − EAij.

By (D.4), we easily see that H0(i, i) ≍ nθ̄(θi∨θ̄). What remains is to estimate the numerator,

or di−Edi for all 1 ≤ i ≤ n. This actually can be achieved by employing Bernstein inequality.

Applying the Bernstein inequality (Theorem D.1) to di − Edi, we see that

P
(∣∣∑

j ̸=i

Aij − EAij

∣∣ ≥ t
)
≤ 2 exp

(
−

1
2
t2∑

j ̸=i varAij +
1
3
Mt

)
where M = supj |Aij − EAij| ≤ 2. Moreover, we have the crude bound

∑
j ̸=i

varAij ≤ cnθiθ̄.

Taking t = C
√

log(n)
√

nθ̄θi ∨ log(n), it gives that
∣∣∑

j ̸=i Aij−EAij

∣∣ ≤ C
√
log(n)(nθ̄θi ∨ log(n))

with probability 1− o(n−5). Consider all i’s together, one gets

P
( n⋃

i=1

{∣∣∑
j ̸=i

Aij − EAij

∣∣ ≥ C
√

log(n)
(√

nθiθ̄ ∨
√
log(n)

)})
≤ cn−4.

This, combined with H0(i, i) ≍ nθ̄(θi ∨ θ̄), implies that∣∣∣1−H(i, i)/H0(i, i)
∣∣∣ ≤ |di − Edi|

H0(i, i)
+

1

n

n∑
j=1

|dj − Edj|
H0(i, i)

≤ C

√
log(n)

nθ̄2
+ C

√
log(n)

nθ̄2
1

n

n∑
j=1

max
{√θj

θ̄
,

√
log(n)

nθ̄2

}
≤ C

√
log(n)

nθ̄2

(
1 +

1

n

n∑
j=1

√
θj
θ̄
+

√
log(n)

nθ̄2

)
≤ C

√
log(n)

nθ̄2

with probability 1 − o(n−3) uniformly for all 1 ≤ i ≤ n. Here in the last step, we used

the Cauchy-Schwarz inequality
∑n

j=1

√
θj ≤

√
n
√∑n

j=1 θj = n
√
θ̄. This finished the first

estimate of (D.5). Now, we proceed to the second estimate. We crudely bound ∥H−1/2
0 (A−

Ω)H
−1/2
0 ∥ by ∥H−1/2

0 WH
−1/2
0 ∥+ ∥H−1/2

0 diag(Ω)H
−1/2
0 ∥. First, it is easy to get the bound

∥H−1/2
0 diag(Ω)H

−1/2
0 ∥ ≤ C max

1≤i≤n

θ2i π
′
iPπi

H0(i, i)
≤ C

nθ̄
≤ C√

nθ̄2
.
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Next, we apply the non-asymptotic bounds for random matrices in [3] to bound the operator

norm of Ŵ := H
−1/2
0 WH

−1/2
0 . Note that Ŵ is a symmetric random matrix with independent

upper triangular entries. Using Corollary 3.12 of [3] with Remark 3.13, we bound

P(∥Ŵ∥ ≥ Cσ̃ + t) ≤ ne−t2/cσ̃2
∗

for some constant C, c > 0, with

σ̃ = max
i

√∑
j

EŴ (i, j)2 ≤ 1/
√

nθ̄2, σ̃∗ = max
i,j

∥Ŵ (i, j)∥∞ ≤ C/nθ̄2.

Then, we take t = c/
√
nθ̄2 for properly large c > 0 and use the assumption nθ̄2 ≫ log(n).

It follows that ∥Ŵ∥ ≤ C/
√
nθ̄2 with probability 1− o(n−3). We thus complete the proof of

Lemma D.3.

D.2 Properties of L̃(i)

In this section, for an arbitrary fixed index i and the intermediate matrix L̃(i), we collect the

spectrum properties of L̃(i) and estimate on H̃(i) in the lemmas below. Let E be the event

that Lemma D.3 holds.

Lemma D.4. Under the conditions in Theorem 4.1. Over the event E, for any fixed 1 ≤

i ≤ n, the eigenvalues λ̃
(i)
1 , · · · , λ̃(i)

K of L̃(i) satisfy

λ̃
(i)
1 > 0, λ̃

(i)
1 ≍ 1, |λ̃(i)

K | ≍ K−1|λK(PG)|, λ̃
(i)
1 − max

2≤k≤K
|λ̃(i)

k | ≥ C−1λ̃
(i)
1 ; (D.7)

and for the associated eigenvectors,

ξ̃
(i)
1 (j) ≍ 1√

n


√

θj/θ̄, j ∈ S1,

θj/θ̄, j ∈ S2,

∥Ξ̃(i)(j)∥ ≤ C
√
K√
n


√
θj/θ̄, j ∈ S1,

θj/θ̄, j ∈ S2.

(D.8)

Lemma D.5. Under the conditions of Theorem 4.1. Over the event E, for any fixed 1 ≤

i ≤ n and H̃(i),

∥In −H−1
0 H̃(i)∥ ≤

C
√

log(n)√
nθ̄2

, ∥In − (H̃(i))−1H∥ ≤
C
√

log(n)√
nθ̄2

. (D.9)
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In addition to the above lemma, by Theorem D.1 and after elementary computations, we

also have that for each 1 ≤ j ≤ n, j ̸= i, over the event E,

∣∣H̃(i)(j, j)−H(j, j)
∣∣ = ∣∣∣−W (j, i)− 2

n

(∑
s̸=i

W (i, s)
)∣∣∣

≤
∣∣∣− A(j, i) + Ω(j, i)− 2

n

(∑
s ̸=i

W (i, s)
)∣∣∣

≤ A(j, i) + θjθi + C

√
θiθ̄ log n√

n
+

C log(n)

n
; (D.10)

and

∣∣H̃(i)(i, i)−H(i, i)
∣∣ ≤ (1 + 2/n)

∣∣∣∑
s ̸=i

W (i, s)
∣∣∣ ≤ C

√
nθiθ̄ log(n) + C log(n). (D.11)

Applying (D.10) and (D.11) with Lemma D.3, it is easy to deduce the estimates in Lemma

D.5. To show the eigen-properties of L̃(i) in Lemma D.4, one only need to rely on the estimate

∥L̃(i) − L0∥ ≍ ∥In −H−1
0 H̃(i)∥λ1(L0) ≤ C

√
log(n)

nθ̄2
≪ |λK |

under the assumption of Theorem 4.1, then (D.7) can be derived simply by further applying

Lemma D.1. Moreover, (D.8) follows from Lemmas 5.1, E.1 and D.2. Thereby, we omit the

proofs of Lemmas D.4 and D.5. We comment here that the proof of Lemmas 5.1, E.1 only

depends on the lemmas in Section D.1, i.e., the properties of L0, not the properties of L̃(i).

There is no circular logic for the lemmas presenting in this subsection.

D.3 Variants of Davis-Kahan sinθ Theorem

In our analysis, we heavily rely on the use of Davis-Kahan sinθ theorem under different

versions. For readers’ convenience, we collect all the variants we employed in our theory

below.

Theorem D.3 (Davis-Kahan sinΘ Theorem and its variants). Let Σ, Σ̂ ∈ Rp,p be symmetric,

with eigenvalues λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥ λ̂p respectively. Fix 1 ≤ r ≤ s ≤ p,
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let U = (ur, · · · , us) and U⊥ = (u1, · · · , ur−1, us+1, · · · , up) be the orthonormal eigenvectors

such that Σuj = λjuj, similarly we define Û , Û⊥ for Σ̂. Denote δ := inf{|λ̂ − λ| : λ ∈

[λr, λs], λ̂ ∈ (−∞, λ̂r−1]∪ [λ̂s+1,∞)} where we take the convention λ̂0 = −∞ and λ̂p+1 = ∞.

Then,

∥(Û⊥)′U∥ = ∥ sinΘ(Û , U)∥ ≤ ∥Σ̂− Σ∥
δ

(D.12)

for some constant C > 0. Moreover, there exists an orthogonal matrix O of dimension

s− r + 1 such that

∥Û ′U −O′∥ ≤ C

(
∥Σ̂− Σ∥

δ

)2

, (D.13)

∥Û − UO∥ ≤ C
∥Σ̂− Σ∥

δ
(D.14)

for some constant C > 0.

Note that (D.12) is the version of sinΘ theorem proved by Davis and Kahan’s original

paper [4]. The proof of (D.13) can be referred to Lemma B.2 in the Supplementary of [1].

More specifically, O′ = sgn(Û ′U) = Ū V̄ ′ where the SVD of Û ′U is given by Ū Λ̄V̄ ′. By Chp

I, Cor 5.4 of [8], the singular values in Λ̄ are the cosines of canonical angles 0 ≤ θ̄1 ≤ · · · ≤

θ̄s−r+1 ≤ π/2 between Û and U . It follows that

∥Û ′U −O′∥ = 1− cos θ̄s−r+1 ≤ 1− cos2 θ̄s−r+1 = sin2 θ̄s−r+1 = ∥ sinΘ(Û , U)∥2

Thus, (D.13) follows directly from (D.12). (D.14) is implied by the simple derivations

∥Û − UO∥2 = ∥2Is−r+1 − Û ′UO −O′U ′Û∥ ≤ 2∥Û ′U −O′∥ .

E Entrywise eigenvector analysis

Here we show the complete proof of Theorem 4.1 in our manuscript. In Sections E.1-E.3, we

state the proofs of key lemmas for proving (J.3), while the claim of (J.3) is already presented
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in the manuscript. Section E.4 collects the proof of the second claim in Theorem 4.1 (i.e.,

(J.4)) which provides the entry-wise estimates for the 2- to K-th eigenvectors. Similarly to

the proof of the first claim in Theorem 4.1 (i.e., (J.3) ), we introduce three key lemmas, Lem-

mas E.1-E.3, counterpart to Lemmas 5.1-5.3. The proofs of Lemmas E.1-E.3 are provided

correspondingly in Section E.5-E.7.

E.1 Proof of Lemma 5.1

In this subsection, we show the proof of Lemma 5.1 using the eigen-properties of L0 in

Section D.1.

Fix the index i, we study the perturbation from L0 = H
−1/2
0 ΩH

−1/2
0 to L̃(i) = (H̃(i))−1/2Ω(H̃(i))−1/2.

By definition,

L0 = H
−1/2
0 ΩH

−1/2
0 =

K∑
k=1

λkξkξ
′
k, (H̃(i))−1/2Ω(H̃(i))−1/2ξ̃

(i)
1 = λ̃

(i)
1 ξ̃

(i)
1 .

Write Ỹ ≡ Ỹ (i) := H
1/2
0 (H̃(i))−1/2. Then, we have

Ỹ
( K∑
k=1

λkξkξ
′
k

)
Ỹ ξ̃

(i)
1 = λ̃

(i)
1 ξ̃

(i)
1 .

It follows that, for each 1 ≤ j ≤ n,

1

Ỹ (j, j)
ξ̃
(i)
1 (j) =

λ1(ξ
′
1Ỹ ξ̃

(i)
1 )

λ̃
(i)
1

ξ1(j) +
K∑
k=2

λk(ξ
′
kỸ ξ̃

(i)
1 )

λ̃
(i)
1

ξk(j). (E.1)

As a result,

|ξ̃(i)1 (j)− ξ1(j)| ≤
∣∣∣ 1

Ỹ (j, j)
− 1
∣∣∣|ξ̃(i)1 (j)|+

∣∣∣λ1(ξ
′
1Ỹ ξ̃

(i)
1 )

λ̃
(i)
1

− 1
∣∣∣|ξ1(j)|+ K∑

k=2

∣∣∣λk(ξ
′
kỸ ξ̃

(i)
1 )

λ̃
(i)
1

∣∣∣|ξk(j)|.
(E.2)

By Lemma D.1, ∥L0∥ ≤ CK−1λ1(PG) ≤ C. And using the first estimate in (D.9), it is easy

to conclude that

∥Ỹ − In∥ =
∥∥In − (H−1

0 H̃(i))−
1
2

∥∥ ≤
C
√
log(n)√
nθ̄2

, (E.3)
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over the event E where Lemma D.3 holds. As a result, we have ∥L̃(i)−L0∥ ≤ ∥(Ỹ −In)L0∥ ≤

CK−1λ1(PG)∥Ỹ − In∥ since L̃(i) = Ỹ L0Ỹ . Using Weyl’s inequality, we then see that

max
1≤k≤K

|λ̃(i)
k − λk| ≤ ∥L̃(i) − L0∥ ≤ CK−1λ1(PG)∥Ỹ − In∥ ≤ C∥Ỹ − In∥

since λ1(PG) ≤ CK under our model assumption. Furthermore, by Lemma D.1, the eigen-

gap between the largest eigenvalue and the other nonzero eigenvalues of L0 is at the or-

der K−1λ1(PG). Hence, the eigengap between λ1 and λ̃
(i)
2 , · · · , λ̃(i)

K is still of the order

K−1λ1(PG). It follows from the sin-theta theorem (D.13) that

|ξ′1Ỹ ξ̃
(i)
1 − 1| ≤ |ξ′1ξ̃

(i)
1 − 1|+ |ξ′1(Ỹ − In)ξ̃

(i)
1 |

≤ C(Kλ−1
1 (PG)∥L̃(i) − L0∥)2 + ∥Ỹ − In∥ ≤ C∥Ỹ − In∥.

Here sgn(ξ′1ξ̃
(i)
1 ) = 1 since we fix our choices of ξ1, ξ̃

(i)
1 with positive first components and

they are both from the positive matrices. Then this will be claimed by Perron’s theorem.

Using Cauchy-Schwarz inequality, we bound
∑K

k=2 |ξ′kỸ ξ̃
(i)
1 ||ξk(j)| ≤ ∥Ξ′

1Ỹ ξ̃
(i)
1 ∥∥Ξ1(j)∥.

And by sine-theta theorem (D.12),

∥Ξ′
1Ỹ ξ̃

(i)
1 ∥ ≤ ∥(ξ̃(i)1 )′Ξ1∥+ ∥Ỹ − In∥

≤ C
(
Kλ−1

1 (PG)∥L̃(i) − L0∥+ ∥Ỹ − In∥
)

≤ C∥Ỹ − In∥.

Plugging the above estimates, we have

|ξ̃(i)1 (j)− ξ1(j)| ≤ C∥Ỹ − In∥|ξ̃(i)1 (j)|+ C∥Ỹ − In∥∥Ξ(j)∥

≤ C∥Ỹ − In∥|ξ̃(i)1 (j)− ξ1(j)|+ C∥Ỹ − In∥∥Ξ(j)∥.

Since ∥Ỹ − In∥ = o(1) over the event E, rearranging the terms gives

|ξ̃(i)1 (j)− ξ1(j)| ≤ C∥Ỹ − In∥∥Ξ(j)∥, for all 1 ≤ t ≤ n. (E.4)

We plug (E.3) into (E.4) and use the bound for ∥Ξ(j)∥ in (D.3). It follows that over the

event E, for all 1 ≤ j ≤ n,

|ξ̃(i)1 (j)− ξ1(j)| ≤ C
√
K

√
log(n)

nθ̄2

√
θj
nθ̄

(√
θj
θ̄
∧ 1

)
(E.5)
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Then, consider all i’s together, we conclude (31) with probability 1− o(n−3) simultaneously

for all 1 ≤ i, j ≤ n.

E.2 Proof of Lemma 5.2

In this subsection, we state the proof of Lemma 5.2 which heavily relies on the eigen-

properties of L̃(i) in Section D.2.

Fix the index i, we first show (33) which is based on the decomposition

wξ̂1 = ξ̃
(i)
1 + (ξ

(i)

1 − ξ̃
(i)
1 ) + (wξ̂1 − ξ

(i)

1 )

where w = sgn(ξ′1ξ̂1) will be claimed later. It is not hard to derive

|e′i∆(wξ̂1 − ξ
(i)

1 )| ≤ ∥∆∥ ∥wξ̂1 − ξ
(i)

1 ∥ ≤ ∥H− 1
2

0 WH
− 1

2
0 ∥∥H

1
2
0 H

− 1
2∥∥H

1
2
0 (H̃

(i))−
1
2∥ ∥wξ̂1 − ξ

(i)

1 ∥

≤ C√
nθ̄2

∥wξ̂1 − ξ
(i)

1 ∥

over the event E, in light of Lemmas D.3 and D.5. We thus end up with (33) . We

now turn to prove (32). We study the perturbation from L̃(i) = (H̃(i))−1/2Ω(H̃(i))−1/2 to

L = H−1/2AH−1/2. Write X ≡ X(i) := (H̃(i))1/2H−1/2. We can rewrite

L = X(H̃(i))−
1
2A(H̃(i))−

1
2X = XL̃(i)X −X(H̃(i))−

1
2diag(Ω)(H̃(i))−

1
2X +X∆

with ∆ = (H̃(i))−1/2WH−1/2. By definition, L̃(i) = (H̃(i))−1/2Ω(H̃(i))−1/2 =
∑K

k=1 λ̃
(i)
k ξ̃

(i)
k (ξ̃

(i)
k )′

and H−1/2AH−1/2ξ̂1 = λ̂1ξ̂1. It follows that

K∑
k=1

λ̃
(i)
k (ξ̂′1Xξ̃

(i)
k )Xξ̃

(i)
k −X(H̃(i))−

1
2diag(Ω)(H̃(i))−

1
2Xξ̂1 +X∆ξ̂1 = λ̂1ξ̂1.

