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A Identifiability and Regularity Conditions

We prove the identifiability of DCMM and discuss Assumption 4 (where we give sufficient

conditions for this assumption to hold).

A.1 The Identifiability of DCMM

The following proposition shows that the DCMM model is identifiable if each community

has at least one pure node.

Proposition A.1 (Identifiability). Consider a DCMM model as in (2.2), where P has unit
diagonals. When each community has at least one pure node, the model is identifiable: For

eligible (0,11, P) and (©,11, P), if OIIPII'O = OIIPII'O, then © = ©, I =11, and P = P.

Proof of Proposition A.1: Let G = K||6||"2I'©2II be the same as in Section 3. We consider
two cases: (1) PG is an irreducible matrix. (2) PG is a reducible matrix.

First, we study Case (1). When PG is irreducible, the matrix R is well-defined (see
Lemma 2.1). Additionally, by Lemma 2.1, there exists the Ideal Simplex, which is uniquely
determined by the eigenvectors &1, &2, . .., {x of Q. For either (6,11, P) or (@), I, ﬁ), we have
an Ideal Simplex. The two Ideal Simplexes can be different only when there are multiple
choices of &£1,&9,...,&kx. By Lemma C.1, the first eigenvalue of 2 has a multiplicity 1, so
by basic linear algebra, [£1,&s, ..., k] are uniquely defined up to a rotation matrix of the

form

a 0
0o S

,  where a € {—1,1} and S € RE-LK-1 i5 an orthogonal matrix.

Recalling R = [diag(&1)] 7 o, €3, . - -, £k, it is seen that the property of “a row of R falls
on one of the vertices of the Ideal Simplex” is invariant to the above rotation. Therefore,
a row of II equals to the corresponding row of ﬁ, as long as one of them is pure.

We now proceed to showing (O, 11, P) = (6,11, P). By the above argument and that
each community has at least one pure node, we assume without loss of generality that for
1 <k < K, the k-th node is a pure node in community k. Comparing the first K rows and
the first K columns of OIIPIT'O with those of OIIPII'O’, it follows that

diag(6s,...,0k) - P - diag(0y,...,0x) = diag(fy,...,0x) - P -diag(f:, ..., 0k).



As both P and P have unit diagonal entries, P = P and 0p =0, 1<k <K.

Moreover, note that PII'© has a full row-rank. Since OIIPII'O = OILPII (:), it is seen
that ©IT = OIIA, where A = PI'OX'(XX')!, with X = PII'O for short. We compare
the first K rows of OII and (:)ﬁA, recalling that the first K rows are pure and that 8, = ék
for 1 < k < K. It follows that A equals to the K x K identity matrix. Therefore,

OI1 = OII.

Since each row of IT or II is a PMF, © = ©, II = II, and the claim follows.
Next, we study Case (2). By Lemma C.1,

(1]

= OIIB, for a non-singular matrix B.

Row i of = equals to 6; times a convex combination of rows of B. It follows that all rows of
= are contained in a simplicial cone with K supporting rays, where a pure row falls on one
supporting ray, and a mixed row falls in the interior of the simplicial cone. Note that = is
uniquely defined up to a K x K orthogonal matrix. The effect of this orthogonal matrix is
to simultaneously rotate all rows of =. Such a rotation does not change the property that
“a pure row falls on one supporting ray”. Therefore, a row of II equals to the corresponding
row of II, provided that one of them is pure. The remaining of the proof is similar to that

of Case (1). O

Remark (Comparison with the identifiability of other models). Compared to other models
(e.g., MMSB, DCBM), DCMM has many more parameters (for degree heterogeneity and
for mixed memberships). These parameters have more degrees of freedom than those in

MMSB or DCBM, and so DCMM requires stronger conditions to be identifiable.

e The assumption that P has unit diagonals is not needed for identifiability of MMSB,
but it is necessary for identifiability of DCMM. Consider a DCMM with parameters

(6,11, P). Given any K x K diagonal matrix D with positive diagonals, let
P=DPD, 7= (D"'m)/|D 'mlli, and 6; = ||D7 m|; - 6.

It is seen that OIIPII'O = OIIPII'O. This case will be eliminated by requiring P to

have unit diagonals.



e The assumption that P has a full rank is not needed for identifiability of DCBM, but
it is necessary for identifiability of DCMM. If the rank of P is < K, there exists a
nonzero vector 3 € R such that P3 = 0. As long as there is a 7; such that m;(k) > 0

for all k, we can change (m;,0;) to (7;,6;) but keep © unchanged. To see this, let
= (mi +€B)/|lmi + eBlli, and  6; = |m; + €l - 0;,

for a sufficiently small € > 0. Since the two vectors, 0; - Pm; and 0, - P#;, are equal,

remains unchanged.

A.2 Sufficient conditions for Assumption 4 to hold

We give two propositions showing examples where Assumption 4 is satisfied. Below, for a

matrix M, let \p(M) denote the k-th largest eigenvalue in magnitude.

