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This document contains Appendix A to F. In Appendix A, we provide the full algorithm

of training NNME. In Appendix B and C, we compare different neural network structures

for measurement error models and different prior models for X in NNME respectively. In

Appendix D, we show the sensitivity of NNME to the depth of neural networks. In Appendix

E, we introduce kriging methods for Gaussian process regression. Finally, in Appendix F, we

compare the performances of different methods in an example of two-dimensional functions

generated from a neural network.

APPENDIX A: THE ALGORITHM OF TRAINING NNME

We use a gradient-based algorithm, called Adam (Kingma and Ba, 2014) to solve (14).

Given initial values (θ(0), γ(0), φ(0)) and m(0) = v(0) = 0, let g(t) =∇Q(θ(t), γ(t), φ(t)), the

update at iteration t is

m(t+1) = α1m
(t) + (1− α1)g

(t)

v(t+1) = α2v
(t) + (1− α2)(g

(t) � g(t))

(θ(t+1), γ(t+1), φ(t+1)) = (θ(t), γ(t), φ(t))− αt ·m(t+1)/(
√
v(t+1) + ε(t+1))

(A.1)

where αt > 0 is the step size at iteration t, often called the learning rate. We use the adaptive

learning rate suggested by Kingma and Ba (2014), which is αt = α0

√
1− αt+1

2 /(1− αt+1
1 ),

for some default parameters (α0, α1, α2). ε(t+1) = ε ·
√

1− αt+1
2 , for default parameter ε. All

the vector operations are element-wise.

We now provide a more detailed explanation of NNME. Note that the calculations in Sec-

tions 4.2-4.3 are for n= 1. For a general n, writew(n) = {wi}ni=1 and y(n) = {yi}ni=1. At each

epoch, we draw samples {zik}1≤i≤n,1≤k≤K IID from N (0, Id) and obtain xik = x(φ, zik).

Similar to (15) and (19), we have

∇̂θ,γQ(θ, γ,φ|w(n), y(n)) =

n∑
i=1

K∑
k=1

βik∑K
`=1 βi`

∇θ,γ log

(
pθ,γ(wi, yi, x(φ, zik))

qφ(x(φ, zik)|wi, yi)

)
,

(A.2)

∇̂φQ(θ, γ,φ|w(n), y(n)) =

n∑
i=1

K∑
k=1

(
βik∑K
`=1 βi`

)2 [ ∂

∂xik
log

(
pθ,γ(wi, yi, xik)

qφ(xik|wi, yi)

)]
∂

∂φ
x(φ, zik),
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Algorithm 1 NNME

Data: Training data {wi, yi}ni=1 and pre-specified values {xi}mi=1 for evaluating fθ(x).
Input: The density pU (·) of measurement error, the neural network structure T , parameters (λ0, λ1, λ2),
number of epochs Max_Epoch, and number of importance samples K .
Pre-processing: Standardize y and each covariate of w.
Initialization: Pre-train networks for fθ and gγ using {wi, yi}ni=1 as if there is no measurement error. Initialize
(θ, γ) from pre-training, φ randomly from normal distribution, and σ2 by the MSE from pre-training.

for epoch = 1 to Max_Epoch do
• Draw Monte Carlo samples {zik}1≤i≤n,1≤k≤K IID from N (0, Id).

• Compute the gradients ∇̂θQ, ∇̂γQ, and ∇̂φQ as in (A.2). Let ∇̂θQ∗ = ∇̂θQ+ 2λ0θ,

∇̂γQ∗ = ∇̂γQ+ 2λ2γ and ∇̂φQ∗ = ∇̂φQ+ 2λ1φ (to account for the L2 penalty).
• Update (θ, γ,φ) via gradient ascent as in (A.1).
• Update σ2 by (20) using the training samples.

end for
Output: (θ̂, γ̂, φ̂) and the estimated values {f

θ̂
(xi)}mi=1.

where βik = pθ,γ(wi, yi, xik)/qφ(xik|wi, yi) and the expressions of pθ,γ(w,y,x) and qφ(x|w,y)

are given by (6) and (13), respectively. The gradient computation involves calculation of

