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A Identifiability and Regularity Conditions

We prove the identifiability of DCMM and discuss Assumption 4 (where we give sufficient

conditions for this assumption to hold).

A.1 The Identifiability of DCMM

The following proposition shows that the DCMM model is identifiable if each community

has at least one pure node.

Proposition A.1 (Identifiability). Consider a DCMM model as in (2.2), where P has unit

diagonals. When each community has at least one pure node, the model is identifiable: For

eligible (Θ,Π, P ) and (Θ̃, Π̃, P̃ ), if ΘΠPΠ′Θ = Θ̃Π̃P̃ Π̃′Θ̃, then Θ = Θ̃, Π = Π̃, and P = P̃ .

Proof of Proposition A.1: Let G = K∥θ∥−2Π′Θ2Π be the same as in Section 3. We consider

two cases: (1) PG is an irreducible matrix. (2) PG is a reducible matrix.

First, we study Case (1). When PG is irreducible, the matrix R is well-defined (see

Lemma 2.1). Additionally, by Lemma 2.1, there exists the Ideal Simplex, which is uniquely

determined by the eigenvectors ξ1, ξ2, . . . , ξK of Ω. For either (Θ,Π, P ) or (Θ̃, Π̃, P̃ ), we have

an Ideal Simplex. The two Ideal Simplexes can be different only when there are multiple

choices of ξ1, ξ2, . . . , ξK . By Lemma C.1, the first eigenvalue of Ω has a multiplicity 1, so

by basic linear algebra, [ξ1, ξ2, . . . , ξK ] are uniquely defined up to a rotation matrix of the

form  a 0

0 S

 , where a ∈ {−1, 1} and S ∈ RK−1,K−1 is an orthogonal matrix.

Recalling R = [diag(ξ1)]
−1[ξ2, ξ3, . . . , ξK ], it is seen that the property of “a row of R falls

on one of the vertices of the Ideal Simplex” is invariant to the above rotation. Therefore,

a row of Π equals to the corresponding row of Π̃, as long as one of them is pure.

We now proceed to showing (Θ,Π, P ) = (Θ̃, Π̃, P̃ ). By the above argument and that

each community has at least one pure node, we assume without loss of generality that for

1 ≤ k ≤ K, the k-th node is a pure node in community k. Comparing the first K rows and

the first K columns of ΘΠPΠ′Θ with those of Θ̃Π̃P̃ Π̃′Θ̃′, it follows that

diag(θ1, . . . , θK) · P · diag(θ1, . . . , θK) = diag(θ̃1, . . . , θ̃K) · P̃ · diag(θ̃1, . . . , θ̃K).
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As both P and P̃ have unit diagonal entries, P = P̃ and θk = θ̃k, 1 ≤ k ≤ K.

Moreover, note that PΠ′Θ has a full row-rank. Since ΘΠPΠ′Θ = Θ̃Π̃P̃ Π̃′Θ̃, it is seen

that ΘΠ = Θ̃Π̃∆, where ∆ = P̃ Π̃′Θ̃X ′(XX ′)−1, with X = PΠ′Θ for short. We compare

the first K rows of ΘΠ and Θ̃Π̃∆, recalling that the first K rows are pure and that θk = θ̃k

for 1 ≤ k ≤ K. It follows that ∆ equals to the K ×K identity matrix. Therefore,

ΘΠ = Θ̃Π̃.

Since each row of Π or Π̃ is a PMF, Θ = Θ̃, Π = Π̃, and the claim follows.

Next, we study Case (2). By Lemma C.1,

Ξ = ΘΠB, for a non-singular matrix B.

Row i of Ξ equals to θi times a convex combination of rows of B. It follows that all rows of

Ξ are contained in a simplicial cone with K supporting rays, where a pure row falls on one

supporting ray, and a mixed row falls in the interior of the simplicial cone. Note that Ξ is

uniquely defined up to a K ×K orthogonal matrix. The effect of this orthogonal matrix is

to simultaneously rotate all rows of Ξ. Such a rotation does not change the property that

“a pure row falls on one supporting ray”. Therefore, a row of Π equals to the corresponding

row of Π̃, provided that one of them is pure. The remaining of the proof is similar to that

of Case (1).

Remark (Comparison with the identifiability of other models). Compared to other models

(e.g., MMSB, DCBM), DCMM has many more parameters (for degree heterogeneity and

for mixed memberships). These parameters have more degrees of freedom than those in

MMSB or DCBM, and so DCMM requires stronger conditions to be identifiable.

• The assumption that P has unit diagonals is not needed for identifiability of MMSB,

but it is necessary for identifiability of DCMM. Consider a DCMM with parameters

(Θ,Π, P ). Given any K ×K diagonal matrix D with positive diagonals, let

P̃ = DPD, π̃i = (D−1πi)/∥D−1πi∥1, and θ̃i = ∥D−1πi∥1 · θi.

It is seen that ΘΠPΠ′Θ = Θ̃Π̃P̃ Π̃′Θ̃. This case will be eliminated by requiring P to

have unit diagonals.
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• The assumption that P has a full rank is not needed for identifiability of DCBM, but

it is necessary for identifiability of DCMM. If the rank of P is < K, there exists a

nonzero vector β ∈ RK such that Pβ = 0. As long as there is a πi such that πi(k) > 0

for all k, we can change (πi, θi) to (π̃i, θ̃i) but keep Ω unchanged. To see this, let

π̃i = (πi + ϵβ)/∥πi + ϵβ∥1, and θ̃i = ∥πi + ϵβ∥1 · θi,

for a sufficiently small ϵ > 0. Since the two vectors, θi ·Pπi and θ̃i ·Pπ̃i, are equal, Ω

remains unchanged.

A.2 Sufficient conditions for Assumption 4 to hold

We give two propositions showing examples where Assumption 4 is satisfied. Below, for a

matrix M , let λk(M) denote the k-th largest eigenvalue in magnitude.

Proposition A.2. Consider a DCMM model where Ω = ΘΠPΠ′Θ and ∥P∥max ≤ C.

Write G = K∥θ∥−2(Π′Θ2Π). Let η1 be the first (unit-norm) right singular vector of PG.

As n → ∞, suppose at least one of the following conditions hold, where c > 0 is a constant:

• min1≤k,ℓ≤K P (k, ℓ) ≥ c, and mink{
∑n

i=1 θ
2
i πi(k)} ≥ cmaxk{

∑n
i=1 θ

2
i πi(k)}.

• K is fixed, mink G(k, k) ≥ c, and |λ1(PG)| ≥ c + |λ2(PG)|. For a fixed irreducible

matrix P0, ∥P − P0∥ → 0.

• K is fixed, and |λ1(PG)| ≥ c + |λ2(PG)|. For a fixed irreducible matrix G0, ∥G −

G0∥ → 0.

Then, we can select the sign of η1 such that all its entries are strictly positive. Furthermore,

[max1≤k≤K η1(k)]/[min1≤k≤K η1(k)] ≤ C.

Proposition A.3. Consider a DCMM model where Ω = ΘΠPΠ′Θ. We assume that

max1≤k≤K{
∑K

ℓ=1 P (k, ℓ)} ≤ Cmink{
∑K

ℓ=1 P (k, ℓ)}. Suppose πi’s are i.i.d. generated from

Dirichlet(α), where α = (α1, α2, . . . , αK)′ satisfies C1 ≤ αk ≤ C2 for two constants C2 >

C1 > 0. Write G = K∥θ∥−2(Π′Θ2Π). Let η1 be the first (unit-norm) right singular vector

of PG. As n → ∞, [max1≤k≤K η1(k)]/[min1≤k≤K η1(k)] ≤ C, with probability 1− o(1).

Proof of Propositions A.2-A.3: First, we prove Propositions A.2. Consider the first case.

Let xk = K∥θ∥−2
∑n

i=1 θ
2
i πi(k). It is seen that

∑K
k=1 xk = K. The assumption says that
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mink xk ≥ cmaxk xk. Therefore, xk ≍ 1 for all k. At the same time,
∑K

ℓ=1G(ℓ, k) =

K∥θ∥−2
∑K

ℓ=1

∑n
i=1 θ

2
i πi(ℓ)πi(k) = xk. It follows that

max
k

{∑
ℓ

G(ℓ, k)
}
≍ min

k

{∑
ℓ

G(ℓ, k)
}
≍ 1.

For any 1 ≤ m, k ≤ K, the (m, k)-th entry of PG equals to
∑

ℓ P (m, ℓ)G(ℓ, k), which is

between c
∑

ℓG(ℓ, k) and C
∑

ℓG(ℓ, k) by the assumption on P . It follows that

max
k,ℓ

{
(PG)(k, ℓ)

}
≍ min

k,ℓ

{
(PG)(k, ℓ)

}
≍ 1. (A.1)

In particular, PG is a positive matrix. By Perron’s theorem [7, Theorem 8.2.8], the first

right singular value λ1(PG) is positive and has a multiplicity of 1, and the first eigenvector

η1 is a positive vector. Write λ = λ1(PG) for short. By definition,

λη1 = (PG)η1.

It follows that

max
k

η1(k) ≤
∥η∥1
λ

max
k,ℓ

{(PG)(k, ℓ)}, min
k

η1(k) ≥
∥η∥1
λ

min
k,ℓ

{(PG)(k, ℓ)}. (A.2)

Combining (A.1)-(A.2) gives maxk η1(k) ≍ mink η1(k). The claim follows.

Consider the second case. We first state and prove a useful result:

Let A and B be two nonnegative matrices with strictly

positive diagonals. If A is irreducible, then AB is irreducible.
(A.3)

The proof uses the definition of primitive matrices (a subclass of irreducible matrices; see [7,

Section 8.5]). We aim to show AB is a primitive matrix. By [7, Theorem 8.5.2], it suffices

to show that there exists m ≥ 1, such that (AB)m is a strictly positive matrix. By the

assumption, A is an irreducible matrix with positive diagonals; it follows from [7, Theorem

8.5.4] that A is a primitive matrix. By [7, Theorem 8.5.2] again, there exists m ≥ 1 such

that Am is a strictly positive matrix. Let α > 0 be the minimum diagonal entry of B. Since

A and B are nonnegative matrices, each entry of (AB)m is lower bounded by αm times the

corresponding entry of Am; hence, (AB)m is also a strictly positive matrix. It follows that

AB is a primitive matrix, which is also an irreducible matrix.

We then show the claim. Note that P and G are both nonnegative matrices with positive

entries. Since ∥P −P0∥ → 0, the support of P has to be a superset of the support of P0 for
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large enough n; as a result, when P0 is an irreducible matrix, P has to be an irreducible

matrix for sufficiently large n. We apply (A.3) to obtain that PG is an irreducible matrix. It

follows that λ1(PG) > 0 and it has a multiplicity 1; additionally, the first right eigenvector

η1 is a positive vector.

It remains to show maxk η1(k) ≍ mink η1(k). We prove by contradiction. Write η1 =

η
(n)
1 , P = P (n) and G = G(n) to emphasize the dependence on n. If the claim is not true,

then there is a subsequence {ns}∞s=1 such that

lim
s→∞

{
mink η

(ns)
1 (k)

maxk η
(ns)
1 (k)

}
→ 0. (A.4)

Since K is fixed, all the entries of G(ns) are bounded. It follows that there exists a sub-

sequence of {ns}∞s=1, which we still denote by {ns}∞s=1 for notation convenience, such that

G(ns) → G∗ for a fixed matrix G∗. Therefore,

∥∥(PG)(ns) − P0G
∗∥∥→ 0, as s → ∞. (A.5)

Let η∗1 be the first right eigenvector of P0G
∗. Since |λ1(PG)| ≥ c + |λ2(PG)|, by the

sin-theta theorem (e.g., see Lemma D.3), it follows from (A.5) that

∥η(ns)
1 − η∗1∥ → 0, as s → ∞. (A.6)

We now derive a contradiction from (A.4)-(A.6). On the one hand, combining (A.5)-(A.6)

and noting that η∗1 is a fixed vector, we conclude that the minimum entry of η∗1 is zero. On

the other hand, the assumption of mink G(k, k) ≥ c ensures that G∗ has strictly positive

diagonals. We apply (A.3) to conclude that P0G
∗ is a fixed irreducible matrix. By Perron’s

theorem, η∗1 should be a strictly positive vector. This yields a contradiction.

Consider the third case. The proof is similar to that of the second case, except that

we switch the roles of P and G. Note that we do not need additional conditions on the

diagonals of P , since P always has unit diagonals.

Next, we prove Propositions A.3. By (A.1) and (A.2), we only need to show that

max
k,ℓ

{
(PG)(k, ℓ)

}
≍ min

k,ℓ

{
(PG)(k, ℓ)

}
.

Since the maximum row sum and minimum row sum of P are at the same order, it suffices

to show that the maximum and minimum entries of G are at the same order. Let G0 =

Eπ∼Dirichlet(α)[ππ
′]. As n → ∞, it is easy to show that ∥G − G0∥F = o(1). Therefore, we
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only need to show that the maximum and minimum entries of G0 are at the same order.

By direct calculations,

G0 = (E[π])(E[π])′ +Cov(Π)

=
1

∥α∥21
αα′ +

1

1 + ∥α∥1

[
1

∥α∥1
diag(α)− 1

∥α∥21
αα′
]

=
1

∥α∥1(1 + ∥α∥1)
[diag(α) + αα′].

Since all entries of α are bounded above and below by constants, it is easy to see that the

maximum and minimum entries of G0 are at the same order. This completes the proof.

B Faster Rates of Mixed-SCORE (Setting 2)

In Section 3.3, we discuss Mixed-SCORE with each specific VH approach in Table 1. For

Mixed-SCORE-SVS and Mixed-SCORE-SVS*, we consider two settings where they enjoy

faster rates than the generic Mixed-SCORE algorithm. Due to space limit, we only present

Setting 1 in Section 3.3. We now present Setting 1.

Setting 2. Let Nk be the set of pure nodes of community k, 1 ≤ k ≤ K, and let M be the

set of all mixed nodes. Suppose there are constants c1, c2 ∈ (0, 1) such that min1≤k≤K |Nk| ≥

c1n and min1≤k≤K
∑

i∈Nk
θ2(i) ≥ c2∥θ∥2. Furthermore, for a fixed integer L0 ≥ 1, we

assume there is a partition of M, M = M1 ∪ · · · ∪ML0 , a set of PMF’s γ1, · · · , γL0 , and

constants c3, c4 > 0 such that (ek: k-th standard basis vector of RK)
{
min1≤j ̸=ℓ≤L0 ∥γj −

γℓ∥, min1≤ℓ≤L0,1≤k≤K ∥γℓ − ek∥
}
≥ c3, and for each 1 ≤ ℓ ≤ L0 (note: errn is the same as

that in (3.10)), |Mℓ| ≥ c4|M| ≥ nβ−2
n err2n and maxi∈Mℓ

∥πi − γℓ∥ ≤ 1/ log(n).

In this setting, πi’s form several loose clusters, where the πi’s in the same cluster are

within a distance of O( 1
log(n)) from each other. Since 1

log(n) is much larger than the order

of noise, max1≤i≤n ∥Hr̂i − ri∥, the assumed clustering structure is indeed “loose”. 1

Theorem B.1. Consider the DCMM model where Assumptions 1-4 hold and πi’s are from

Setting 2. Let H be as in Theorem 3.1. Suppose we apply SVS or SVS* to rows of R̂ with

L = L̂n(A) := min
{
L ≥ K + 1 : ϵL(R̂) < ϵL−1(R̂)/ log(log(n))

}
.

1In fact, by a slight modification of the proof, we can replace (1/ log(n)) in Setting 2 by any o(1) term,
or an appropriately small constant c̃3 > 0 (this constant c̃3 will depend on the constants in Setting 2 in a
quite complicated way). We present the current version for its convenience.
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With probability 1− o(n−3),

max
1≤k≤K

∥Hv̂k − vk∥ ≤ C

√√√√n−1

n∑
i=1

∥Hr̂i − ri∥2.

Moreover, for Mixed-SCORE-SVS or Mixed-SCORE-SVS*,

E
[ 1
n

n∑
i=1

∥π̂i − πi∥2
]
≤ CK3β−2

n (err∗n)
2 + o(n−2).

C The Oracle Case and Ideal Mixed-SCORE

We consider the oracle case where Ω is observed. In Section C.1, we state a useful lemma,

which is the key for analysis of the oracle case. In Section C.2, we prove Lemmas 2.1 in

the paper, which inspire Ideal Mixed-SCORE. In Section C.3, we prove Lemma 2.2, which

is about recovering (P, θ) from Π. In Section C.4, we study eigenvalues and eigenvectors of

Ω and the matrix R; these results are useful for the proofs in Sections D-F.

C.1 A useful lemma and its proof

Let G = K∥θ∥−2(Π′Θ2Π) is as in Section 3. Let λ1, λ2, . . . , λK be the nonzero eigenvalues

of Ω, sorted in the descending order of magnitudes. Let ξ1, ξ2, . . . , ξK be the corresponding

eigenvectors. We have the following lemma:

Lemma C.1. Consider the DCMM model, where PG is an irreducible matrix and there is

at least one pure node for each community. The following statements are true:

• There is a non-singular matrix B ∈ RK,K such that ΘΠB = Ξ, and B is unique once

Ξ is chosen.

• For 1 ≤ k ≤ K, denote by ak the kth largest (in magnitude) eigenvalue of PG. Then,

ak’s are real, and the nonzero eigenvalues of Ω are λk = (K−1∥θ∥2)ak, 1 ≤ k ≤ K.

• For 1 ≤ k ≤ K, denote by bk the kth column of B. Then, bk is a (right) eigenvector

of PG associated with ak.

• λ1 > 0 and it has a multiplicity 1 (so ξ1 is uniquely determined up to a factor of ±1).

• ξ1 can be chosen such that all of its entries are positive. For this choice of ξ1, all the

entries of the associated b1 are also positive.
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Proof of Lemma C.1: Consider the first claim. Denote by Span(M) the column space of

any matrix M . It suffices to show that Span(ΘΠ) = Span(Ξ). Then, since ξ1, · · · , ξK form

an orthonormal basis of this subspace, there is a unique, non-singular matrix B̃ such that

ΘΠ = ΞB̃. We then take B = B̃−1.