As a result,

ξ̂1(i) =
λ̃
(i)
1 (ξ̂′1Xξ̃

(i)
1 )

λ̂1

X(i, i)ξ̃
(i)
1 (i) +

K∑
k=2

λ̃
(i)
k (ξ̂′1Xξ̃

(i)
k )

λ̂1

X(i, i)ξ̃
(i)
k (i)

− X2(i, i)Ω(i, i)

λ̂1H̃(i)(i, i)
ξ̂1(i) +

X(i, i)

λ̂1

e′i∆ξ̂1. (E.6)
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By Lemma D.5, it is easy to deduce that

∥X − In∥ ≤ C

√
log(n)√
nθ̄2

, (E.7)

Since (D.7), by Weyl’s inequality,

max
1≤k≤K

{
|λ̂k − λ̃

(i)
k |
}
≤ C∥L− L̃(i)∥; (E.8)

and over the event E,

∥L− L̃(i)∥ ≤ C∥X − In∥∥H− 1
2AH− 1

2∥+ ∥(H̃(i))−1H0∥∥H−1/2
0 (A− Ω)H

−1/2
0 ∥

≤ C ∥X − In∥∥H
− 1

2
0 ΩH

− 1
2

0 ∥+ ∥(H̃(i))−1H0∥∥H−1/2
0 (A− Ω)H

−1/2
0 ∥,

≤ C
K−1λ1(PG)

√
log(n) + 1√

nθ̄2
≤ C

√
log(n)

nθ̄2
≪ |λ̃(i)

K | (E.9)

since Lemmas D.1, D.3 and (D.7) with the condition Kβ−1
n

√
log(n)/

√
nθ̄2 ≪ 1. There-

fore, λ̂1, · · · , λ̂K share the same asymptotics as λ̃
(i)
1 , · · · , λ̃(i)

K . The eigengap between λ̂1 and

λ̃
(i)
2 , · · · , λ̃(i)

K is K−1λ1(PG). Let w(i) = sgn(ξ̂′1ξ̃
(i)
1 ). It follows that

|ξ̂′1Xξ̃
(i)
1 − w(i)| ≤ ∥X − In∥+ |ξ̂′1ξ̃

(i)
1 − w(i)|

≤ ∥X − In∥+ C
(
Kλ−1

1 (PG)∥L− L̃(i)∥
)2

(E.10)

where the last step is due to (D.13) in sinΘ Theorem . In particular, further by (D.14)

∥ξ̂′1X(ξ̃
(i)
2 , · · · , ξ̃(i)K )∥ ≤ ∥X − In∥+ CKλ−1

1 (PG)∥L− L̃(i)∥. (E.11)

We can actually claim that w(i) ≡ w := sgn(ξ′1ξ̂1) as follows. First notice |ξ̂′1ξ1 − ξ̂′1ξ̃
(i)
1 | ≤

∥ξ̃(i)1 − ξ1∥ = o(1). Next, |ξ̂′1ξ̃
(i)
1 | > c for some constant c ∈ (0, 1). It follows immediately that

w(i) = sgn(ξ̂′1ξ̃
(i)
1 ) = sgn(ξ̂′1ξ1) = w. In the sequel, we directly write w instead of w(i). We

plug in (E.8), (E.10) and (E.11) into (E.6). By some elementary simplifications, it arrives at

|wξ̂1(i)− ξ̃
(i)
1 (i)| ≤

(
∥X − In∥+Kλ−1

1 (PG)∥L− L̃(i)∥
)(∣∣ξ̃(i)1 (i)

∣∣+ ∥Ξ̃(i)
1 (i)∥

)
+
∣∣∣X2(i, i)Ω(i, i)

λ̂1H̃(i)(i, i)
ξ̂1(i)

∣∣∣+ ∣∣∣X(i, i)

λ̂1

e′i∆ξ̂1

∣∣∣ . (E.12)
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We can further derive∣∣∣∣X(i, i)2Ω(i, i)

λ̂1H̃(i)(i, i)
ξ̂1(i)

∣∣∣∣ ≤ CKθ2i
nθ̄(θ̄ ∨ θi)λ1(PG)

≤ CKλ−1
1 (PG)κi

(√θi
θ̄
∧ 1
)
, (E.13)

by the estimate H̃(i)(i, i) ≍ nθ̄(θ̄ ∨ θi) following from (D.4) and the first estimate in (D.9),

with κi =

√
log(n)

nθ̄
·
√
θi√
θ̄
. Then, plugging (E.13), (E.7) and (E.9) into (E.12) gives

|wξ̂1(i)− ξ̃
(i)
1 (i)| ≤ C

(√ log n

nθ̄2
+

K

λ1(PG)
√
nθ̄2

)(∣∣ξ̃(i)1 (i)
∣∣+ ∥Ξ̃(i)

1 (i)∥
)

+ CKλ−1
1 (PG)κi

(√θi
θ̄
∧ 1
)
+ CKλ−1

1 (PG)|e′i∆ξ̂1|

≤ Cκi

(√θi
θ̄
∧ 1
)
K

3
2λ−1

1 (PG) + CKλ−1
1 (PG)|e′i∆ξ̂1|

where in the last step, we plugged the bound of
∣∣ξ̃(i)1 (i)

∣∣ and ∥Ξ̃(i)(i)∥ in (D.8). Since the

assumption λ1(PG) ≥ CK, it gives that over the event E,

|wξ̂1(i)− ξ̃
(i)
1 (i)| ≤ C

√
Kκi + C|e′i∆ξ̂1|.

This concludes our proof by considering all i’s together.

E.3 Proof of Lemma 5.3

In this section, we prove Lemma 5.3. We separate the proofs into three parts corresponding

to the three estimates (34)-(36).

E.3.1 Proof of (34)

For any fixed i, recall that X ≡ X(i) := (H̃(i))1/2H−1/2. We rewrite ∆ ≡ ∆(i) =

(H̃(i))−
1
2W (H̃(i))−

1
2X. It follows that

e′i∆ξ̃
(i)
1 =

W (i)(H̃(i))−
1
2Xξ̃

(i)
1√

H̃(i)(i, i)
=

W (i)(H̃(i))−
1
2 ξ̃

(i)
1√

H̃(i)(i, i)
+

W (i)(H̃(i))−
1
2 (X − In)ξ̃

(i)
1√

H̃(i)(i, i)
(E.14)

First, we study the term |W (i)(H̃(i))−1/2ξ̃
(i)
1 |. Write

W (i)(H̃(i))−1/2ξ̃
(i)
1 =

∑
1≤j≤n:j ̸=i

W (i, j)√
H̃(i)(j, j)

ξ̃
(i)
1 (j).
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In the sequel, we only consider the randomness of the i-th row of W . Note that the mean is

0. The variance is bounded by (up to some constant C)

∑
j ̸=i

θiθj
nθ̄(θj ∨ θ̄)

(
ξ̃
(i)
1 (j)

)2 ≤∑
j

θiθj
nθj θ̄

(
ξ̃
(i)
1 (j)

)2 ≤ θi
nθ̄

.

Recall the definition of index sets S1, S2 in (D.1) . Each term in the sum is bounded by

|ξ̃(i)1 (j)|√
H̃(i)(j, j)

≤ C

nθ̄


1, j ∈ S1,

θj/θ̄, j ∈ S2,

following from (D.8) and the estimate H̃(i)(i, i) ≍ nθ̄(θ̄ ∨ θi). Applying Theorem D.1, one

see that over the event E,

∣∣W (i)(H̃(i))−1/2ξ̃
(i)
1

∣∣ ≤ C

√
θi log(n)

nθ̄
+ C

log(n)

nθ̄

Hence, over the event E,

W (i)(H̃(i))−
1
2 ξ̃

(i)
1√

H̃(i)(i, i)
≤ C

√
log(n)

nθ̄

(
1 ∧

√
θi√
θ̄
+

√
log(n)√
nθ̄2

)
≤ C κ̃i (E.15)

by using the estimate H̃(i)(i, i) ≍ nθ̄(θ̄ ∨ θi) and the definition of κ̃i in (34).

Next, we study the term |W (i)(H̃(i))−
1
2 (X − In)ξ̃

(i)
1 |. Over the event E, by (D.10), we

have

|X(j, j)− 1| ≤ C
|H(j, j)− H̃(i)(j, j)|

H̃(i)(j, j)
≤ C

A(i, j) + θiθj + θiθ̄ + log(n)/n

H̃(i)(j, j)
, j ̸= i;

(E.16)

It follows that

|W (i)(H̃(i))−
1
2 (X − In)ξ̃

(i)
1 | =

∣∣∣ ∑
1≤j≤n:j ̸=i

W (i, j)
[X(j, j)− 1]ξ̃

(i)
1 (j)√

H̃(i)(j, j)

∣∣∣
≤

∑
1≤j≤n:j ̸=i

|W (i, j)| |X(j, j)− 1||ξ̃(i)1 (j)|√
H̃(i)(j, j)
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≤ C
∑

1≤j≤n:j ̸=i

(
A(i, j) + θiθj + θiθ̄ +

log(n)

n

) |ξ̃(i)1 (j)|
[H̃(i)(j, j)]3/2

,

where in the last line we have used the fact that |W (i, j)| ≤ 1. We apply Bernstein’s

inequality. The mean is bounded by (up to some constant C)

∑
j ̸=i

θiθj + θiθ̄ + log(n)/n

(nθ̄(θj ∨ θ̄))3/2
·
√

θj√
nθ̄

≤
∑
j

θi + log(n)/(nθ̄)

(nθ̄)2
≤ θi

nθ̄2

(
1 +

log(n)

nθ̄θi

)
.

The variance is bounded by (up to some constant C)

∑
j ̸=i

θiθj
(nθ̄(θj ∨ θ̄))3

(
ξ̃
(i)
1 (j)

)2 ≤ 1

(nθ̄2)2

∑
j

θiθj
nθj θ̄

(
ξ̃
(i)
1 (j)

)2 ≤ 1

(nθ̄2)2
· θi
nθ̄

.

Each individual term is bounded by (up to some constant C)

|ξ̃(i)1 (j)|
[H̃(i)(j, j)]3/2

≤ C

nθ̄


1/(nθj θ̄), j ∈ S1

θj/(nθ̄
2), j ∈ S2.

 ≤ C

nθ̄
· 1

nθ̄2
.

We then have

|W (i)(H̃(i))−
1
2 (X − In)ξ̃

(i)
1 | ≤ C

θi
nθ̄2

(
1 +

log(n)

nθ̄θi

)
As a result, over the event E,

W (i)(H̃(i))−
1
2 (X − In)ξ̃

(i)
1√

H̃(i)(i, i)
≤ C

nθ̄2

√
θi
nθ̄

(
1 ∧

√
θi√
θ̄
+

√
log(n)

nθ̄θi

√
log(n)

nθ̄2

)
≤ C

κ̃i√
nθ̄2 log(n)

(E.17)

We plug (E.15) and (E.17) into (E.14), and consider all i’s over the event E, then we conclude

the proof of (34).

E.3.2 Proof of (35)

Similarly to (E.14), we have

|e′i∆(ξ
(i)

1 − ξ̃
(i)
1 )| ≤ |W (i)(H̃(i))−1/2(ξ

(i)

1 − ξ̃
(i)
1 )|√

H̃(i)(i, i)
+

C|W (i)(H̃(i))−1/2(X − In)(ξ
(i)

1 − ξ̃
(i)
1 )|√

H̃(i)(i, i)

(E.18)
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We first study the term |W (i)(H̃(i))−1/2(ξ
(i)

1 − ξ̃
(i)
1 )|. Write

W (i)(H̃(i))−1/2(ξ
(i)

1 − ξ̃
(i)
1 ) =

∑
1≤j≤n:j ̸=i

W (i, j)[ξ
(i)

1 (j)− ξ̃
(i)
1 (j)]√

H̃(i)(j, j)
.

We shall apply Bernstein’s inequality since (H̃(i))−1/2(ξ
(i)

1 − ξ̃
(i)
1 ) is independent of W (i). The

variance is bounded by (up to some constant)

∑
j ̸=i

θiθj
nθ̄(θj ∨ θ̄)

[ξ
(i)

1 (j)− ξ̃
(i)
1 (j)]2 ≤

∑
j

θiθj
nθj θ̄

[ξ
(i)

1 (j)− ξ̃
(i)
1 (j)]2 ≤ 4θi

nθ̄

Each individual term is bounded by ∥(H̃(i))−1/2(ξ
(i)

1 − ξ̃
(i)
1 )∥∞. As a result,

|W (i)(H̃(i))−1/2(ξ
(i)

1 − ξ̃
(i)
1 )|

≤ C

√
θi log(n)√

nθ̄
+ C log(n)∥(H̃(i))−1/2(ξ

(i)

1 − ξ̃
(i)
1 )∥∞

≤ C

√
θi log(n)√

nθ̄
+ C log(n)∥(H̃(i))−1/2(wξ̂1 − ξ̃

(i)
1 )∥∞ + C log(n)∥(H̃(i))−1/2(ξ

(i)

1 − wξ̂1)∥

≤ C

√
θi log(n)√

nθ̄
+ C log(n)∥(H̃(i))−1/2(wξ̂1 − ξ̃

(i)
1 )∥∞ +

C log(n)√
nθ̄2

∥ξ(i)1 − wξ̂1∥.

Further,

|W (i)(H̃(i))−1/2(ξ
(i)

1 − ξ̃
(i)
1 )|√

H̃(i)(i, i)
≤ Cκi + Cκi

√
nθ̄ log(n)√

θi
∥(H̃(i))−1/2(wξ̂1 − ξ̃

(i)
1 )∥∞ +

C log(n)

nθ̄2
∥ξ(i)1 − wξ̂1∥

≤ Cκ̃i + Cκ̃inθ̄ ∥(H̃(i))−1/2(wξ̂1 − ξ̃
(i)
1 )∥∞ +

C log(n)

nθ̄2
∥ξ(i)1 − wξ̂1∥

(E.19)

by the definition of κ̃i =
1
nθ̄

√
log(n)

nθ̄2

√
nθ̄θi ∨ log(n).

We then study the term |W (i)(H̃(i))−1/2(X − In)(ξ
(i)

1 − ξ̃
(i)
1 )|. On the event E, recall

(E.16). It follows that

|W (i)(H̃(i))−1/2(X − In)(ξ
(i)

1 − ξ̃
(i)
1 )|

=
∣∣∣ ∑
1≤j≤n:j ̸=i

W (i, j)
[X(j, j)− 1][ξ

(i)

1 (j)− ξ̃
(i)
1 (j)]√

H̃(i)(j, j)

∣∣∣
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≤
∑

1≤j≤n:j ̸=i

|W (i, j)| |X(j, j)− 1||ξ(i)1 (j)− ξ̃
(i)
1 (j)|√

H̃(i)(j, j)

≤ C
∑

1≤j≤n:j ̸=i

A(i, j) + θiθj + θiθ̄ + log(n)/n

H̃(i)(j, j)

|ξ(i)1 (j)− ξ̃
(i)
1 (j)|√

H̃(i)(j, j)
.

We now decompose the RHS above by I1 + I2, where

I1 :=
∑

1≤j≤n:j ̸=i

A(i, j) + θiθj + θiθ̄ +
log(n)

n

H̃(i)(j, j)

|ξ(i)1 (j)− wξ̂1(j)|√
H̃(i)(j, j)

,

I2 :=
∑

1≤j≤n:j ̸=i

A(i, j) + θiθj + θiθ̄ +
log(n)

n

H̃(i)(j, j)

|wξ̂1(j)− ξ̃
(i)
1 (j)|√

H̃(i)(j, j)
.

We bound the sub-terms separately as below. By Cauchy-Schwarz inequality,

I1 ≤
( ∑

1≤j≤n:j ̸=i

(A(i, j) + θiθj + θiθ̄ + log(n)/n)2

H̃(i)(j, j)3

) 1
2∥ξ(i)1 − wξ̂1∥ . (E.20)

And we crudely bound

I2 ≤
∑

1≤j≤n:j ̸=i

A(i, j) + θiθj + θiθ̄ + log(n)/n

H̃(i)(j, j)
∥(H̃(i))−

1
2 (ξ̃

(i)
1 − wξ̂1)∥∞. (E.21)

Applying Bernstein inequality (i.e., Theorem D.1), similarly to the analysis of the term

|W (i)(H̃(i))−
1
2 (X − In)ξ̃

(i)
1 | in Section E.3.1, we can have the estimates( ∑

1≤j≤n:j ̸=i

(A(i, j) + θiθj + θiθ̄ + log(n)/n)2

H̃(i)(j, j)3

) 1
2 ≤ C

( ∑
1≤j≤n:j ̸=i

A(i, j) + θiθj + θiθ̄ + log(n)/n

H̃(i)(j, j)3

) 1
2

≤ C
(nθ̄θi + log(n)

(nθ̄2)3

) 1
2

≤ C
( 1

nθ̄2

√
θi
θ̄
+

1

nθ̄2

√
log(n)

nθ̄2

)
(E.22)

and

∑
1≤j≤n:j ̸=i

A(i, j) + θiθj + θiθ̄ + log(n)/n

H̃(i)(j, j)
≤ C

(θi
θ̄
+

log(n)

nθ̄2

)
(E.23)

over the event E. We thus conclude that

|W (i)(H̃(i))−1/2(X − In)(ξ
(i)

1 − ξ̃
(i)
1 )|
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≤ C
(θi
θ̄
+

log(n)

nθ̄2

)
∥(H̃(i))−

1
2 (ξ̃

(i)
1 − wξ̂1)∥∞ + C

( 1

nθ̄2

√
θi
θ̄
+

1

nθ̄2

√
log(n)

nθ̄2

)
∥ξ(i)1 − wξ̂1∥

Further with H̃(i)(i, i) ≍ nθ̄(θi ∨ θ̄), we have

|W (i)(H̃(i))−1/2(X − In)(ξ
(i)

1 − ξ̃
(i)
1 )|√

H̃(i)(i, i)

≤ Cκ̃inθ̄∥(H̃(i))−1/2(wξ̂1 − ξ̃
(i)
1 )∥∞ + C(nθ̄2)−

3
2∥ξ(i)1 − wξ̂1∥ (E.24)

over the event E. Now, plugging (E.19) and (E.24) into (E.18) and combining all i’s, we

thus finish the proof of (35).