Proposition A.2. Consider a DCMM model where Q = OIUPII'O and ||P|max < C.
Write G = K||0||~2(I'Q%II). Let n, be the first (unit-norm) right singular vector of PG.

Asn — oo, suppose at least one of the following conditions hold, where ¢ > 0 is a constant:
o minj<x<x P(k,0) > ¢, and ming{> 1, 0?m(k)} > cmax, {d 1, ?m;(k)}.

o K is fized, ming G(k,k) > ¢, and |\1(PG)| > ¢+ |M2(PG)|. For a fized irreducible
matriz Py, |P — Pyl — 0.

o K is fized, and |\ (PG)| > c+ |\2(PG)|. For a fized irreducible matriz Go, |G —
Go” — 0.

Then, we can select the sign of n1 such that all its entries are strictly positive. Furthermore,

[maxy <k<x 11 (k)]/[mini<x<x m (k)] < C.

Proposition A.3. Consider a DCMM model where Q@ = OIIPII'O. We assume that
maXlgkgK{Zle P(k,0)} < Cmink{Zf:l P(k,0)}. Suppose m;’s are i.i.d. generated from
Dirichlet(a), where a = (a1, aa,...,ak)" satisfies C1 < ag < Cy for two constants Cy >
Cy > 0. Write G = K||0||~2(I'G%II). Let 1, be the first (unit-norm) right singular vector

of PG. Asn — oo, [maxj<ip<i n1(k)]/[ming<x<x n1 (k)] < C, with probability 1 — o(1).

Proof of Propositions A.2-A.3: First, we prove Propositions A.2. Consider the first case.
Let z = K||0]| 72>, 0?m;(k). It is seen that Zszl xp = K. The assumption says that

)



miny ry > cmaxy xy. Therefore, x;, =< 1 for all k. At the same time, Zle G, k) =

K025, o 02 (0)mi(k) = a,. Tt follows that
m]?x{ze: G(,k)} =< mkin{ze: G(t,k)} < 1.

For any 1 < m,k < K, the (m, k)-th entry of PG equals to ), P(m,£)G(¢, k), which is
between ¢y, G(¢, k) and C')_,G(¢, k) by the assumption on P. It follows that

rr]ﬁx{(PG)(k,ﬁ) = rgcl,ien{(PG)(k,é)} = 1. (A1)

In particular, PG is a positive matrix. By Perron’s theorem [7, Theorem 8.2.8], the first
right singular value A\;(PG) is positive and has a multiplicity of 1, and the first eigenvector

71 is a positive vector. Write A = A\;(PQ) for short. By definition,

A = (PG)nr.
It follows that
711 : Il .
< TN > 10 . .
max i (k) < 3 rgégx{(PG)(W)L minn (k) > 3 rg’lgn{(PG)(k,f)} (A.2)

Combining (A.1)-(A.2) gives maxy 11 (k) < ming 71 (k). The claim follows.

Consider the second case. We first state and prove a useful result:

Let A and B be two nonnegative matrices with strictly (A3)

positive diagonals. If A is irreducible, then AB is irreducible.

The proof uses the definition of primitive matrices (a subclass of irreducible matrices; see [7,
Section 8.5]). We aim to show AB is a primitive matrix. By [7, Theorem 8.5.2], it suffices
to show that there exists m > 1, such that (AB)™ is a strictly positive matrix. By the
assumption, A is an irreducible matrix with positive diagonals; it follows from [7, Theorem
8.5.4] that A is a primitive matrix. By [7, Theorem 8.5.2] again, there exists m > 1 such
that A™ is a strictly positive matrix. Let o > 0 be the minimum diagonal entry of B. Since
A and B are nonnegative matrices, each entry of (AB)™ is lower bounded by o times the
corresponding entry of A™; hence, (AB)™ is also a strictly positive matrix. It follows that
AB is a primitive matrix, which is also an irreducible matrix.

We then show the claim. Note that P and G are both nonnegative matrices with positive

entries. Since ||P — Py|| — 0, the support of P has to be a superset of the support of Py for



large enough n; as a result, when Py is an irreducible matrix, P has to be an irreducible
matrix for sufficiently large n. We apply (A.3) to obtain that PG is an irreducible matrix. It
follows that A\;(PG) > 0 and it has a multiplicity 1; additionally, the first right eigenvector
71 is a positive vector.

It remains to show maxy 11 (k) < ming 71 (k). We prove by contradiction. Write 11 =
ngn), P = P™ and G = G™ to emphasize the dependence on n. If the claim is not true,
then there is a subsequence {n,}>; such that

i, (s
i { 2 (A4)
570 Lmaxy ;" (k)

Since K is fixed, all the entries of G(") are bounded. It follows that there exists a sub-
sequence of {ns}52,, which we still denote by {ns}>2, for notation convenience, such that

G("s) — G* for a fixed matrix G*. Therefore,
H(PG)(”S) - POG*H — 0, as s — 00. (A.5)

Let n} be the first right eigenvector of PyG*. Since |\ (PG)| > ¢ + |A\2(PG)|, by the

sin-theta theorem (e.g., see Lemma D.3), it follows from (A.5) that
Hngns) — | =0, as s — 0o. (A.6)

We now derive a contradiction from (A.4)-(A.6). On the one hand, combining (A.5)-(A.6)
and noting that nj is a fixed vector, we conclude that the minimum entry of 7j is zero. On
the other hand, the assumption of ming G(k, k) > c¢ ensures that G* has strictly positive
diagonals. We apply (A.3) to conclude that PyG* is a fixed irreducible matrix. By Perron’s
theorem, 7} should be a strictly positive vector. This yields a contradiction.