We now show Span(ΘΠ) = Span(Ξ). By the assumption that there is at least one pure

node in each community, we can find K rows of Π such that they form a K ×K identity

matrix. So Π has a rank K. Since Θ and P are both non-singular matrices, Ω also has a

rank K. By definition, Ωξk = λkξk, for 1 ≤ k ≤ K. It follows that

ΘΠ(PΠ′Θξk) = λkξk.

Hence, each ξk is in the column space of ΘΠ. This means the column space of Ξ is contained

in the column space of ΘΠ. Since both matrices have a rank K, the two column spaces are

the same.

Consider the second claim. Note that P is symmetric and G is positive definite. LetG1/2

be the unique square root of G. For any matrices A ∈ Rm,n and B ∈ Rn,m, if m ≥ n, then

the nonzero eigenvalues of AB are the same as the nonzero eigenvalues of BA [7, Theorem

1.3.22]. As a result, eigenvalues of PG are the same as eigenvalues of the symmetric matrix

G1/2PG1/2. It implies that a1, a2, . . . , aK are real.

Furthermore, the nonzero eigenvalues of Ω = (ΘΠ)(PΠ′Θ) are the same as the nonzero

eigenvalues of (PΠ′Θ)(ΘΠ) = (K−1∥θ∥2)(PG). Hence, the nonzero eigenvalues of Ω are

(K−1∥θ∥2)a1, (K−1∥θ∥2)a2, . . . , (K−1∥θ∥2)aK .

Consider the third claim. Write G̃ ≡ K−1∥θ∥2G = Π′Θ2Π. Note that Ωξk = λkξk and

ξk = ΘΠbk. Hence, (ΘΠPΠ′Θ)(ΘΠbk) = λk(ΘΠbk). Multiplying both sides by Π′Θ from

the left, we have

G̃P G̃bk = λkG̃bk.

Since G̃ is non-singular, PG̃bk = λkbk. Plugging in G̃ = (K−1∥θ∥2)G and λk = (K−1∥θ∥2)ak,

we obtain PGbk = akbk. This shows that bk is a (right) eigenvector of PG associated with

ak. Additionally, since η1 is the first unit-norm right singular vector of PG, it yields that

η1 = b1/∥b1∥.

Consider the fourth claim. Since λ1 = (K−1∥θ∥2)a1, it suffices to show that a1 > 0 and

that it has a multiplicity 1. This follows immediately from the Perron-Frobenius theorem

[7, Theorem 8.4.4] and the assumption that PG is an irreducible matrix.
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Consider the last claim. Note that b1 is the eigenvalue of PG associated with a1. Since

a1 has a multiplicity 1, b1/∥b1∥ is unique up to a factor of ±1 (depending on the choice of

ξ1). By Perron-Frobenius theorem again, b1/∥b1∥ can be chosen such that all the entries

are positive. Recalling that Ξ = ΘΠB, we immediately have ξ1 = ΘΠb1. Since ΘΠ is

a nonnegative matrix with positive row sums and b1 has strictly positive entries, all the

entries of ξ1 are also positive.

C.2 Proofs of Lemma 2.1

Consider the first claim. We have shown in Lemma C.1 that

Ξ = ΘΠB, for a non-singular matrix B = [b1, . . . , bK ] ∈ RK,K .

Furthermore, by the last two bullet points of Lemma C.1, if we pick the sign of ξ1 such that∑n
i=1 ξ1(i) > 0, then ξ1 and b1 are uniquely determined and have strictly positive entries.

This proves the first claim.

Consider the other two claims. We first show there are K affinely independent vectors

v1, v2, . . . , vK such that each ri is a convex combination of them. For 1 ≤ k ≤ K, define

vk ∈ RK−1 by

vk(ℓ) = bℓ+1(k)/b1(k), 1 ≤ ℓ ≤ K − 1. (C.7)

The vectors v1, v2, . . . , vK are affinely independent, if and only if the following matrix

Q =

 1 · · · 1

v1 · · · vK


is non-singular. By (C.7), we observe that Q′ = diag(b1)B. Since B is non-singular and b1

is a positive vector, Q has to be a non-singular matrix. This proves that v1, v2, . . . , vK are

affinely independent. We then study each ri. Since Ξ = ΘΠB, we have

ξℓ(i) = θ(i)
K∑
k=1

πi(k)bℓ(k) = θ(i)∥bℓ ◦ πi∥1, 1 ≤ ℓ ≤ K.

By definition of R, ri(ℓ) = ξℓ+1(i)/ξ1(i). It follows that

ri(ℓ) =
θ(i)

∑K
k=1 πi(k)bℓ+1(k)

θ(i)∥b1 ◦ πi∥1
=

K∑
k=1

b1(k)πi(k)

∥b1 ◦ πi∥1
· bℓ+1(k)

b1(k)
=

K∑
k=1

wi(k)vk(ℓ).

This proves that ri =
∑K

k=1wi(k)vk, with wi = (b1 ◦ πi)/∥b1 ◦ πi∥1. Since b1 is a positive

vector and πi is a nonnegative vector, we have that wi is a nonnegative vector and ∥wi∥1 = 1.

Therefore, ri is a convex combination of v1, v2, . . . , vK .
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We now show the second claim. Each ri is in the convex hull of v1, v2, . . . , vK . Since

these K vectors are affinely independent, their convex hull is a non-degenerate simplex

with K vertices. Recall that wi = (b1 ◦ πi)/∥b1 ◦ πi∥1, where b1 is a strictly positive vector.

Therefore, for each 1 ≤ k ≤ K, node i is a pure node of community k if and only if πi = ek,

which happens if and only if wi = ek; and wi = ek means ri is located at the vertex vk.

We then show the last claim, which is the formula for b1. Write Λ = diag(λ1, · · · , λK).

Then, Ω = ΞΛΞ′. First, plugging in Ξ = ΘΠB, we find that Ω = ΘΠ(BΛB′)Π′Θ. Multiply-

ing both sides by Π′Θ from the left and ΘΠ from the right, we have Π′ΘΩΘΠ = G̃(BΛB′)G̃,

where G̃ = Π′Θ2Π is a non-singular matrix. Second, since Ω = ΘΠPΠ′Θ′, we have

Π′ΘΩΘΠ = G̃P G̃. Combining the above gives

G̃P G̃ = G̃(BΛB′)G̃ =⇒ P = BΛB′. (C.8)

It follows that

1 = P (k, k) =
K∑
ℓ=1

λℓb
2
ℓ (k) = b21(k)[λ1 +

K∑
ℓ=2

λ2
ℓvk(ℓ− 1)].

Noting that b1(k) is positive, the above gives the formula for computing b1.

C.3 Proof of Lemma 2.2

Write V = [v1, v2, . . . , vK ]. By (C.7), B = diag(b1)[1, V
′]. Moreover, by (C.8), P = BΛB′.

Combining them gives the formula of recovering P . Note that Ξ = ΘΠB. It follows that

ξ1(i) = θ(i) · π′
ib1. This gives the formula of recovering θ.

C.4 Spectral analysis of Ω

First, we study the leading eigenvalues of Ω. Let λ1, . . . , λK be the nonzero eigenvalues of Ω,

listed in the descending order in magnitude. The following lemma is proved in Section C.4.1:

Lemma C.2. Under conditions of Theorem 3.1, the following statements are true:

• C−1K−1∥θ∥2 ≤ λ1 ≤ C∥θ∥2. If βn = o(1), then λ1 ≍ ∥θ∥2.

• λ1 − |λ2| ≍ λ1.

• |λk| ≍ βnK
−1∥θ∥2, for 2 ≤ k ≤ K.
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Next, we study the leading eigenvectors of Ω. For 1 ≤ k ≤ K, let ξk be the eigenvector

of Ω associated with λk. Write Ξ0 = [ξ2, ξ3, · · · , ξK ] ∈ Rn,K−1, and let Ξ′
0,i be its i-th row,

1 ≤ i ≤ n. The following lemma is proved in Section C.4.2:

Lemma C.3. Under conditions of Theorem 3.1, the following statements are true:

• If we choose the sign of ξ1 such that
∑n

i=1 ξ1(i) > 0, then the entries of ξ1 are positive

satisfying C−1θ(i)/∥θ∥ ≤ ξ1(i) ≤ Cθ(i)/∥θ∥, 1 ≤ i ≤ n.

• ∥Ξ0,i∥ ≤ C
√
Kθ(i)/∥θ∥, 1 ≤ i ≤ n.

Last, we study the entry-wise ratio matrix R. Recall that wi is the barycentric coordi-

nate vector of ri in the Ideal Simplex. The following lemma is proved in Section C.4.3.

Lemma C.4. Under conditions of Theorem 3.1, the following statements are true:

• The vertices of the Ideal Simplex satisfy that max1≤k≤K ∥vk∥ ≤ C
√
K and mink ̸=ℓ ∥vk−

vℓ∥ ≥ C−1
√
K.

• C−1∥πi − πj∥1 ≤ ∥wi − wj∥1 ≤ C∥πi − πj∥1, for all 1 ≤ i, j ≤ n.

• C−1
√
K∥wi − wj∥ ≤ ∥ri − rj∥ ≤ C

√
K∥wi − wj∥, for all 1 ≤ i, j ≤ n.

Lemmas C.2-C.4 are useful for proofs in Sections D-F. Below, we prove these lemmas.

C.4.1 Proof of Lemma C.2

By Lemma C.1, all nonzero eigenvalues of Ω are (K−1∥θ∥2)a1, . . . , (K−1∥θ∥2)aK , where ak

is the k-th largest eigenvalue (in magnitude) of PG. By Assumption 3,

a1 − |a2| ≥ C−1a1, C−1βn ≤ |aK | ≤ |a2| ≤ Cβn.

The second and third claims follow immediately.

It remains to show the first claim, which reduces to studying a1. For any two matrices

A and B, the nonzero eigenvalues of AB are the same as the nonzero eigenvalues of BA.

Hence,

a1 = λ1(PG) = λ1(G
1/2PG1/2) = max

x ̸=0

x′G1/2PG1/2x

∥x∥2
.

By Assumption 2, ∥G∥ ≤ C and ∥G−1∥ ≤ C. It is easy to see that a1 ≤ Cλ1(P ). Addi-

tionally, λ1(P ) = maxy ̸=0
y′Py
∥y∥2 = maxx ̸=0

x′G1/2PG1/2x
∥G1/2x∥2 . Since ∥G1/2x∥2 = x′Gx ≥ C−1∥x∥2,

it follows that λ1(P ) ≤ maxx ̸=0
x′G1/2PG1/2x

C−1∥x∥2 ≤ Cλ1(PG). Together,

C−1λ1(P ) ≤ λ1(PG) ≤ Cλ1(P ).
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Note that λ1(P ) ≤ K∥P∥max = O(K) and λ1(P ) ≥ P (k, k) ≥ 1. We plug them into the

above inequality to get

C−1 ≤ a1 ≤ CK. (C.9)

This inequality holds in all cases. If, additionally, βn → 0 as n → ∞, we can get a stronger

result. Note that P and G are nonnegative matrices, and for each 1 ≤ k ≤ K, P (k, k) = 1

and G(k, k) ≥ λmin(G) ≥ C−1. It follows that (PG)(k, k) ≥ P (k, k)G(k, k) ≥ C−1. We

thus have

trace(PG) ≥ C−1K.

At the same time, trace(PG) = a1 +
∑K

k=2 a2 = a1 +O(Kβn) = a1 + o(K). It follows that

C−1K ≤ a1 ≤ CK, if βn = o(1). (C.10)

The first claim follows from (C.9)-(C.10) and the equality λ1 = (K−1∥θ∥2)a1.

C.4.2 Proof of Lemma C.3

Consider the first claim. From the last item of Lemma C.1, we can choose the sign of ξ1

such that both (ξ1, b1) have strictly positive entries, where this choice of sign corresponds

to
∑n

i=1 ξ1(i) > 0. Note that Ξ = ΘΠB, which implies ξ1(i) = θ(i)
∑K

k=1 πi(k)b1(k). Since

each πi is a PMF (a nonnegative vector whose entries sum to 1),

θ(i) min
1≤k≤K

b1(k) ≤ ξ1(i) ≤ θ(i) max
1≤k≤K

b1(k), 1 ≤ i ≤ n.

Hence, to show the claim, it suffices to show that

C−1∥θ∥−1 ≤ b1(k) ≤ C∥θ∥−1, for all 1 ≤ k ≤ K. (C.11)

Write G̃ = K−1∥θ∥2G = Π′Θ2Π. Since Ξ = ΘΠB and X ′X = IK , we have B′Π′Θ2ΠB =

IK , or equivalently, B′G̃B = IK . Multiplying both sides by B from the left and B′ from

the right, we obtain BB′G̃BB′ = BB′. Since BB′ is non-singular, it implies

BB′ = G̃−1 = K∥θ∥−2G−1. (C.12)

We note that BB′ =
∑K

k=1 bkb
′
k ⪰ b1b

′
1. So, ∥b1∥2 ≤ ∥B∥2 ≤ K∥θ∥−2∥G−1∥. By our

assumption of ∥G−1∥ ≤ C. It follows that

∥b1∥ ≤ C∥θ∥−1
√
K.
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At the same time, 1 = ∥ξ1∥2 = ∥ΘΠb1∥2. By direct calculations, ∥ΘΠb1∥2 =
∑

i θ
2
i (π

′
ib1)

2 ≤∑
i θ

2
i ∥b1∥2∞ ≤ ∥θ∥2∥b1∥2∞. It follows that

∥b1∥∞ ≥ C−1∥θ∥−1.

In Lemma C.1, we have seen that b1 is the first right singular vector of PG. Hence, b1 ∝ η1,

where η1 is the same as in Assumption 4. By Assumption 4, all the entries of η1 are at the

same order. Hence, all the entries of b1 are at the same order. It follows that

b1(k) ≍ ∥b1∥∞ ≍ (1/
√
K)∥b1∥.

This gives (C.11) and completes the proof of the first claim.

Consider the second claim. Since Ξ = ΘΠB, for 1 ≤ i ≤ n,

∥Ξ0,i∥ ≤ θ(i)∥Bπi∥ ≤ Cθ(i)
√
λmax(B′B) ≤ C

√
K∥θ∥−1θ(i),

where the last inequality is due to (C.12) and and the condition ∥G−1∥ ≤ C.

C.4.3 Proof of Lemma C.4

First, we prove the claim about the connection between ∥wi − wj∥1 and ∥πi − πj∥1. Let

S0 ⊂ RK be the standard simplex whose vertices are e1, e2, . . . , eK . Define a mapping

T1 : S0 → S0, where T1(x) =
x ◦ b1

∥x ◦ b1∥1
.

Then, wi = T1(πi), for 1 ≤ i ≤ n. To show the claim, it suffices to show that T1 and T−1
1

are both Lipschitz with respect to the ℓ1-norm, i.e., for any x, y ∈ S0,

C−1∥x− y∥1 ≤ ∥T1(x)− T1(y)∥1 ≤ C∥x− y∥1. (C.13)

We now show (C.13). Fixing any x, y ∈ S0, write x
∗ = T1(x) and y∗ = T1(y). By definition,

x∗(k) = x(k)b1(k)/∥x ◦ b1∥1 and y∗(k) = y(k)b1(k)/∥y ◦ b1∥1. We write

x∗(k)−y∗(k) =
[x(k)− y(k)]b1(k)

∥x ◦ b1∥1
+ y(k)b1(k)

[
1

∥x ◦ b1∥1
− 1

∥y ◦ b1∥1

]
=

b1(k)

∥x ◦ b1∥1
[x(k)− y(k)] +

y∗(k)

∥x ◦ b1∥1
(∥y ◦ b1∥1 − ∥x ◦ b1∥1) .

First, by (C.11), b1(k) ≍ ∥θ∥−1 for all 1 ≤ k ≤ K. It follows that |b1(k)| ≤ C∥θ∥−1 and

∥x ◦ b1∥1 ≥ ∥x∥1 · C−1∥θ∥−1 ≥ C−1∥θ∥−1. Hence,

b1(k)

∥x ◦ b1∥1
|x(k)− y(k)| ≤ C|x(k)− y(k)|.
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Second, by the triangle inequality, |∥y ◦ b1∥1 − ∥x ◦ b1∥1| ≤ ∥(y− x) ◦ b1∥1. Moreover, since

b1(k) ≍ ∥θ∥−1 for all k, we have ∥(y−x)◦b1∥1 ≤ C∥θ∥−1∥x−y∥1 and ∥x◦b1∥1 ≥ C−1∥θ∥−1.

It follows that
y∗(k)

∥x ◦ b1∥1
|∥y ◦ b1∥1 − ∥x ◦ b1∥1| ≤ Cy∗(k) · ∥x− y∥1.

Combining the above gives

|x∗(k)− y∗(k)| ≤ C|x(k)− y(k)|+ Cy∗(k) · ∥x− y∥1.

We sum over k on both sides and note that
∑

k y
∗(k) = 1. It gives

∥x∗ − y∗∥1 ≤ C∥x− y∥1.

This shows that T1 is Lipschitz with respect to the ℓ1-norm. We then consider T−1
1 . Define

b̃1 ∈ RK by b̃1(k) = 1/b1(k), 1 ≤ k ≤ K. We can rewrite

T−1
1 (x) =

x ◦ b̃1
∥x ◦ b̃1∥1

.

T−1
1 has a similar form as T1, where the vector b̃1 satisfies that b̃1(k) ≍ ∥θ∥ for all k. Hence,

we can similarly prove that T−1
1 is Lipschitz with respect to the ℓ1-norm. This proves

(C.13).

Next, we prove the claim about the connection between ∥ri − rj∥ and ∥wi − wj∥. Let

S0 be the same as before, and let Sideal = Sideal(v1, v2, . . . , vK) ⊂ RK−1 denote the Ideal

Simplex. Let B = [b1, b2, . . . , bK ] be as in Lemma C.1. Define a mapping:

T2 : S0 → Sideal, where

 1

T2(x)

 =

 1 · · · 1

v1 · · · vK


︸ ︷︷ ︸

≡Q

x.