E.3.3 Proof of (36)

Note that ξ
(i)

1 is the first eigenvector of (H̃(i))−1/2Ã(i)(H̃(i))−1/2. The eigen-gap between λ̃
(i)
1

and |λ̄(i)
2 | is of order K−1λ1(PG) ≍ 1 in light of Weyl’s inequality

max
i

|λ(i)

i − λ̃
(i)
i | ≤ ∥(H̃(i))−

1
2 (Ã(i) − Ω)(H̃(i))−

1
2∥ ≤ C

√
log(n)

nθ̄2
(E.25)

and K−1λ1(PG) ≫
√

log(n)/nθ̄2. Similarly, the eigengap between λ̂1 and |λ̄(i)
2 | is of order

K−1λ1(PG). We claim that sgn(ξ̂′1ξ
(i)

1 ) = sgn(ξ̂′1ξ̃
(i)
1 ) ≡ w. Notice that |(ξ̂′1)ξ

(i)

1 − (ξ̂′1)ξ̃
(i)
1 | ≤

∥ξ(i)1 −ξ̃
(i)
1 ∥ = o(1). This, together with the fact that |(ξ̂′1)ξ̃

(i)
1 | > c for some constant c ∈ (0, 1),

implies that sgn(ξ̂′1ξ
(i)

1 ) = sgn(ξ̂′1ξ̃
(i)
1 ). Moreover,

∥ξ(i)1 − wξ̂1∥ ≤ Kλ−1
1 (PG)∥

(
(H̃(i))−1/2Ã(i)(H̃(i))−1/2 −H−1/2AH−1/2)︸ ︷︷ ︸

=:∆̃(i)≡∆̃

ξ̂1∥

Recall X = (H̃(i))1/2H−1/2. It is seen that

∆̃ = (H̃(i))−
1
2 (Ã(i) − A)(H̃(i))−

1
2 +

(
(H̃(i))−

1
2A(H̃(i))−

1
2 −H− 1

2AH− 1
2

)
= −(H̃(i))−

1
2 (eiW (i) +W (i)′e′i)(H̃

(i))−
1
2 + (H̃(i))−

1
2A((H̃(i))−

1
2 −H− 1

2 ) + ((H̃(i))−
1
2 −H−1/2)AH− 1

2

= −(H̃(i))−
1
2 (eiW (i) +W (i)′e′i)(H̃

(i))−
1
2 + (H̃(i))−

1
2A(H̃(i))−

1
2 (In −X) + (X−1 − In)H

− 1
2AH− 1

2 .

By definition, H−1/2AH−1/2ξ̂1 = λ̂1ξ̂1. It follows that

∆̃ξ̂1 = −(H̃(i))−
1
2 (eiW (i)+W (i)′e′i)(H̃

(i))−
1
2 ξ̂1+(H̃(i))−

1
2A(H̃(i))−

1
2 (In−X)ξ̂1+λ̂1(X

−1−In)ξ̂1.
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As a result,

∥ξ(i)1 − wξ̂1∥ ≤ Kλ−1
1 (PG)

|W (i)(H̃(i))−
1
2 ξ̂1|√

H̃(i)(i, i)
+Kλ−1

1 (PG)
∥(H̃(i))−

1
2W (i)′∥√

H̃(i)(i, i)
· |ξ̂1(i)|+ C∥(In −X)ξ̂1∥

≤ Kλ−1
1 (PG)

|W (i)(H̃(i))−
1
2 ξ̂1|√

H̃(i)(i, i)
+

CKλ−1
1 (PG)√
nθ̄2

|ξ̂1(i)|+ C∥(In −X)ξ̂1∥,

≤ CKλ−1
1 (PG)

(
|W (i)(H̃(i))−

1
2 ξ̂1|√

H̃(i)(i, i)
+

1√
nθ̄2

|ξ̃(i)1 (i)|+ 1√
nθ̄2

|wξ̂1(i)− ξ̃
(i)
1 (i)|

)
+ C∥(In −X)ξ̂1∥,

≤ CKλ−1
1 (PG)

(
|W (i)(H̃(i))−

1
2 ξ̂1|√

H̃(i)(i, i)
+

κi√
log(n)

+
1√
nθ̄2

|wξ̂1(i)− ξ̃
(i)
1 (i)|

)
+ C∥(In −X)ξ̂1∥,

(E.26)

where in the first line we have used ∥(H̃(i))−1/2A(H̃(i))−1/2∥ ≤ CK−1λ1(PG) and ∥X−In∥ ≤

1/2, in the second line we have used the estimate

(H̃(i)(i, i))−
1
2∥(H̃(i))−

1
2W (i)′∥ ≤

√
W (i)(H̃(i))−1W (i)′

/√
H̃(i)(i, i)

≤
√

(θi/θ̄) ∨ (log(n)/nθ̄2)√
nθ̄(θ̄ ∨ θi)

≤ C(nθ̄2)−
1
2 (E.27)

by simply using Bernstein inequality to W (i)(H̃(i))−1W (i)′, and in the last line we have used

(D.3).

We consider the first term in (E.26). Note that

|W (i)(H̃(i))−
1
2 ξ̂1|√

H̃(i)(i, i)
≤ |W (i)(H̃(i))−

1
2 ξ̃

(i)
1 |√

H̃(i)(i, i)
+

|W (i)(H̃(i))−
1
2 (ξ

(i)

1 − ξ̃
(i)
1 )|√

H̃(i)(i, i)
+

∥W (i)(H̃(i))−
1
2∥∥wξ̂1 − ξ

(i)

1 ∥√
H̃(i)(i, i)

≤ |W (i)(H̃(i))−
1
2 ξ̃

(i)
1 |√

H̃(i)(i, i)
+

|W (i)(H̃(i))−
1
2 (ξ

(i)

1 − ξ̃
(i)
1 )|√

H̃(i)(i, i)
+

C√
nθ̄2

∥wξ̂1 − ξ
(i)

1 ∥,

In (E.15) and (E.19), we have seen that the first two terms are bounded by

κ̃i

(
1 + nθ̄∥(H̃(i))−

1
2 (wξ̂1 − ξ̃

(i)
1 )∥∞

)
+

log(n)

nθ̄2
∥ξ(i)1 − wξ̂1∥

up to some constant. Combining the above gives

|W (i)(H̃(i))−
1
2 ξ̂1|√

H̃(i)(i, i)
≤ Cκ̃i

(
1 + nθ̄∥(H̃(i))−

1
2 (wξ̂1 − ξ̃

(i)
1 )∥∞

)
+
( log(n)

nθ̄2
+

1√
nθ̄2

)
∥ξ(i)1 − wξ̂1∥.

(E.28)

29



We plug it into (E.26) and move all terms of ∥ξ(i)1 − wξ̂1∥ to the left hand side. It follows

that

∥ξ(i)1 −wξ̂1∥ ≤ CKλ−1
1 (PG)

(
κ̃i

(
1+nθ̄∥(H̃(i))−

1
2 (wξ̂1−ξ̃

(i)
1 )∥∞

)
+
|wξ̂1(i)− ξ̃

(i)
1 (i)|√

nθ̄2

)
+C∥(In−X)ξ̂1∥

(E.29)

Below, we bound ∥(In −X)ξ̂1∥. Note that

∥(In −X)ξ̂1∥ ≤ ∥(In −X)ξ̃
(i)
1 ∥+ ∥(In −X)(wξ̂1 − ξ̃

(i)
1 )∥, (E.30)

where

∥(In −X)ξ̃
(i)
1 ∥2 ≤

n∑
j=1

|X(j, j)− 1|2(ξ̃(i)1 (j))2 =: (J1)

∥(In −X)(wξ̂1 − ξ̃
(i)
1 )∥2 ≤ ∥(H̃(i))−

1
2 (wξ̂1 − ξ̃

(i)
1 )∥2∞ ·

n∑
j=1

|X(j, j)− 1|2H̃(i)(j, j)

=: ∥(H̃(i))−
1
2 (wξ̂1 − ξ̃

(i)
1 )∥2∞ · (J2).

Recall the bound of |X(j, j)− 1| in (E.16). It follows that over the event E,

(J1) ≤ C
n∑

j=1

|A(i, j) + θiθj + θiθ̄ +
log(n)

n
|2(ξ̃(i)1 (j))2

[H̃(i)(j, j)]2

≤ C
n∑

j=1

(
A(i, j) + θiθj + θiθ̄ +

log(n)

n

) (ξ̃
(i)
1 (j))2

[H̃(i)(j, j)]2
,

(J2) ≤ C
n∑

j=1

|A(i, j) + θiθj + θiθ̄ +
log(n)

n
|2

H̃(i)(j, j)

≤ C

n∑
j=1

(
A(i, j) + θiθj + θiθ̄ +

log(n)

n

) 1

H̃(i)(j, j)
,

where we again use the fact that A(i, j) ∈ {0, 1}. We shall bound the two terms similarly,

using the Bernstein’s inequality (Theorem D.1). For (J1),

• The mean is bounded by (up to some constant)

n∑
j=1

(
θiθj + θiθ̄ +

log(n)

n

) 1

(nθ̄)3(θ̄ ∨ θj)
≤ 1

nθ̄2
· nθ̄θi + log(n)

(nθ̄)2
;
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• The variance is bounded by (up to some constant)

n∑
j=1

θiθj
(nθ̄)6(θ̄ ∨ θj)2

≤ 1

(nθ̄2)2
· θi
(nθ̄)3

;

• Each individual term is bounded by (up to some constant)
|(ξ̃(i)1 (j))2|
[H̃(i)(j,j)]2

≤ 1
nθ̄2

· 1
(nθ̄)2

.

We then have

(J1) ≤
C

nθ̄2
θi
nθ̄

(
1 +

log(n)

nθ̄θi

)
. (E.31)

For (J2),

• The mean is bounded by (up to some constant)

n∑
j=1

(
θiθj + θiθ̄ +

log(n)

n

) 1

nθ̄(θ̄ ∨ θj)
≤ θi

θ̄
+

log(n)

nθ̄2
;

• The variance is bounded by (up to some constant)

n∑
j=1

θiθj
(nθ̄)2(θ̄ ∨ θj)2

≤ 1

nθ̄2
· θi
θ̄
;

• Each individual term is bounded by (up to some constant) 1
H̃(j,j)

≤ C
nθ̄2

.

It follows that

(J2) ≤
Cθi
θ̄

+
C log(n)

nθ̄2
(E.32)

Plugging (E.31)-(E.32) into (E.30), we find out that

∥(In −X)ξ̂1∥ ≤ C
κ̃i√
log(n)

(
1 + nθ̄∥(H̃(i))−

1
2 (wξ̂1 − ξ̃

(i)
1 )∥∞

)
(E.33)

We plug (E.33) into (E.29), together with the assumption K−1λ1(PG) ≍ 1, to get

∥ξ(i)1 − wξ̂1∥ ≤ Cκ̃i

(
1 + nθ̄∥(H̃(i))−1/2(wξ̂1 − ξ̃

(i)
1 )∥∞

)
+

1√
nθ̄2

|wξ̂1(i)− ξ̃
(i)
1 (i)| (E.34)

over the event E, which proved (36) by considering all i’s altogether.
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E.4 Proof of the second claim in Theorem 4.1

In this section, we show the proof of (J.4). Similarly to the proof of (J.3), we streamline

the proof into the following lemmas. In addition to the notations in the end of Section 1,

below we will use ∥ · ∥2→∞ to denote the matrix 2 → ∞ norm, i.e., the maximum row-

wise ℓ2-norm of a matrix. Specifically, for any matrix A ∈ Rn×m and vector x ∈ Rm,

∥A∥2→∞ := max∥x∥=1 ∥Ax∥∞ = maxi ∥A(i)∥.

Lemma E.1. Suppose the assumptions in Theorem 4.1 hold. Recall κt :=
√

log(n)

nθ̄2

√
θt
nθ̄

for

1 ≤ t ≤ n. With probability 1− o(n−3), simultaneously for 1 ≤ i, t ≤ n,

∥Ξ̃(i)
1 (t)O

(i)
2 − Ξ1(t)∥ ≤ CK

3
2β−1

n κt

(
1 ∧

√
θt
θ̄

)
, (E.35)

for some orthogonal matrices O
(i)
2 ∈ RK−1,K−1.

Lemma E.2. Under the assumptions in Theorem 4.1. With probability 1 − o(n−3), simul-

taneously for 1 ≤ i ≤ n,

∥Ξ̂1(i)− Ξ̃
(i)
1 (i)O

(i)
3 )∥ ≤ CK

3
2β−1

n κi + CKβ−1
n ∥e′i∆Ξ̂1∥, (E.36)

∥e′i∆Ξ̂1∥ ≤ ∥e′i∆Ξ̃
(i)
1 ∥+ ∥e′i∆(Ξ

(i)

1 − Ξ̃
(i)
1 O

(i)
4 )∥+ C√

nθ̄2
∥Ξ̂1 − Ξ

(i)

1 O
(i)
5 ∥, (E.37)

for some orthogonal matrices O
(i)
4 , O

(i)
5 ∈ RK−1,K−1 and O

(i)
3 := O

(i)
4 O

(i)
5 , where ∆ ≡ ∆(i) :=

(H̃(i))−1/2WH−1/2 for short.

Lemma E.3. Under the assumptions in Lemma E.2. Recall the notation of κ̃i in (34) for

1 ≤ i ≤ n. With probability 1− o(n−3), simultaneously for 1 ≤ i ≤ n,

∥e′i∆Ξ̃
(i)
1 ∥ ≤ CK

1
2 κ̃i (E.38)

∥e′i∆(Ξ
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(E.39)

∥Ξ̂1 − Ξ
(i)

1 O
(i)
5 ∥ ≤ CK

3
2β−1

n κ̃i
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1 + nθ̄∥H̃− 1
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(i)
1 (i)O

(i)
3 ∥.

(E.40)
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In the sequel, we will prove the second claim in Theorem 4.1 (i.e., (J.4)) based on the

above lemmas. The proofs of the lemmas are postponed to the next three subsections.

Proof of (J.4) . Plugging Lemma E.3 into (E.37), we first have with probability 1− o(n−3),

simultaneously for all 1 ≤ i ≤ n,

∥e′i∆Ξ̂1∥ ≤ CK
1
2

(
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(
1 + nθ̄∥(H̃(i))−
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√
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which, further substituted to (E.36), implies that
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Since K3β−2
n log(n)/nθ̄2 = o(1), we then arrive at
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(
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1
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)
.

Set Õ1 ≡ Õ
(i)
1 := (O

(i)
3 )′O

(i)
2 . Using Lemma E.1 and let t = i, we will see that
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(
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1
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(i)
1 O

(i)
3 )∥2→∞

)
over the event E. Suppose that Ξ̂′

1Ξ1 has the singular value decomposition (SVD) Ξ̂′
1Ξ1 =

U ′ cosΘV , we define O1 = sgn(Ξ̂′
1Ξ1) := U ′V . Using sine-theta theorem (i.e., (D.13) and

(D.14)), we can derive

∥O1 − Õ1∥ ≤ ∥Ξ̂′
1Ξ1 −O1∥+ ∥Ξ̂′

1Ξ1 − Õ1∥

≤ ∥Ξ̂′
1Ξ1 −O1∥+ ∥Ξ̂1 − Ξ̃

(i)
1 O

(i)
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≤ CKβ−1
n

(
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n

√
log(n)

nθ̄2
,

by which, we will obtain

∥Ξ̂1(i)− Ξ1(i)O
′
1∥ ≤ ∥Ξ̂1(i)− Ξ1(i)Õ

′
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≤ CK
3
2β−1

n κ̃i

(
1 + nθ̄∥(H̃(i))−

1
2 (Ξ̂1 − Ξ̃

(i)
1 O

(i)
3 )∥2→∞

)
(E.41)

and

∥H− 1
2

0 Ξ1(O1 − Õ1)
′)∥2→∞ ≤ ∥H− 1

2
0 Ξ1∥2→∞ · ∥O1 − Õ1∥ ≤ CK

3
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√
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(E.42)

Here to obtain the above two inequalities, we used the second estimate of (D.3).

Applying Lemma E.1 again together with (D.9), (E.42), it is easy to deduce that
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1
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2
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√
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Thereby, according to the condition K3β−2
n log(n)/nθ̄2 = o(1), (E.41) can be further im-

proved to

∥Ξ̂1(i)− Ξ1(i)O
′
1∥ ≤ CK

3
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n κ̃i

(
1 + nθ̄∥H− 1

2
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)
. (E.43)

Next, we multiply both sides of the above inequality by H
− 1

2
0 (i, i) and take the maximum

over i since Ξ̂1 − ΞO′
1 is independent of i, it yields that,

∥H− 1
2

0 (Ξ̂1 − Ξ1O
′
1)∥2→∞ = max

i
∥e′iH

− 1
2
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√
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2
0 (Ξ̂1 − Ξ1O

′
1∥2→∞) (E.44)

Rearranging both sides of (E.44), we can conclude that

∥H− 1
2

0 (Ξ̂1 − Ξ1O
′
1)∥2→∞ ≤ CK

3
2β−1

n (nθ̄)−1

√
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.

which, further substituted into (E.43), yields (J.4) due to the condition K3β−2
n log(n)/nθ̄2 =

o(1).
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E.5 Proof of Lemma E.1

We state the proof of Lemma E.1 which is quite similar to Lemma 5.1 with additional

attention to the non-commutative multiplication of matrices. Fix the index i, we start with

the perturbation from L0 to L̃(i).