Consider the third case. The proof is similar to that of the second case, except that
we switch the roles of P and G. Note that we do not need additional conditions on the
diagonals of P, since P always has unit diagonals.

Next, we prove Propositions A.3. By (A.1) and (A.2), we only need to show that
rrllﬁezx{(PG)(k,E)} = nlgign{(PG)(k,E)}.

Since the maximum row sum and minimum row sum of P are at the same order, it suffices
to show that the maximum and minimum entries of G are at the same order. Let Gy =

E~Dirichlet (o) [T7']. As m — 00, it is easy to show that |G — Gol|[r = o(1). Therefore, we

7



only need to show that the maximum and minimum entries of G are at the same order.

By direct calculations,

Go = (E[]) (E[))’ + Cov(I)
1 1 1 1,
= aa’ + diag(a) — —5aa
a2 T T Tl ol 8@ ~ o
1

i@+ fladh)

[diag(a) + aa/].

Since all entries of o are bounded above and below by constants, it is easy to see that the

maximum and minimum entries of G are at the same order. This completes the proof. [

B Faster Rates of Mixed-SCORE (Setting 2)

In Section 3.3, we discuss Mixed-SCORE with each specific VH approach in Table 1. For
Mixed-SCORE-SVS and Mixed-SCORE-SVS*, we consider two settings where they enjoy
faster rates than the generic Mixed-SCORE algorithm. Due to space limit, we only present

Setting 1 in Section 3.3. We now present Setting 1.

Setting 2. Let N} be the set of pure nodes of community k, 1 < k < K, and let M be the
set of all mixed nodes. Suppose there are constants ¢y, ca € (0, 1) such that ming << g |Nj| >
cin and miny<g<k D i, 62(i) > c2]|0||>. Furthermore, for a fixed integer Ly > 1, we
assume there is a partition of M, M = M;U---UMp,, a set of PMF’s vq,--- ,7vr,, and
constants c3,cq > 0 such that (eg: k-th standard basis vector of R¥) {minlgj#g Lo V5 —
Yell, mini<s<ry1<k<k ||7e — ekH} > c3, and for each 1 < ¢ < Ly (note: err, is the same as

that in (3.10)), M| > cs| M| > nB;,%err? and max;epm, ||[m — Yel| < 1/log(n).

In this setting, 7;’s form several loose clusters, where the 7;’s in the same cluster are

%) from each other. Since —— is much larger than the order
g(n) log(n)

of noise, maxj<;<y, | H7; — r;||, the assumed clustering structure is indeed “loose”.

within a distance of O(
1

Theorem B.1. Consider the DCMM model where Assumptions 1-4 hold and 7;’s are from
Setting 2. Let H be as in Theorem 3.1. Suppose we apply SVS or SVS* to rows of]% with

A

L=1Ln(A):==min{L > K +1:¢,(R) < er_1(R)/log(log(n))}.

n fact, by a slight modification of the proof, we can replace (1/log(n)) in Setting 2 by any o(1) term,
or an appropriately small constant ¢s > 0 (this constant ¢z will depend on the constants in Setting 2 in a
quite complicated way). We present the current version for its convenience.



With probability 1 — o(n=3),

n
Hiy —vil| < C |1 || Hiy — 2.
Jmax |[Hop — il < €y n -1H Fi — il
1=

Moreover, for Mized-SCORE-SVS or Mized-SCORE-SVS*,

1 n
E[f F i2}<CK3 -2 )2 -2y
2 Dl = mil] < CRBernt)? + o)

C The Oracle Case and Ideal Mixed-SCORE

We consider the oracle case where 2 is observed. In Section C.1, we state a useful lemma,
which is the key for analysis of the oracle case. In Section C.2, we prove Lemmas 2.1 in
the paper, which inspire Ideal Mixed-SCORE. In Section C.3, we prove Lemma 2.2, which
is about recovering (P, ) from II. In Section C.4, we study eigenvalues and eigenvectors of

Q and the matrix R; these results are useful for the proofs in Sections D-F.