By Lemma 2.1, ri = T2(wi), for all 1 ≤ i ≤ n. To show the claim, it suffices to show that

T2 and T−1
2 are both Lipschitz with respect to the ℓ2-norm, whose Lipschitz constants are

√
K and 1/

√
K, respectively. In other words, we want to prove, for any x, y ∈ S0,

C−1
√
K∥x− y∥ ≤ ∥T2(x)− T2(y)∥ ≤ C

√
K∥x− y∥. (C.14)

We now show (C.14). Note that Qx = (1′Kx, T2(x))
′. Since 1′Kx = 1′Ky = 1, we have

∥T2(x)− T2(y)∥2 = ∥Qx−Qy∥2 = (x− y)′Q′Q(x− y).
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It suffices to show that

∥Q∥ ≤ C
√
K, and ∥Q−1∥ ≤ C/

√
K. (C.15)

By (C.7), we can re-write

Q′ = [diag(b1)]
−1B.

By (C.11), b1(k) ≍ ∥θ∥−1 for all k. By (C.12), BB′ = K∥θ∥−2G−1; we note that by

Assumption 2, ∥G∥ ≤ C and ∥G−1∥ ≤ C; it follows that ∥B∥ ≤ C
√
K∥θ∥−1 and ∥B−1∥ ≤

C∥θ∥/
√
K. Combining them gives (C.15). Then, (C.14) follows.

Last, we prove the claims about the Ideal Simplex (IS). Let e1, e2, . . . , eK be the standard

basis vectors of RK . It is seen that vk = T2(ek), 1 ≤ k ≤ K. By (C.14), for k ̸= ℓ,

∥vk − vℓ∥ ≍
√
K∥ek − eℓ∥ ≍

√
K.

By definition of Q and (C.15), for all 1 ≤ k ≤ K,

∥vk∥ ≤ ∥Q∥ = O(
√
K).

The above give the desired claims.

D Spectral Analysis of A and Large-deviation Bounds for R̂

We conduct spectral analysis for A. In Section D.1, we give the large deviation bounds for

eigenvalues of A. In Sections D.2, we study the eigenvectors of A and state a key technical

lemma. In Section D.3, we prove Theorem 3.1 in the paper, which is about the row-wise

large deviation bound for R̂. In Section D.4, we give the ℓ2-norm large deviation bound for

R̂. In Section D.4, we give a useful property of the rotation matrix H.

D.1 The eigenvalues of A

Let λ̂1, λ̂2, . . . , λ̂K be the K largest eigenvalues of A (in magnitude), sorted descendingly

in magnitude.

Lemma D.1. Under conditions of Theorem 3.1, with probability 1−o(n−3), max1≤k≤K |λ̂k−

λk| ≤ C
√
θmax∥θ∥1.
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Proof of Lemma D.1: By Weyl’s inequality, max1≤k≤K |λ̂k − λk| ≤ ∥A − Ω∥. To show the

claim, it suffices to show that with probability 1− o(n−3),

∥A− Ω∥ ≤ C
√
θmax∥θ∥1. (D.16)

The following inequality is useful:

(θmax∥θ∥1)/ log(n) → ∞. (D.17)

To see why (D.17) is true, we rewrite errn = (θmax/θmin)∥θ∥−2
√
θmax∥θ∥1 log(n). Since

θmax ≥ θmin and θmax∥θ∥1 ≥ ∥θ∥2, we immediately have errn ≥ ∥θ∥−1
√
log(n). Therefore,

the assumption errn → 0 implies that ∥θ∥2/ log(n) → ∞. Then (D.17) is also true because

θmax∥θ∥1 ≥ ∥θ∥2.

We now prove (D.16). Write

A− Ω = W + diag(Ω), where W ≡ A− E[A].

Note that π′
iPπj =

∑
k,ℓ πi(k)πj(ℓ)Pkℓ ≤ ∥P∥max∥πi∥1∥πj∥1 ≤ C. It follows that

Ω(i, j) ≤ Cθ(i)θ(j).

Note that Ω(i, i) = θ2(i)(π′
iPπi) ≤ Cθ2(i). As a result,

∥diag(Ω)∥ ≤ Cθ2max ≤ C
√

θmax∥θ∥1, (D.18)

where the last inequality follows from (D.17) and θ2max ≤ C ≪
√

log(n) . We then apply

the non-asymptotic bounds for random matrices in [2] to bound ∥W∥. By Corollary 3.12

and Remark 3.13 of [2], for the n× n symmetric matrix W whose upper triangle contains

independent entries, for any ϵ > 0, there exists a universal constant c̃ϵ > 0 such that for

every t ≥ 0,

P
(
∥W∥ > (1 + ϵ)2

√
2σ̃ + t

)
≤ ne−t2/(c̃σ̃2

∗), (D.19)

where

σ̃ = max
i

√∑
j

E[W (i, j)2], σ̃∗ = max
ij

∥W (i, j)∥∞.

We fix ϵ = 1/2 in (D.19) and write c̃ = c̃ϵ for short. For t = 2σ̃∗
√
c̃ log(n), it follows from

(D.19) that with probability 1− o(n−3),

∥W∥ ≤ 3
√
2max

i

√∑
j

E[W (i, j)2] + Cσ̃∗
√
log(n).
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Note that σ̃∗ ≤ 1 and maxi{
∑

j E[W (i, j)2]} ≤ maxi{
∑

j Ω(i, j)} ≤ Cmaxi{
∑

j θ(i)θ(j)} ≤

Cθmax∥θ∥1. We plug them into the above inequality and apply (D.17). It follows that, with

probability 1− o(n−3),

∥W∥ ≤ C
√
θmax∥θ∥1 + C

√
log(n) ≤ C

√
θmax∥θ∥1. (D.20)

Combining (D.18) and (D.20) gives (D.16).

D.2 The eigenvectors of A

We state a main technical lemma about the eigenvectors of A. For 1 ≤ k ≤ K, let ξ̂k be the

eigenvector associated with λ̂k. Write Ξ̂0 = [ξ̂2, ξ̂3, . . . , ξ̂K ] ∈ Rn,K−1, and let Ξ̂′
0,i denote

its ith row, 1 ≤ i ≤ n.

Lemma D.2. Suppose the conditions of Theorem 3.1 hold. With probability 1 − o(n−3),

there exist ω ∈ {±1} and an orthogonal matrix X ∈ RK−1,K−1 (both ω and X depend on

A and are stochastic) such that

(a) ∥ωξ̂1 − ξ1∥ ≤ C∥θ∥−2K
√
θmax∥θ∥1;

(b) ∥Ξ̂0X − Ξ0∥F ≤ Cβ−1
n ∥θ∥−2K3/2

√
θmax∥θ∥1;

(c) ∥ωξ̂1 − ξ1∥∞ ≤ C∥θ∥−3θ
3/2
maxK

√
∥θ∥1 log(n);

(d) max1≤i≤n ∥X ′Ξ̂0,i − Ξ0,i∥ ≤ Cβ−1
n ∥θ∥−3θ

3/2
maxK3/2

√
∥θ∥1 log(n).

If βn = o(1), then the factor K in the bounds for ∥ωξ̂1 − ξ1∥ and ∥ωξ̂1 − ξ1∥∞ can be

removed.

Proof of Lemma D.2: We first prove claims (a)-(b). The proof is based on the the classical

sin-theta theorem [4], where below is a simpler version [3, Theorem 10].

Lemma D.3. Let M and M̂ be two n×n symmetric matrices. For 1 ≤ k ≤ n, let dk be the

k-th largest eigenvalue of M , ηk and η̂k be the eigenvector associated with the k-th largest

eigenvalue of M and M̂ , respectively. Suppose for some δ > 0 and 1 ≤ k1 ≤ k2 ≤ n, we

have dk1−1 > dk1 + δ, dk2+1 < dk2 − δ and ∥Ĝ − G∥ ≤ δ/2. Write U = [ηk1 , · · · , ηk2 ] and

Û = [η̂k1 , · · · , η̂k2 ]. Then, ∥Û Û ′ − UU ′∥ ≤ 2δ−1∥Ĝ−G∥.

We divide all eigenvalues of Ω into four groups: (i) λ1, (ii) positive eigenvalues among

λ2, . . . , λK , (iii) zero eigenvalues, and (iv) negative eigenvalues among λ2, . . . , λK . Define
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Ξ01 and Ξ02 as the submatrices of Ξ0 by restricting to columns corresponding to eigenvalues

in groups (ii) and (iv), respectively. By dividing the empirical eigenvalues and eigenvectors

in a similar way, we can define Ξ̂01 and Ξ̂02. Now, ξ1, Ξ01 and Ξ02 contain the eigenvectors

associated with eigenvalues in groups (i), (ii) and (iv), respectively. By Lemma C.2, the

gap between eigenvalues in group (i) and those in other groups is λ1 − |λ2| ≥ C−1λ1 ≥

C−1K−1∥θ∥2, and the eigen-gap between any two remaining groups is ≥ CβnK
−1∥θ∥2. It

follows from Lemma D.3 that

∥ξ̂1ξ̂′1 − ξ1ξ
′
1∥ = O

(K∥A− Ω∥
∥θ∥2

)
, max

t∈{1,2}
{∥Ξ̂0tΞ̂

′
0t − Ξ0tΞ

′
0t∥} = O

(K∥A− Ω∥
βn∥θ∥2

)
. (D.21)

By elementary linear algebra, (ξ̂1ξ̂
′
1 − ξ1ξ

′
1) has two nonzero eigenvalues ±[1 − (ξ̂′1ξ1)

2]1/2,

where |1− (ξ̂′1ξ1)
2| ≥ min± |1± ξ̂′1ξ1| = (min± ∥ξ̂1 ± ξ1∥2)/2. It follows that

min
±

∥ξ̂1 ± ξ1∥ ≤
√
2∥ξ̂1ξ̂′1 − ξ1ξ

′
1∥. (D.22)

Moreover, by [8, Lemma 2.4], there always is an orthogonal matrix X1 such that ∥Ξ̂01 −

Ξ01X1∥F ≤ ∥Ξ̂01Ξ̂
′
01 − Ξ01Ξ

′
01∥F . Since the rank of (Ξ̂01Ξ̂

′
01 − Ξ01Ξ

′
01) is at most 2K, we

then have

∥Ξ̂01 − Ξ01X1∥F ≤
√
2K∥Ξ̂01 − Ξ01X1∥.

Similarly, there exists an orthogonal matrix X2 such that ∥Ξ̂02 − Ξ02X2∥F ≤
√
2K∥Ξ̂02 −

Ξ02X2∥. As a result, for the orthogonal matrix X = diag(X1, X2),

∥Ξ̂0X − Ξ0∥F ≤ 2
√
K max

t∈{1,2}
{∥Ξ̂0tΞ̂

′
0t − Ξ0tΞ

′
0t∥}. (D.23)

Plugging (D.22)-(D.23) into (D.21) gives that with probability 1− o(n−3),

min
±

∥ξ̂1 ± ξ1∥ = O

(
K∥A− Ω∥

∥θ∥2

)
= O

(
K
√
θmax∥θ∥1
∥θ∥2

)
,

∥Ξ̂0X − Ξ0∥F = O

(
K
√
K∥A− Ω∥
βn∥θ∥2

)
= O

(√
K3θmax∥θ∥1
βn∥θ∥2

)
,

where we have used (D.16). This proves the first two items.

We then prove claims (c)-(d). We borrow the techniques and some results from [1]. The

following lemma is adapted from [1, Theorem 2.1] and is proved below. A direct use of [1,

Theorem 2.1] will lead to sub-optimal dependence on βn in the resulting bound, so we have

to modify that theorem accordingly.
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Lemma D.4. Let M ∈ Rn,n be a symmetric random matrix. Write M∗ = EM and

K0 = rank(M∗). For each 1 ≤ k ≤ K0, let d
∗
k and dk be the k-th largest nonzero eigenvalue

of M∗ and M , respectively, and let η∗k and ηk be the corresponding eigenvector, respectively.

Let s and r be two integers such that 1 ≤ r ≤ K0 and 0 ≤ s ≤ K0 − r. Write D =

diag(ds+1, ds+2, . . . , ds+r), D
∗ = diag(d∗s+1, d

∗
s+2, . . . , d

∗
s+r),

U = [ηs+1, ηs+2, . . . , ηs+r], and U∗ = [η∗s+1, η
∗
s+2, . . . , η

∗
s+r].

Define ∆∗ = min{d∗s−d∗s+1, d
∗
s+r−d∗s+r−1,min1≤j≤r |d∗s+j |} and define κ = (max1≤j≤r |d∗s+j |)/∆∗.

Below, the notation ∥ · ∥2→∞ represents the maximum row-wise ℓ2-norm of a matrix, and

M∗
m,· is the m-th row of M∗. Suppose for a number γ > 0, the following assumptions are

satisfied:

• A1 (Incoherence): max1≤m≤n ∥M∗
m,·∥ ≤ γ∆∗.

• A2 (Independence): For any 1 ≤ m ≤ n, the entries of the m-th row and column of

M are independent with the other entries.

• A3 (Spectral norm concentration): For a number δ0 ∈ (0, 1), P(∥M −M∗∥ ≤ γ∆∗) ≥

1− δ0.

• A4 (Row concentration): There is a number δ1 ∈ (0, 1) and a continuous non-

decreasing function φ(·) with φ(0) = 0 and φ(x)/x being non-increasing in R+ such

that, for any 1 ≤ m ≤ n and non-stochastic matrix Y ∈ Rn,r,

P
(
∥(M −M∗)m,·Y ∥2 ≤ ∆∗∥Y ∥2→∞φ

( ∥Y ∥F√
n∥Y ∥2→∞

))
≥ 1− δ1/n.

Let I0 = ({1, . . . , s − 1} ∪ {s + r + 1, . . . ,K0}) ∩ {j : |d∗j | > max1≤i≤r |d∗s+r|} and ∆∗
0 =

min{minj∈I0 |d∗j − d∗s|,minj∈I0 |d∗j − d∗s+r|}. Define Ũ∗ = [η1, . . . , ηK0 ] and

κ̃ =

maxj∈I0(|d∗j |/∆∗
0), if I0 ̸= ∅,

0 otherwise.

Then, with probability 1− δ0 − 2δ1, for an orthogonal matrix O ∈ Rr,r,

∥UO −MU∗(D∗)−1∥2→∞ ≤ C
[
κ(κ+ φ(1))(γ + φ(γ)) + κ̃γ

]
· ∥Ũ∗∥2→∞. (D.24)

Proof of Lemma D.4: Fix 1 ≤ m ≤ n. Let M (m) be the matrix by setting the m-th

row and the m-th column of M to be zero. Let η
(m)
1 , η

(m)
2 , . . . , η

(m)
n be the eigenvectors
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of M (m). Write U (m) = [η
(m)
s+1, . . . , η

(m)
s+r]. Let H = U ′U∗, H(m) = (U (m))′U∗ and V (m) =

U (m)H(m) − U∗. We aim to prove

∥Mm·V
(m)∥ ≤6(κ+ κ̃)γ∆∗∥Ũ∗∥2→∞

+∆∗φ(γ)
(
4κ∥UH∥2→∞ + 6∥U∗∥2→∞

)
. (D.25)

Once (D.25) is obtained, the proof is almost identical to the proof of (B.26) in [1], except

that we plug in (D.25) instead of (B.32) in [1]. This is straightforward, so we omit it.

What remains is to prove (D.25). Without loss of generality, we only consider the case

where I0 ̸= ∅. In the proof of [1, Lemma 5], it is shown that

∥Mm·V
(m)∥ ≤ ∥M∗

mV (m)∥+ ∥(M −M∗)m·V
(m)∥,

∥(M −M∗)m·V
(m)∥ ≤ ∆∗φ(γ)

(
4κ∥UH∥2→∞ + 6∥U∗∥2→∞

)
.

Combining them gives

∥Mm·V
(m)∥ ≤ ∥M∗

m·V
(m)∥+∆∗φ(γ)

(
4κ∥UH∥2→∞ + 6∥U∗∥2→∞

)
. (D.26)

We further bound the first term in (D.26). Recall that I0 is the index set of eigenvalues

that are not contained in D∗ and have an absolute value larger than ∥D∗∥. Let M̃∗ =∑
j∈I0 d

∗
jη

∗
j (η

∗
j )

′.

∥M∗
m·V

(m)∥ ≤ ∥M̃∗
m·V

(m)∥+ ∥(M∗
m· − M̃∗

m·)V
(m)∥

≤ ∥M̃∗
m·V

(m)∥+ ∥M∗ − M̃∗∥2→∞∥V (m)∥

≤ ∥M̃∗
m·V

(m)∥+ 6γ∥M∗ − M̃∗∥2→∞,

where the last line uses ∥V (m)∥ ≤ 6γ, by (B.12) of [1]. Note thatM∗−M̃∗ =
∑

j /∈I0 d
∗
jη

∗
j (η

∗
j )

′.

By definition of I0, for any j /∈ I0, |d∗j | ≤ max1≤i≤r |d∗s+r| ≤ κ∆∗. It follows that

∥M∗ − M̃∗∥2→∞ ≤
(
max
j /∈I0

|d∗j |
)
∥Ũ∗∥2→∞ ≤ κ∆∗∥Ũ∗∥2→∞.

Combining the above gives

∥M∗
m·V

(m)∥ ≤ ∥M̃∗
m·V

(m)∥+ 6κγ∆∗∥Ũ∗∥2→∞. (D.27)

Write D∗
0 = diag(d∗j )j∈I0 , U

∗
0 = [η∗j ]j∈I0 , U0 = [ηj ]j∈I0 , U

(m)
0 = [η

(m)
j ]j∈I0 , and H

(m)
0 =

(U
(m)
0 )′U∗

0 . We similarly have ∥U (m)
0 H

(m)
0 − U∗

0 ∥ ≤ 6γ0, where γ0 is defined in the same
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way as γ but is with respect to the eigen-gap ∆∗
0. It is not hard to see that γ0 = γ∆∗/∆∗

0.

Hence,

∥U (m)
0 H

(m)
0 − U∗

0 ∥ ≤ 6γ∆∗/∆∗
0.