∇θfθ , ∇γgγ , and (∇φµφ,∇φΣφ), which are computed via the back propagation algorithm

(McClelland, Rumelhart and Group, 1986; Hecht-Nielsen, 1992). We also use the L2-

regularization trick to reduce numerical instability. We add a penalty λ0‖θ‖2 + λ1‖φ‖2 +

λ2‖γ‖2 to the objective function. It is similar in spirit to the ridge regression and helps sta-

bilize the numerical performance. This L2 penalty changes nothing of the gradient ascent

algorithm except for an additional term to each of the gradients (∇θ,∇φ,∇γ); see Step 2 in

the for loop of Algorithm 1. The noise variance σ2, which is assumed known in derivations

of Sections 4.2-4.3, can be estimated along with training the neural network.

Regarding the input of Algorithm 1, the measurement error density pU (·) is supplied by

the user, as in other measurement error methods. In the literature, it is common to assume

that the measurement errors followN (0, σ20Id), where σ20 is estimated from other data source

or determined by prior knowledge. By default, we set the number of Monte Carlo samples

as K = 50 and the maximum number of epochs as Max_Epoch = 500. The neural network

structure T including the number of hidden layers of encoder and decoder and the L2-penalty

coefficients (λ0, λ1, λ2) are chosen by a 5-fold cross validation. The validation loss is cal-

culated as follows: for each test sample (wi, yi), we draw {zik}Kk=1 IID from N (0, Id) and

compute xik and βik by plugging in the estimated parameters (θ̂, γ̂, φ̂) and the testing (wi, yi).

These numbers are then plugged into (20) to give the validation loss. The implementation of

gradient ascent is via Adam, with batch size equal to min{512, n}. Adam requires four pa-

rameters (α0, α1, α2, ε) to determine the learning rate (see the paragraph below (A.1)), where

we set as the default values as (0.001,0.9,0.999,10−8).

To initialize the neural network representing the regression function fθ , we pre-train it as

if there is no measurement error. When the measurement error is small, the fitted function

ignoring measurement error would be close to the true function. In pre-training, the loss func-

tion is the mean squared error (MSE) plus an L2 penalization term, λ0‖θ‖2. We also pre-train

the neural network gγ representing the density of X ignoring measurement error. The loss
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function is the log-likelihood of {wi} with L2 penalization term λ2‖γ‖2. As the neural net-

work has many parameters and the objective function is non-convex, we randomly initialize

the parameters five times and select the neural network with the smallest training error during

pre-training. This provides a good starting point of NNME, and prevents NNME to be trapped

into bad local modes.

APPENDIX B: VARIATIONAL INFERENCE VERSUS MAXIMIZING JOINT LIKELIHOOD

The neural network method we propose for measurement error models adopts the vari-

ational inference framework, where parameters are estimated by maximizing an evidence

lower bound (ELBO) of the marginal log-likelihood. In this appendix we consider a different

approach, that is, maximizing the joint likelihood of {(xi,wi, yi)}ni=1, with respect to both

model parameters and unobserved values of xi’s (MJL, henceforth). See Section 3.2. The

neural network structure that implements this estimator is shown in Figure A1.

Fig A1: The neural network structure for the maximizing joint likelihood framework.

In comparison, the variational inference framework approximates the posterior distribution

of x by N (µφ(w,y),Σφ(w,y)) and maximizes an integral with respect to this distribution,

which serves as a lower bound of the marginal log-likelihood. See equation (8).

We compare the “maximizing joint likelihood” framework and the variational inference

framework. For a fair comparison, we use the basic variational inference approach, where the

number of importance samples is K = 1. It corresponds to the method VAE in Figure 4. We

solve both the MJL and VAE by the gradient ascent algorithm, where the gradient for MJL

is computed directly, the gradient for VAE is estimated as in (12) with K = 1, and the step

size for both is chosen by Adam (Kingma and Ba, 2014). The noise variance σ2 is optimized

together with (θ,φ), similarly as in Section 4.4.