Ξ̃
(i)
1 Λ̃

(i)
1 = L̃(i)Ξ̃

(i)
1 =

(
H

1
2
0 (H̃

(i))−
1
2

)
L0

(
H

1
2
0 (H̃

(i))−
1
2

)
Ξ̃
(i)
1 = Ỹ λ1ξ1ξ

′
1Ỹ Ξ̃

(i)
1 + Ỹ Ξ1Λ1Ξ

′
1Ỹ Ξ̃

(i)
1

by recalling the definition Ỹ = H
1
2
0 (H̃

(i))−
1
2 . Then, for each 1 ≤ t ≤ n

Ξ̃
(i)
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′
1Ỹ Ξ̃

(i)
1 (Λ̃

(i)
1 )−1 + Ỹ (t, t)Ξ1(t)Λ1Ξ

′
1Ỹ Ξ̃

(i)
1 (Λ̃

(i)
1 )−1. (E.45)

Recall (D.7), over the event E, we first crudely bound ∥λ1(Λ̃
(i)
1 )−1∥ by β−1

n λ1(PG). Then,

using the estimate (E.3), we can crudely bound the first term on the RHS of (E.45) by
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)
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(
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√
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)
(E.46)

over the event E, where we used the first estimate in Lemma D.2 and sin-theta theorem for

∥ξ′1Ξ̃
(i)
1 ∥ that

∥ξ′1Ξ̃
(i)
1 ∥ ≤ CKλ−1

1 (PG)∥L̃(i) − L0∥ ≤ C∥Ỹ − In∥.

For the second term on the RHS of (E.45), we have
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By singular value decomposition (SVD), we write Ξ′
1Ξ̃

(i)
1 = U cosΘV ′ for some orthogo-

nal matrices U, V and diagonal matrix cosΘ all of which are i-dependent. Setting O
(i)
2 =(

sgn(Ξ′
1Ξ̃

(i)
1 )
)′
:= V U ′ which is an orthogonal matrix, then we obtain that

∥Ξ′
1Ξ̃

(i)
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Here we used the fact that Kβ−1
n ∥L̃(i) − L0∥ ≤ Cβ−1

n λ1(PG)∥Ỹ − In∥ = o(1). Further we

crudely bound

∥Ξ1(t)Ξ
′
1(L0 − L̃(i))Ξ̃

(i)
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Hence,
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over the event E.

Plugging in (E.46) and (E.48) back to (E.45), we simply conclude that

∥Ξ̃(i)
1 (t)O

(i)
2 − Ξ1(t)∥ ≤ C

√
Kβ−1

n λ1(PG)κi

(
1 ∧

√
θi
θ̄

)
over the event E. Combining all i’s and t’s together and noting P(E) = 1 − o(n−3). This

finished the proof of Lemma E.1 by further noticing that λ1(PG) ≍ K.

E.6 Proof of Lemma E.2

In this section, we prove Lemma E.2.

Let us fix the index i. The proof of (E.37) is straightforward by the decomposition
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where the two orthogonal matrices O
(i)
4 , O

(i)
5 will be specified later. We further bound

∥e′i∆(Ξ̂1 − Ξ
(i)

1 O
(i)
5 )∥ ≤ 1√

H̃(i)(i, i)
∥W (i)(H̃(i))−

1
2∥ ∥X∥ ∥Ξ̂1 − Ξ

(i)

1 O
(i)
5 ∥

≤ C√
nθ̄2

∥Ξ̂1 − Ξ1O
(i)
5 ∥

over the event E, by writing ∆ = (H̃(i))−1/2W (H̃(i))−1/2X and using the fact ∥X∥ ≤ C

and ∥W (i)(H̃(i))−
1
2∥ ≤

√
θi/θ̄ ∨

√
log(n)/nθ̄2 (see (E.27)) over the event E. This, together
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with the trivial identities ∥e′i∆Ξ̃
(i)
1 O

(i)
4 O

(i)
5 ∥ = ∥e′i∆Ξ̃

(i)
1 ∥ and ∥e′i∆(Ξ

(i)

1 − Ξ̃
(i)
1 O

(i)
4 )O

(i)
5 ∥ =

∥e′i∆(Ξ
(i)

1 − Ξ̃
(i)
1 O

(i)
4 )∥ implies (E.37).

We then turn to show (E.36). Note that

Ξ̂1Λ̂1 = L Ξ̂1 = X(H̃(i))−
1
2A(H̃(i))−

1
2XΞ̂1 = X(H̃(i))−

1
2Ω(H̃(i))−

1
2XΞ̂1 +X(H̃(i))−

1
2 (A− Ω)(H̃(i))−

1
2XΞ̂1

by the notation X = (H̃(i))
1
2H− 1

2 . Then,

Ξ̂1(i) =X(i, i)λ̃
(i)
1 ξ̃

(i)
1 (i)

(
ξ̃
(i)
1

)′
XΞ̂1Λ̂

−1
1 +X(i, i)Ξ̃

(i)
1 (i)Λ̃(i)(Ξ̃

(i)
1 )′XΞ̂1Λ̂

−1
1

+X(i, i)e′i(H̃
(i))−

1
2 (A− Ω)(H̃(i))−

1
2XΞ̂1Λ̂

−1
1 . (E.49)

Recall the estimate ∥X − In∥ ≤ C
√

log(n)/
√
nθ̄2 following from Lemma D.5 and the prop-

erties of eigenvalues and eigenvectors of L̃(i) in Lemma D.4. Then, for the first term on the

RHS of (E.49), we have

∥X(i, i)λ̃
(i)
1 ξ̃

(i)
1 (i)

(
ξ̃
(i)
1

)′
XΞ̂1Λ̂

−1
1 ∥ ≤ CK−1λ1(PG)∥Λ̂−1

1 ∥
∣∣ξ̃(i)1 (i)

∣∣(∥X − In∥+ ∥
(
ξ̃
(i)
1

)′
Ξ̂1∥
)
.

(E.50)

Recall that λ̂j’s for 1 ≤ j ≤ K share the same asymptotic as λj’s in (D.2) over the event E.

By sin-theta theorem and (E.9), we have the bound

∥
(
ξ̃
(i)
1

)′
Ξ̂1∥ ≤ CKλ−1

1 (PG)∥L− L̃(i)∥ ≤ C
(√ log(n)

nθ̄2
+

Kλ−1
1 (PG)√
nθ̄2

)
. (E.51)

Thus, plugging (E.51), (D.8) together with ∥X − In∥ ≤ C
√

log(n)/
√
nθ̄2 into (E.50), we

arrive at

∥X(i, i)λ̃
(i)
1 ξ̃

(i)
1 (i)

(
ξ̃
(i)
1

)′
XΞ̂1Λ̂

−1
1 ∥ ≤ CKβ−1

n κi

(
1 ∧

√
θi
θ̄

)
, (E.52)

where we used the trivial bound λ1(PG) ≤ CK.

To estimate the other two term in (E.49), we need the assistance of Ξ, the eigenspace

of (H̃(i))−
1
2 Ã(i)(H̃(i))−

1
2 , which is counterpart to Ξ̃

(i)
1 and Ξ̂1. Recall that Ã

(i) = Ω + W̃ (i) −

diag(Ω) where W̃ (i) is obtained by zeroing-out i-th row and column of W . Similarly to
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(E.47), we can then claim that there exists an orthogonal matrix O
(i)
4 by sin-theta theorem

such that

∥Ξ(i)

1 − Ξ̃
(i)
1 O

(i)
4 ∥ ≤ CKβ−1

n ∥(H̃(i))−
1
2 Ã(i)(H̃(i))−

1
2 − (H̃(i))−

1
2Ω(H̃(i))−

1
2∥ ≤ CKβ−1

n√
nθ̄2

(E.53)

over the event E, where O
(i)
4 = sgn((Ξ̃

(i)
1 )′Ξ

(i)

1 ). We will also need an orthogonal matrix

O5 ≡ O5(i) := sgn((Ξ
(i)

1 )′Ξ̂1). Again by sin-theta theorem,

∥(Ξ(i)

1 )′Ξ̂1 −O5∥
1
2 ≤ CKβ−1

n ∥(H̃(i))−
1
2 Ã(i)(H̃(i))−

1
2 −H− 1

2AH− 1
2∥

≤ Cβ−1
n λ1(PG)∥X − In∥+ CKβ−1

n ∥(H̃(i))−
1
2 (Ã(i) − A)(H̃(i))−

1
2∥

≤ CKβ−1
n

√
log(n)

nθ̄2
. (E.54)

Here we used ∥(H̃(i))−
1
2A(H̃(i))−

1
2∥ ≍ ∥(H̃(i))−

1
2Ω(H̃(i))−

1
2∥ ≍ K−1λ1(PG) to get K canceled

for the first term of second line above. We then introduce the shorthand notation O
(i)
3 =

O
(i)
4 O

(i)
5 . And for the second term on the RHS of (E.49), similarly to (E.48), we get

∥X(i, i)Ξ̃
(i)
1 (i)Λ̃(i)(Ξ̃

(i)
1 )′XΞ̂1Λ̂

−1
1 − Ξ̃

(i)
1 (i)O

(i)
3 ∥

≤ C
(
β−1
n λ1(PG)∥X − In∥+Kβ−1

n ∥L− L̃(i)∥+ ∥(Ξ̃(i))′1Ξ̂1 −O
(i)
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)
∥Ξ̃(i)

1 (i)∥
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3
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n κi + C∥(Ξ̃(i)
1 )′Ξ̂1 −O

(i)
3 ∥∥Ξ̃(i)

1 (i)∥ (E.55)

over the event E, where we recall that κi =
√

log(n)/nθ̄2 ·
√
θi/nθ̄. Moreover, we have

∥(Ξ̃(i)
1 )′Ξ̂1 −O

(i)
3 ∥ ≤ ∥Ξ(i)

1 − Ξ̃
(i)
1 O

(i)
4 ∥+ ∥(Ξ(i)

1 )′Ξ̂1 −O
(i)
5 ∥

which with (E.53), (E.54) and (D.8) leads to

∥X(i, i)Ξ̃
(i)
1 (i)Λ̃(i)(Ξ̃(i))′1Y Ξ̂1Λ̂

−1
1 − Ξ̃

(i)
1 (i)O

(i)
3 ∥ ≤ CK

3
2β−1

n κi (E.56)

Combining (E.52) and (E.56) back into (E.49), we get

∥Ξ̂1(i)− Ξ̃
(i)
1 (i)O

(i)
3 ∥ ≤ CK

3
2β−1

n κi + ∥X(i, i)e′i(H̃
(i))−

1
2 (A− Ω)(H̃(i))−

1
2XΞ̂1Λ̂

−1
1 ∥ (E.57)
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In the sequel, we proceed to the second term on the RHS above. First, using the trivial

bound |X(i, i)| ≤ 2 and ∥Λ̂1∥−1 ≤ Kβ−1
n , we have

∥X(i, i)e′i(H̃
(i))−

1
2 (A− Ω)(H̃(i))−

1
2XΞ̂1Λ̂

−1
1 ∥

≤ CKβ−1
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1
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1
2XΞ̂1∥

≤ CKβ−1
n

(
∥e′i(H̃(i))−

1
2W (H̃(i))−

1
2XΞ̂1∥+ ∥e′i(H̃(i))−

1
2diag(Ω)(H̃(i))−

1
2XΞ̂1∥

)
We can simply get the bound

∥e′i(H̃(i))−
1
2diag(Ω)(H̃(i))−

1
2XΞ̂1∥ = ∥(H̃(i))−1(i, i)Ω(i, i)X(i, i)Ξ̂1(i)∥

≤ C
θ2i

nθ̄(θ̄ ∨ θi)
∥Ξ̂1(i)∥

≤
√
K√

log(n)
κi

(
1 ∧

√
θi
θ̄

)
This leads to

∥X(i, i)e′i(H̃
(i))−

1
2 (A− Ω)(H̃(i))−

1
2XΞ̂1Λ̂

−1
1 ∥ ≤ CK

3
2β−1

n κi + CKβ−1
n ∥e′i∆Ξ̂1∥ (E.58)

over the event E satisfying P(E) = 1−o(n−3). Combining (E.58) and (E.57) and considering

all i’s, we then conclude the proof of (E.36).

E.7 Proof of Lemma E.3

The proof of Lemma E.3 is rather complicated. We will show the three claims (i.e., (E.38)-

(E.40)) separately in the following three parts.

E.7.1 Proof of (E.38)

Write ∆ = (H̃(i))−
1
2W (H̃(i))−

1
2X, we first crudely have

∥e′i∆Ξ̃
(i)
1 ∥ ≤ ∥e′i(H̃(i))−

1
2W (H̃(i))−

1
2 Ξ̃

(i)
1 ∥+ ∥e′i(H̃(i))−

1
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1
2 (X − In)Ξ̃

(i)
1 ∥ (E.59)

We start with the first term on the RHS of (E.59).

∥e′i(H̃(i))−
1
2W (H̃(i))−

1
2 Ξ̃

(i)
1 ∥ =

∥∥∥ 1√
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1
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∥∥∥ =
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(i)
1 (t)
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Thanks to the independence between Ξ̃
(i)
1 and W (i), we can estimate

∑n
t=1

W (i,t)√
H̃(i)(t,t)

Ξ̃
(i)
1 (t)

componentwisely by Bernstein inequality with respect to the randomness of W (i). For each
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.

Each individual summand can be bounded by C/nθ̄ over the event E. As a result,
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nθ̄
+
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)
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√
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√
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Further with H̃(i)(i, i) ≍ nθ̄(θi ∨ θ̄), we finally conclude that
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1
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Next, regarding the term ∥e′i(H̃(i))−
1
2W (H̃(i))−

1
2 (X − In)Ξ̃

(i)
1 ∥, using the estimate (E.16), we

can derive
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1
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(E.61)

where the last step is analogous to how we get (E.17) by Bernstein’s inequality and one

can refer to the details in Section E.3.1. Combining (E.60) and (E.61) into (E.59), and

considering all i’s, we thus conclude (E.38).

E.7.2 Proof of (E.39)

The proof is similar to the proof of (35) in Section E.3.2. First, by definition, we bound

∥e′i∆(Ξ
(i)

1 − Ξ̃
(i)
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1
2W (H̃(i))−

1
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1 O
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We rewrite the first term on the RHS by
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We further have
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Thus, over the event E,
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(E.63)

Next, for the second term of (E.62), using the estimate (E.16), we have
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(E.64)

Similarly to the derivations of upper bounds of (E.20) and (E.21), we bound the two sums

on the RHS of (E.64) corresponding to the two terms in the parenthesis separately as follows:
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over the event E, in which, we applied (E.23) and (E.22). We plug the above two estimates

into (E.64) and conclude that over the event E,
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(i)
5 )∥2→∞ +

√
K(nθ̄2)−

3
2∥Ξ̂1 − Ξ

(i)

1 O
(i)
5 ∥

This, together with (E.63), concludes the proof of (E.39) for fixed i, by the fact that

log(n)/
√
nθ̄2 ≤ κ̃i · nθ̄. Combining all i’s and the fact P(E) = 1 − o(n−3), we finish the

proof.

E.7.3 Proof of (E.40)

By sin-theta theorem and the fact that the eigen-gap is of the order O(K−1βn) in light of

Weyl’s inequality (see (E.25)), analogously to (E.26), we first have

∥Ξ̂1 − Ξ
(i)
1 O

(i)
5 ∥

≤ Kβ−1
n ∥

(
H− 1

2AH− 1
2 − (H̃(i))−

1
2 Ã(i)(H̃(i))−

1
2
)
Ξ̂1∥

≤ Kβ−1
n

(
∥(In −X−1)H− 1

2AH− 1
2 Ξ̂1∥+ ∥(H̃(i))−

1
2A(H̃(i))−

1
2 (X − In)Ξ̂1∥+ ∥(H̃(i))−

1
2 (A− Ã(i))(H̃(i))−

1
2 Ξ̂1∥

)
≤ CKβ−1

n

(
∥(X − In)Ξ̂1Λ̂1∥+ ∥(H̃(i))−

1
2A(H̃(i))−

1
2 (X − In)Ξ̂1∥+ ∥(H̃(i))−

1
2 (eiW (i) +W (i)′e′i)(H̃

(i))−
1
2 Ξ̂1∥

)
.