By mutual orthogonality of eigenvectors, (U
(m)
0 )′U (m) = 0 and (U∗

0 )
′U∗ = 0. It follows that

∥M̃∗
m·V

(m)∥ = ∥e′m[U∗
0Λ

∗
0(U

∗
0 )

′][U (m)H(m) − U∗]∥

= ∥e′m[U∗
0Λ

∗
0(U

∗
0 )

′]U (m)H(m)∥

≤ ∥e′m[U∗
0Λ

∗
0(U

∗
0 )

′]U (m)∥

= ∥e′mU∗
0Λ

∗
0(U

∗
0 − U

(m)
0 H

(m)
0 )′U (m)∥

≤ ∥e′mU∗
0Λ

∗
0(U

∗
0 − U

(m)
0 H

(m)
0 )′∥

≤ ∥Ũ∗∥2→∞ · ∥Λ∗
0∥ · ∥U∗

0 − U
(m)
0 H

(m)
0 ∥

≤ 6(∥Λ0∥∗/∆∗
0) · γ∆∗∥Ũ∗∥2→∞.

We plug it into (D.27) and note that κ̃ = ∥Λ0∥∗/∆∗
0. It gives

∥M∗
m·V

(m)∥ ≤ 6(κ+ κ̃)γ∆∗∥Ũ∗∥2→∞. (D.28)

Combining (D.26) and (D.28) gives (D.25).

We now come back to the proof of Lemma D.2. We have divided nonzero eigenvalues

of Ω into four groups: (i) λ1, (ii) positive eigenvalues in λ2, . . . , λK , (iii) zero eigenvalues,

and (iv) negative eigenvalues in λ2, . . . , λK . We shall apply Lemma D.4 to each of the four

groups. To save space, we only consider applying it to group (ii). The proof for other

groups is similar and omitted.

Now, M = A and M∗ = Ω = diag(Ω) + (A − EA). We check conditions A1-A4. By

Lemma C.2, ∆∗ ≥ CβnK
−1∥θ∥2 and κ ≤ C. For an appropriately large constant C̃ > 0,

we take

γ = C̃β−1
n ∥θ∥−2K

√
θmax∥θ∥1.

Consider A1. Since Ω(i, j) ≤ Cθ(i)θ(j), we have max1≤i≤n ∥Ωi,·∥ ≤ Cθmax∥θ∥. From

the universal inequality ∥θ∥ ≤
√
θmax∥θ∥1 and the assumption θmax = O(1), this term is

O(
√
θmax∥θ∥1), which is bounded by γ∆∗ when C̃ is appropriately large. Hence, A1 is

satisfied. A2 is satisfied because the upper triangle of A contains independent variables.

By (D.16), A3 is satisfied for δ0 = o(n−3). We then verify A4. Since ∥diag(Ω)∥ ≤ C,

∥diag(Ω)i,·Y ∥2 ≤ C∥Y ∥2→∞, 1 ≤ i ≤ n. (D.29)
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Fix 1 ≤ i ≤ n and 1 ≤ k ≤ r. Let yk ∈ Rn be the k-th column of Y . Using the Bernstein’s

inequality, for any t ≥ 0,

P
(
|y′k(A− EA)i,·| > t

)
≤ 2 exp

(
− t2/2∑n

j=1Ω(i, j)y
2
k(j) + t∥yk∥∞/3

)
. (D.30)

Note that
∑

j Ω(i, j)y
2
k(j) ≤ C∥yk∥2∞θmax∥θ∥1. Moreover, θmax∥θ∥1 ≫ log(n) by (D.17).

We take t = C∥yk∥∞
√
θmax∥θ∥1 log(n) for a large enough constant C > 0. It follows that

with probability 1− o(n−4),

|y′k(A− EA)i,·| ≤ ∥yk∥∞ · C
√

θmax∥θ∥1 log(n).

Combining it with the probability union bound and (D.29), with probability 1− o(n−3),

∥(A− Ω)i,·Y ∥2 ≤ C
√
θmax∥θ∥1 log(n) · ∥Y ∥2→∞

≤ ∆∗∥Y ∥2→∞ ·
C
√
θmax∥θ∥1 log(n)
K−1βn∥θ∥2

. (D.31)

Moreover, in (D.30), if we use an alternative bound
∑

j Ω(i, j)y
2
k(j) ≤ ∥yk∥2θ2max, we obtain

a different bound as follows: With probability 1− o(n−4),

|y′k(A− EA)i,·| ≤ Cmax
{
∥yk∥θmax

√
log(n), ∥yk∥∞ log(n)

}
.

Due to the probability union bound and (D.29), with probability 1− o(n−3),

∥(A− Ω)i,·Y ∥2 ≤ Cmax
{
∥Y ∥F θmax

√
log(n), ∥Y ∥2→∞ log(n)

}
≤ ∆∗∥Y ∥2→∞ max

{
θmax

√
n log(n)

K−1βn∥θ∥2
∥Y ∥F√

n∥Y ∥2→∞
,

log(n)

K−1βn∥θ∥2

}
. (D.32)

Let t1 = C(K−1βn∥θ∥2)−1
√

θmax∥θ∥1 log(n), t2 = C(K−1βn∥θ∥2)−1θmax

√
n log(n), and

t3 = C(K−1βn∥θ∥2)−1 log(n). Define the function

φ̃(x) = min{t1, max{t2x, t3}}.

Then, (D.31)-(D.32) together imply that with probability 1− o(n−3),

∥(A− EA)i,·Y ∥2 ≤ ∆∗∥Y ∥2→∞φ̃
( ∥Y ∥F√

n∥Y ∥2→∞

)
. (D.33)

We look at the function φ̃(x). Note that (
√
n∥Y ∥2→∞)−1∥Y ∥F takes values in the interval

[n−1/2, 1]. By (D.17), t1 ≫ t3. Moreover, since ∥θ∥1 ≤ nθmax, when x = 1, t2x ≥ Ct1.

Last, when x = n−1/2, t2x ≪ t3. Combining the above, we conclude that in [n−1/2,∞), the
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function φ̃(x) first stays flat at t3, then linearly increases to t1 and then stays flat at t1.

Hence, we construct a function φ(x), which linearly increases from 0 to t3 for x ∈ [0, n−1/2],

then linear increases from t3 to t1 for x ∈ [n−1/2, t2/t1], and then stays constant as t1 for

x ∈ [t2/t1,∞). It is seen that φ(0) = 0, φ(x)/x is non-increasing, and φ̃(x) ≤ φ(x) ≤ t1 in

the interval [n−1/2, 1]. By (D.33) and that φ̃(x) ≤ φ(x), A4 is satisfied with δ1 = o(n−3).

Furthermore, since φ(x) ≤ t1,

φ(γ) ≤
C
√
θmax∥θ∥1 log(n)
K−1βn∥θ∥2

.

So far, we have shown that A1-A4 hold.

We now apply Lemma D.4. As mentioned, we only study the eigenvectors in group (ii),

which correspond to positive eigenvalues among λ2, . . . , λK . Let Λ1 be the diagonal matrix

consisting of these eigenvalues and let Ξ01 be the matrix formed by associated eigenvectors.

Define their empirical counterparts, Λ̂1 and Ξ̂01, in the same way. In Lemma D.4, we take

U = Ξ̂01, U
∗ = Ξ01, and Ũ∗ = Ξ. Since λ2, . . . , λK are at the same order, κ ≤ C. Also,

κ̃ ≤ λ1/(λ1 − |λ2|) ≤ C by our assumption. It follows from (D.24) that there exists an

orthogonal matrix O such that

∥Ξ̂01O −AΞ01Λ
−1
1 ∥2→∞ ≤

C
√

θmax∥θ∥1 log(n)
K−1βn∥θ∥2

∥Ξ∥2→∞.

By Lemma C.3, ∥Ξ∥2→∞ = O(
√
K∥θ∥−1θmax). Plugging it into the above inequality, we

find that

∥Ξ̂01O −AΞ01Λ
−1
1 ∥2→∞ ≤

Cθ
3/2
maxK3/2

√
∥θ∥1 log(n)

βn∥θ∥3
. (D.34)

By definition of eigen-decomposition, ΩΞ01 = Ξ01Λ1. It follows that

AΞ01Λ
−1
1 = ΩΞ01Λ

−1
1 + (A− Ω)Ξ01Λ

−1
1 = Ξ01 + (A− Ω)Ξ01Λ

−1
1 .

Plugging it into (D.34) yields

∥Ξ̂01O − Ξ01∥2→∞ ≤
Cθ

3/2
maxK3/2

√
∥θ∥1 log(n)

βn∥θ∥3
+ ∥(A− Ω)Ξ01Λ

−1
1 ∥2→∞. (D.35)

To bound the second term on the right hand side, we apply the first line of (D.31) by letting

Y = Ξ01. It turns out that with probability 1− o(n−3),

∥(A− Ω)Ξ01Λ
−1
1 ∥2→∞ ≤ ( max

1≤i≤n
∥(A− Ω)i,·Ξ01∥2) · ∥Λ−1

1 ∥

≤ C
√

θmax∥θ∥1 log(n) · ∥Ξ01∥2→∞ · ∥Λ−1
1 ∥
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≤ C
√
θmax∥θ∥1 log(n) ·

√
K∥θ∥−1θmax ·Kβ−1

n ∥θ∥−2, (D.36)

where in the last inequality, the bound of ∥Λ−1
1 ∥ is from Lemma C.2 and the bound of

∥Ξ01∥2→∞ is from Lemma C.3. Combining (D.35)-(D.36) gives

∥Ξ̂01O − Ξ01∥2→∞ ≤
Cθ

3/2
maxK3/2

√
∥θ∥1 log(n)

βn∥θ∥3
.

Note that the left hand side only involves eigenvectors in group (ii). We can prove similar

results for the other three groups of eigenvectors. For group (i), ∆∗ ≥ CK−1∥θ∥−1 and

∥Ũ∗∥2→∞ ≤ C∥θ∥−1θmax, and the resulting bound is

∥ωξ̂1 − ξ1∥∞ ≤
Cθ

3/2
maxK

√
∥θ∥1 log(n)

∥θ∥3
.

Furthermore, if βn = o(1), by Lemma C.2, λ1 − |λ2| ≥ C−1λ1 ≥ C−1K∥θ∥2. Compared

with the case of βn ≥ c, the ∆∗ of group (i) is larger by a factor of K, so all the bounds

concerning ξ̂1 are reduced by a factor of K.

D.3 Proof of Theorem 3.1

Without loss of generality, we assume T = ∞, so that no thresholding is applied in obtaining

R̂. Note that maxi ∥ri∥ ≤ maxk ∥vk∥ ≤ C
√
K by Lemma C.4. For any threshold

√
K ≪

T < ∞, the threshold always reduces errors. Therefore, the error bounds for the case of no

thresholding immediately imply the error bounds for the case of thresholding.

The second claim is straightforward. We only show the first claim. By Lemma C.3, we

can choose the sign of ξ1 such that it is a strictly positive vector. By definition of errn, we

can re-write

errn =
∥θ∥
θmin

·
θ
3/2
max

√
∥θ∥1 log(n)
∥θ∥3

.

Then, the statements (c)-(d) of Lemma D.2 can be re-expressed as

∥ωξ̂ − ξ∥∞ = O
(θmin

∥θ∥
Kerrn

)
, max

1≤i≤n
∥X ′Ξ̂i,0 − Ξi,0∥ = O

(θmin

∥θ∥
K3/2β−1

n errn

)
. (D.37)

We now show the claim. Let (ω,X) be the same as in Lemma D.2, and define H = ωX ′ ∈

RK−1,K−1. Fix i. By definition of (ri, r̂i) and H,

ri =
1

ξ1(i)
Ξi,0, Hr̂i = ωX ′r̂i =

1

ωξ̂1(i)
X ′Ξ̂i,0.

It follows that

Hr̂i − ri =
1

ωξ̂1(i)
(X ′Ξ̂i,0 − Ξi,0) +

[ 1

ωξ̂1(i)
− 1

ξ1(i)

]
Ξi,0
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=
1

ωξ̂1(i)
(X ′Ξ̂i,0 − Ξi,0)−

ωξ̂1(i)− ξ1(i)

ωξ̂1(i)
ri.

First, by Lemma C.3, ξ1(i) ≥ Cθmin/∥θ∥; also, by (D.37), |ωξ̂1(i)− ξ1(i)| ≪ θmin/∥θ∥. We

thus have ωξ̂1(i) ≥ ξ1(i)/2 ≥ Cθmin/∥θ∥. Second, using the first bullet point of Lemma C.4,

we have ∥ri∥ ≤ maxk ∥vk∥ ≤ C
√
K. Plugging these results into the above equation gives

∥Hr̂i − ri∥ ≤ C∥θ∥
θmin

(
∥X ′Ξ̂i,0 − Ξi,0∥+

√
K|ωξ̂1(i)− ξ1(i)|

)
. (D.38)

The claim follows by plugging (D.37) into (D.38).

D.4 The ℓ2-norm deviation bound for R̂

Theorem 3.1 is about the row-wise large deviation bound for R̂. For completeness of theory,

we also present the ℓ2-norm deviation bound for R̂. This result will be useful in the proofs

of Theorems 3.5-B.1 about faster rates of Mixed-SCORE. Recall the following definition:

err∗n = [(θ1/2maxθ̄
3/2)/(θminθ̄∗)] · (nθ̄2)−1/2.

Lemma D.5. Under conditions of Theorem 3.1, with probability 1− o(n−3),

n−1
n∑

i=1

∥Hr̂i − ri∥2 ≤ CK3β−2
n (err∗n)

2.

Proof of Lemma D.5: As explained in the proof of Theorem 3.1, we only need to prove the

claim for the special case of T = ∞ in obtaining R̂ (i.e., no thresholding is applied). By

definition of err∗n, we can re-write it as

err∗n =
∥θ∥

θmin
√
n
·
√
θmax∥θ∥1
∥θ∥2

.

Then, the first two bullet points of Lemma D.2 can be re-expressed as

∥ωξ̂ − ξ∥ = O

(
θmin

√
n

∥θ∥
Kerr∗n

)
, ∥Ξ̂0X − Ξ0∥F = O

(
θmin

√
n

∥θ∥
K3/2β−1

n err∗n

)
.

Combining it with (D.38) gives

n−1
n∑

i=1

∥Hr̂i − ri∥2 ≤
C∥θ∥2

nθ2min

(
∥Ξ̂0X − Ξ̂0∥2F +K∥ωξ̂1 − ξ1∥2

)
≤ CK3β−2

n (err∗n)
2.

This proves the claim.
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D.5 A property of the rotation matrix H

Lemma D.6. Let H be the orthogonal matrix in Theorem 3.1. With probability 1−o(n−3),

∥Hdiag(λ̂2, . . . , λ̂K)− diag(λ̂2, . . . , λ̂K)H∥ ≤ C
√
θmax∥θ∥1.

Proof of Lemma D.6: Write for short Λ̂0 = diag(λ̂2, . . . , λ̂K). Let Ξ̂0, Ξ̂0, ω and X be the

same as in Lemma D.2. In the proof of Theorem 3.1, we have seen that

H = ωX ′, where ω ∈ {±1}.

It follows that

∥HΛ̂0 − Λ̂0H∥ = ∥(HΛ̂0 − Λ̂0H)′∥ = ∥XΛ̂0 − Λ̂0X∥

= ∥(Ξ̂′
0Ξ0)Λ̂0 − Λ̂0(Ξ̂

′
0Ξ0) + (H − Ξ̂′

0Ξ0)Λ̂0 − Λ̂0(H − Ξ̂′
0Ξ0)∥

≤ ∥(Ξ̂′
0Ξ0)Λ̂0 − Λ̂0(Ξ̂

′
0Ξ0)∥+ 2∥Ξ̂′

0Ξ0 −X∥ · ∥Λ̂0∥. (D.39)

We shall apply [1, Lemma 2]: in our setting, their notations H and sgn(H) correspond to

our notations of Ξ̂′
0Ξ0 and X. By their Lemma 2,

∥Ξ̂′
0Ξ0 −X∥1/2 ≤ C∥A− Ω∥/∆∗, ∥(Ξ̂′

0Ξ0)Λ̂0 − Λ̂0(Ξ̂
′
0Ξ0)∥ ≤ 2∥A− Ω∥, (D.40)

where ∆∗ is the eigen-gap quantity defined in the proof of Lemma D.2 and satisfies ∆∗ ≥

CβnK
−1∥θ∥2. Additionally, by Lemma C.2 and Lemma D.1, ∥Λ̂0∥ ≲ ∥Λ0∥ ≤ CβnK

−1∥θ∥2 ≤

C∆∗, with probability 1 − o(n−3). Combining these with (D.39)-(D.40), we have: with

probability 1− o(n−3),

∥HΛ̂0 − Λ̂0H∥ ≤ ∥(Ξ̂′
0Ξ0)Λ̂0 − Λ̂0(Ξ̂

′
0Ξ0)∥+ 2∥Ξ̂′

0Ξ0 −X∥ · ∥Λ̂0∥

≤ 2∥A− Ω∥+ C(∥A− Ω∥/∆∗)2 · C∆∗

≤ C∥A− Ω∥

≤ C
√

θmax∥θ∥1,

where the third line is because ∥A− Ω∥ ≪ ∆∗ and the last line is from (D.16).

E Vertex Hunting

Mixed-SCORE as a generic algorithm, where the VH step is a plug-in step. To analyze the

errors of Mixed-SCORE, we must first understand the errors of different VH approaches.
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Definition E.1 (Efficiency and strong efficiency of Vertex Hunting). A Vertex Hunting

algorithm is said to be efficient if it satisfies max1≤k≤K ∥Hv̂k−vk∥ ≤ Cmax1≤i≤n ∥Hr̂i−ri∥,

and it is said to be strongly efficient if max1≤k≤K ∥Hv̂k−vk∥ ≤ C
(
n−1

∑n
i=1 ∥Hr̂i−ri∥2

)1/2
,

where H is the same orthogonal matrix as in Theorem 3.1.

Consider all 4 VH approaches: SVS, SVS*, CVS, and SP in Table 1. We show

• All approaches are efficient under some regularity conditions.

• SVS and SVS* are also strongly efficient in some settings (however, CVS and SP are

generally not strongly efficient; this is because SVS and SVS* use a denoise stage

while CVS and SP do not).

E.1 Efficiency of SP and CVS

The next lemma gives the efficiency of CVS and SP.

Lemma E.1 (Efficiency of CVS and SP). Suppose conditions of Theorem 3.2 hold. Suppose

we apply either CVS or SP algorithm to the n rows of R̂. With probability 1− o(n−3), the

estimated v̂1, . . . , v̂K satisfy that max1≤k≤K ∥Hv̂k−vk∥ ≤ Cmax1≤i≤n ∥Hr̂i−ri∥. Therefore,

both the CVS and SP algorithms are efficient.