C.1 A useful lemma and its proof

Let G = K||0||"2(I'©2II) is as in Section 3. Let A1, A2, ..., Ak be the nonzero eigenvalues
of €2, sorted in the descending order of magnitudes. Let &1,&o, ...,k be the corresponding

eigenvectors. We have the following lemma:

Lemma C.1. Consider the DCMM model, where PG is an irreducible matrixz and there is

at least one pure node for each community. The following statements are true:

e There is a non-singular matriz B € R such that OTIB = Z, and B is unique once

= 18 chosen.

o Forl <k <K, denote by ay the kth largest (in magnitude) eigenvalue of PG. Then,

ay’s are real, and the nonzero eigenvalues of Q are A\ = (K~ 10||*)ay, 1 <k < K.

o Forl <k < K, denote by b the kth column of B. Then, by is a (right) eigenvector
of PG associated with ay.

e A\ > 0 and it has a multiplicity 1 (so & is uniquely determined up to a factor of £1).

e &1 can be chosen such that all of its entries are positive. For this choice of &1, all the

entries of the associated by are also positive.



Proof of Lemma C.1: Consider the first claim. Denote by Span(M) the column space of
any matrix M. It suffices to show that Span(OII) = Span(Z). Then, since &1, -+ , &k form
an orthonormal basis of this subspace, there is a unique, non-singular matrix B such that
OII = ZB. We then take B = B L,

We now show Span(©II) = Span(E). By the assumption that there is at least one pure
node in each community, we can find K rows of II such that they form a K x K identity
matrix. So IT has a rank K. Since ©® and P are both non-singular matrices, €2 also has a

rank K. By definition, Q& = A&, for 1 < k < K. It follows that
OII(PII'O&) = A&k

Hence, each & is in the column space of OII. This means the column space of Z is contained
in the column space of ©II. Since both matrices have a rank K, the two column spaces are
the same.

Consider the second claim. Note that P is symmetric and G is positive definite. Let G*/2
be the unique square root of G. For any matrices A € R™"™ and B € R™™ if m > n, then
the nonzero eigenvalues of AB are the same as the nonzero eigenvalues of BA [7, Theorem
1.3.22]. As a result, eigenvalues of PG are the same as eigenvalues of the symmetric matrix
GY2PGY2. 1t implies that a1, as, ..., ax are real.

Furthermore, the nonzero eigenvalues of Q = (OI1)(PII'O) are the same as the nonzero
eigenvalues of (PII'O)(OI) = (K~ !|0||?)(PG). Hence, the nonzero eigenvalues of {2 are
(KH0l1*)ar, (KHI01*)az, ..., (K~H0]*)ax.

Consider the third claim. Write G = K~'||6]?G = I'©2I1. Note that Q& = A&, and
&, = OIlbg. Hence, (OIIPII'O)(OIIb;) = A (OIlb). Multiplying both sides by II'O from
the left, we have

GPGby, = \,Gy,.
Since G is non-singular, PGby, = \yby. Pluggingin G = (K~1|6]|?)G and A, = (K~1|6]|?)ax,
we obtain PGby, = agbg. This shows that by, is a (right) eigenvector of PG associated with
ar. Additionally, since 71 is the first unit-norm right singular vector of PG, it yields that
m = b1/[ba]l.

Consider the fourth claim. Since A\; = (K~1||0||*)a1, it suffices to show that a; > 0 and
that it has a multiplicity 1. This follows immediately from the Perron-Frobenius theorem

[7, Theorem 8.4.4] and the assumption that PG is an irreducible matrix.
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Consider the last claim. Note that by is the eigenvalue of PG associated with ay. Since
ay has a multiplicity 1, b1 /||b1|| is unique up to a factor of £1 (depending on the choice of
&1). By Perron-Frobenius theorem again, b1 /[|b1|| can be chosen such that all the entries
are positive. Recalling that = = OIIB, we immediately have & = OIIb;. Since OII is
a nonnegative matrix with positive row sums and b; has strictly positive entries, all the

entries of £ are also positive. O

C.2 Proofs of Lemma 2.1

Consider the first claim. We have shown in Lemma C.1 that

= =0lIIB, for a non-singular matrix B = [by,...,bx] € REK,

Furthermore, by the last two bullet points of Lemma C.1, if we pick the sign of & such that
Yo, &i(i) > 0, then & and by are uniquely determined and have strictly positive entries.
This proves the first claim.

Consider the other two claims. We first show there are K affinely independent vectors

v1,v2,...,V such that each r; is a convex combination of them. For 1 < k < K, define
v € RE-1 by
vg(€) = bpy1(k)/bi(k), 1</(<K-1. (C.7)
The vectors v1,v9,...,vx are affinely independent, if and only if the following matrix
1 ... 1
Q =
vl PEEEEY UK

is non-singular. By (C.7), we observe that Q' = diag(b1)B. Since B is non-singular and by
is a positive vector, @ has to be a non-singular matrix. This proves that vy, vs,..., vk are

affinely independent. We then study each r;. Since = = OIIB, we have
=0() Y _mi(k)be(k) = 0(i)||beomill;, 1<l<K.

By definition of R, r;(¢) = &41(2)/&1(3). It follows that

K

() = 0(i) gy mik)bera (k Bmik) ben(k) _x~, o
O == 5oy oml, Z ol bRy~ 2o i)

This proves that 7; = S 1, w;(k)vy, with w; = (by o 7;)/||by o mifl1. Since by is a positive
vector and 7; is a nonnegative vector, we have that w; is a nonnegative vector and ||w;|j; = 1.