(E.65)

We start with a simple derivation,

∥(H̃(i))−
1
2A(H̃(i))−

1
2 (X − In)Ξ̂1∥

≤ ∥(H̃(i))−
1
2Ω(H̃(i))−

1
2∥∥(X − In)Ξ̂1∥+ ∥(H̃(i))−

1
2 (A− Ω)(H̃(i))−

1
2∥∥(X − In)Ξ̂1∥

≤ CK−1λ1(PG)∥(X − In)Ξ̂1∥;

Second, we have

∥(H̃(i))−
1
2W (i)′e′i(H̃

(i))−
1
2 Ξ̂1∥ = H̃(i)(i, i)−

1
2∥Ξ̂1(i)(H̃

(i))−
1
2W (i)′∥

≤ C√
nθ̄2

∥Ξ̂1(i)∥
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≤ C
√
K κi√

log(n)
+

C√
nθ̄2

∥Ξ̂1(i)− Ξ̃
(i)
1 (i)O

(i)
3 ∥.

where in the second step we used (E.27) and we decomposed Ξ̂1(i) as Ξ̃(i)O
(i)
3 + Ξ̂1(i) −

Ξ̃
(i)
1 (i)O

(i)
3 and employed (D.8) in the last step. Thus, we further bound the RHS of (E.65)

as

∥Ξ̂1 − Ξ
(i)

1 O
(i)
5 ∥ ≤Cβ−1

n λ1(PG)∥(X − In)Ξ̂1∥+ CKβ−1
n ∥H̃(i)(i, i)−

1
2W (i)(H̃(i))−

1
2 Ξ̂1∥

+
CK

3
2β−1

n κi√
log(n)

+
CKβ−1

n√
nθ̄2

∥Ξ̂1(i)− Ξ̃
(i)
1 (i)O

(i)
3 ∥. (E.66)

In the sequel, we analyze the first two terms on the RHS above. For ∥(X − In)Ξ̂1∥, similarly

to (E.30), we decompose Ξ̂1 and get that

∥(X − In)Ξ̂1∥ ≤ ∥(X − In)Ξ̃
(i)
1 ∥+ ∥(X − In)(Ξ̂1 − Ξ̃

(i)
1 O

(i)
3 )∥

Then, we replicate the derivations for the two terms in (E.30) with ξ̃
(i)
1 , ξ̂1 replaced by Ξ̃

(i)
1 ,

Ξ̂1 and w replaced by O′
3 to get

∥(X − In)Ξ̃
(i)
1 ∥2 ≤ C

n∑
j=1

(
A(i, j) + θiθj + θiθ̄ +

log(n)

n

) ∥Ξ̃(i)
1 (j)∥2

[H̃(i)(j, j)]2
≤ CKκ̃2

i

log(n)

∥(X − In)(Ξ̂1 − Ξ̃
(i)
1 O

(i)
3 )∥2 ≤ C∥(H̃(i))−1/2(Ξ̂1 − Ξ̃

(i)
1 O

(i)
3 )∥22→∞

n∑
j=1

A(i, j) + θiθj + θiθ̄ +
log(n)

n

H̃(i)(j, j)

≤ C∥(H̃(i))−1/2(Ξ̂1 − Ξ̃
(i)
1 O

(i)
3 )∥22→∞ · nθ̄θi + log(n)

nθ̄2

over the event E. More detailed steps can be referred to derivations from (E.30)-(E.32). We

thereby arrive at

∥(X − In)Ξ̂1∥ ≤ C

√
K√

log(n)
κ̃i

(
1 + nθ̄∥(H̃(i))−

1
2 (Ξ̂1 − Ξ̃

(i)
1 O

(i)
3 )∥2→∞

)
(E.67)

Now we turn to study the term ∥H̃(i)(i, i)−
1
2W (i)(H̃(i))−

1
2 Ξ̂1∥. Using (E.60), (E.63) and

(E.27), we can deduce that

∥H̃(i)(i, i)−
1
2W (i)(H̃(i))−

1
2 Ξ̂1∥ ≤ ∥H̃(i)(i, i)−

1
2W (i)(H̃(i))−

1
2 Ξ̃

(i)
1 ∥+ ∥H̃(i)(i, i)−

1
2W (i)(H̃(i))−

1
2 (Ξ

(i)
1 − Ξ̃

(i)
1 O

(i)
4 )∥

+ ∥H̃(i)(i, i)−
1
2W (i)(H̃(i))−

1
2 (Ξ̂1 − Ξ

(i)
1 O

(i)
5 )∥
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≤ C
√
K κ̃i

(
1 + nθ̄∥(H̃(i))−

1
2 (Ξ̂1 − Ξ̃

(i)
1 O

(i)
3 )∥2→∞

)
+ C

(√
K

log(n)

nθ̄2
+

1√
nθ̄2

)
∥Ξ̂1 − Ξ

(i)
1 O

(i)
5 ∥ (E.68)

over the event E. Combining (E.67) and (E.68) into (E.66) and putting all terms equipped

with factor ∥Ξ̂1 − Ξ
(i)

1 O
(i)
5 ∥ to the LHS, under the condition K3β−2

n log(n)/nθ̄2 = o(1) and

λ1(PG) ≤ CK, we finally see that

∥Ξ̂1 − Ξ
(i)

1 O
(i)
5 ∥ ≤ CK

3
2β−1

n κ̃i

(
1 + nθ̄∥(H̃(i))−

1
2 (Ξ̂1 − Ξ̃

(i)
1 O

(i)
3 )∥2→∞

)
+

CKβ−1
n√

nθ̄2
∥Ξ̂1(i)− Ξ̃

(i)
1 (i)O

(i)
3 ∥

over the event E. Thus we complete the proof by considering all i’s.

F Rate of Mixed-SCORE-Laplacian

We prove the error rate of Mixed-SCORE-Laplacian in this Section. In detail, in Section F.1

we prove Lemma 4.1; in Section F.2, we prove the first claim of Theorem 4.2; in Section F.3,

we briefly state the proofs of Corollary 4.1 and the second claim of Theorem 4.2, as these

arguments directly stem from Theorem 4.2.

F.1 Proof of Lemma 4.1

Fix the choice of ξ̂1 such that w = 1 in (J.3). Choose the orthogonal matrix O1 appeared in

Theorem 4.1. By definition,

∥O′
1r̂i − ri∥ = ∥e′i

(
Ξ̂1O1/ξ̂1(i)− Ξ1/ξ1(i)

)
∥ ≤ ∥e′i(Ξ̂1O1 − Ξ1)/ξ̂1(i)∥+ ∥Ξ1(i)∥

∣∣∣ 1

ξ̂1(i)
− 1

ξ1(i)

∣∣∣
Employing Theorem 4.1 with Lemma D.2, for i ∈ Sn(c0), we have

∥e′i(Ξ̂1O1 − Ξ1)/ξ̂1(i)∥ ≤ C
∥e′i(Ξ̂1O1 − Ξ1)∥

ξ1(i)
≤ C

√
K3 log(n)

nθ̄(θ̄ ∧ θi)β2
n

and

∥Ξ1(i)∥
∣∣∣ 1

ξ̂1(i)
− 1

ξ1(i)

∣∣∣ ≤ C
∥Ξ1(i)∥
ξ1(i)

· |ξ̂1(i)− ξ1(i)|
ξ1(i)

≤ C

√
K3 log(n)

nθ̄(θ̄ ∧ θi)β2
n

with probability 1−o(n−3) simultaneously for i ∈ Sn(c0) . Combining the above inequalities,

we immediately get (20) simultaneously for i ∈ Sn(c0), with probability 1− o(n−3).
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F.2 Proof of the first claim in Theorem 4.2

This theorem has two claims, one is about the node-wise error, and the other is about the

bound for the ℓ1-loss. The second claim follows easily from the first claim, and its proof is

relegated to Section F.3. We now prove the first claim about the node-wise error.

We only focus on i ∈ Ŝn(c) (see (15)). For i /∈ Ŝn(c), since we take trivial estima-

tor K−11K , the estimation error is then trivially bounded by some constant. Recall the

definition, for i ∈ Ŝn(c),

π̂∗
i (k) = max{ŵi(k)/b̂1(k), 0}, π̂i = π̂∗

i /∥π̂∗
i ∥1

and correspondingly in the oracle case, πi = π∗
i /∥π∗

i ∥1, π∗
i = [diag(b1)]

−1wi. We shall study

the errors of ŵi’s and b̂1 compared to wi’s and b1 separately.

Suppose we are under the high probability 1− o(n−3) event in which Lemma 4.1 holds.

We refrain ourselves from stating the high probability in the following derivations. We first

study ŵi’s. Thanks to the choice of a variant of successive projection in our vertex hunting

algorithm, referring to Lemma 3.1 of [6], it is easy to deduce that

∥PV̂ O1 − V ∥2→∞ ≤ C max
i∈Ŝ∗

n(c,γ)
∥O′

1r̂i − ri∥ ≤ C

√
K3 log(n)

nθ̄2β2
n

. (F.1)

for some K × K permutation matrix P, where we denote by V = (v1, v2, · · · , vK)′ and

V̂ = (v̂1, v̂2, · · · , v̂K)′. In our Mixed-SCORE-Laplacian algorithm, ŵi’s are solved from

Q̂ŵi =

 1

O′
1r̂i

 , Q̂ :=

 1 1 · · · 1

O′
1v̂1 O′

1v̂2 · · · O′
1v̂K


Here, a little different from original linear system, we multiply r̂i and v̂1, · · · , , v̂K by O′

1 on

the left. Analogously, for the oracle case,

Qwi =

 1

ri

 , Q :=

 1 1 · · · 1

v1 v2 · · · vK

 .
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Note that since vj’s, v̂j’s for 1 ≤ j ≤ K are the vertices, we easily get that both Q̂ and Q

are of full-rank. Then,

∥Pŵi − wi∥ =

∥∥∥∥∥∥∥(Q̂P′)−1

 1

O′
1r̂i

−Q−1

 1

ri


∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥
(
(Q̂P′)−1 −Q−1

) 1

ri


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥Q̂−1


 1

O1r̂i

−

 1

ri



∥∥∥∥∥∥∥ . (F.2)

For the first term on the RHS of (F.2), we have∥∥∥∥∥∥∥
(
(Q̂P′)−1 −Q−1

) 1

ri


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥Q̂−1(Q̂P′ −Q)Q−1

 1

ri


∥∥∥∥∥∥∥ =

∥∥Q̂−1
∥∥∥∥(Q̂P′ −Q)wi

∥∥,
and

∥∥(Q̂P′ −Q)wi

∥∥ = ∥(O′
1V̂

′P′ − V ′)wi∥ ≤ ∥PV̂ O1 − V ∥2→∞

If we can claim that ∥Q̂−1∥ ≤ C, then we are done with the bound of the first term. Notice

that one easily check

∥Q̂P′ −Q∥ ≤
√
K∥PV̂ O1 − V ∥2→∞ = o(

√
K)

since K3 log(n)

nθ̄2β2
n

→ 0 as n → ∞. Suppose that ∥Q−1∥ ≍ K− 1
2 , then immediately ∥Q̂−1∥ ≍ K− 1

2 .

To claim that ∥Q−1∥ ≍ K− 1
2 , we use the identity

vk(t) =
bt(k)

b1(k)
, 2 ≤ t ≤ K, (F.3)

which can be easily verified with some elementary derivations from the definition of R and

the fact Ξ = H
− 1

2
0 ΘΠB with B = (b1, · · · , bK) (see the proof of Lemma A.1 in Section A.1).

We will see that

Q = B′diag(1/b1(1), · · · , 1/b1(K));

And due to b1(k) ≍ 1 (claimed in the Proof of Lemma D.2), we then obtain that

∥Q−1∥ = ∥diag(b1(1), · · · , b1(K))B−1∥ ≍ ∥B−1∥.
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Further recall that BB′ = (Π′ΘH−1
0 ΘΠ)−1. Hence, λmin(BB′) = 1/λmax(Π

′ΘH−1
0 ΘΠ) ≍ K,

which leads to ∥Q−1∥ ≍ ∥B−1∥ ≍ K− 1
2 . As a consequence,∥∥∥∥∥∥∥

(
(Q̂P′)−1 −Q−1

) 1

ri


∥∥∥∥∥∥∥ ≤ CK− 1

2∥PV̂ O1 − V ∥2→∞.

Next, for the second term on the RHS of (F.2), one simply bounds it by ∥Q̂−1∥∥O1r̂i− ri∥ ≤

CK− 1
2∥O1r̂i − ri∥. Combining these two estimates into (F.2), with the aids of (F.1) and

Lemma 4.1, we conclude that

∥Pŵi − wi∥ ≤ CK− 1
2∥O1r̂i − ri∥ ≤ C

√
K2 log(n)

nθ̄(θ̄ ∧ θi)β2
n

. (F.4)

Next, we study the error between 1/e′kPb̂1 and b−1
1 (k). Here to the end of this section, with a

little ambiguity of notation, we denote {ek}Kk=1 for the standard basis of RK . By definition,

since P is a permutation matrix,∣∣∣∣ 1(
e′kPb̂1

)2 − 1(
b1(k)

)2 ∣∣∣∣ ≤ ∣∣λ̂1 − λ1

∣∣+ ∣∣e′kPV̂ Λ̂1V̂
′P′ek − v′kΛ1vk

∣∣.
The eigenvalue difference is simply bounded by

√
log(n)/nθ̄2 by Weyl’ inequality, which has

been previously shown in entry-wise eigenvector analysis. To bound the second term above,

we first claim ∥vk∥ ≤ C
√
K. To see this, using (F.3) and b1(k) ≍ 1,

∥vk∥ ≤ C∥e′kB∥ ≤ C∥BB′∥
1
2 ≤ C

√
K.

We can then derive that∣∣e′kPV̂ Λ̂1V̂
′P′ek − v′kΛ1vk

∣∣
≤
∣∣e′k(PV̂ O1 − V )O′

1Λ̂1O1O
′
1V̂

′P′ek
∣∣+ ∣∣vkO′

1Λ̂1O1(O
′
1V̂

′P′ − V )ek
∣∣+ ∣∣v′k(O′

1Λ̂1O1 − Λ1)vk
∣∣

≤ CK− 1
2 |λ2(PG)|∥PV̂ O1 − V ∥2→∞ +

∣∣v′k(O′
1Λ̂1O1 − Λ1)vk

∣∣
Here in the last step, we used the trivial bound ∥Λ̂1∥ ≤ K−1|λ2(PG)|. We further estimate

the second term above. Notice that O1 = sgn(Ξ̂′
1Ξ1) shown up in Theorem 4.1. By L0Ξ1 =

Ξ1Λ1, LΞ̂1 = Ξ̂1Λ̂1, and sine-theta theorem (D.13),∣∣v′k(O′
1Λ̂1O1 − Λ1)vk

∣∣ ≤ ∣∣v′k(O1 − Ξ̂′
1Ξ1)

′Λ̂1O1vk
∣∣+ ∣∣v′kΞ′

1(L− L0)Ξ̂1O1vk
∣∣
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+
∣∣v′kΛ1(O1 − Ξ̂′

1Ξ1)
′O1vk

∣∣
≤ C|λ2(PG)|∥O1 − Ξ̂′

1Ξ1∥+K∥L− L0∥

≤ C|λ2(PG)|(Kβ−1
n ∥L− L0∥)2 +K∥L− L0∥

≤ C

√
K3 log(n)

nθ̄2β2
n

where we also used ∥L−L0∥ ≤ C
√

log(n)/nθ̄2 and K
3
2β−1

n

√
log(n)/nθ̄2 = o(1). Next, using

(F.1) and the last inequality in Condition 2.1(b), we bound

K− 1
2 |λ2(PG)|∥PV̂ O1 − V ∥2→∞ ≤ C

√
K2 log(n)

nθ̄2β2
n

.

It follows then

∣∣e′kPV̂ Λ̂1V̂
′P′ek − v′kΛ1vk

∣∣ ≤ C

√
K3 log(n)

nθ̄2β2
n

.

As a consequence,

∣∣∣ 1

(Pb̂1)(k)
− 1

b1(k)

∣∣∣ ≤ C

√
K3 log(n)

nθ̄2β2
n

(F.5)

since b1(k) ≍ 1.

Now, we are able to study Pπ̂∗
i and further Pπ̂i by (F.4) and (F.5). If (Pŵi)(k) ≤ 0,

trivially we have

∣∣(Pπ̂∗
i )(k)− π∗

i (k)
∣∣ = π∗

i (k) ≍ wi(k) ≤ |(Pŵi)(k)− wi(k)|

For the case that (Pŵi)(k) > 0, we get the bound

∣∣(Pπ̂∗
i )(k)− π∗

i (k)
∣∣ = ∣∣∣∣∣(Pŵi)(k)

(Pb̂1)(k)
− wi(k)

b1(k)

∣∣∣∣∣ ≤ ∣∣(Pŵi)(k)
∣∣ ∣∣∣ 1

(Pb̂1)(k)
− 1

b1(k)

∣∣∣+ |(Pŵi)(k)− wi(k)|
|b1(k)|

Moreover, taking sum over k for both sides above,

∥Pπ̂∗
i − π∗

i ∥1 ≤ Cmax
k

∣∣∣ 1

(Pb̂1)(k)
− 1

b1(k)

∣∣∣+ ∥Pŵi − wi∥1
mink |b1(k)|

≤ C

√
K3 log(n)

nθ̄(θ̄ ∧ θi)β2
n
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Here we used the Cauchy-Schwarz inequality ∥Pŵi − wi∥1 ≤
√
K ∥Pŵi − wi∥ and further

applied (F.4) and (F.5). As a result,

∣∣(Pπ̂i)(k)− πi(k)
∣∣ = ∣∣∣∣(Pπ̂∗

i )(k)

∥Pπ̂∗
i ∥1

− π∗
i (k)

∥π∗
i ∥1

∣∣∣∣ ≤ ∣∣(Pπ̂∗
i )(k)

∣∣ ∥Pπ̂∗
i − π∗

i ∥1
∥Pπ̂∗

i ∥1∥π∗
i ∥1

+
|(Pπ̂∗

i )(k)− π∗
i (k)|

∥π∗
i ∥1

.

And summing up over k for both sides, we can further have

∥Pπ̂i − πi∥1 ≤
∥Pπ̂∗

i − π∗
i ∥1

∥π∗
i ∥1

≤ C

√
K3 log(n)

nθ̄(θ̄ ∧ θi)β2
n

since ∥π∗
i ∥1 =

∑
k wi(k)/b1(k) ≍ 1 by b1(k) ≍ 1 for all 1 ≤ k ≤ K. Therefore, we finished

the proof.

F.3 Proofs of Corollary 4.1 and the second claim of Theorem 4.2

The proofs oare straightforward by employing Theorem 4.2. We shortly claim it below.

Proof of the second claim of Theorem 4.2. Recall the definition of the ℓ1-loss L(Π̂,Π) in (5).

Employing the node-wise errors in Theorem 4.2 and taking average, we see that

L(Π̂,Π) ≤ C
√
log(n)

∫
min

{ errn√
t ∧ 1

, 1
}
dFn(t),

with probability 1− o(n−3). Further by the trivial bound L(Π̂,Π) ≤ 2, the high probability

error rate implies the expected ℓ1-loss rate, i.e., the errn(θ) in (8). This finishes the proof.

Proof of Corollary 4.1. Recall the loss metric L(Π̂,Π; p, q) in (22). We crudely bound

∥T π̂i − πi∥qq ≤ Cq∥π̂i − πi∥q1

where Cq is some constant depending on q. Combining it with the node-wise error rate in

Theorem 4.2 gives Corollary 4.1.