Proof of Lemma E.1: Without loss of generality, we only consider the case that H equals to

the identity matrix. When H is not the identity matrix, noticing that max1≤k≤K ∥Hv̂k −

vk∥ = max1≤k≤K ∥v̂k −H ′vk∥, we only need to plug H ′v1, . . . ,H
′vK into the proof below.

We first prove the efficiency of the CVS algorithm. Write ĥ = max1≤i≤n ∥r̂i − ri∥. We

aim to show

min
1≤ℓ≤K

∥vk − v̂ℓ∥ ≤ C0ĥ, for all 1 ≤ k ≤ K. (E.41)

It means for each true vertex vk, there is at least one of {v̂1, v̂2, . . . , v̂K} that is within a

distance of C0ĥ to vk. At the same time, since ĥ = o(
√
K) and the distance between any two

vertices is ≥ C
√
K (see Lemma C.4), each v̂ℓ cannot be simultaneously within a distance

C0ĥ to two vertices. The above imply that there is a one-to-one correspondence between

true and estimated vertices such that for each true vertex the corresponding estimated

vertex is within a distance C0ĥ to it. The claim then follows.

It remains to show (E.41). Fix 1 ≤ k ≤ K. Recall that wi is the unique weight vector

such that ri =
∑K

s=1wi(s)vs, 1 ≤ i ≤ n. For a constant C1 > 0 to be decided, let

V0k =
{
1 ≤ i ≤ n : wi(k) ≥ 1− C1K

−1/2ĥ
}
.
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Let îs be such that v̂s = r̂îs , 1 ≤ s ≤ K. We shall first prove that

{̂i1, î2, . . . , îK} ∩ V0k ̸= ∅. (E.42)

This means at least one of the estimated vertices has to come from the point set {r̂i : i ∈

V0k}. We shall next prove that

max
i∈V0k

∥r̂i − vk∥ ≤ C0ĥ. (E.43)

Then, the estimated vertex which comes from {r̂i : i ∈ V0k} is guaranteed to be within a

distance C0ĥ to the true vk, i.e., (E.41) holds.

It remains to show (E.42)-(E.43). First, consider (E.42). In the proof of Lemma C.4,

we introduce a one-to-one linear mapping T2 from the standard simplex S0 to the Ideal

Simplex Sideal such that T2(wi) = ri for all 1 ≤ i ≤ n. We have shown that both T2 and

T−1
2 are Lipschitz with the Lipschitz constants at the order of

√
K and 1/

√
K, respectively.

As a result, there is a constant C2 > 1 such that, for any w, w̃ ∈ S0,

C−1
2

√
K∥w − w̃∥ ≤ ∥T2(w)− T2(w̃)∥ ≤ C2

√
K∥w − w̃∥. (E.44)

Below, we first use (E.44) to show the distance from vk to the convex hull of {ri : i /∈ V0k}

is sufficiently large, and then prove (E.42) by contradiction. We take C1 = 5C2. Take an

arbitrary point x∗ from the convex hull H{ri : i /∈ V0k}. Since T2 is a linear mapping,

y∗ = T−1
2 (x∗) is a convex combination of {wi : i /∈ V0k}. By definition, for each i /∈ V0k,

0 ≤ wi(k) ≤ 1−C1K
−1/2ĥ. As a result, y∗(k), as a convex combination of {wi(k) : i /∈ V0k},

also satisfies that 0 ≤ y∗(k) ≤ 1− C1K
−1/2ĥ. This implies

∥T−1
2 (x∗)− ek∥ = ∥y∗ − ek∥ ≥ C1K

−1/2ĥ, for any x∗ ∈ H{ri : i /∈ V0k}.

Combining it with (E.44), we have

∥x∗ − vk∥ = ∥T2(y
∗)− T2(ek)∥ ≥ C−1

2

√
K · C1K

−1/2ĥ ≥ 5ĥ.

Since x∗ is taken arbitrarily from the convex hull H{ri : i /∈ V0k}, we have

d
(
vk,H{ri : i /∈ V0k}

)
≥ 5ĥ. (E.45)

Come back to the proof of (E.42). When this claim is not true, the estimated simplex Ŝ is

contained in the convex hull of {r̂i : i /∈ V0k}. It follows that

d(vk, Ŝ) ≥ d
(
vk,H{r̂i : i /∈ V0k}

)
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≥ d
(
vk,H{ri : i /∈ V0k}

)
− ĥ

≥ 4ĥ.

Let jk be a pure node of community k. Then, ∥r̂jk − vk∥ = ∥r̂jk − rjk∥ ≤ ĥ. It follows that

max
1≤i≤n

d(r̂i, Ŝ) ≥ d(r̂jk , Ŝ) ≥ d(vk, Ŝ)− ĥ ≥ 3ĥ. (E.46)

At the same time, consider the simplex Ŝ∗ formed by r̂j1 , r̂j2 , . . . , r̂jK , where js is a pure

node of community s, for 1 ≤ s ≤ K. Note that ri1 , ri2 , . . . , riK form the Ideal Simplex S∗

and max1≤i≤n d(ri,S∗) = 0. It follows that

max
1≤i≤n

d(r̂i, Ŝ∗) ≤ max
1≤i≤n

d(ri,S∗) + 2ĥ ≤ 2ĥ. (E.47)

Note that Ŝ is the solution of the combinatory search step. It has to satisfy

max
1≤i≤n

d(r̂i, Ŝ) ≤ max
1≤i≤n

d(r̂i, Ŝ∗).

This yields a contradiction to (E.46)-(E.47). Hence, (E.42) must be true.

Next, consider (E.43). It is easy to see that

max
i∈V0k

∥r̂i − vk∥ ≤ max
i∈V0k

∥ri − vk∥+ ĥ

= max
i∈V0k

∥T2(wi)− T2(ek)∥+ ĥ

≤ C2

√
K max

i∈V0k

∥wi − ek∥+ ĥ,

where we have used (E.44) in the last line. For any i ∈ V0k, ∥wi − ek∥2 = [1 − wi(k)]
2 +∑

ℓ̸=k w
2
i (ℓ) ≤ [1− wi(k)]

2 + [
∑

ℓ ̸=k wi(ℓ)]
2 ≤ 2(C1K

−1/2ĥ)2 = 50C2
2K

−1ĥ2. It follows that

max
i∈V0k

∥r̂i − vk∥ ≤ (5
√
2C2

2 + 1)ĥ.

Hence, (E.43) is true by choosing C0 = 5
√
2C2

2 + 1.

We then prove the efficiency of the SP algorithm. For space limit, the exact description

of the SP algorithm is not given in the main paper. We include it here:

• Initialize Yi = (1, r̂′i)
′ ∈ RK , for 1 ≤ i ≤ n.

• At iteration k = 1, 2, . . . ,K: Find ik = argmax1≤i≤n∥Yi∥ and let uk = Yik/∥Yik∥. Set

the k-th estimated vertex as v̂k = r̂ik . Update Yi to (1− uku
′
k)Yi, for 1 ≤ i ≤ n.
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This algorithm has been analyzed in various literature. We only need to adapt the existing

results. The next lemma is from [5, Theorem 3].

Lemma E.2. Fix m ≥ r and n ≥ r. Consider a matrix Y = SM + Z, where S ∈ Rm×r

has a full column rank, M ∈ Rr×n is a nonnegative matrix such that the sum of each

column is at most 1, and Z = [Z1, . . . , Zn] ∈ Rm×n. Suppose M has a submatrix equal

to Ir. Write ϵ = max1≤i≤n ∥Zi∥. Suppose ϵ = O( σmin(S)√
rκ2(S)

), where σmin(S) and κ(S) are

the minimum singular value and condition number of S, respectively. If we apply the SP

algorithm to columns of Y , then it outputs an index set K ⊂ {1, 2, . . . , n} such that |K| = r

and max1≤k≤r minj∈K ∥Sk − Yj∥ = O(ϵκ2(S)), where Sk is the k-th column of S.

Given K, the estimated vertices by SP are {Yj}j∈K. Hence, the above lemma says the

maximum ℓ2-error on estimating vertices is O(ϵκ2(S)) = O
(
κ2(S)max1≤i≤n ∥Zi∥

)
.

In our setting, we apply SP to Yi = (1, r̂′i)
′, 1 ≤ i ≤ n. We shall re-write the data in the

same form as in Lemma E.2. Recall that H is the orthogonal matrix in Theorem 3.1 and

v1, . . . , vK are vertices of the Ideal Simplex. By definition, 1 · · · 1

H−1v1 · · · H−1vK

wi =

 1

H−1ri

 .

Let ṽk = (1, (H−1vk)
′)′, r̃i = (1, (H−1ri)

′)′, zi = (0, (r̂i −H−1ri)
′)′, 1 ≤ k ≤ K, 1 ≤ i ≤ n.

It is seen that

(1, r̂′i)
′ ≡ Yi = [ṽ1, . . . , ṽK ]wi + zi.

Write Y = [Y1, . . . , Yn] ∈ RK×n, Ṽ = [ṽ1, . . . , ṽK ] ∈ RK×K , W = [w1, . . . , wn] ∈ RK×n, and

Z = [z1, . . . , zn] ∈ RK×n. The above can be re-written as

Y = Ṽ W + Z. (E.48)

This reduces to the form in Lemma E.2 with m = K. To apply Lemma E.2, we note that

Ṽ can be re-written as

Ṽ = diag(1, H−1) ·Q, where Q =

 1 · · · 1

v1 · · · vK

 .

Since diag(1, H−1) is an orthogonal matrix, the singular values of Ṽ are the same as the

singular values of Q. Moreover, by (C.15), all the singular values of Q are at the order of
√
K. It follows that

σmin(Ṽ ) ≍
√
K, κ(Ṽ ) ≍ 1. (E.49)
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In particular, Ṽ has a full rank, and σmin(Ṽ )√
Kκ2(Ṽ )

≍ 1. By Lemma E.2, the maximum ℓ2-error on

estimating vertices isO(max1≤i≤n ∥Zi∥) = O(max1≤i≤n ∥r̂i−H−1ri∥) = O(max1≤i≤n ∥Hr̂i−

ri∥). The claim follows immediately.

E.2 Strong efficiency of SVS and SVS∗

SVS and SVS∗ both have a denoise stage, where we use k-means to reduce the n rows of R̂

into L “cluster centers”, with an L that is (usually a few times) larger than K. We have

seen that the denoise stage makes SVS and SVS∗ more accurate numerically (see Figure 4).

We now give a theoretical justification, where we show that SVS and SVS∗ are strongly

efficient (see Definition E.1). Without loss of generality, we focus on SVS. The analysis of

SVS∗ is very similar, which is discussed in the remark in the end.

First, consider Setting 1. Let S0 = S0(e1, e2, . . . , eK) be the standard simplex in RK ,

where the vertices e1, e2, . . . , eK are the standard Euclidean basis vectors of RK . Fix a

density g defined over S0 and let R = {π ∈ S0 : g(π) > 0} be the support of g. We suppose

there is a constant c0 > 0 such that

R is an open subset of S0, and distance(ek,R) ≥ c0, 1 ≤ k ≤ K. (E.50)

Let δv(π) denote the point mass at π = v. Let ϵ1, . . . , ϵK > 0 be constants such that∑K
k=1 ϵk < 1. We invoke a random design model where πi’s are iid drawn from a mixture

f(π) =
K∑
k=1

ϵk · δek(π) +
(
1−

K∑
k=1

ϵk

)
· g(π). (E.51)

Lemma E.3 (Efficiency of SVS, Setting 1). Suppose conditions of Theorem 3.2 hold. Ad-

ditionally, suppose K is fixed and rows of Π are iid generated from (E.50)-(E.51). We

apply the SVS algorithm to rows of R̂ with an L that does not change with n. Then, there

exists L0 = L0(g, ϵ1, . . . , ϵK) such that, as long as L ≥ L0, with probability 1− o(n−3), the

estimated v̂1, . . . , v̂K satisfy max1≤k≤K ∥Hv̂k − vk∥ ≤ Cmax1≤i≤n ∥Hr̂i − ri∥. As a result,

the SVS algorithm is efficient.

Lemma E.3 is proved in Section E.2.1. Its proof utilizes the Borel-Lebesgue covering

theorem to characterize the local centers produced in the denoise stage.

Remark. A noteworthy implication of Lemma E.3 is that the performance of SVS is

robust to the choice of L: an overshooting of L only has negligible effects (so as long as

computation is not a serious issue, we can choose a larger L in SVS). This is intuitively
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explained as follows. As L increases, more local centers emerge, and we have two represen-

tative scenarios. In the first scenario, new “local centers” emerge in the interior of the Ideal

Simplex, while “local centers” that fall close to one of the vertices of Ideal Simplex remain

unaffected. In this case, as “local centers” that fall in the interior of the Ideal Simplex won’t

be selected in the second stage of SVS, the estimated vertices remain roughly the same as L

increases. In the second scenario, near a vertex of the Ideal Simplex, the number of “local

centers” increases as L increases. However, all these “local centers” remain close to the

vertex, and in its second stage, SVS selects one of these “local centers” as the estimated

vertex. In this case, the estimates of vertices also remain roughly the same as L increases.

The above heuristic explanation is made rigorous in the proof of Lemma E.3.

Next, consider Setting 2. Let Nk = {1 ≤ i ≤ n : πi(k) = 1} be the set of pure nodes of

community k, 1 ≤ k ≤ K, and let M = {1 ≤ i ≤ n : max1≤k≤K πi(k) < 1} be the set of all

mixed nodes. We assume there are constants c1, c2 ∈ (0, 1) such that

min
1≤k≤K

|Nk| ≥ c1n, min
1≤k≤K

∑
i∈Nk

θ2(i) ≥ c2∥θ∥2. (E.52)

Furthermore, for a fixed integer L0 ≥ 1, we assume there is a partition of M, M =

M1 ∪ · · · ∪ML0 , a set of PMF’s γ1, · · · , γL0 , and constants c3, c4 > 0 such that (ek: k-th

standard basis vector of RK){
min

1≤j ̸=ℓ≤L0

∥γj − γℓ∥, min
1≤ℓ≤L0,1≤k≤K

∥γℓ − ek∥
}
≥ c3, (E.53)

and for each 1 ≤ ℓ ≤ L0 (note: errn is the same as that in (3.10)),

|Mℓ| ≥ c4|M| ≥ nβ−2
n err2n, max

i∈Mℓ

∥πi − γℓ∥ ≤ 1/ log(n). (E.54)

In this setting, we assume that the true πi’s form several loose clusters, where the πi’s in

the same cluster are within a distance of O( 1
log(n)) from each other. We note that 1

log(n) is

much larger than the order of noise, max1≤i≤n ∥Hr̂i − ri∥ (see Theorem 3.1). Hence, the

assumed clustering structure is “loose”.

Lemma E.4 (Strong efficiency of SVS, Setting 2). Suppose conditions of Theorem 3.2 hold.

Additionally, suppose K is fixed and (Θ,Π) satisfy (E.52)-(E.54). For any integer L ≥ 1,

denote by ϵL(R̂) the sum of squared residuals of applying k-means to rows of R̂ to get L

clusters. We apply the SVS algorithm to rows of R̂, with a data-drive choice of L:

L̂n(A) = min{L ≥ K + 1 : ϵL(R̂) < ϵL−1(R̂)/ log(log(n))}. (E.55)
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With probability 1− o(n−3), the estimated v̂1, . . . , v̂K satisfy

max
1≤k≤K

∥Hv̂k − vk∥ ≤ C
(
n−1

n∑
i=1

∥Hr̂i − ri∥2
)1/2

. (E.56)

As a result, the SVS algorithm is strongly efficient.

Lemma E.4 is proved in Section E.2.2. The proof requires unconventional analysis of k-

means. The challenge comes from that the clusters of πi’s are loose. Using the conventional

analysis of k-means, the VH error is governed by the largest within-cluster variance, which

can be as large as O( 1
log(n)) for loose clusters (see (E.54)). The key of the proof is to show

that the loose clusters in the interior have negligible effects on the estimated vertices.

Remark. Lemmas E.3-E.4 can be easily extended to SVS∗. Let ĥ = maxi ∥Hr̂i − ri∥.

In the proofs of these lemmas, we have shown the following properties of the k-means cluster

centers: With high probability, (a) all k-means centers are within a distance of O(ĥ) to the

Ideal Simplex, and (b) for each vertex vk, there is at least one k-means center that is within

a distance of O(ĥ) to vk. SVS∗ applies SP to these k-means centers. Therefore, we can

apply Lemma E.1 pretending that the k-means centers are the data points. This gives the

desired claims for SVS∗.

E.2.1 Proof of Lemma E.3

Lemma E.3 follows directly from the next lemma:

Lemma E.5. Suppose the conditions of Lemma E.3 hold. We apply the SVS algorithm

to {r̂i}ni=1 with L being a properly large constant. Write ĥ = max1≤i≤n ∥Hr̂i − ri∥. The

following statements are true.

• In the local clustering sub-step, all the local centers output by k-means are within a

distance of Cĥ to the Ideal Simplex. Moreover, for each true vertex vk, there is at

least one local center that is within a distance of Cĥ to it, 1 ≤ k ≤ K.

• The combinatorial search sub-step selects exactly one local center among those within

a distance of Cĥ to a true vk, 1 ≤ k ≤ K. As a result, up to a permutation of

estimated vertices, max1≤k≤K ∥Hv̂k − vk∥ ≤ Cĥ.

Proof of Lemma E.5: As explained in the proof of Lemma E.1, we can assume H = IK−1

without loss of generality.
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We first argue that, once the first bullet point is proved, the second bullet point follows

directly. Let m̂1, m̂2, . . . , m̂L be the local centers by k-means. The combinatorial search step

of SVS is an application of CVS on these local centers, and we hope to apply Lemma E.1.

Note that when the first bullet point of the claim is true, we have:

• d(m̂j ,Sideal) ≤ Cĥ, 1 ≤ j ≤ L.

• For each 1 ≤ k ≤ K, there exists jk such that ∥m̂jk − vk∥ ≤ Cĥ.