Therefore, r; is a convex combination of vy, ve, ..., vk.

11



We now show the second claim. Each r; is in the convex hull of v1,vs,...,vK. Since
these K vectors are affinely independent, their convex hull is a non-degenerate simplex
with K vertices. Recall that w; = (by o 7;)/||b1 o 7;||1, where by is a strictly positive vector.
Therefore, for each 1 < k < K, node 7 is a pure node of community k if and only if m; = e,
which happens if and only if w; = e; and w; = e means 7; is located at the vertex vy.

We then show the last claim, which is the formula for b;. Write A = diag(A1, -+, Ak).
Then, Q = ZAZ’. First, plugging in = = OIIB, we find that Q = OII(BAB')II'O. Multiply-
ing both sides by II'© from the left and OII from the right, we have II'OQOII = G(BAB')G,
where G = II'OII is a non-singular matrix. Second, since Q = OIIPII'®’, we have

I'ONOII = GPG. Combining the above gives
GPG =G(BABG — P=BAB. (C.8)

It follows that

K K
1= Pk, k) =Y Mbj (k) = b3 (k)[\ + > Afor(€ — 1)).
/=1 =2

Noting that by (k) is positive, the above gives the formula for computing b;. ]

C.3 Proof of Lemma 2.2

Write V' = [v1,v9,...,vk]. By (C.7), B = diag(b1)[1, V']. Moreover, by (C.8), P = BAB'.
Combining them gives the formula of recovering P. Note that = = OIIB. It follows that
&1(2) = 0(i) - m/by. This gives the formula of recovering 6. O
C.4 Spectral analysis of ()

First, we study the leading eigenvalues of 2. Let Aq, ..., Ax be the nonzero eigenvalues of €2,

listed in the descending order in magnitude. The following lemma, is proved in Section C.4.1:
Lemma C.2. Under conditions of Theorem 3.1, the following statements are true:

o CTLKY0)2 < M\ < C)0|%. If Bn = 0(1), then A < ||0])%.

o A\ — Ao < AL

o [ A\i| < BuKH0]?, for2 <k <K.

12



Next, we study the leading eigenvectors of 2. For 1 < k < K, let & be the eigenvector
of Q associated with \,. Write Zg = [€2,63,- -+, x| € RPE—1 and let Ep; be its i-th row,

1 <4 < n. The following lemma is proved in Section C.4.2:
Lemma C.3. Under conditions of Theorem 3.1, the following statements are true:

o If we choose the sign of & such that > | &1(i) > 0, then the entries of &1 are positive
satisfying C10(i)/||0]] < &1(7) < CO(i)/|10]|, 1 <i < n.

o [|E0ill < CVEOQ@)/lI6], 1 < i < n.

Last, we study the entry-wise ratio matrix K. Recall that w; is the barycentric coordi-

nate vector of r; in the Ideal Simplex. The following lemma is proved in Section C.4.3.
Lemma C.4. Under conditions of Theorem 3.1, the following statements are true:

e The vertices of the Ideal Simplex satisfy that max;<j<x ||vg|| < CVK and ming. ||vr—
U[H > C_l\/E.

° C'_le —milli < Jwi —wj|l1 < C|lmy — g1, for all1 <4, < n.
° C'_l\/KHwi —wj|| < |jry —rjf| < C\/EHwi —wjl|, for all1 <1i,5 <n.

Lemmas C.2-C.4 are useful for proofs in Sections D-F. Below, we prove these lemmas.

C.4.1 Proof of Lemma C.2

By Lemma C.1, all nonzero eigenvalues of 2 are (K ~1(|0(|?)ay, ..., (K~10||*)ax, where ay

is the k-th largest eigenvalue (in magnitude) of PG. By Assumption 3,
a1 — |az| > C 7 ay, C™'Bn < lak| < |az| < CBhn.

The second and third claims follow immediately.
It remains to show the first claim, which reduces to studying a;. For any two matrices
A and B, the nonzero eigenvalues of AB are the same as the nonzero eigenvalues of BA.

Hence,

a2 pal/2
= 0 (GV2PGY) =y TG PG

By Assumption 2, |G| < C and ||G™!|| < C. Tt is easy to see that a; < CA1(P). Addi-
. 'P 'Gl/2 pGl/2? . _
tionally, A\ (P) = max,o W = max,-g %. Since |GY2z||? = 2/Gz > C~|z||?,

it follows that A (P) < max,g % < CAi(PG). Together,

C™'\(P) < M (PG) < CA\(P).