We consider the simulation setting 1 of Section 4.4, where f(x) = sin(πx) is the true

regression function. Figure A2 (a) suggests that the variational inference framework is better

than the “maximizing joint likelihood” framework, especially when n is small or moderate.

Intuitively the MJL framework “imputes” the “missing data" to maximize the joint likelihood,

whereas the VAE approaches marginalizing the “missing data” like in the EM algorithm, but

based on a slightly incorrect distribution. In Figure A2 (b) we plot the estimated curves by

MJL and VAE, where n= 5000 and σ0 = 0.1. At each xwhere f(x) reaches a local maximum
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(a) Simulation results of NN, MJL and VAE.

(b) Example of simulated data and fitted results. Left: data. Right: fitted curves.

Fig A2: Comparison of maximizing joint likelihood (MJL) and variational inference (VAE,
K=1). Settings are the same as in setting 1 of Section 4.4. In (a), Y-axis: box plots of ISE
based on 50 repetitions, X-axis: number of samples, the dash line is the median ISE of VAE
when n= 5000.

or minimum, the estimated curve by MJL has a bias in the neighborhood of x. This is because

that MJL fails to take into account the uncertainty of X given (W,Y ). Intuitively, f̂(x) in

MJL is determined only by those (wi, yi) such that hφ(wi, yi) ≈ x, while f̂(x) in VAE is

determined by more (wi, yi) corresponding to a wider range of hφ(wi, yi). As a result, when

f(x) reaches a local minimum or maximum, it is likely to have extreme values of yi, and even

a few such yi can drag f̂(x) to be extreme in MJL; this will not happen in VAE because an

individual value of yi is less influential.

APPENDIX C: COMPARISON OF THE PRIOR MODELS FOR X IN NNME

The proposed method, NNME, is flexible to accommodate different kinds of models (prior

distributions) for X . In the example of Section 3.2, we tested 4 variants of NNME, where

the model for X is either the correct parametric model (2-component Gaussian mixture), or a

misspecified parametric model (t-distribution, or 4-component Gaussian mixture), or a neural

network model (NICE). For NICE, we use 3 transformations and each transformation gj is

represented by a FNN with 1 hidden layer, 32 nodes per layer and ReLU as the activation

function.

The data generation in this experiment is as follows: fixing β = 16, we generate f from a

2-dimensional Gaussian processes as in (A.3). In detail, we first generate {xi}1≤i≤n from the

distribution of X , which is a 2-component mixture of multivariate Gaussian distributions as
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Fig A3: Comparison of different models for X in NNME. f generated from a 2-dimensional
Gaussian process (see example in Section 3.2). Y-axis: ISE. X-axis: sample size n.

in (9). Next, we construct an n×n covariance matrix Σ, with Σij = exp(−β‖xi−xj‖2), and

then generate (f(x1), f(x2), . . . , f(xn)) from N (0,Σ).

In Section 3.2 we have reported the results for a few values of model parameters. Here

we investigate more settings. We let the sample size n range in {1000,2000,4000,8000}
and let the measurement error standard deviation range in {0.02,0.05,0.1,0.2}. We also vary

the neural network structures: Let (`1, `2) be the number of hidden layers of the two FNNs

for representing fθ and qφ, respectively. We let (`1, `2) range in {(6,3), (6,5), (9,3), (9,5)}.
The performance is measured by the integrated squared error (ISE) in the region ([−1,0.2]×
[−1,0.5]) ∪ ([−0.5,1]× [−0.2,1]); according to the distribution of X in (9), the probability

of xi’s falling outside this region is negligible, and so we restrict the error evaluation to be in

this region. The results are shown in Figure A3, demonstrating that NNME performs robustly

with different choices of the X model when n is small, but shows superiority with NICE or

4-component Gaussian mixture when n is large.

APPENDIX D: SENSITIVITY TO THE DEPTH OF NEURAL NETWORKS

As we stated in Section 1, the neural network approach to measurement error models is

relatively insensitive to the choice of tuning parameters. Main tuning parameters include the

depth of the two FNNs for representing f and the proposal distribution of X . We now inves-

tigate the sensitivity of NNME to the depth of neural networks.