By Lemma C.4, the distance between two different vk and vℓ is lower bounded by a constant

times
√
K, while ĥ = o(

√
K). As a result, any m̂j cannot be simultaneously within a

distance of Cĥ to two vertices, which implies that j1, j2, . . . , jK are distinct. Define

mj =

argminx∈Sideal∥x− m̂j∥, j /∈ {j1, j2, . . . , jK},

vk, j = jk, 1 ≤ k ≤ K.

We then have

• The points m1,m2, . . . ,mL are in the Ideal Simplex Sideal.

• ∥m̂j −mj∥ ≤ Cĥ, 1 ≤ j ≤ L.

• For each 1 ≤ k ≤ K, there is at least one mj located at the vertex vk.

If we view m̂1, m̂2, . . . , m̂L as the data points and view mj1 , . . . ,mjK as the “pure nodes”,

we can apply Lemma E.1 to get max1≤k≤K ∥v̂k − vk∥ ≤ Cmax1≤j≤L ∥m̂j −mj∥ ≤ Cĥ.

Therefore, it suffices to prove the first bullet point of the claim. For any L ≥ 1, let

RSS(L) be the objective achieved by applying k-means to mixed ri’s assuming ≤ L clusters:

RSS(L) = min
L cluster centers

∑
mixed nodes i

∥ri − (closest-cluster-center)∥2.

In preparation, we study RSS(L) as a function of L.

We provide an upper bound of RSS(L) by constructing a feasible solution to the k-

means problem. In the proof of Lemma C.4, we see that there is a one-to-one mapping

T = T2 ◦ T1 from the standard simplex S0 to the Ideal Simplex Sideal such that ri = T (πi)

and that (note: we have used that K is a constant)

C−1∥x− y∥ ≤ ∥T (x)− T (y)∥ ≤ C∥x− y∥, for any x, y ∈ S0. (E.57)
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For an integer s = ⌊L
1

K−1 − 1⌋, we consider the following choice of centers:{
T (x) : x ∈ S0, entries of x take value on

{
0,

1

s
, ...,

s− 1

s
, 1
}}

.

The total number of centers is bounded by (s+ 1)K−1 ≤ L. We then assign each ri to the

nearest center. The ℓ∞-distance from each πi to the nearest x above is at most 1/s, so

the Euclidean distance is at most
√
K/s; combining it with (E.57), the Euclidean distance

from ri = T (πi) to the nearest T (x) above is at most C
√
K/s. It follows that

RSS(L) ≤ n(C
√
K/s)2.

The choice of s guarantees that s > L
1

K−1 − 2. As a result, for a constant c̃ that does not

depend on L,

RSS(L) ≤ n · c̃L− 2
K−1 . (E.58)

We are now ready to prove the first bullet point. Note that each r̂i is within a distance

Cĥ to the corresponding ri and that all the ri’s are in the Ideal Simplex. Hence, all data

points {r̂i}ni=1 are within a distance Cĥ to the Ideal Simplex. It is easy to see that all local

centers output by k-means must also be within a distance Cĥ to the Ideal Simplex. What

remains is to show that there is at least one local center within a distance of Cĥ to each

true vertex vk. Fix vk. Our strategy is as follows: for a constant ℓ0 to be decided,

(a) We first show that there exists at least one local center within a distance ℓ0 to vk.

(b) We then show that, for each local center within a distance ℓ0 to vk, the associated

data cluster consists of only pure r̂i from community k.

Then, by the nature of k-means, such a local center equals to the average of all the r̂i

assigned to this cluster. Since each r̂i corresponds to a pure node of community k, it is

within a distance Cĥ to vk. As a result, the local center must also be within a distance Cĥ

to vk. This gives the first bullet point.

What remains is to prove (a) and (b). Fix vk. Consider (a). Suppose there are no local

centers within a distance ℓ0 to vk. Then, each pure ri from community k has a distance

> ℓ0 to the nearest local center; hence, the distance from r̂i to the nearest local center is at

least ℓ0 −Cĥ ≥ ℓ0/2. At the same time, by the generating process of πi’s, with probability

1− o(n−3), the number of pure nodes of community k is at least nϵk/2. These pure nodes

contribute a sum-of-squares of

≥ (nϵk/2) · (ℓ0/2)2 = n(ℓ20ϵk/8).

37



Additionally, the mixed r̂i’s are assigned to at most L clusters. Since ∥r̂i − x∥2 ≥ ∥ri −

x∥2/2− O(ĥ2) for any point x, we immediately know that the sum-of-squares contributed

by mixed r̂i’s is

≥ 1

2
RSS(L)−O(nĥ2).

Combining the above, the objective attained by k-means is

≥ 1

2
RSS(L) + n(ℓ20ϵk/9) (E.59)

At the same time, we construct an alternative solution by letting (L−K) of the local centers

be those associated with RSS(L − K), letting the remaining K centers be v1, v2, . . . , vK ,

and assigning each r̂i to the center closest to the corresponding ri. Since ∥r̂i − x∥2 ≤

2∥ri − x∥2 +O(ĥ2), the sum of squares attained by this solution is

≤ 2RSS(L−K) +O(nĥ2). (E.60)

A contradiction is obtained as long as

2RSS(L−K)− 1

2
RSS(L+K) < n(ℓ20ϵk/9)−O(nĥ2)

< n(ℓ20/10).

According to (E.58), the above is true if we choose L > (20c̃/ℓ20)
K−1

2 . This proves (a).

Consider (b). Fix k. Let m̂∗ be a local center such that ∥m̂∗ − vk∥ ≤ ℓ0. By the

assumption (E.50), for any πi ̸= ek, its distance to ek (ek is the k-th standard basis of

RK) is at least c0. Combining it with (E.57), for any node i that is not a pure node of

community k, the distance from ri to vk is at least C−1c0. As a result, for any such node,

∥r̂i − m̂∗∥ ≥ C−1c0 − ℓ0 − Cĥ.

By taking ℓ0 = C−1c0/4.1, for any node i not pure of community k,

the distance from r̂i to the center m̂∗ is at least 3ℓ0. (E.61)

We shall also show that, for any node i not pure of community k,

the distance from r̂i to the nearest center is at most 2.5ℓ0. (E.62)

By (E.61)-(E.62), these nodes cannot be assigned to m̂∗. Therefore, the cluster associated

with m̂∗ consists of only those r̂i such that i is a pure node of community k. This proves

(b).
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What remains is to prove (E.62). If i is a pure node of a different community ℓ, then

by (a) above, the distance from ri = vℓ to the nearest center is ℓ0 +Cĥ < 2.5ℓ0. Hence, we

only need to consider i that is a mixed node. Since maxi ∥r̂i − ri∥ ≤ Cĥ ≪ 0.5ℓ0, it suffices

to show that

the distance from a mixed ri to the nearest center is at most 2ℓ0. (E.63)

Let S0 = S0(e1, . . . , eK) ∈ RK be the standard (K − 1)-simplex, and denote by B(x; c) an

open ball in S0 centered at x with a radius c; we notice that here an “open ball” means

the intersection of S0 and an open ball in RK . Let R̄ be the closure of R, where R is the

support of f(·). We consider the open cover of R̄:

{
B(x,C−1ℓ0) : x ∈ R

}
.

Since R̄ is closed and bounded, it is a compact set. According to the Borel-Lebesgue

covering theorem, the above open cover has a finite sub-cover:

{
B(x1, C−1ℓ0),B(x2, C−1ℓ0), . . . ,B(xp, C−1ℓ0)

}
, where x1, . . . , xp ∈ R.

This means each πi ̸= ek is contained in one B(xj , C−1ℓ0). Recalling that T is the mapping

in (E.57), define

B∗
j = T

(
B(xj , C−1ℓ0)

)
, 1 ≤ j ≤ p.

Then, ri = T (πi) is contained in B∗
j . Moreover, for any y, ỹ ∈ B∗

j , ∥y−ỹ∥ ≤ Cmaxx,x̃∈B(xj ,C−1ℓ0) ≤

2ℓ0. Therefore, if we can show that

each B∗
j contains at least one local center, 1 ≤ j ≤ p, (E.64)

then the distance from ri to this local center is bounded by 2ℓ0. This gives (E.63), and in

turn gives (E.62).

What remains is to prove (E.64). Note that R is an open set. By definition of open sets,

for each of x1, x2, . . . , xp, there is a τj > 0 such that the closed ball B̄(xj , τj) is contained

in R. We define the closed balls

BBj ≡ B̄
(
xj ,min{τj , C−1ℓ0/2}

)
, 1 ≤ j ≤ p.

Let ωj =
∫
f(π)1{π ∈ BBj}dπ = (1 −

∑K
k=1 ϵk)

∫
g(π)1{π ∈ BBj}dπ, 1 ≤ j ≤ p. Note

that each of these closed balls is contained in the support of g with a nonzero radius and
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that g as a probability density is measurable. We immediately know that ωj > 0. From

the assumption (E.51) and elementary large-deviation inequalities (e.g., the Hoeffding’s

inequality), we know that with probability 1− o(n−3), for 1 ≤ j ≤ p,

the number of πi’s contained in BBj is at least nωj/2. (E.65)

With (E.65), we now prove (E.64) by contradiction. Suppose (E.64) does not hold, i.e.,

there exists B∗
j such that

B∗
j ∩ {m̂1, m̂2, . . . , m̂L} = ∅,

where m̂1, m̂2, . . . , m̂L are the local centers output by k-means. By definition of B∗
j and the

fact that T is a one-to-one mapping, we have

B(xj , C−1ℓ0) ∩
{
T−1(m̂1), T

−1(m̂2), . . . , T
−1(m̂L)

}
= ∅.

Note that BBj is a ball also centered at xj but with a radius no larger than half of the

radius of B(xj , C−1ℓ0). As a result, for any x ∈ BBj , its distance to the nearest one of

T−1(m̂1), · · · , T−1(m̂L) is at least C−1ℓ0/2; combining it with (E.57), the distance from

T (x) to the nearest one of m̂1, m̂2, . . . , m̂L is at least C−2ℓ0/2. It follows that

for any πi ∈ BBj , min
1≤s≤L

∥ri − m̂s∥ ≥ C−2ℓ0/2.

Note that maxi ∥r̂i − ri∥ ≤ Cĥ = o(1). We further conclude that

for any πi ∈ BBj , the distance from r̂i

to the nearest local center is ≥ C−2ℓ0/3.
(E.66)

Combining (E.65)-(E.66), the sum-of-squares attained by k-means is

≥ (C−2ℓ0/3)
2 · (nωj/2) ≥ n(ωminC

−4ℓ20/18),

where ωmin = min{ω1, . . . , ωp}. At the same time, the objective attained by k-means should

be

≤ RSS(L) + n(Cĥ2).

A contradiction is obtained as long as

RSS(L) < n(ωminC
−4ℓ20/18)− n(Cĥ2). (E.67)

Comparing it with (E.58), as long as L > ( 19C4c̃
ℓ20ωmin

)
K−1

2 , the inequality (E.67) will be true.

We then have a contradiction, which implies that (E.64) must hold. The proof is now

complete.
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E.2.2 Proof of Lemma E.4

Lemma E.4 follows directly from the next lemma:

Lemma E.6. Suppose the conditions of Lemma E.4 hold. We apply the SVS algorithm to

{r̂i}ni=1 with L = L̂n(A), where L̂n(A) is defined in (E.55). Let ĥ∗ =
√
n−1

∑n
i=1 ∥Hr̂i − ri∥2

and ĥ = max1≤i≤n ∥Hr̂i − ri∥. With probability 1 − o(n−3), the following statements are

true.

• L̂n(A) = L0 +K.

• The local clustering sub-step identifies (L0+K) local centers, where there is a unique

(K−1)-simplex such that K of these centers (denoted by v̂1, v̂2, . . . , v̂K) are its vertices,

and all other centers are within a distance of Cĥ to this simplex. These K local centers

will be identified by the combinatorial search sub-step.

• The above K local centers satisfy v̂k = |Nk|−1
∑

i∈Nk
r̂i, 1 ≤ k ≤ K. As a result, up

to a permutation of estimated vertices, max1≤k≤K ∥Hv̂k − vk∥ ≤ Cĥ∗.

Proof of Lemma E.6: As explained in the proof of Lemma E.1, we can assume H = IK−1

without loss of generality. By Theorem 3.1 and Lemma D.5, with probability 1− o(n−3),

ĥ ≡ max
1≤i≤n

∥r̂i − ri∥ ≤ Cerrn
βn

, n(h∗)2 ≡
n∑

i=1

∥r̂i − ri∥2 ≤
Cn(err∗n)

2

β2
n

, (E.68)

where we have absorbed the factors of K into the constants. We also note that err∗n ≤

errn/
√

log(n). Below, we restrict to the event of (E.68).

First, we study L̂n(A). Recall that γ1, γ2, . . . , γL0 are as in (E.53). Let T be the mapping

as in (E.57); note that T (πi) = ri for 1 ≤ i ≤ n. Introduce

mj = T (γj), 1 ≤ j ≤ L0.

By (E.57), the assumptions (E.53)-(E.54) imply that the distance between any two of

{v1, v2, . . . , vK ,m1,m2, . . . ,mL0} is at least c, and maxi∈Mj ∥ri −mj∥ ≤ C1/ log(n), where

c > 0 and C1 > 0 are constants. In particular,

α2
n ≤ C|M|

n log(n)
, where α2

n ≡ n−1
L0∑
j=1

∑
i∈Mj

∥ri −mj∥2.
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We now study ϵL(R̂). When L = L0+K, by choosing this choice of centers {v1, . . . , vK ,m1, . . . ,mL0},

it is easy to see that

ϵL0+K(R̂) ≤ nα2
n + C

n∑
i=1

∥r̂i − ri∥2 ≤
C|M|
log(n)

, (E.69)

where the last inequality is due to (E.68) and the assumption that |M| ≥ nβ−2
n err2n ≥

nβ−2
n (err∗n)

2 log(n). When K ≤ L < L0 +K, suppose there are L1 of {v1, v2, . . . , vK} and

L2 of {m1,m2, . . . ,mL0} such that no local centers are within a distance of c/3 of them.

Since the distance between any two of {v1, v2, . . . , vK ,m1,m2, . . . ,mL0} is at least c, we

have that (L1 + L2) is at least (L0 +K)− L. For any such vk and i ∈ Nk or such mj and

i ∈ Mj , the distance from r̂i to the nearest local center is at least c/3− ĥ ≥ c/4. It follows

that

ϵL(R̂) ≥ (c/4)2 · (L1min
k

|Nk|+ L2min
j

|Mj |) ≥ C|M|, (E.70)

where the last inequality is due to mink |Nk| ≥ c1n and minj |Mj | ≥ c4|M|. At the same

time, by choosing the centers to be {v1, v2, . . . , vK} and (L−K) of {m1,m2, . . . ,mL0},

ϵL(R̂) ≤ C(L0 +K − L)|M|+ C
n∑

i=1

∥r̂i − ri∥2 ≤ C|M|. (E.71)

By (E.69)-(E.71),

ϵL(R̂)/ϵL−1(R̂)

≤ C/ log(n), L = L0 +K,

≥ C, K + 1 ≤ L ≤ L0 +K.

Hence, the definition of L̂n(A) in (E.55) yields L̂n(A) = L0+K. This proves the first bullet

point.

Next, we consider the second bullet point. Suppose for L1 of {v1, v2, . . . , vK} and L2

of {m1,m2, . . . ,mL0}, there are no local centers are within a distance of c/4 of them.

When L1 + L2 ≥ 1, using similar arguments as those for proving (E.70), we can see that

the associated sum-of-squares is lower bounded by C|M|. However, in (E.69), we have

seen that the sum-of-squares attained by k-means is at most C|M|/ log(n). Hence, the

above situation is impossible, i.e., for each of {v1, v2, . . . , vK ,m1, . . . ,mL0}, there is at least

one local center within a distance c/4 to it. Since that the distance between any two of

{v1, v2, . . . , vK ,m1, . . . ,mL0} is at least c, these (L0 + K) local centers must be distinct.

Noting that there are at most L̂n(A) = L0 +K cluster centers in total, we find that

there is exactly one local center within a distance c/4

to each of {v1, v2, . . . , vK ,m1,m2 . . . ,mL0}.
(E.72)
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Denote by m̂∗
(k) the local center nearest to vk and by m̂(j) the local center nearest to

mj , 1 ≤ k ≤ K, 1 ≤ j ≤ L0. For any i ∈ Nk, the distance from r̂i to m̂∗
(k) is at most

c/4+O(ĥ) ≤ c/3, but its distance to any other local center is at least c−c/4−O(ĥ) ≥ 2c/3;

hence, r̂i can only be assigned to the cluster associated with m̂∗
(k). Similarly, for any i ∈ Mj ,

the distance from r̂i to m̂(j) is at most c/4 + O( 1
log(n)) + O(ĥ) ≤ c/3, but the distance to

any other local center is at least c− c/4−O( 1
log(n))−O(ĥ) ≥ 2c/3; so r̂i must be assigned

to m̂(j). We have proved that the cluster associated with m̂∗
(k) is {r̂i : i ∈ Nk}, 1 ≤ k ≤ K,

the cluster associated with m̂(j) is {r̂i : i ∈ Mj}, 1 ≤ j ≤ L0.
(E.73)

Then, it is easy to see that

• All the local centers are within a distance ĥ to the Ideal Simplex.

• Each m̂∗
(k) is within a distance Cĥ to vk, 1 ≤ k ≤ K.

• Each m̂(j) is within a distance C/ log(n) to mj , 1 ≤ j ≤ L0.

We now show that m̂∗
(1), m̂

∗
(2), . . . , m̂

∗
(K) will be selected by the combinatorial search. The

proof is similar to that of Lemma E.1 but is simpler. Suppose one m̂∗
(k) is not selected by

the combinatorial search. By (E.73), the other local centers are contained in the convex

hull H{r̂i : i /∈ Nk}. Hence, the estimated simplex Ŝ ⊂ H{r̂i : i /∈ Nk}. We notice that

the distance from ek to the convex hull of all πi ̸= ek is lower bounded by a constant, as a

result of the assumptions (E.53)-(E.54). Using (E.57), we know that the distance from vk

to the convex hull H{ri : i /∈ Nk} is also lower bounded by a constant. Then,

d(m̂∗
(k), Ŝ) ≥ d

(
m̂∗

(k), H{r̂i : i /∈ Nk})

≥ d(vk,H{ri : i /∈ Nk})−O(ĥ)

≥ C.