13



Note that A1 (P) < K||P||max = O(K) and A\ (P) > P(k,k) > 1. We plug them into the
above inequality to get

C™'<a <CK. (C.9)

This inequality holds in all cases. If, additionally, 5, — 0 as n — oo, we can get a stronger
result. Note that P and G are nonnegative matrices, and for each 1 < k < K, P(k, k) =1
and G(k,k) > Amin(G) > C~L. Tt follows that (PG)(k,k) > P(k,k)G(k,k) > C~1. We
thus have

trace(PG) > C'K.
At the same time, trace(PG) = a1 + szzz az = a1+ O(KpB,) = a1 + o(K). It follows that
C'K <a; <CK,  if B, =o0(1). (C.10)

The first claim follows from (C.9)-(C.10) and the equality A\; = (K ~1/|0]|*)a;. O

C.4.2 Proof of Lemma C.3

Consider the first claim. From the last item of Lemma C.1, we can choose the sign of &;
such that both (&1, b1) have strictly positive entries, where this choice of sign corresponds
to 2" & (i) > 0. Note that Z = OIIB, which implies &1 (i) = 0(i) S, mi(k)by (k). Since

each m; is a PMF (a nonnegative vector whose entries sum to 1),

0(i) min by (k) < & (i) < 6(i) max by (k), 1<i<n.

1<k<K 1<k<K

Hence, to show the claim, it suffices to show that
cCHeIt <v(k)<Cl)~t,  foralll <k <K. (C.11)

Write G = K~ 1|6]?°G = IT'©?11. Since E = OIIB and X'X = I, we have B'TI'©%IIB =
I, or equivalently, B'GB = Ix. Multiplying both sides by B from the left and B’ from
the right, we obtain BB'GBB' = BB'. Since BB’ is non-singular, it implies

BB' =G = K|j0]|2G~L. (C.12)

We note that BB’ = S°5 byl = bibh. So, [[b1]® < |B|? < K||6]72||G"|. By our
assumption of |G71| < C. Tt follows that

los]l < €l VE.
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At the same time, 1 = [|&1]|? = ||©11b;||?. By direct calculations, |O1Ib ||> = Y, 62(7ib1)? <
S 02101 )1% < 1101121015 - It follows that

o1 ]le0 > C 017

In Lemma C.1, we have seen that b is the first right singular vector of PG. Hence, by x 11,
where 71 is the same as in Assumption 4. By Assumption 4, all the entries of 7; are at the

same order. Hence, all the entries of b; are at the same order. It follows that
bi(k) = [lb1]loc = (1/VE)|[ba]]-

This gives (C.11) and completes the proof of the first claim.

Consider the second claim. Since Z = OIIB, for 1 <i <n,
20,1l < 0)[|Bril| < CO(i) v/ Amax(B'B) < CVK]|0]7'6(i),

where the last inequality is due to (C.12) and and the condition |G~} < C. O

C.4.3 Proof of Lemma C.4

First, we prove the claim about the connection between |w; — wj||1 and ||m; — 7j||1. Let

So C RE be the standard simplex whose vertices are eq, eg, ..., ex. Define a mapping

b
T : S0 — S(), where Tl(x) = Hxxooibllul.

Then, w; = T (m;), for 1 < i < n. To show the claim, it suffices to show that 77 and Tl_1
are both Lipschitz with respect to the ¢'-norm, i.e., for any x,vy € So,

C7Mlz =yl < |T1(2) = Ta()ll1 < Cllz — ylh. (C.13)

We now show (C.13). Fixing any =,y € Sp, write * = T} (x) and y* = T1(y). By definition,
x*(k) = x(k)bi(k)/||z o b1||1 and y*(k) = y(k)bi(k) /||y o b1||1. We write

. ey _ lz(k) — y(k)]bi (k) 1 1
= D )y + LB (o bl — e obill).
|z o b1]x |0 b1

First, by (C.11), by (k) < [|0]| 7! for all 1 < k < K. It follows that |by(k)| < C|0]|~! and
lz o bylls = [l - C7HOI7 = C7H|0] 7. Hence,

b1(k)

i x(k) —y(k)| < Clz(k) — y(k)|.
|z o bllx
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Second, by the triangle inequality, |||y o b1|l1 — ||z 0 b1]|1| < ||(y — ) 0 b1|[1. Moreover, since
bi(k) < ||0]| 7! for all k, we have ||(y—z)obi|1 < C||0|| " |z —ylj1 and ||xobi|1 > C~|0]~ .

It follows that
y* (k)

Twop v bl = llz obulhl < Cy ()l = ylh.

Combining the above gives
2% (k) = y" (F)| < Cla(k) — y(k)| + Cy™ (k) - [l =yl
We sum over k on both sides and note that ), y*(k) = 1. It gives
2" = y* | < Cllz = ylh-

This shows that 77 is Lipschitz with respect to the ¢'-norm. We then consider T ! Define
by € RE by bi(k) = 1/b1(k), 1 < k < K. We can rewrite

_ X O I~)1
T 1(45)

lobily

T, ! has a similar form as T, where the vector by satisfies that by (k) < [|6]| for all k. Hence,
we can similarly prove that 77 ! is Lipschitz with respect to the ¢!-norm. This proves
(C.13).