We consider a simulation setting where the xi’s are drawn uniformly from [−1,1]2 and

the f(xi)’s are generated from a Gaussian process as in (A.3) with β = 16 (see Section 5.3

or Appendix C for details about generating data from a Gaussian process). The measurement

errors are drawn from N(0, σ20I2). For a set of values of (n,σ0), we study the performance

of NNME by varying the depth of neural networks. We place `1 hidden layers in the decoder

(for representing f ) and `2 hidden layers in the encoder (for the proposal distribution of X),
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X) has 4 layers (3 hidden layers); other names are similar. Y-axis: ISE, x-axis: sample size.
From top to bottom, σ0 is 0.02, 0.05, 0.1, and 0.2, respectively.

where each layer has 32 nodes with ReLU activation functions; the encoder has an additional

layer with linear activation functions. We let `1 range in {3,6,9} and `2 range in {0,3,5}.
The integrated squared error (ISE) is evaluate using a 72× 72 grid.

The results are shown in Figure A4. For most values of (n,σ0), as long as the depth of

neural networks satisfies `1 ≥ 6 and `2 ≥ 3, the performance is reasonably good. The only

exceptions are when the sample size is small (e.g., n= 500) or when the measurement error

is large (e.g., σ0 = 0.2). In such cases, we will see that a procedure like cross validation can

select the appropriate number of layers.

We then investigate the selection of depth of neural networks by two criteria. The first

is the validation loss we eventually used, which is the weighted residual sum of squares in

(20), evaluated on the validation data. To compute this quantity, we need to use estimated

parameters from the training data and draw new Monte Carlo samples z1:K ; see Section 4.4

for details. We call this criterion the “estimated RSS.” The second is the loss function (14) in

NNME algorithm, evaluated on the validation data. It is an evidence lower bound (ELBO) of

the marginal log-likelihood. Again, to obtain an approximation to this quantity, we need to

use the fitted parameters from the training data and also draw new Monte Carlo samples z1:K .

We call it the “estimated ELBO.” For both criteria, we calculate the 5-fold cross-validation

version. Figure A5 shows the values for different choices of depth of neural networks.

We compare these criteria with the true ISE in Figure A4. As we change the depth of

neural networks, the trend in the estimated RSS roughly matches with the trend in the true

ISE. Especially, as we mentioned above, if the sample size is small (e.g., n = 500) or the

measurement error is large (e.g., σ0 = 0.2 and n≤ 1000), it is not always good to increase the
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(a) Estimated RSS on validation data.
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Fig A5: Selection of depth of neural networks by different criteria.

depth of neural networks. In these cases, the cross-validation procedure, with the estimated

RSS as the validation loss, can successfully guide us to the appropriate choice of depth. The

other criterion, the estimated ELBO, is a lot more sensitive to the parameters φ and tends to

select a larger number of layers for the encoder. In comparison, the estimated RSS we used

in Section 4.4 is a better option for the validation loss.

APPENDIX E: GAUSSIAN PROCESS REGRESSION AND KRIGING METHODS

In our simulations, we include the kriging methods for Gaussian process regression, mainly

for that they are fast to compute for d > 1. Gaussian process regression assumes that f(x) is

randomly generated from a stationary Gaussian process (SGP). It is common to use a radial

basis exponential kernel in the SGP, i.e.,

(A.3) Y = f(X) + ε, f(x)∼ SGP(0,K(·, ·)), K(x, y) = τ2e−β‖x−y‖
2

, ε∼N (0, σ2In).