At the same time, if we pick the K local centers m̂∗
(1), m̂

∗
(2), . . . , m̂

∗
(K),

max
1≤j≤L0

d
(
m̂j ,S(m̂∗

(1), m̂
∗
(2), . . . , m̂

∗
(K))

)
≤ Cĥ.

This yields a contradiction since ĥ = o(1). As a result, all of m̂∗
(1), m̂

∗
(2), . . . , m̂

∗
(K) will be

selected by the combinatorial search.
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Last, we prove the third bullet point. So far, we have seen that v̂k = m̂∗
(k) (up to a label

permutation). By (E.73) and the nature of k-means solutions,

v̂k = |Nk|−1
∑
i∈Nk

r̂i, 1 ≤ k ≤ K.

We note that 0 ≤
∑

i∈Nk
∥r̂i−v̂k∥2 =

∑
i∈Nk

{∥r̂i−vk∥2−2(v̂k−vk)
′(r̂i−vk)+∥v̂k−vk∥2)} =∑

i∈Nk
∥r̂i − vk∥2 − |Nk|∥v̂k − vk∥2. As a result,

∥v̂k − vk∥2 ≤
1

|Nk|
∑
i∈Nk

∥r̂i − vk∥2 ≤
1

|Nk|

n∑
i=1

∥r̂i − ri∥2, 1 ≤ k ≤ K.

Since |Nk| ≥ c1n, it follows that

max
1≤k≤K

∥v̂k − vk∥ ≤ C

√√√√n−1

n∑
i=1

∥r̂i − ri∥2 ≤ Cĥ∗. (E.74)

This proves the third bullet point.

F Rates of Convergence of Mixed-SCORE

We prove the main results about Mixed-SCORE, including Theorems 3.2-B.1.

F.1 Proofs of Theorem 3.2

Let H be the orthogonal matrix as in Theorem 3.1. We aim to show that, with probability

1− o(n−3), for all 1 ≤ i ≤ n,

∥π̂i − πi∥1 ≤ C∥Hr̂i − ri∥+ C max
1≤k≤K

∥Hv̂k − vk∥+ CKerrn. (F.75)

Once (F.75) is true, by efficiency of the VH algorithm (see Definition E.1) and the bound

in Theorem 3.1, we immediately have that, with probability 1− o(n−3),

max
1≤i≤n

∥π̂i − πi∥1 ≤ CK3/2β−1
n errn. (F.76)

Note that ∥π̂i−πi∥2 ≤ ∥π̂i−πi∥∞∥π̂i−πi∥1 ≤ ∥π̂i−πi∥21. It follows that 1
n

∑n
i=1 ∥π̂i−πi∥2 ≤

max1≤i≤n ∥π̂i − πi∥2 ≤ max1≤i≤n ∥π̂i − πi∥21 ≤ CK3β−2
n err2n, with probability 1 − o(n−3).

Moreover,
∑n

i=1 ∥π̂i − πi∥2 ≤ 2 always holds. Combining these arguments gives

E
[ 1
n

n∑
i=1

∥π̂i − π2
i ∥
]
≤ CK3β−2

n err2n + o(n−3).
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This proves the first claim. The second claim follows directly by noting that err2n ≤ (nθ̄2)−1

if θmax ≤ Cθmin.

Below, we show (F.75). In the Membership Reconstruction (MR) step, we compute ŵi

and b̂1, then use them to construct

π̂∗
i (k) = max{0, ŵi(k)/b̂1(k)}, 1 ≤ k ≤ K, (F.77)

and then estimates πi by π̂i = π̂∗
i /∥π̂∗

i ∥1. We shall study ŵi and b̂1 separately and then

combine their error bounds to get (F.75).

First, we study ŵi. By definition, 1 · · · 1

v1 · · · vK


︸ ︷︷ ︸

≡Q

wi =

1

ri

 ,

 1 · · · 1

Hv̂1 · · · Hv̂K


︸ ︷︷ ︸

≡Q̂

ŵi =

 1

Hr̂i

 . (F.78)

We thus write

ŵi − wi = Q̂−1

 1

Hr̂i

−Q−1

1

ri


= Q̂−1

[ 1

Hr̂i

−

1

ri

]− (Q−1 − Q̂−1)

1

ri


= Q̂−1

 0

Hr̂i − ri

− Q̂−1(Q̂−Q)Q−1

1

ri


= Q̂−1

 0

Hr̂i − ri

− Q̂−1(Q̂−Q)wi.

It follows that

∥ŵi − wi∥ ≤ ∥Q̂−1∥ ·
(
∥Hr̂i − ri∥+ ∥(Q̂−Q)wi∥

)
. (F.79)

This matrix Q is studied in the proof of Lemma C.4, where we prove ∥Q−1∥ = O(1/
√
K);

see (C.15). This means the minimum singular value of Q is lower bounded by C
√
K.

Moreover, ∥Q̂−Q∥ ≤ ∥Q̂−Q∥F ≤
√
Kmax1≤k≤K ∥Hv̂k − vk∥ = o(

√
K). As a result, the

minimum singular value of Q̂ is also lower bounded by C
√
K. It leads to

∥Q̂−1∥ ≤ C/
√
K.

We note that (Q̂−Q)wi ∈ RK is a vector whose first entry is 0 and whose remaining entries

are equal to
∑K

k=2wi(k)(v̂k − vk) ∈ RK−1. Since wi contains the coefficients of writing ri
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as a convex combination of v1, . . . , vK , we have ∥wi∥1 = 1. Therefore,

∥(Q̂−Q)wi∥ =
∥∥∥ K∑
k=1

wi(k)(Hv̂k − vk)
∥∥∥ ≤

K∑
k=1

wi(k)∥Hv̂k − vk∥ ≤ max
1≤k≤K

∥Hv̂k − vk∥.

Plugging in the above results into (F.79) gives

∥ŵi − wi∥ ≤ CK−1/2
(
∥Hr̂i − ri∥+ max

1≤k≤K
∥Hv̂k − vk∥

)
. (F.80)

Next, we study b̂1. Recall that

b̂1(k) = [λ̂1 + v̂′kdiag(λ̂2, · · · , λ̂K)v̂k]
−1/2.

By Lemma 2.1, b1(k) has the same form except that (λ̂k, v̂k) are replaced with their popu-

lation counterparts. Letting Λ0 = diag(λ2, · · · , λK) and Λ̂0 = diag(λ̂2, · · · , λ̂K), we write

1

b̂21(k)
= λ̂1 + v̂′kΛ̂0v̂k,

1

b21(k)
= λ1 + v′kΛ0vk.

By direct calculations,

| 1

b̂21(k)
− 1

b21(k)
| ≤ |λ̂1 − λ1|+ |v̂′kΛ̂0v̂k − v′kΛ0vk|

= |λ̂1 − λ1|+ |v̂′kH ′HΛ̂0v̂k − v′kΛ0vk|

≤ |λ̂1 − λ1|+ |v̂′kH ′Λ̂0Hv̂k − v′kΛ̂0vk|+ |v̂′kH ′(HΛ̂0 − Λ̂0H)v̂k|+ |v′k(Λ̂0 − Λ0)vk|

≤ |λ̂1 − λ1|+ |v̂′kH ′Λ̂0Hv̂k − v′kΛ̂0vk|+ ∥v̂k∥2∥HΛ̂0 − Λ̂0H∥+ ∥vk∥2∥Λ̂0 − Λ0∥

≤ (1 + ∥vk∥2)|max
ℓ

|λ̂ℓ − λℓ|+ |v̂′kH ′Λ̂0Hv̂k − v′kΛ̂0vk|+ ∥v̂k∥2∥HΛ̂0 − Λ̂0H∥.

First, by Lemma D.1, maxℓ |λ̂ℓ − λℓ| ≤ C
√

θmax∥θ∥1. Second, by Lemma D.6, ∥HΛ̂0 −

Λ̂0H∥ ≤ C
√

θmax∥θ∥1. Third, by Lemma C.4, ∥vk∥ ≤ C
√
K; since maxℓ ∥v̂ℓ−vℓ∥ = o(

√
K),

it follows that ∥v̂k∥ ≤ C
√
K. Combining the above gives

| 1

b̂21(k)
− 1

b21(k)
| ≤ |v̂′kH ′Λ̂0Hv̂k − v′kΛ̂0vk|+ CK

√
θmax∥θ∥1. (F.81)

Since v̂′kH
′Λ̂0Hv̂k = v′kΛ̂0vk + 2v′kΛ̂0(Hv̂k − vk) + (Hv̂k − vk)

′Λ̂0(Hv̂k − vk), we have

|v̂′kH ′Λ̂0Hv̂k − v′kΛ̂0vk| ≤ 2∥vk∥∥Λ̂0∥∥Hv̂k − vk∥+ ∥Λ̂0∥∥Hv̂k − vk∥2.

By Lemma C.2 and Lemma D.1, ∥Λ0∥ ≤ CβnK
−1∥θ∥2 and ∥Λ̂0 − Λ0∥ ≤ C

√
θmax∥θ∥1 =

o(Kβ−1
n ∥θ∥2). It follows that ∥Λ̂0∥ ≤ CβnK

−1∥θ∥2. Also, as we have argued before,
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∥vk∥ ≤ C
√
K and ∥Hv̂k − vk∥ = o(

√
K). Plugging these results into the above inequality

gives

|v̂′kH ′Λ̂0Hv̂k − v′kΛ̂0vk| ≤ CK−1/2βn∥θ∥2∥Hv̂k − vk∥.

We then plug it into (F.81) to get

| 1

b̂21(k)
− 1

b21(k)
| ≤ CK−1/2βn∥θ∥2∥Hv̂k − vk∥+ CK

√
θmax∥θ∥1. (F.82)

In the proof of Lemma C.3, we have shown b1(k) ≍ ∥θ∥−1; see (C.11). Then, 1
b21(k)

≍ ∥θ∥2.

Combining it with (F.82), we have 1
b̂21(k)

= 1
b21(k)

[1 + o(1)] ≍ ∥θ∥2. It follows that

| 1

b̂1(k)
− 1

b1(k)
| = | 1

b̂1(k)
+

1

b1(k)
|−1 · | 1

b̂21(k)
− 1

b21(k)
|

≤ C∥θ∥−1 · | 1

b̂21(k)
− 1

b21(k)
|

≤ CK−1/2βn∥θ∥∥Hv̂k − vk∥+ C∥θ∥−1K
√
θmax∥θ∥1

≤ CK−1/2βn∥θ∥∥Hv̂k − vk∥+ CK∥θ∥errn, (F.83)

where the last line is because errn = (θmax/θmin)·∥θ∥−2
√

θmax∥θ∥1 log(n) ≫ ∥θ∥−2
√
θmax∥θ∥1.

Last, we combine the results for (ŵi, b̂1) to prove (F.75). Recall that π̂∗
i is as defined in

(F.77). Introduce its non-stochastic counterpart π∗
i by

π∗
i (k) = wi(k)/b1(k), 1 ≤ k ≤ K. (F.84)

Since π∗
i (k) ≥ 0, in (F.77), the operation of truncating at zero can only make it closer to

π∗
i (k). It follows that

|π̂∗
i (k)− π∗

i (k)| ≤ |ŵi(k)/b̂1(k)− π∗
i (k)|

= |ŵi(k)/b̂1(k)− wi(k)/b1(k)|

≤ 1

b̂1(k)
|ŵi(k)− wi(k)|+ wi(k)|

1

b̂1(k)
− 1

b1(k)
|. (F.85)

We sum over k on both sides and note that b̂1(k) ≍ ∥θ∥−1 (see the paragraph above (F.83))

and ∥wi∥1 = 1. It yields

∥π̂∗
i − π∗

i ∥1 ≤ C∥θ∥∥ŵi − wi∥1 + | 1

b1(k)
− 1

b̂1(k)
|

≤ C∥θ∥
√
K∥ŵi − wi∥+ max

1≤k≤K
| 1

b1(k)
− 1

b̂1(k)
|

≤ C∥θ∥
(
∥Hr̂i − ri∥+ max

1≤k≤K
∥Hv̂k − vk∥+Kerrn

)
, (F.86)
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where in the second line we have used Cauchy-Schwarz inequality and in the last line we have

plugged in (F.80) and (F.83). By definition, π̂i = π̂∗
i /∥π̂∗

i ∥1. By the triangular inequality,

|π̂i(k)− πi(k)| ≤
1

∥π∗
i ∥1

|π̂∗
i (k)− π∗

i (k)|+ π̂∗
i (k)|

1

∥π̂∗
i ∥1

− 1

∥π∗
i ∥1

|

=
1

∥π∗
i ∥1

|π̂∗
i (k)− π∗

i (k)|+
π̂i(k)

∥π∗
i ∥1

|∥π̂∗
i ∥1 − ∥π∗

i ∥1|

≤ 1

∥π∗
i ∥1
(
|π̂∗

i (k)− π∗
i (k)|+ π̂i(k)∥π̂∗

i − π∗
i ∥1
)
, (F.87)

where the last inequality is because |∥π̂∗
i ∥1 − ∥π∗

i ∥1| ≤ ∥π̂∗
i − π∗

i ∥1. We sum over k on both

sides and note that
∑

k π̂i(k) = 1 by definition. It follows that

∥π̂i − πi∥1 ≤
1

∥π∗
i ∥1

· 2∥π̂∗
i − π∗

i ∥1.

By (F.84), ∥π∗∥1 ≥ ∥wi∥1 · mink
1

b1(k)
. In the paragraph above (F.83), we have seen that

b1(k) ≍ ∥θ∥−1. This suggests that ∥π∗
i ∥1 ≥ C∥θ∥. As a result,

∥π̂i − πi∥1 ≤ C∥θ∥−1 · ∥π̂∗
i − π∗

i ∥1

≤ C
(
∥Hr̂i − ri∥+ max

1≤k≤K
∥Hv̂k − vk∥+Kerrn

)
. (F.88)

This gives (F.75). The proof is now complete.

F.2 Proof of Theorem 3.3

First, consider P̂ − P . Let Q and Q̂ be the same as in (F.78). Then,

P = diag(b1)Q
′ΛQdiag(b1), P̂ = diag(b̂1)Q̂

′Λ̂Q̂diag(b̂1).

It follows that

∥P̂ − P∥ ≤ ∥Q̂diag(b̂1)∥2∥Λ̂− Λ∥+ ∥Q̂diag(b̂1)−Qdiag(b1)∥∥Λ∥∥Q̂diag(b̂1)∥

+ ∥Qdiag(b1)∥∥Λ∥∥Q̂diag(b̂1)−Qdiag(b)1∥. (F.89)

Recall that we have the following facts (they hold with probability 1− o(n−3)):

• ∥Λ∥ ≤ C∥θ∥−1 (by Lemma C.2); ∥Λ̂−Λ∥ ≤ C
√

θmax∥θ∥ ≪ ∥θ∥2errn (by Lemma D.1

and the definition of errn).

• ∥Q∥ ≤ C
√
K (by Lemma C.4); ∥Q̂−Q̂∥ ≤ C

√
Kmax1≤k≤K ∥Hv̂k−vk∥ ≤ CK2β−1

n errn

(by Theorem 3.1 and the definitions of Q and Q̂).
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• C−1∥θ∥−1 ≤ b1(k) ≤ C∥θ∥−1, for 1 ≤ k ≤ K (by (C.11) in the proof of Lemma C.3);

| 1
b̂1(k)

− 1
b1(k)

| ≤ CK−1/2βn∥θ∥∥Hv̂k − vk∥+ CK∥θ∥errn ≤ CK∥θ∥errn (by (F.83) in

the proof of Theorem 3.2).

From the third bullet point, |b̂1(k)− b1(k)| ≤ C∥θ∥−2| 1
b̂1(k)

− 1
b1(k)

| ≤ CK∥θ∥−1errn. From

the second bullet point, ∥Q̂−Q∥ ≤ CK2β−1
n errn, and ∥Q̂∥ ≤ 2∥Q∥ ≤ C

√
K. As a result,

∥Q̂diag(b̂1)−Qdiag(b)1∥ ≤ ∥Q̂∥∥diag(b̂1)− diag(b1)∥+ ∥Q̂−Q∥∥diag(b1)∥

≤ C
√
K ·K∥θ∥−1errn + CK2β−1

n errn · ∥θ∥−1

≤ C(K3/2 +K2β−1
n )∥θ∥−1errn. (F.90)

It further implies ∥Q̂diag(b̂1)∥ ≤ 2∥Qdiag(b)1∥ ≤ C
√
K∥θ∥−1. We then plug these results

into (F.89) and use the first bullet point above. It gives

∥P̂ − P∥ ≤ ∥Q̂diag(b̂1)∥2∥Λ̂− Λ∥+ 3∥Q̂diag(b̂1)−Qdiag(b1)∥∥Λ∥∥Q̂diag(b̂1)∥

≤ C(
√
K∥θ∥−1)2 · ∥θ∥2errn + C(K3/2 +K2β−1

n )∥θ∥−1errn · ∥θ∥2 ·
√
K∥θ∥−1

≤ C(K2 +K3/2β−1
n )errn. (F.91)

This proves the first claim.

Second, consider ∥Θ̂ − Θ∥2F , which by definition is equal to
∑n

i=1 |θ̂(i) − θ(i)|2. Recall

that θ(i) = ξ1(i)/(π
′
ib1) and θ̂(i) = ξ̂1(i)/(π̂

′
ib̂1). It follows that

|θ̂(i)− θ(i)| ≤ 1

|π′
ib1|

|ξ̂1(i)− ξ1(i)|+ |ξ̂1(i)|
∣∣∣ 1

π̂′
ib̂1

− 1

π′
ib1

∣∣∣
≤ 1

|π′
ib1|

|ξ̂1(i)− ξ1(i)|+ |ξ̂1(i)| ·
|π̂′

ib̂1 − π′
ib1|

|π̂′
ib̂1||π′

ib1|

≤ |ξ̂1(i)− ξ1(i)|
|π′

ib1|
+

|ξ̂1(i)|
|π̂′

ib̂1||π′
ib1|
(
∥π̂i − πi∥1∥b1∥∞ + ∥π̂i∥1∥b̂1 − b1∥∞

)
.