For the special case p = 1/2 and q = 1, we further bound

Lw(Π̂,Π) = min
T

{ 1
n

n∑
i=1

(θi/θ̄)
1/2∥T π̂i − πi∥1

}
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≤ min
T

{ 1
n

∑
i∈S1

(θi/θ̄)
1/2∥T π̂i − πi∥1

}
+min

T

{ 1
n

∑
i∈S2

(θi/θ̄)
1/2∥T π̂i − πi∥1

}
(F.6)

where we recall the definition of S1, S2 in (D.1). For the first term, we use Cauchy-Schwarz

inequality and get

1

n

∑
i∈S1

(θi/θ̄)
1/2∥T π̂i − πi∥1 ≤

( 1
n

∑
i∈S1

θi/θ̄
) 1

2
( 1
n

∑
i∈S1

∥T π̂i − πi∥21
) 1

2

≤ C
√

log(n) errn

with probability 1 − o(n−3). Plugging in the above inequality into (F.6), and applying the

error rate in Theorem 4.2 separately for i ∈ S2, especially noticing that θi/θ̄ ≤ c err2n log(n)

for i /∈ Ŝn(c), one can easily obtain

Lw(Π̂,Π) ≤ C
√

log(n) errn

with probability 1 − o(n−3). Further with trivial bound Lw(Π̂,Π) ≤ C, we then conclude

the proof.

G Least-favorable configurations and proof of the lower

bound

The key of proving the lower bound arguments in Theorem 2.1 and Theorem 4.3 is to carefully

construct the least-favorable configurations (LFC). The LFC for these two theorems are

different. We start from the less complicated one, the LFC for the weighted ℓ1-loss Lw(Π̂,Π),

and then modify it to construct the LFC for the standard ℓ1-loss L(Π̂,Π). The following

notation is useful.

Definition G.1. Given (n,K, βn), θ ∈ Rn and P ∈ RK×K, let Qn(K, θ, P, βn) denote the

collection of eligible membership matrices Π such that Condition 2.1 is satisfied.
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First, we construct the LFC for proving the lower bound in Theorem 4.3. We take a

special form of P ,

P ∗ = βnIK + (1− βn)1K1
′
K , where 0 < βn < c < 1, (G.1)

and construct a collection of Π. We need a well-known result.

Lemma G.1 (Varshamov-Gilbert bound for packing numbers). For any s ≥ 8, there exist

J ≥ 2s/8 and ω(0), ω(1), . . . , ω(J) ∈ {0, 1}s such that ω(0) = 0s and ∥ω(j) − ω(k)∥1 ≥ s/8, for

all 0 ≤ j < k ≤ J .

In Theorem 4.3, we assume Fn(errn) ≤ č, for a constant č ∈ (0, 1). Let c = 1+č
2

∈ (0, 1).

Let n1 = ⌊K−1cn⌋and n0 = n−Kn1. We set

Π∗ =
( 1

K
1K , · · · ,

1

K
1K︸ ︷︷ ︸

n0

, e1, · · · , e1︸ ︷︷ ︸
n1

, · · · , eK , · · · , eK︸ ︷︷ ︸
n1

)′
. (G.2)

Without loss of generality, we can assume that those θi’s corresponding to the pure nodes in

Π∗ contains the top ⌊(c− č)n⌋ degrees and they are evenly assigned to different communities

such that the average degrees of the pure nodes in different communities are of the same

order; we can also assume that the first n0 θi’s satisfy θi/θ̄ ≥ err2n, by the assumption of

Fn(err
2
n) ≤ č. Note that we can always find a permutation to achieve such θ and re-construct

Π∗ correspondingly. Let m = ⌊n0/2⌋ and r = ⌊K/2⌋. We apply Lemma G.1 to s = mr

to get ω(0), ω(1), . . . , ω(J), where J ≥ 2(mr/8). We re-arrange each ω(j) to an m × r matrix

row-wisely, denoted as H(j), and then construct Γ(j) ∈ Rn×K whose nonzero entries only

appear in the top left (2m)× (2r) block:

Γ(j) =



H(j) −H(j) 0m×1

−H(j) H(j) 0m×1

01×r 01×r 0

0n1×r 0n1×r 0n1×1


, 0 ≤ j ≤ J. (G.3)
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In (G.3), if K is an even number, then the last column (consisting of zero entries) disappears;

similarly, if n0 is an even number, then the last row above the dashed line (consisting of zero

entries) disappears. Let Θ = diag(θ1, θ2, . . . , θn). We construct Π(0),Π(1), . . . ,Π(J) by

Π(j) = Π∗ + γnΘ
− 1

2Γ(j), where γn = c0K
1
2 (nθ̄β2

n)
− 1

2 , for 0 ≤ j ≤ J, (G.4)

where c0 > 0 is a properly small constant. The following theorem is proved in the next

section.

Theorem G.1. Fix c1-c4 in Condition 2.1 and č in Theorem 4.3. Given any (n,K, αn, βn)

and θ ∈ Rn such that Fn(err
2
n) ≤ č, let P ∗ be as in (G.1), and construct Π(0),Π(1), . . . ,Π(J)

as in (G.2)-(G.4). When c0 in (G.4) is properly small, the following statements are true.

• For any constant c5 > 0, let Qn(θ, P
∗) = Qn(K, θ, P ∗, c5βn) (see Definition G.1).

There exists a properly small c5 such that Π(j) is contained in Qn(θ, P
∗), for 0 ≤ j ≤ J .

• There exists a constant C1 > 0 such that Lw(Π(j),Π(k)) ≥ C1errn, for all 0 ≤ j < k ≤

J .

• Let Pj be the probability measure of a DCMM model with (θ, P ∗,Π(j)) and let KL(·, ·)

denote the Kullback-Leibler divergence. There exists a constant ϵ1 ∈ (0, 1/8) such that∑
1≤j≤J KL(Pj,P0) ≤ (1/8− ϵ1)J log(J).

Furthermore, infΠ̂ supΠ∈Qn(θ,P ∗) ELw(Π̂,Π) ≥ Cerrn.

Theorem 4.3 follows immediately from Theorem G.1.

Next, we construct the LFC for proving the lower bound in Theorem 2.1. We still take

P ∗ in (G.1) and construct a collection of Π. Compared with the previous case, the targeted

lower bound now depends on Fn(·), so that the construction is more sophisticated. We

separate two cases according to whether the following holds:∫ err2n

0

dFn(t) ≤ C

∫ ∞

err2n

errn√
tn ∧ 1

dFn(t). (G.5)
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To understand (G.5), note that θi/θ̄ ≤ err2n is equivalent to nθ̄θiβ
2
n ≤ K3 log(n). For such a

node i, the best estimator is the naive estimator π̂naive
i = 1

K
1K . In (G.5), the left hand side is

the total contribution of these nodes in L(Π̂,Π), and the right hand side is the contribution of

remaining nodes. Therefore, (G.5) guarantees that the rate of convergence of the unweighted

ℓ1-loss is driven by those nodes for which we can indeed construct non-trivial estimators of

πi from data. When (G.5) is violated, the lower bound can be proved by similar techniques

but simpler least-favorable configurations. The details of this case is relegated in the next

section and below we will focus on the case that (G.5) holds. Note that all examples in

Section A.2 satisfy (G.5).

We need a technical lemma about the property of Fn(·) that satisfies the requirement in

Theorem 2.1. It is proved in the next section.

Lemma G.2. Fix ρ > 0 and a0 ∈ (0, 1). Given any θ ∈ Gn(ϱ, a0) (see Definition 2.2), recall

that Fn(·) is the empirical distribution associated with ηi = θi/θ̄, 1 ≤ i ≤ n. Let F̃n be the

empirical distribution associated with η̃i = ηi ∧ 1. For any c > 0 and ϵ ∈ (0, 1), define

τn(c, ϵ) = inf
{
t > 0 :

∫ t

err2n

dF̃n(x) ≥ (1− ϵ)

∫ c

err2n

dF̃n(x)
}
.

If Fn(·) satisfies (G.5), then there exists a number cn > err2n and a constant ã0 ∈ (0, 1) such

that Fn(cn) ≤ 1− ã0 and∫ cn

τn(cn,1/8)

1√
t ∧ 1

dFn(t) +
⌈n ·ϖn⌉

n
√

τn(cn, 1/8) ∧ 1
≥ ã0

∫ ∞

err2n

1√
t ∧ 1

dFn(t), (G.6)

where ϖn = [Fn(cn) − Fn(err
2
n−)]/8 − [Fn(cn) − Fn(τn(cn, 1/8))] and for any distribution

function F (·), we define F (x−) = limω→0 F (x− ω).

We now construct a collection of Π using cn in Lemma G.2. We re-order θi’s such that

θ(1) ≤ θ(2) ≤ . . . ≤ θ(n). (G.7)

From the way η̃i’s are defined, this ordering also implies that η̃(1) ≤ η̃(2) ≤ . . . ≤ η̃(n). Let cn

be as in Lemma G.2. Define

sn = max{1 ≤ i ≤ n : η̃(i) ≤ err2n}, n0 = max{1 ≤ i ≤ n : η̃(i) ≤ cn} − sn.
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It follows from the definition of F̃n that n0 is approximately the total number of η̃i’s such

that err2n < η̃i ≤ cn. It can be derived from the definition of τn(cn, 1/8) and ϖn that

n[Fn(cn) − Fn(τn(cn, 1/8))] + ⌈nϖn⌉ = n0 − ⌊7n0/8⌋. Combining these claims with (G.6)

gives

1

n

∑
⌊7n0/8⌋<i−sn≤n0

1√
η(i) ∧ 1

≳
∫ ∞

err2n

1√
t ∧ 1

dFn(t).

Wemultiply errn on both hand sides. By the condition (G.5), we have errn
∫∞
err2n

1√
t∧1dFn(t) ≥

C−1
∫
min{ errn√

t∧1 , 1}dFn(t), which yields a lower bound for the right hand side. For the left

hand side, we plug in ηi = θi/θ̄. It follows that√
K3

nθ̄β2
n

· 1
n

∑
⌊7n0/8⌋<i−sn≤n0

1√
θ(i) ∧ θ̄

≳
∫

min
{ errn√

t ∧ 1
, 1
}
dFn(t).

Notice that for each individual i such that ⌊7n0/8⌋ < i − sn ≤ n0, its contribution to the

left hand side sum above is negligible since n−1/
√
θ(i) ≤ n−1/

√
θ̄err2n = n−1/2K−3/2θ̄1/2βn =

o(1). Therefore, we can remove finitely many i from the left hand side sum without changing

the inequality above. This further implies√
K3

nθ̄β2
n

· 1
n

∑
⌊7n0/8⌋+2<i−sn≤n0

1√
θ(i) ∧ θ̄

≳
∫

min
{ errn√

t ∧ 1
, 1
}
dFn(t).

Let M0 be the index set of the nodes ordered between sn and sn + n0 in (G.7). Let γn =

c0K
1
2 (nθ̄β2

n)
− 1

2 . The above implies that

γn inf
M⊂M0,

|M|≥n0/8−2

{
1

n

∑
i∈M

1√
θi ∧ θ̄

}
≳ K−1

∫
min

{ errn√
t ∧ 1

, 1
}
dFn(t). (G.8)

The set M0 plays a key role in the construction of the least-favorable configurations. We

now re-arrange nodes by putting nodes in M0 as the first n0 nodes, with the last n−n0 nodes

ordered in a way such that the average degrees of the pure nodes in different communities

of Π∗ are of the same order (such an ordering always exists). After node re-arrangement, we

construct Π∗ and Γ(0),Γ(1), . . . ,Γ(J) in the same way as in (G.2)-(G.3). Let θ̃i = θi ∧ θ̄ and

Θ̃ = diag(θ̃1, θ̃2, . . . , θ̃n). Let

Π(j) = Π∗ + γnΘ̃
− 1

2Γ(j), for 0 ≤ j ≤ J, (G.9)
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where γn = c0K
1
2 (nθ̄β2

n)
− 1

2 is the same as in (G.8). The following theorem is an analog of

Theorem G.1 for the unweighted ℓ1-loss and is proved in next section.

Theorem G.2. Fix c1-c4 in Condition 2.1 and (ϱ, a0) in Theorem 2.1. Given (n,K, βn) and

θ ∈ Gn(ϱ, a0), let P
∗ be as in (G.1), and construct Π(0),Π(1), . . . ,Π(J) as in (G.9). When c0

in (G.4) is properly small, the following statements are true.

• For any constant c5 > 0, let Qn(θ, P
∗) = Qn(K, θ, P ∗, c5βn). There exists a properly

small c5 such that Π(j) is contained in Qn(θ, P
∗), for 0 ≤ j ≤ J .

• There exists a constant C2 > 0 such that L(Π(j),Π(k)) ≥ C2

∫
min{ errn√

t∧1 , 1}dFn(t), for

all 0 ≤ j < k ≤ J .

• Let Pj be the probability measure of a DCMM model with (θ, P ∗,Π(j)) and let KL(·, ·)

denote the Kullback-Leibler divergence. There exists a constant ϵ2 ∈ (0, 1/8) such that∑
1≤j≤J KL(Pj,P0) ≤ (1/8− ϵ2)J log(J).

Furthermore, infΠ̂ supΠ∈Qn(θ,P ∗) EL(Π̂,Π) ≥ C
∫
min{ errn√

t∧1 , 1}dFn(t).

Theorem 2.1 follows immediately from Theorem G.2.

Remark: In Theorems G.1-G.2, we fix P = P ∗ and prove the lower bounds by taking

supreme over a class of Π. Such lower bounds are not only θ-specific but also P -specific,

and they are stronger than the θ-specific lower bounds in Theorems 2.1 and 4.3. In Section

H.4 of the supplementary material, we show that we can prove such P -specific lower bounds

for an arbitrary P if one of the following holds as n → ∞: (a) (K,P ) are fixed; (b) (K,P )

can depend on n, but K ≤ C and P1K ∝ 1K ; (c) (K,P ) can depend on n, and K can be

unbounded, but P1K ∝ 1K and |λ2(P )| ≤ Cβn = o(1).

H Proofs in lower bound analysis

In this section, we complete the proofs of lower bounds, i.e., Theorems 2.1 and 4.3. To this

end, we will show the proofs of Theorems G.1-G.2 and Lemma G.2 stated in Section G.
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We organize this section as follows: In Section H.1, we provide the proof of Theorem G.1

regarding weighted loss metric Lw(Π̂,Π). In Section H.2, we claim Lemma G.2 and prove

Theorem G.2 under the condition (G.5). The proof of Theorem G.2 with (G.5) violated is

relatively simpler and we state it in Section H.3 for completeness. In Section H.4, we shortly

show how to extend the lower bounds to P -specific case under some certain additional

assumptions. This supports our arguments in the Remark in the end of Section G.

Throughout this section, we will use Cp,k to denote the index set collecting indices of the

pure nodes in k-th community for 1 ≤ k ≤ K.

H.1 Proof of Theorem G.1

We begin with the proof of the first claim. We first verify Π(j) ∈ Qn(θ, P
∗), for every

0 ≤ j ≤ J which are constructed in (G.2)-(G.4). By the definition of perturbation matrix

Γ(j)’s in (G.3), and the fact that γn/
√
θi ≤ c0/K for all 1 ≤ i ≤ n0 due to θi/θ̄ ≥ err2n for

all 1 ≤ i ≤ n0, it is easy to see that Π(j)’s are indeed membership matrices when choosing

small c0. Next, we check Condition 2.1. Note that Condition 2.1(d) and the last inequality

in Condition 2.1(a) immediately hold because of the construction of Π∗. By definition,

G(j) = K(Π(j))′ΘH−1
0 ΘΠ(j) and

∥G(j) −G∗∥ ≤ 2∥G∗∥
1
2∥Kγ2

n(Γ
(j))′Θ

1
2H−1

0 Θ
1
2Γ(j)∥

1
2 + ∥Kγ2

n(Γ
(j))′Θ

1
2H−1

0 Θ
1
2Γ(j)∥. (H.1)

Elementary computations lead to

G∗ =
( n0∑

i=1

θ2i
H0(i, i)

) 1

K
1K1

′
K +Kdiag

( ∑
i∈Cp,1

θ2i
H0(i, i)

, · · · ,
∑

i∈Cp,K

θ2i
H0(i, i)

)
.

By our construction and assumptions on Π∗ and θ, it can be derived from
∑n

i=1 θ
2
i /H0(i, i) ≍

1 that

K
∑
i∈Cp,k

θ2i
H0(i, i)

≍ 1
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for all 1 ≤ k ≤ K. It follows that ∥G∗∥ ≤ c and ∥(G∗)−1∥ ≤ c for some constant c.

Furthermore, one can also derive

∥Kγ2
n(Γ

(j))′Θ
1
2H−1

0 Θ
1
2Γ(j)∥ ≤ c20err

2
n = o(1) (H.2)

following from
∑n

i=1 θi/H0(i, i) ≤ 1/θ̄ and |eiΓ(j)x| ≤
√
K for all 1 ≤ i ≤ n and any unit

vector x ∈ RK . Therefore, by Weyl’s inequality and (H.1), we can conclude that the first

two inequalities in Condition 2.1(a) hold for all G(j)’s. Further with our choice of special P ∗

which satisfies that 1′
KP =

(
K−(K−1)βn

)
1′
K > (1−c)K1K , λ1(P

∗) ≍ K, and λk(P
∗) = βn

for all 2 ≤ k ≤ K, the requirements that |λK(PG)| ≥ c5βn for some c5 > 0 hold for P ∗G∗

and P ∗G(j)’s. The eigengap condition, Condition 2.1(b), holds for P ∗G∗. Condition 2.1(b)

also holds for P ∗G(j)’s, as a result of the Weyl’s inequality, where

|λ1(P
∗G(j))λ2(P

∗G(j))| ≤ σ1(P
∗G(j))σ2(P

∗G(j)) ≤ CKβn

and λ1(P
∗G(j)) ≍ K. Here we use σ1(P

∗G(j)), σ2(P
∗G(j)) to denote the first and second

largest singular values of P ∗G(j); and the right hand side upper bound is due to the expression

P ∗G(j) = βnG
(j) +K(1 − βn)

1
K
1K1

′
KG

(j) with the fact that ∥G(j)∥ ≤ c and ∥(G(j))−1∥ ≤ c

for some constant c.