Next, we prove the claim about the connection between ||r; — r;|| and ||w; — w;||. Let
So be the same as before, and let S?@eal = Sideal(yy 4y ... vgx) € RE~! denote the Ideal

Simplex. Let B = [b1, bg,...,bxk] be as in Lemma C.1. Define a mapping:

—_

. ideal 1 _ e 1
T5:Sp— S , where = x.
TQ(.CE) vT - VK

=Q
By Lemma 2.1, r; = To(w;), for all 1 < i < n. To show the claim, it suffices to show that
T5 and T}, 1 are both Lipschitz with respect to the ¢2-norm, whose Lipschitz constants are

VK and 1 / V'K, respectively. In other words, we want to prove, for any z,y € So,
CVEK|z =yl < |Ta(x) = Ta(y)|| < OVEK ||z —y]l. (C.14)
We now show (C.14). Note that Qz = (1xx, Ta(x))". Since 1z = 1%y = 1, we have

ITo(z) — Ta(y)|? = |Qz — Qy|* = (z — ) QQ(z — y).
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It suffices to show that
IRl <CVE, and Q7Y <C/VE. (C.15)

By (C.7), we can re-write
Q' = [diag(b1)] ' B.

By (C.11), bi(k) =< ||0||7! for all k. By (C.12), BB’ = K||f||72G™~!; we note that by
Assumption 2, |G|| < C and |G~ < C; it follows that |B|| < CVK]||f|~" and |[B~!| <
C||0||/vK. Combining them gives (C.15). Then, (C.14) follows.

Last, we prove the claims about the Ideal Simplex (IS). Let e, g, ..., ex be the standard

basis vectors of R, Tt is seen that vy, = Th(e), 1 < k < K. By (C.14), for k # ¢,
log — vl < VEK|lex — edl] < VK.
By definition of @ and (C.15), for all 1 <k < K,
lorll < QI = O(VE).

The above give the desired claims. O

D Spectral Analysis of A and Large-deviation Bounds for R

We conduct spectral analysis for A. In Section D.1, we give the large deviation bounds for
eigenvalues of A. In Sections D.2, we study the eigenvectors of A and state a key technical
lemma. In Section D.3, we prove Theorem 3.1 in the paper, which is about the row-wise
large deviation bound for R. In Section D.4, we give the £2-norm large deviation bound for

R. In Section D.4, we give a useful property of the rotation matrix H.

D.1 The eigenvalues of A

Let 5\1, Ao, ... , Ak be the K largest eigenvalues of A (in magnitude), sorted descendingly

in magnitude.

Lemma D.1. Under conditions of Theorem 3.1, with probability 1—o(n~?), max; << x \5%—

>\k| < C’\/ emaxue”l-
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Proof of Lemma D.1: By Weyl’s inequality, max;<p<x |Ax — Ax| < ||[A — Q]|. To show the
claim, it suffices to show that with probability 1 — o(n=3),

1A = Q| < C/Trarl0]5. (D.16)

The following inequality is useful:

(Omaxl|0]|1)/ log(n) — oc. (D.17)

To see why (D.17) is true, we rewrite erry, = (Omax/Omin)||0]| 2/ Omax/|0]]1 log(n). Since
Omax > Omin and Omax||0]]1 > [|0]]?, we immediately have err,, > [|0]|~1/log(n). Therefore,
the assumption err,, — 0 implies that ||0||*/log(n) — oo. Then (D.17) is also true because
Omax|0]11 > [10]>.

We now prove (D.16). Write

A—Q =W +diag(Q), where W = A — E[A].
Note that mPrj = > ,mi(k)m;(€) Pre < || Pllmax/|mill1[7mj][1 < C. Tt follows that
Q(i, j) < CO)0(j)-
Note that Q(i,4) = 62(i) (7, Pm;) < CH*(i). As a result,
Idiag(Q)|] < Cax < C/Bmaxf]1, (D.18)

where the last inequality follows from (D.17) and 62, < C' < /log(n) . We then apply
the non-asymptotic bounds for random matrices in [2] to bound ||[W]|. By Corollary 3.12
and Remark 3.13 of [2], for the n X n symmetric matrix W whose upper triangle contains
independent entries, for any € > 0, there exists a universal constant ¢. > 0 such that for
every t > 0,

P(|W| > (14 €)2V25 +t) < ne /(@2 (D.19)

6 =max > EW(@ij)%, 6= max [W (i, ) .
\/ 5

We fix € = 1/2 in (D.19) and write ¢ = ¢ for short. For ¢ = 26./¢log(n), it follows from
(D.19) that with probability 1 — o(n=3),

W] < 3f2m?x Y E[W(i, )% + C5.+/log(n).
J
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Note that ¢, < 1 and max;{}_; E[W(i,5)?]} < max;{>; Q(i, j)} < Cmax; {3, 0()0(j)} <
COmaxl||0]]1. We plug them into the above inequality and apply (D.17). It follows that, with
probability 1 — o(n=3),

||W|| < C\/ emaxHeHl + O\/IOg(n) < C\/emaxHeHl' (DZO)

Combining (D.18) and (D.20) gives (D.16). O

D.2 The eigenvectors of A

We state a main technical lemma about the eigenvectors of A. For 1 < k < K, let ék be the
eigenvector associated with ;. Write = = [52,53, . ,EK] e R™»K=1 and let é{m denote

its ¢th row, 1 <7 < n.