Note that ∥π̂i∥1 = 1, b1(k) ≍ ∥θ∥−1, and ∥b̂1−b1∥∞ ≤ CK∥θ∥−1errn = o(∥θ∥−1). It further

implies π′
ib1 ≍ π̂′

ib̂1 ≍ ∥θ∥−1. We plug these results into the above inequality to get

|θ̂(i)− θ(i)| ≤ C∥θ∥|ξ̂1(i)− ξ1(i)|+ C∥θ∥|ξ̂1(i)|∥π̂i − πi∥1 + CK∥θ∥errn|ξ̂1(i)|.

We take the sum of squares of i = 1, 2, . . . , n on both sides and note that ∥ξ̂∥ = 1. Moreover,

by Lemma D.2, ∥ξ̂1 − ξ1∥ ≤ C∥θ∥−2K
√

θmax∥θ∥1 ≪ Kerrn. It follows that

∥Θ̂−Θ∥2F ≤ C∥θ∥2∥ξ̂1 − ξ1∥2 + C∥θ∥2
(
max
1≤i≤n

∥π̂i − πi∥21
)
+ CK2∥θ∥2err2n
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≤ C∥θ∥2
(
K2err2n +K3β−2

n err2n + CK2err2n
)

≤ ∥θ∥2 · CK3β−2
n err2n. (F.92)

This proves the second claim.

F.3 Proofs of Theorems 3.4, 3.5 and B.1

Theorem 3.4 is a direct consequence of Theorem 3.2 and Lemma E.1. For Theorem 3.5 and

Theorem B.1, their first claims about the VH step follow from Lemma E.3 and Lemma E.4,

respectively. We now show their second claims, where we aim to obtain a faster rate for

1
n

∑n
i=1 ∥π̂i − πi∥2 when the VH step is strongly efficient.

In (F.87), we have shown that for every 1 ≤ k ≤ K,

|π̂i(k)− πi(k)| ≤
1

∥π∗
i ∥1
(
|π̂∗

i (k)− π∗
i (k)|+ π̂i(k)∥π̂∗

i − π∗
i ∥1
)
.

Taking the sum of squares over k on both sides and using the universal inequality (a+b)2 ≤

2a2 + 2b2, we have

∥π̂i − πi∥2 ≤
2

∥π∗
i ∥21

(
∥π̂∗

i − π∗
i ∥2 + ∥π̂i∥2 · ∥π̂∗

i − π∗
i ∥21
)
.

In the paragraph above (F.88), we have shown that ∥π∗
i ∥1 ≥ C∥θ∥. Additionally, ∥π̂i∥2 ≤

∥π̂i∥1∥π̂i∥∞ ≤ 1. It follows that

∥π̂i − πi∥2 ≤
C

∥θ∥2
(
∥π̂∗

i − π∗
i ∥2 + ∥π̂∗

i − π∗
i ∥21
)
. (F.93)

In light of (F.93), we first derive upper bounds for ∥π̂∗
i −π∗

i ∥ and ∥π̂∗
i −π∗

i ∥1, respectively.

By (F.85) and (F.83),

|π̂∗
i (k)− π∗

i (k)| ≤
1

b̂1(k)
|ŵi(k)− wi(k)|+ wi(k)|

1

b̂1(k)
− 1

b1(k)
|,

| 1

b̂1(k)
− 1

b1(k)
| ≤ CK−1/2βn∥θ∥∥Hv̂k − vk∥+ C∥θ∥−1K

√
θmax∥θ∥1.

Also, b̂1(k) ≍ b1(k) ≍ ∥θ∥−1 (see the paragraph above (F.83)). It follows that

|π̂∗
i (k)− π∗

i (k)| ≤ C∥θ∥ |ŵi(k)− wi(k)|+ Cwi(k)

(
βn∥θ∥∥Hv̂k − vk∥√

K
+

K
√
θmax∥θ∥1
∥θ∥

)
.

Note that

err∗n = [∥θ∥/(θmin

√
n)] · ∥θ∥−2

√
θmax∥θ∥1 ≥ ∥θ∥−2

√
θmax∥θ∥1.
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We further have

|π̂∗
i (k)−π∗

i (k)| ≤ C∥θ∥|ŵi(k)−wi(k)|+Cwi(k)∥θ∥
(
K−1/2βn∥Hv̂k−vk∥+Kerr∗n

)
. (F.94)

It follows that

∥π̂∗
i − π∗

i ∥2 ≤ C∥θ∥2
[
∥ŵi − wi∥2 + ∥wi∥2

(
K−1β2

n max
1≤k≤K

∥Hv̂k − vk∥2 +K2(err∗n)
2
)]

,

∥π̂∗
i − π∗

i ∥1 ≤ C∥θ∥
[
∥ŵi − wi∥1 + ∥wi∥1

(
K−1/2βn max

1≤k≤K
∥Hv̂k − vk∥+Kerr∗n

)]
.

Note that ∥wi∥1 = 1, ∥wi∥2 ≤ ∥wi∥1∥wi∥∞ ≤ 1, and ∥ŵi − wi∥1 ≤
√
K∥ŵi − wi∥. Addi-

tionally, by (F.80),

∥ŵi − wi∥ ≤ CK−1/2
(
∥Hr̂i − ri∥+ max

1≤k≤K
∥Hv̂k − vk∥

)
.

Combining the above gives

∥π̂∗
i − π∗

i ∥2 ≤ C∥θ∥2
(
K−1∥Hr̂i − ri∥2 +K−1 max

1≤k≤K
∥Hv̂k − vk∥2 +K2(err∗n)

2
)
,

∥π̂∗
i − π∗

i ∥1 ≤ C∥θ∥
(
∥Hr̂i − ri∥+ max

1≤k≤K
∥Hv̂k − vk∥+Kerr∗n

)
. (F.95)

Next, we plug (F.95) into (F.93) to get

∥π̂i − πi∥2 ≤ C∥Hr̂i − ri∥2 + C
(

max
1≤k≤K

∥Hv̂k − vk∥
)2

+ CK2(err∗n)
2.

Summing over i on both sides gives

n−1
n∑

i=1

∥π̂i − πi∥2 ≤ Cn−1
n∑

i=1

∥Hr̂i − ri∥2 + C
(

max
1≤k≤K

∥Hv̂k − vk∥
)2

+ CK2(err∗n)
2.

By strong efficiency of the VH step, max1≤k≤K ∥Hv̂k − vk∥ ≤
√

n−1
∑n

i=1 ∥Hr̂i − ri∥2 (see

Definition E.1). It follows that

n−1
n∑

i=1

∥π̂i − πi∥2 ≤ Cn−1
n∑

i=1

∥Hr̂i − ri∥2 + CK2(err∗n)
2.

Using Lemma D.5, n−1
∑n

i=1 ∥Hr̂i − ri∥2 ≤ CK3β−2
n (err∗n)

2. Therefore,

n−1
n∑

i=1

∥π̂i − πi∥2 ≤ CK3β−2
n (err∗n)

2 + CK2(err∗n)
2 ≤ CK3β−2

n (err∗n)
2.

Additionally, err∗n = [∥θ∥/(
√
nθmax)] · errn/

√
log(n) ≤ errn/

√
log(n). We thus have

n−1
n∑

i=1

∥π̂i − πi∥21 ≤ CK3β−1
n (err∗n)

2 ≤ CK3β−1
n err2n

log(n)
. (F.96)

This proves the claim.
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G More Simulation Results

We present additional simulation results. They are not included in the main article due to

space limit. For most experiments below, we set n = 500 and K = 3. For 0 ≤ n0 ≤ 160, let

each community have n0 number of pure nodes. Fixing x ∈ (0, 1/2), let the mixed nodes

have four different memberships (x, x, 1−2x), (x, 1−2x, x), (1−2x, x, x) and (1/3, 1/3, 1/3),

each with (500−3n0)/4 number of nodes. Fixing ρ ∈ (0, 1), the matrix P has diagonals 1 and

off-diagonals ρ. Fixing z ≥ 1, we generate the degree parameters such that 1/θ(i)
iid∼ U(1, z),

where U(1, z) denotes the uniform distribution on [1, z]. The tuning parameter L is selected

as in (2.8). For each setting, we report n−1
∑n

i=1 ∥π̂i − πi∥2 averaged over 100 repetitions.

Experiment 5: Connectivity across communities. Fix (x, n0, z) = (0.4, 80, 5)

and let ρ range in {0.05, 0.1, 0.15, · · · , 0.5}. The larger ρ, the more edges across different

communities. The results are presented in Figure 1. We see that the performance of Mixed-

SCORE improves as ρ decreases. One possible reason is that, for ρ large, it is relatively

more difficult to identify the vertices of the Ideal Simplex. Furthermore, Mixed-SCORE is

better than OCCAM in all settings.
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Figure 1: Estimation errors of Mixed-SCORE and OCCAM (y-axis: n−1
∑n

i=1 ∥π̂i − πi∥2).

Experiment 6: Mixed memberships taking continuous values. In this exper-

iment, we generate the mixed memberships from a continuous distribution. Set (n,K) =

(500, 3) and let P have diagonals 1 and off-diagonals 0.3. Each community has n0 = 25 pure

nodes. The πi of remaining nodes are iid drawn as follows: We generate πi(1) and πi(2)

independently from U(1/6, 1/2) and set πi(3) = 1 − πi(1) − πi(2). The degree parameters

θ(i) are iid drawn from αn ·U(1, 2), where αn > 0 controls the sparsity of the network. Let

αn range in {0.02, 0.04, 0.06, · · · , 0.20}. The results are presented in Table 1. This setting

does not satisfy the regularity conditions (E.53)-(E.54) on πi’s, however, Mixed-SCORE
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still has a good performance and outperforms OCCAM. It suggests that the regularity

conditions on πi’s are only for theoretical convenience, and our method indeed works for

broader settings.

Table 1: Estimation errors in Experiment 6, where πi’s take continuous values.

αn 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Mixed-SCORE .38 .35 .36 .32 .30 .28 .23 .18 .15 .12

OCCAM .44 .42 .41 .41 .38 .36 .32 .28 .26 .23

Experiment 7: Tuning parameter selection. We first study the choice of the

tuning parameter L in Mixed-SCORE. We aim to see (i) how the estimation errors change

for a range of L, and (ii) how the adaptive choice L̂∗
n(A) in (2.8) performs. Fix (x, ρ, z) =

(0.4, 0.2, 5) and let n0 range in {60, 80, 100}. For each setting, we run Mixed-SCORE with

L ∈ {4, 5, · · · , 9} and L̂∗
n(A). The results are displayed in Figure 2. First, when there are

relatively few mixed nodes (e.g., n0 = 100), small values of L yield good performance; but as

the number of mixed nodes going up, we favor larger values of L; these match our theoretical

results (Lemmas E.3-E.4). Second, under the circumstances of a moderate number of mixed

nodes (e.g., n0 = 60, 80), for a range of L (e.g., L ∈ {7, 8, 9}), the statistical errors of Mixed-

SCORE are similar, and L̂∗
n(A) falls in this range with high probability. Figure 3 shows the

estimated 2-simplex in one repetition (n0 = 80), and the simplex changes very little when

L falls in a range.
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Figure 2: Performance of Mixed-SCORE as the tuning parameter L varies (y-axis: esti-
mation errors; L̂∗

n(A) is plotted in red; both mean and standard deviation are displayed).
From left to right, there are 60, 80, 100 pure nodes in each community, respectively.

Experiment 8: Comparison with latent space approach. We compare Mixed-

SCORE with the Bayesian method based on LPC [6] (we use the R package latentnet).
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Figure 3: Illustration of the Vertex Hunting step. From left to right, L = 7, 8, 9. Although
the local cluster centers (blue points) are different, the estimated 2-simplex (dashed black)
changes very little, and it approximates the IS (solid red) well.

In this experiment, we fix n = 120, K = 3, (x, ρ, z) = (0.4, 0.3, 5), and let n0 range in

{12, 16, 20, · · · , 32, 36} (so the number of mixed nodes in each group decreases from 21 to

3). The results are displayed in Figure 4. We find that, when the fraction of mixed nodes is

comparably small, LPC has a perfect performance; however, as the fraction of mixed nodes

increases to more than 40%, the performance of LPC deteriorates rapidly; one reason is

that, when n0 is not very large, LPC often estimates the PMF of all the nodes as the same.

In contrast, the performance of Mixed-SCORE is quite stable. In terms of computing time,

Mixed-SCORE takes only seconds for one repetition while LPC takes > 20 minutes (both

measured in R).
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Figure 4: Estimation errors of Mixed-SCORE and LPC (y-axis: n−1
∑n

i=1 ∥π̂i − πi∥2).

H More Real Data Results

We present additional results for the trade networks. First, we plot the rows of R̂ for the

GOS network (see Figure 6a for a comparison). Recall that edges in the GOS network indi-
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cate significant over-estimation of trade flows in the initial gravity model. This embedding

is not as informative as the embedding we obtained for the GUS network. One interesting

observation is that countries with high GDPs tend to cluster together and countries with

low GDPs tend to cluster together.
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Figure 5: Rows of R̂ for the GOS network after fitting a gravity model. We set K = 3 in
Mixed-SCORE, so the Ideal Simplex is a triangle. Each r̂i corresponds to a country, whose
ISO3 code is shown (orange color: top 15 countries with highest GDPs). In each plot, the
dashed triangle is the estimated simplex from SVS with L = 40. We note that although
each ri is in the Ideal Simplex, some r̂i’s can be outside the estimated simplex due to noise
corruption.

Next, we present the estimated mixed memberthips of representative countries in the

trade in service (TIS) network.

Table 2: The estimated π̂i for the 10 countries with largest total service exports. By
Figure 6b, the three communities are interpreted as ‘North Africa’, ‘Southeast Asia’ and
‘South/Central Europe’.

Economy
Service
export degree π̂i(1) π̂i(2) π̂i(3)

USA 3,998,419 45 0.128 0.424 0.448
UK 1,914,255 34 0.202 0.319 0.479
Germany 1,534,393 29 0.348 0.215 0.436
France 1,354,407 26 0.243 0.193 0.564
China 1,146,845 14 0.130 0.606 0.264
Netherlands 1,064,165 19 0.218 0.215 0.567
Japan 882,650 17 0.124 0.611 0.265
India 865,543 6 0.033 0.598 0.369
Singapore 830,975 20 0.313 0.554 0.134
Ireland 811,105 12 0.144 0.269 0.586
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We also present additional results for the citee network. The following table shows those

“high-degree and relatively pure” nodes in each of the three communities.

Table 3: Estimated PMF of the 100 nodes with the highest degrees in the Citee network, among
which only the 12 purist nodes in each community are reported.

Name Deg. MulTest SpatNon VarSelect Name Deg. MulTest SpatNon VarSelect Name Deg. MulTest SpatNon VarSelect

Felix Abramovich 366 0.943 0 0.057 Peter Muller 429 0.326 0.613 0.061 Lixing Zhu 432 0.121 0 0.879
Joseph Romano 377 0.868 0 0.132 Jeffrey Morris 452 0.146 0.519 0.335 Zhiliang Ying 382 0.107 0.027 0.866
Sara van de Geer 372 0.834 0 0.166 Michael Jordan 383 0.321 0.495 0.184 Zhezhen Jin 361 0.134 0 0.866
Yoav Benjamini 478 0.821 0 0.179 Mahlet Tadesse 383 0.373 0.493 0.134 Dennis Cook 424 0.253 0 0.747
David Donoho 484 0.819 0 0.181 Naijun Sha 383 0.373 0.493 0.134 Wenbin Lu 405 0.255 0 0.745
Christopher Genovese 521 0.810 0 0.190 Michael Stein 379 0.093 0.449 0.458 Dan Yu Lin 527 0.257 0 0.743
Larry Wasserman 535 0.800 0 0.200 Adrian Raftery 413 0.175 0.446 0.379 Donglin Zeng 489 0.270 0 0.730
Jon Wellner 387 0.798 0.05 0.152 Robert Kohn 429 0.310 0.428 0.262 Gerda Claeskens 404 0.247 0.033 0.720
Alexandre Tsybakov 521 0.784 0 0.216 George Casella 430 0.303 0.425 0.271 Yingcun Xia 358 0.302 0 0.698
Jiashun Jin 441 0.780 0 0.220 Marina Vannucci 571 0.304 0.418 0.278 Naisyin Wang 586 0.283 0.043 0.674
Yingying Fan 410 0.741 0 0.259 Bernard Silverman 577 0.514 0.395 0.091 Hua Liang 509 0.334 0 0.666
John Storey 544 0.737 0 0.263 Catherine Sugar 501 0.450 0.360 0.190 Wolfgang Karl Hardle 456 0.343 0 0.657

I Using Mixed-SCORE for the Estimation of Ω

In Remark 9 of Section 5.1, we mentioned that Mixed-SCORE can be used to estimate

Ω, where we let Ω̂ = Θ̂Π̂P̂ Π̂′Θ̂ by using Π̂ from Mixed-SCORE and (Θ̂, P̂ ) in Section 2.4.

Alternatively, we may also estimate Ω by the standard PCA, where Ω̂ =
∑K

k=1 λ̂kξ̂kξ̂k. The

following simulation results suggest that the Ω̂ by Mixed-SCORE is much better than the

Ω̂ by standard PCA.

Parameters Ω̂=
∑K

k=1 λ̂kξ̂kξ̂k Mixed-SCORE

θ−1
i ∼ Unif(5, 10), α1=(.6, .2, .2), α2=(.3, .4, .3) 78.84 46.63

θ−1
i ∼ Unif(5, 10), α1=(.4, .2, .4), α2=(.2, .6, .2) 78.78 44.43

θ−1
i ∼ Unif(5, 10), α1=(.4, .2, .4), α2=(.1, .8, .1) 80.65 44.84

θi ∼ Unif(0.05, 0.2), α1=(.4, .2, .4), α2=(.2, .6, .2) 71.83 44.31

θi ∼ Unif(0.05, 0.2), α1=(.6, .2, .2), α2=(.3, .4, .3) 71.73 38.86

Table 4: Comparison of the Frobenius errors of estimating Ω based on 100 repetitions.

Settings: K = 3, n = 540; There are n/6 pure nodes for each community, and the πi’s

of the remaining nodes are i.i.d. drawn from a mixture distribution 0.5Dirichlet(α1) +

0.5Dirichlet(α2). The diagonals of P are 1 and off-diagonals are 0.3.
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