Lastly, we claim that Condition 2.1(c) holds for all G(j)’s. Using Perron’s theorem, we

obtain that the first right eigenvector of P ∗G(j) is positive for all 1 ≤ j ≤ J . In particular,

for P ∗G∗, all of its entries are positive and ≍ 1. We then claim that P ∗G(j)(i, k) ≍ 1 for all

1 ≤ i, k ≤ K. To see this, for each 1 ≤ i, k ≤ K, we first write

P ∗G(j)(i, k)− P ∗G∗(i, k) = Kγne
′
iP

∗(Γ(j))′Θ
1
2H−1

0 ΘΠ∗ek +Kγne
′
iP

∗(Π∗)′ΘH−1
0 Θ

1
2Γ(j)ek

+Kγ2
ne

′
iP

∗(Γ(j))′Θ
1
2H−1

0 Θ
1
2Γ(j)ek.

Note that P ∗(Γ(j))′ = βn(Γ
(j))′ by the definition of Γ(j) such that 1′

K(Γ
(j))′ = 0. We thus

easily bound the first and third terms on the RHS above by

|Kγne
′
iP

∗(Γ(j))′Θ
1
2H−1

0 ΘΠ∗ek| ≤ βn∥G∗∥
1
2∥Kγ2

n(Γ
(j))′Θ

1
2H−1

0 Θ
1
2Γ(j)∥

1
2 ≤ cβnerrn
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|Kγ2
ne

′
iP

∗(Γ(j))′Θ
1
2H−1

0 Θ
1
2Γ(j)ek| ≤ βn∥Kγ2

n(Γ
(j))′Θ

1
2H−1

0 Θ
1
2Γ(j)∥ ≤ cβnerr

2
n

which are both of order o(1). For the second term, by the definition of Π∗, we have

|Kγne
′
iP

∗(Π∗)′ΘH−1
0 Θ

1
2Γ(j)ek| ≤ |Kγnβne

′
i(Π

∗)′ΘH−1
0 Θ

1
2Γ(j)ek|+ |Kγn(1− βn)1

′
nΘH−1

0 Θ
1
2Γ(j)ek|

≤ cβnerrn + cKγn

n∑
i=1

√
θi

nθ̄

≤ c errn

where we used Cauchy-Schwarz inequality
∑n

i=1

√
θi ≤

√
n(
∑n

i=1 θi)
1/2 = n

√
θ̄ in the last

step. Therefore, it follows from the above discussions that

P ∗G(j)(i, k) = P ∗G∗(i, k) +
(
P ∗G(j)(i, k)− P ∗G∗(i, k)

)
= P ∗G∗(i, k) + o(1) ≍ 1

for all 1 ≤ i, k ≤ K. As a result, mini,k P
∗G(j)(i, k)/maxi,k P

∗G(j)(i, k) > c for some constant

c > 0. Then, η
(j)
1 , the first right eigenvector of P ∗G(j), satisfies

mink η
(j)
1 (k)

maxk η
(j)
1 (k)

≥ mini,k P
∗G(j)(i, k)

∑
k η

(j)
1 (k)

maxi,k P ∗G(j)(i, k)
∑

k η
(j)
1 (k)

> c. (H.3)

This proves Condition 2.1(c). We then conclude the proof of first statement.

Next, we proceed to prove the second statement, the pairwise difference between Π(j)’s

under the weighted loss metric. By definition,

Lw(Π(j),Π(k)) =
1

n

n∑
i=1

(θi/θ̄)
1
2∥π(j)

i − π
(k)
i ∥1 =

c0
n

n0∑
i=1

√
K

βn

√
nθ̄2

∥ei
(
Γ(j) − Γ(k)

)
∥1

=
c0
√
K

βn

√
nθ̄2

· 4
n
∥ω(j) − ω(k)∥1 ≥ C1errn,

for some constant C1 > 0.

In the last part, we prove the third claim in Theorem G.1 regarding the KL divergence

statement. Note that

KL(Pℓ,P0) =
∑

1≤i<j≤n

Ω
(ℓ)
ij log(Ω

(ℓ)
ij /Ω

(0)
ij ) +

(
1− Ω

(ℓ)
ij

)
log

1− Ω
(ℓ)
ij

1− Ω
(0)
ij

.
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Notice that Ω
(ℓ)
ij = Ω

(0)
ij for n0 < i < j ≤ n. Only the pairs satisfying 0 < i < j ≤ n0 and

0 < i ≤ n0 < j ≤ n have the contributions. We then write KL(Pℓ,P0) = (I) + (II) where

(I) :=
∑

0<i<j≤n0

Ω
(ℓ)
ij log(Ω

(ℓ)
ij /Ω

(0)
ij ) +

(
1− Ω

(ℓ)
ij

)
log

1− Ω
(ℓ)
ij

1− Ω
(0)
ij

(H.4)

(II) :=
∑

0<i≤n0<j≤n

Ω
(ℓ)
ij log(Ω

(ℓ)
ij /Ω

(0)
ij ) +

(
1− Ω

(ℓ)
ij

)
log

1− Ω
(ℓ)
ij

1− Ω
(0)
ij

(H.5)

We begin with the estimate of (I). For simplicity, we write Γ(ℓ) =
(
Γ
(ℓ)
1 , · · · ,Γ(ℓ)

n

)′
for

ℓ = 0, · · · , J . By definition, for 0 < i < j ≤ n0,

Ω
(0)
ij = θiθj

( 1

K2
1′
KP1K

)
= θiθj

(
1− (1− 1/K)βn

)
< 1;

and

Ω
(ℓ)
ij = θiθj

( 1
K

1K +
γn√
θi
Γ
(ℓ)
i

)′
P
( 1
K

1K +
γn√
θj
Γ
(ℓ)
j

)
= θiθj

(
1− (1− 1/K)βn

)
+ θiθj

γ2
nβn√
θiθj

(
Γ
(ℓ)
i

)′
Γ
(ℓ)
j

= Ω
(0)
ij

(
1 + ∆

(ℓ)
ij

)
, j ̸= 0,

in which, ∆
(ℓ)
ij := (γ2

n/
√
θiθj) · βn

(
Γ
(ℓ)
i

)′
Γ
(ℓ)
j /[1 − (1 − 1/K)βn]. Here we used the identity

1′
KΓ

(ℓ)
j = 0 for all 1 ≤ j ≤ n, 1 ≤ ℓ ≤ J . Further by 1− (1− 1/K)βn > c for some constant

c > 0and the assumption that the first n0 θi’s satisfy θi/θ̄ ≥ err2n, we notice that

max
0<i,j≤n0

|∆(ℓ)
ij | ≤ C

c20K
2

βn

√
(nθ̄θi)(nθ̄θj)

≤ Cc20K
−1βn

and Ω
(0)
ij ∆

(ℓ)
ij < c(1 − Ω

(0)
ij ) for some constant c ∈ (0, 1) when c0 is small enough. Choosing

sufficiently small c0, we have the Taylor expansions

Ω
(ℓ)
ij log(Ω

(ℓ)
ij /Ω

(0)
ij ) = Ω

(0)
ij

(
1 + ∆

(ℓ)
ij

)
log
(
1 + ∆

(ℓ)
ij

)
= Ω

(0)
ij

(
∆

(ℓ)
ij +

1

2
(∆

(ℓ)
ij )

2 +O((∆
(ℓ)
ij )

3)
)

and

(
1− Ω

(ℓ)
ij

)
log

1− Ω
(ℓ)
ij

1− Ω
(0)
ij

=
(
1− Ω

(0)
ij − Ω

(0)
ij ∆

(ℓ)
ij

)
log
(
1−

Ω
(0)
ij

1− Ω
(0)
ij

∆
(ℓ)
ij

)
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= −Ω
(0)
ij ∆

(ℓ)
ij +

(Ω
(0)
ij )

2

2(1− Ω
(0)
ij )

(∆
(ℓ)
ij )

2 +O
((Ω(0)

ij ∆
(ℓ)
ij )

3

(1− Ω
(0)
ij )

2

)
Combining the above two equations together into (H.4), we arrive at

(I) ≤
∑

0<i<j≤n0

Ω
(0)
ij

(1− Ω
(0)
ij )

(∆
(ℓ)
ij )

2 =
∑

0<i<j≤n0

γ4
nβ

2
n[
(
Γ
(ℓ)
i

)′
Γ
(ℓ)
j ]2

[1− (1− 1/K)βn](1− Ω
(0)
ij )

≤ Cγ4
nβ

2
nn

2
0K

2 ≤ Cc40n0K · K3

β2
nnθ̄

2
≤ Cc40n0K (H.6)

Here we used K3/β2
n(nθ̄

2) ≤ c for some sufficiently small c > 0 and the crude bound

|
(
Γ
(ℓ)
i

)′
Γ
(ℓ)
j | ≤ K, which follows from the definition of Γ(ℓ) in (G.3).

In the sequel, we turn to study (II). Since 0 < i ≤ n0 < j ≤ n, we suppose that j ∈ Cp,ĵ

for some 1 ≤ ĵ ≤ K. Then,

Ω
(0)
ij = θiθj

( 1

K
1′
KPeĵ

)
= θiθj

(
1− (1− 1/K)βn

)
;

and

Ω
(ℓ)
ij = θiθj

( 1
K

1K +
γn√
θi
Γ
(ℓ)
i

)′
Peĵ

= θiθj
(
1− (1− 1/K)βn

)
+ θiθj

γnβn√
θi

(
Γ
(ℓ)
i

)′
eĵ

= Ω
(0)
ij

(
1 + ∆̃

(ℓ)
ij

)
with ∆̃

(ℓ)
ij := (γn/

√
θi) · βn

(
Γ
(ℓ)
i

)′
eĵ/
(
1− (1− 1/K)βn

)
. Similarly, one can easily check that

max
i,j

|∆̃(ℓ)
ij | ≤

Cc0
√
K√

nθ̄θi
≤ Cc0K

−1βn

by our assumption that the first n0 θi’s satisfy θi/θ̄ ≥ err2n. Therefore, in the same way as

(H.6), we can derive

(II) ≤
∑

0<i≤n0<j≤n

Ω
(0)
ij

(1− Ω
(0)
ij )

(∆̃
(ℓ)
ij )

2 =
∑

0<i≤n0,

j∈Cp,ĵ ,1≤ĵ≤K

θjγ
2
nβ

2
n[
(
Γ
(ℓ)
i

)′
eĵ]

2

[1− (1− 1/K)βn](1− Ω
(0)
ij )

≤ C
( n∑

j=n0+1

θj

)
γ2
nβ

2
nn0 ≤ Cc20n0K. (H.7)

61



We now combine (H.6) and (H.7). They imply that

J∑
ℓ=1

KL(Pℓ,P0) ≤ Cc20JnK.

Here C is a constant independent of choice of c0 and n. At the same time, since J ≥

2⌊n0/2⌋×⌊K/2⌋/8, we obtain that log J ≥ cnK for some constant c > 0 not relying on the other

parameters. By properly choosing c0, we can always find a constant ϵ1 ∈ (0, 1/8) such that

Cc20JnK ≤ Cc20/c · J log(J) ≤ (1/8 − ϵ1)J log(J). This finishes the proof of the last claim.

Furthermore, with standard techniques of lower bound analysis (e.g., [9, Theorem 2.5]), we

ultimately obtain the lower bound stated in Theorem G.1.

H.2 Proof of Lemma G.2 and Theorem G.2

Proof of Lemma G.2. Recall Definition 2.2. For such cn, ϱ and a0, we see that if τn(cn, 1/8) ≥

ϱcn, then by definition of τn(cn, 1/8) and ϖn,∫ cn

τn(cn,1/8)

1√
t ∧ 1

dFn(t) +
⌈n ·ϖn⌉

n
√

τn(cn, 1/8) ∧ 1
≥ 1

8
√
cn ∧ 1

F̃n(cn)

≥
√
ϱ

8
√
ϱcn ∧ 1

F̃n(cn) ≥
√
ϱ

8

∫ cn

ϱcn

1√
t ∧ 1

dFn(t) .

By Definition 2.2, we conclude∫ cn

τn(cn,1/8)

1√
t ∧ 1

dFn(t) ≥ ã0

∫ ∞

err2n

1√
t ∧ 1

dFn(t), ã0 :=

√
ϱ

8
a0.

In the case that τn(cn, 1/8) < ρcn, trivially, (G.6) holds with ã0 = a0.

With the help of Lemma G.2, we are able to prove Theorem G.2 below.

Proof of Theorem G.2. Since the least-favorable configurations Π∗ and Π(j)’s are quite sim-

ilar to those for the weighted loss metric, only with slightly different perturbation scales.

Such differences will not affect the regularity conditions. In fact, one can simply verify the

regularity conditions in the same manner as the first part of the proof of Theorem G.1. We

thus conclude the first statement without details.
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Next, for the pairwise difference under unweight loss metric, by definition,

L(Π(j),Π(k)) =
1

n

n∑
i=1

∥π(j)
i − π

(k)
i ∥1 =

1

n

n0∑
i=1

γn√
θi ∧ θ̄

∥e′i
(
Γ(j) − Γ(k)

)
∥1

Note that ∥H(j) −H(k)∥1 ≥ ⌊n0/2⌋ × ⌊K/2⌋/8. At least ⌊n0/2⌋/8 rows of H(j) −H(k) will

contribute to the RHS term above. Since the construction of Γ(j) based on H(j), it is not

hard to see that

γn
n

n0∑
i=1

1√
θi ∧ θ̄

∥e′i
(
Γ(j) − Γ(k)

)
∥1 ≥

γn
n

min
M⊂M0,

|M|=2⌊⌊n0/2⌋/8⌋

∑
i∈M

K − 1√
θi ∧ θ̄

≥ γn
n

min
M⊂M0,

|M|=⌊n0/8⌋−1

∑
i∈M

K − 1√
θi ∧ θ̄

≳
∫

min
{ errn√

t ∧ 1
, 1
}
dFn(t)

where the last step is due to (G.8). This concludes the second statement.

In the end, we briefly state the proof of the KL divergence bound since it is quite analogous

to the counterpart proof of Theorem G.1. We again define (I) and (II) as (H.4)-(H.5), and

bound them separately. Thanks to the slight difference on the perturbation scale, one can

simply mimic the proof of Theorem G.1 and obtain the following bounds under current

settings.

(I) ≤
∑

1≤i<j≤n0

Ω
(0)
ij

(1− Ω
(0)
ij )

(∆
(ℓ)
ij )

2 =
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(0)
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≤ Cγ4
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2
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2 ≤ Cc40n0K · K3

β2
nnθ̄

2
≤ Cc40n0K

and

(II) ≤
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0<i≤n0<j≤n

Ω
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ij

(1− Ω
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ij )

(∆̃
(ℓ)
ij )

2 =
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j∈Cp,ĵ ,1≤ĵ≤K

θi
θi∧θ̄

θjγ
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2
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2
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(0)
ij )

≤ C
( n∑

j=n0+1

θj

)
γ2
nβ

2
nn0 ≤ Cc20n0K.

Here to obtain the two upper bounds above, we used an estimate∑
1≤i≤n0

θi
θi ∧ θ̄

≤
∑

1≤i≤n0

(
1 +

θi
θ̄

)
≤ 2cn0
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for some constant c > 0, where the last step is due to our ordering of θi’s and θi/θ̄ ≤ cn ≤ C

for some constant C > 0, 1 ≤ i ≤ n0, which follows from Definition 2.2 and self-normalization

of Fn(·) (i.e.,
∫
tdFn(t) = 1). As a result,

1

J

J∑
ℓ=1

KL(Pℓ,P0) ≤ Cc20n0K ≤ C̃c20 log J.

Properly choosing sufficiently small c0, we thus complete the third statement. Furthermore,

by standard techniques of lower bound analysis (e.g., [9, Theorem 2.5]), we ultimately obtain

the lower bound stated in Theorem G.2.

H.3 Proof of Theorem G.2 without (G.5)

In this section, we show the proof of Theorem G.2 in the case that (G.5) violates. We will

need a distinct sequence of least-favorable configurations. We still order θi’s as (G.7). But

we define

n0 = max{1 ≤ i ≤ n : θi/θ̄ ≤ err2n}

which means n0 is the total number of ηi’s such that 0 < ηi ≤ err2n. For the remaining n−n0

nodes, we order them in the way that the average degrees of the pure nodes in different

communities of Π∗ are of the same order as before. Π∗ and Γ(0),Γ(1), . . . ,Γ(J)are constructed

in the same way as in (G.2)-(G.3). Different from (G.9), let

Π(j) = Π∗ + c0K
−1Γ(j), for 0 ≤ j ≤ J. (H.8)

First, following the first part of proof of Theorem G.1, we will see that G∗, P ∗G∗ satisfy the

regularity conditions in Condition 2.1. Especially, in this case, we still have

K
∑
i∈Cp,k

θ2i
H0(i, i)

≍
∫ ∞

err2n

tdFn(t) ≥
∫ ∞

0

tdFn(t)− err2n ≍ 1

Furthermore, one can derive

∥c20K−2(Γ(j))′ΘH−1
0 ΘΓ(j)∥ ≤ c20.
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Similarly to the analog in the proof of Theorem G.1 , by choosing properly small c0, we have

the regularity conditions hold for P ∗G(j)’s as well. Since the proofs are quite similar, we

hence omit the details.