With no measurement error, f̂(x) =K(x,xn)(K(xn,xn) + σ2In)−1yn is the the best linear

unbiased predictor, where yn = {yi}1≤i≤n, K(x,xn) = {K(x,xi)}1≤i≤n, and K(xn,xn) is

a n× n matrix whose (i, j)th entry is K(xi, xj). The kriging method first estimates (τ,β,σ)

by maximizing the likelihood and then plugs these parameters into the best linear unbiased

predictor. In the presence of measurement errors, Cressie and Kornak (2003) proposed a vari-

ant of the best linear unbiased predictor by replacing K(x,xn) by K̃∗(x,wn) and K(xn,xn)

by K̃(wn,wn), where

K̃(wi,wj) =

τ
2
exp
(
− β

1+4βσ2
0
‖wi−wj‖2

)
(1+4βσ2

0)
d/2 , wi 6=wj ,

τ2, wi =wj ;

K̃∗(x,wi) = τ2
exp(− β

1+βσ2
0
‖x−wi‖2)

(1 + βσ20)d/2
.

Same as before, σ20 is the variance of measurement errors. The estimator of f(x) is a plug-in

version where (τ,β,σ) are estimated by maximizing a pseudo-likelihood. We include both
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Fig A6: Example 3 in Section 5 (two-dimensional functions generated from Gaussian pro-
cesses), with measurement error σ0 = 0.1, and their estimates. The dashed lines are contours
of the density of the training samples. The function value is indicated by the color.

the kriging method that accounts for measurement errors (abbreviated as “KALE”) and the

standard kriging for error-free cases (abbreviated as “KILE”).

In Example 3 of Section 5, we consider a setting where f is the maximum of two Gaus-

sian processes in R2. An example of the realized f(x) and estimated functions is shown in

Figure A6.

APPENDIX F: AN EXAMPLE OF TWO-DIMENSIONAL FUNCTIONS GENERATED FROM

A NEURAL NETWORK

Example 4: Two-dimensional functions generated from a neural network. We let f :

[−1,1]2 → R be defined by a neural network with 5 fully connected layers, 32 nodes per

layer, and ReLU as activation function. The weights and thresholds in the neural network are

randomly sampled from N (0,1) in the first layer and N (0,0.22) in the rest of layers. One

realization of f(x) is shown in Figure A7 (a).

Given f(x), we generate {xi}ni=1 uniformly from [−1,1]2. Next, we generate wi’s and yi’s

according to model (4), where the measurement error has a multivariate normal distribution

N (0, σ20I2). We fix σ = 0.2 and let σ0 takes values in {0.1,0.2}. We also vary the sample size

by letting n range in {500,1000,2000}. For NNME, we let the decoder network have 5 layers
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TABLE A1
Example 4 (two-dimensional function from a neural network). The ISE evaluated at a 72× 72 uniform grid, as

well as its standard deviation (in brackets), is shown.

σ0 = 0.1, σ = 0.2 σ0 = 0.2, σ = 0.2

n=500 n=1000 n=2000 n=500 n=1000 n=2000

KILE .0071 (.0006) .0052 (.0005) .0041 (.0004) .0170 (.0020) .0148 (.0017) .0133 (.0015)
KALE .0068 (.0005) .0049 (.0004) .0037 (.0004) .0143 (.0017) .0115 (.0012) .0096 (.0010)

NN .0079 (.0007) .0051 (.0004) .0042 (.0004) .0187 (.0024) .0145 (.0018) .0136 (.0018)
NNME .0070 (.0003) .0046 (.0003) .0034 (.0003) .0135 (.0010) .0091 (.0008) .0074 (.0008)
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(c) NNME estimates with different (n,σ0).

Fig A7: Example 4 in Section 5 (two-dimensional function generated from a neural network).
In (b)-(c), the three panels from left to right correspond to (n,σ0) = (500,0.2), (1000,0.2),
and (2000,0.1)

and the encoder network have 2 layers, where each layer has 32 nodes; we use a parametric

model for X , assuming that all the coordinates of X are independently distributed as 2 · t3.

NN has only a decoder network, which also consists of 5 layers with 32 nodes per layer. We

measure the performance of each method by the ISE, evaluated on a 72×72 uniform grid. The

ISE averaged over 10 repetitions is reported in Table A1. It suggests that NNME has the best

or nearly the best performances in all settings. The two methods ignoring measurement errors,

NN and KILE, underperform their respective counterpart. KALE has a similar performance

as NNME when σ0 = 0.1, but its performance is inferior to NNME’s when σ0 = 0.2.
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