Second, under the construction (H.8),

L(Π(j),Π(k)) =
1

n

n∑
i=1

∥π(j)
i − π

(k)
i ∥1 =

c0
nK

n0∑
i=1

∥e′i
(
Γ(j) − Γ(k)

)
∥1

=
4c0
nK

∥H(j) −H(k)∥1

≥ C
n0

n

for some constant C not relying on the other parameters. Notice that n0/n =
∫ err2n
0

dFn(t).

Since (G.5) violates, we thus conclude that

L(Π(j),Π(k)) > C

∫ err2n

0

dFn(t) ≥ C3

∫
min{ errn√

t ∧ 1
, 1}dFn(t). (H.9)

for some constant C3 > 0. Third, we claim the KL divergence in the same way as previously,

KL(Pℓ,P0) = (I) + (II) and (I), (II) are defined in (H.4)-(H.5). By our least-favorable

configurations (H.8), we bound

(I) ≤
∑

1≤i<j≤n0

Ω
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ij
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(0)
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(∆
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ij )

2 =
∑

1≤i<j≤n0

θiθjc
4
0K

−4β2
n[
(
Γ
(ℓ)
i

)′
Γ
(ℓ)
j ]2

[1− (1− 1/K)βn](1− Ω
(0)
ij )

≤ Cc40

( n0∑
i=1

θi

)2
β2
nK
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β2
nnθ̄

2
≤ Cc40n0K

where in this case ∆
(ℓ)
ij = c20K

−2βn

(
Γ
(ℓ)
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)′
Γ
(ℓ)
j /(1 − (1 − 1/K)βn), and we used the fact that

θi ≤ K3β−2
n /(nθ̄) for all 1 ≤ i ≤ n0 to obtain the second inequality on the second row; and

(II) ≤
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0<i≤n0<j≤n

Ω
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ij

(1− Ω
(0)
ij )

(∆̃
(ℓ)
ij )

2 =
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θiθjc
2
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−2β2
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2
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(0)
ij )

≤ Cc20

( n0∑
i=1

θi

)( n∑
j=n0+1

θj

)
K−2β2

n ≤ Cc20n0K

where ∆̃
(ℓ)
ij := c0K

−1 · βn

(
Γ
(ℓ)
i

)′
eĵ/
(
1 − (1 − 1/K)βn

)
for this case. Combining the upper

bounds for (I) and (II), we finally get∑
1≤ℓ≤J

KL(Pℓ,P0) ≤ Cc20Jn0K ≤ (1/8− ϵ3)J log(J) (H.10)
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for a constant ϵ3 ∈ (0, 1/8), by choosing sufficiently small c0 and noting n0K ≍ log(J).

In conclusion, we proved the analogs of the three claims in Theorem G.2 when (G.5)

violates. Further by standard techniques of lower bound analysis (e.g., [9, Theorem 2.5]),

we ultimately obtain the lower bound.

H.4 Extension to P -specific lower bounds

In this subsection, we study the P -specific lower bounds of Lw(Π̂,Π) and L(Π̂,Π) for arbi-

trary P if one of the following condition holds as n → ∞:

(a) (K,P ) are fixed;

(b) (K,P ) can depend on n, but K ≤ C and P1K ∝ 1K ;

(c) (K,P ) can depend on n, and K can be unbounded, but P1K ∝ 1K and |λ2(P )| ≤

Cβn = o(1).

Since the proofs are quite analogous to the case of the special P in the manuscript, in the

sequel, we point out the key differences compared to the proofs for Theorems G.1-G.2, and

shortly state how to adapt the proofs in the previous subsections to the current cases.

(a) If K = K0 and P = P0, for a fixed integer K0 ≥ 2 and a fixed matrix P0, we can

simplify the construction of Γ(j)’s and hence the configurations Π(j)’s. More specifically,

we apply Lemma G.1 to n0 to get ω(0), ω(1), . . . , ω(J), where J ≥ 2n0/8. We insert ω(j)’s

into n-dim vectors γ(j)’s such that

(γ(j))′ =
(
(ω(j))′,01×(n−n0)

)
. (H.11)

Let η ∈ RK0 be a nonzero vector such that

η′1K0 = 0, η′P01K0 = 0, ∥η∥1 ≍ K0 (H.12)

Such η always exists by solving certain linear system. Based on these notations, we re-

define Γ(j) = γ(j)η′ and re-define Π(j) correspondingly as (G.4) for weighted loss, (G.9)
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or (H.8) for unweighted loss. The verifications of regularity conditions and pairwise

difference between the configurations can be claimed in the same way as in the proofs

of Theorems G.1-G.2. The most distinguishing part appears in the KL divergence.

Especially, for 0 < i < j ≤ n0,

Ω
(ℓ)
ij = Ω

(0)
ij

(
1 + ∆

(ℓ)
ij

)
, ∆

(ℓ)
ij ∝ γ(ℓ)(i)γ(ℓ)(j)η′Pη (H.13)

where the coefficients we did not specify for ∆ij’s rely on the perturbation scale we

take from (G.4), or (G.9), or (H.8). Similarly for 0 < i ≤ n0 < j ≤ n, if j ∈ Cp,ĵ,

Ω
(ℓ)
ij = Ω

(0)
ij

(
1 + ∆̃

(ℓ)
ij

)
, ∆̃

(ℓ)
ij ∝ γ(ℓ)(i)η′Peĵ. (H.14)

Nevertheless, in this case, η′Pη ≍ 1 and |η′Peĵ| ≤ C. In particular, βn ≍ 1. All of

these facts lead to similar derivations on upper bounds of (I) and (II) (see definitions

in (H.4)-(H.5)). One can claim the desired upper bounded for KL divergence for the

least-favorable configurations we constructed here. One can conclude the proof by

mimicking the proofs of Theorems G.1-G.2.

(b) If both (K,P ) may depend on n, but they satisfy that K ≤ C and P1K ∝ 1K . We

take the same simplified least-favorable configurations as in Case (a). The regularity

conditions and pairwise difference can be claimed likewisely. 1K is an eigenvector of

P . We can take special η, the eigenvector associated to the smallest eigenvalue (in

magnitude) of P . In (H.13) and (H.14), we have η′Pη ≍ βn and |η′Peĵ| ≤ Cβn, which

fit the arguments in the proofs of KL divergence for Theorems G.1-G.2. Thereby, we

can prove the KL divergence in the same way as the proofs of Theorems G.1-G.2.

(c) If both (K,P ) may depend on n and K can be unbounded, but P1K ∝ 1K and

|λ2(P )| ≤ Cβn = o(1). We adopt the same least-favorable configurations in Section G

correspondingly to Theorems G.1-G.2. The different parts only appear in the quantities

involving P . Notice that in this case, 1K is the eigenvector associated to the largest
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eigenvalue of P ,

(Γ
(ℓ)
i )′P1K ∝ (Γ

(ℓ)
i )′1K = 0, (Γ

(ℓ)
i )′PΓ

(ℓ)
j ≍ βn (H.15)

since the other eigenvalues of P are asymptotically of order βn. These two estimates

exactly coincide with the ones in the proofs of Theorems G.1-G.2. Then, all the

arguments in the proofs of Theorems G.1-G.2 can be directly applied in this setting.

We thereby conclude our proof.

I Analysis for a general b

In Section 3.2, we explained the rationale of choosing b = 1/2. An important claim there is

that for a general b, subject to a column permutation of Π̂, it holds simultaneously that

∥π̂i − πi∥1 ≲
C
√

log(n)√
nθiθ̄

· δ(b, Fn), where δ(b, Fn) =

√∫
t3−4bdFn(t)∫

t2−2bdFn(t)
. (I.1)

In this section, we discuss why (I.1) is true.

Let H be the same as in (9), and let H0 = EH. Given a fixed b ≥ 0, let

L = H−bAH−b, L0 = H−b
0 ΩH−b

0 .

For 1 ≤ k ≤ K, let λ̂k be the kth largest eigenvalue (in magnitude) of L, and let ξ̂k ∈ Rn be

the corresponding eigenvector. Similarly, let λk be the kth largest eigenvalue (in magnitude)

of L0, and let ξk ∈ Rn be the corresponding eigenvector. From the proof of Theorem 4.2, we

can see that the node-wise error ∥π̂i − πi∥1 is closely related to the following quantity:

ERi := max
1≤k≤K

{
|ξ̂k(i)− ξk(i)|

ξ1(i)

}
, (I.2)

subject to a rotation matrixO1 ∈ R(K−1)×(K−1) applied to the columns of Ξ̂1 = [ξ̂2, ξ̂3, . . . , ξ̂K ].

To study ERi, we introduce a proxy to ξ̂k. Note that λ̂kξ̂k = H−bAH−bξ̂k, from the definition

of eigenvalues and eigenvectors. It implies ξ̂k = λ̂−1
k H−bAH−bξ̂k. We replace (H, ξ̂k) on the

68



right hand side by (H0, ξk) to obtain

ξ̂∗k := λ−1
k H−b

0 AH−b
0 ξk, 1 ≤ k ≤ K. (I.3)

We then similarly define

ER∗
i := max

1≤k≤K

{
|ξ̂∗k(i)− ξk(i)|

ξ1(i)

}
. (I.4)

The difference between ER∗
i and ERi is governed by ζ := ξ̂∗1 − ξ̂1 ∈ Rn. How to control the

effect of ζ is the central topic of entry-wise eigenvector analysis. In Section 5 and Section E,

we give rigorous analysis in the case of b = 1/2. The analysis of a general b follows a similar

vein and is omitted here (the regularity conditions may be slightly different). From now on,

we assume that |ERi − ER∗
i | is negligible and focus on studying ER∗

i in (I.4).

Lemma I.1. Consider the DCMM model in (1)-(2). Write G0 = [tr(ΘM2
0Θ)]−1Π′ΘM2

0ΘΠ

where M0 = H−b
0 . As n → ∞, suppose K is fixed and PG0 converges to a fixed irreducible

non-singular matrix that has distinct eigenvalues. Denote by θmax and θmin the maximum

and minimum of θi’s. We assume nθ̄θmin/ log(n) → ∞ and set τ = 0 in the definition of H

(see (9)). Let ξ̂∗1 , . . . , ξ̂
∗
K be defined as in (I.3). With probability 1 − o(n−3), simultaneously

for all 1 ≤ i ≤ n,

ER∗
i ≤ C

(√
log(n)

θi
×

√∑n
j=1 θ

3−4b
j∑n

j=1 θ
2−2b
j

+
log(n)

θi
× θ1−2b

max∑n
j=1 θ

2−2b
j

)
. (I.5)

We have made some strong assumptions in Lemma I.1, e.g., K is fixed, PG0 converges

to a fixed matrix with distinct eigenvalues, and nθ̄θmin/ log(n) → ∞. These assumptions are

only for convenience, as we want to avoid re-defining those regularity conditions in Section 2.2

for a general b. However, there is no technical hurdle of extending Lemma I.1 to allow for

weaker conditions similar to those in Section 2.2.

We now look into the right hand side of (I.5) and write it as ER∗
i ≤ C(ω∗

i + ω̃i), where ω
∗
i

and ω̃i represent the two terms in the brackets, respectively. By Definition 2.1,
∑n

i=1 θ
γ
i =
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θ̄γ
∫
tγdFn(t), for any γ ∈ R. Consequently,

ω∗
i =

√
log(n)

θi
×

√∑n
j=1 θ

3−4b
j∑n

j=1 θ
2−2b
j

=
C
√
log(n)√
nθiθ̄

×

√∫
t3−4bdFn(t)∫
t2−2bdFn(t)︸ ︷︷ ︸

δ(b,Fn)

. (I.6)

In addition, note that
√∑

j θ
3−4b
j ≤

√
θ2−4b
max

∑
j θj ≤ θ1−2b

max

√
nθ̄. We then obtain:

ω̃i

ω∗
i

=

√
θi√

log(n)
×

√∑n
j=1 θ

3−4b
j

θ1−2b
max

≤
√
nθ̄θi√
log(n)

. (I.7)

As long as nθ̄θi/ log(n) ≥ C, ω̃i is dominated by ω∗
i , simultaneously for all fixed b. Further-

more, ω∗
i is minimized at b = 1/2. It suggests that b = 1/2 is the universally best choice (as

claimed in Section 3.2 of the main text).

I.1 Proof of Lemma I.1

We recall that ξ̂∗k is a proxy to ξk. It is tedious to bound the difference between ξ̂∗k and ξk and

handle the rotation matrix O1 ∈ R(K−1)×(K−1). In the special case of b = 1/2, such analysis

is detailed in Section 5 and Section E. For a general b, we skip this step but only study ξ̂∗k.

Since the statement of Lemma I.1 is only about ξ̂∗k, the proof is much shorter.

Recall the proxy ξ̂∗k := λ−1
k H−b

0 AH−b
0 ξk, where H0(i, i) = Edi ≍ nθ̄θi. Under the assump-

tions on G0 and PG0, it can be observed that the eigenvalues λ1, · · · , λK are well separated

by a order of
∑n

i=1 θ
2−2b
i /(nθ̄)2b and

|λk| ≍
n∑

j=1

θ2−2b
j /(nθ̄)2b for all 1 ≤ k ≤ K.

In the same manner to prove Lemma D.2, under the assumptions in Lemma I.1, we can also

claim that

ξ1(i) ≍
θ1−b
i√∑n
j=1 θ

2−2b
i

, max
1≤k≤K

|ξk(i)| ≤ C
θ1−b
i√∑n
j=1 θ

2−2b
i
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by replacing H0 by M2
0 . We skip the details for simplicity. Based on the above estimates,

we can derive

∣∣ξ̂∗k(i)− ξk(i)
∣∣ ≲ (nθ̄)2bM0(i, i)∑n

j=1 θ
2−2b
j

n∑
j=1

(
A(i, j)− Ω(i, j)

)
M0(j, j)ξk(j)

≲
(nθ̄)b(∑n

j=1 θ
2−2b
j

)
θbi

n∑
j ̸=i

W (i, j)M0(j, j)ξk(j) +
θ3−3b
i(∑n

j=1 θ
2−2b
j

) 3
2

. (I.8)

for any fixed 1 ≤ k ≤ K. To proceed, we apply Bernstein inequality (i.e., Theorem D.1) to

the summation on the RHS above and get

n∑
j ̸=i

W (i, j)M0(j, j)ξk(j)

≤ C

√√√√ n∑
j=1

θiθj(nθ̄θj)−2b
θ2−2b
j∑n

j=1 θ
2−2b
j

· log(n) + Cmax
j

∣∣∣∣(nθ̄θj)−b
θ1−b
j√∑n
j=1 θ

2−2b
j

∣∣∣∣ · log(n)
≤ C

√
θi log(n)

(
∑n

j=1 θ
3−4b
j )1/2

(nθ̄)b(
∑n

j=1 θ
2−2b
j )1/2

+
Cmaxj θ

1−2b
j

(nθ̄)b(
∑n

j=1 θ
2−2b
j )1/2

· log(n)

with probability at least 1 − o(n−3). Substituting the above inequality back into (I.8),

together with the estimate of ξ1(i), we obtain that

max1≤k≤K

∣∣ξ̂∗k(i)− ξk(i)
∣∣

ξ1(i)
≲

√
log(n)√
θi

(∑n
j=1 θ

3−4b
j

)1/2∑n
j=1 θ

2−2b
j

+
log n

θi

maxj θ
1−2b
j∑n

j=1 θ
2−2b
j

with probability at least 1− o(n−4). By combining this inequality for all i, we conclude our

proof.

J Relaxed condition on P

In Section 2.2, we introduced one regularity condition on P in Condition 2.1 (b). Specifically,

we assume that

min
1≤k≤K

{ ∑
1≤ℓ≤K

P (k, ℓ)
}
≥ c2K.

71



As we explained in the main context of Section 2.2, this condition can be relaxed to

min
1≤k≤K

{ ∑
1≤ℓ≤K

P (k, ℓ)
}
≥ c2αn, where αn ∈ [1, K]. (J.1)

Our theory still holds under certain modification of the regularity conditions in this case.

We discuss more details in this section.

Let αn ∈ [1, K]. We re-define

G = αn · Π′ΘD−1
θ ΘΠ (J.2)

The following theorem holds.

Theorem J.1. Consider the DCMM model (1)-(2), where Condition 2.1(a), the first in-

equality of (b), and (c) are satisfied for G defined in (J.2). In addition, suppose (J.1)

holds and K2αn log(n)/(nθ̄
2β2

n) → 0 as n → ∞. With probability 1 − o(n−3), there exists

ω ∈ {1,−1} and an orthogonal matrix O1 ∈ R(K−1)×(K−1) such that simultaneously for all

1 ≤ i ≤ n,

|ωξ̂1(i)− ξ1(i)| ≤ C

√
K2θi log(n)

n2θ̄3αn

(
1 +

√
log(n)

nθ̄θi(αn/K)

)
, (J.3)

∥e′i(Ξ̂1O1 − Ξ1)∥ ≤ C

√
K2αnθi log(n)

n2θ̄3β2
n

(
1 +

√
log(n)

nθ̄θi(αn/K)

)
. (J.4)

Based on the above theorem, we have the node-wise error and rate of MSL below.

Theorem J.2. Suppose the assumptions in Theorem J.1 hold, and additionally, Condi-

tion 2.1(d) is satisfied. Let Π̂ be the output of Algorithm 1. With probability 1 − o(n−3),

there exists a permutation T on {1, 2, . . . , K}, such that simultaneously for all 1 ≤ i ≤ n,

∥T π̂i − πi∥1 ≤ Cmin

{√
K2αn log(n)

nθ̄(θ̄ ∧ θi)β2
n

, 1

}
, (J.5)

In addition, let L(Π̂,Π) be the ℓ1-loss in (5). Then,

EL(Π̂,Π) ≤ C
√

log(n) · 1
n

n∑
i=1

min

{
K
√
αn

βn

√
nθ̄(θ̄ ∧ θi)

, 1

}
.
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