Lemma D.2. Suppose the conditions of Theorem 3.1 hold. With probability 1 — o(n=3),
there exist w € {1} and an orthogonal matriz X € RE-VE=1 (both w and X depend on

A and are stochastic) such that
() |lwéi — &1]| < ClOI 2K /B [10]]15
(b) [|20X — Zollr < CB 101 2K/*\/Ormax 10115
(¢) llwér — &1lloo < C10]| 7 Ontac I /TOT1 Tog(n);
(d) maxi<icn | X'Z0 — Zoall < OB 0172 0nax >/ /1011 log(n).

If B = o(1), then the factor K in the bounds for |wé — & and ||wéi — &1llso can be

removed.

Proof of Lemma D.2: We first prove claims (a)-(b). The proof is based on the the classical

sin-theta theorem [4], where below is a simpler version [3, Theorem 10].

Lemma D.3. Let M and M be two n xn symmetric matrices. For 1 < k <mn, let dj be the
k-th largest eigenvalue of M, ng and 7y, be the eigenvector associated with the k-th largest
eigenvalue of M and M, respectively. Suppose for some § > 0 and 1 < k1 < ko < n, we
have dg, 1 > dy, + 0, dpy1 < di, — 6 and |G — G| < 6/2. Write U = [y, ,Nk,) and

A

U= ligys--- M) Then, |UU" = UU'|| < 267G = G

We divide all eigenvalues of € into four groups: (i) A1, (ii) positive eigenvalues among

Ao, ..., Ak, (iii) zero eigenvalues, and (iv) negative eigenvalues among Ao, ..., Ag. Define
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Zo1 and Zgo as the submatrices of Zg by restricting to columns corresponding to eigenvalues
in groups (ii) and (iv), respectively. By dividing the empirical eigenvalues and eigenvectors
in a similar way, we can define 301 and éoz. Now, &1, Zgp1 and =gz contain the eigenvectors
associated with eigenvalues in groups (i), (ii) and (iv), respectively. By Lemma C.2, the
gap between eigenvalues in group (i) and those in other groups is A; — [Xo| > C71A\; >
C~1K~Y0||?, and the eigen-gap between any two remaining groups is > C3, K ~1||0||%. It

follows from Lemma D.3 that

KHA—QH>

N3 K||A—-Q
6 — il = 0( =), (K42

AT ) (D.21)

max {||Zu=), — Zot =L =0
te{m}{ﬂ 0tZ0¢ — ZorEoell}

By elementary linear algebra, (élfi — £1€)) has two nonzero eigenvalues +[1 — (££1)2]/2,

where [1 — (€/£1)%] > mins |1 + & ¢1] = (minz [|€; £ & |?)/2. It follows that
min 161 £ &1l < V2]16ié1 - il (D.22)

Moreover, by [8, Lemma 2.4], there always is an orthogonal matrix X; such that ||Zg; —
— = = —_ = . -~ o~ —_ = .

E01X1llr < |IE01Eh; — Z01Z0,||#. Since the rank of (Z01Z(; — Z01Z;) is at most 2K, we
then have

1Z01 — Za1 X1||lF < V2K|Z01 — Zo1 X1 |-
Similarly, there exists an orthogonal matrix Xy such that ||Zg — Z02 Xa|r < V2K ||Z02 —
Z02X2||. As a result, for the orthogonal matrix X = diag(X1, X2),

IZ0X — Zollr < QVEtQ?g}{HéméBt — EotZoel}- (D.23)

Plugging (D.22)-(D.23) into (D.21) gives that with probability 1 — o(n™3),

o  (KA=Q\ K\ max]0]1

L KVE||A - QH) (W3emaxre|h>
=X — = FZO( =0 +Y—F7F— s
| ” EATIE EATIE

where we have used (D.16). This proves the first two items.

We then prove claims (c)-(d). We borrow the techniques and some results from [1]. The
following lemma is adapted from [1, Theorem 2.1] and is proved below. A direct use of [1,
Theorem 2.1] will lead to sub-optimal dependence on 3, in the resulting bound, so we have

to modify that theorem accordingly.
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Lemma D.4. Let M € R™" be a symmetric random matriz. Write M* = EM and
Ko = rank(M*). For each 1 < k < Ky, let dj, and dj, be the k-th largest nonzero eigenvalue
of M™ and M, respectively, and let n;, and 1y, be the corresponding eigenvector, respectively.

Let s and r be two integers such that 1 < r < Kg and 0 < s < Kg—1r. Write D =
diag(dsy1,dsy2, ..., dsyr), D* = diag(d; |, d} o, ..., d5 ),

U= [778+17 Ns425 -+, 775-!—7“]7 and U= [n:—i-lﬂ 77;—27 s 777:+r]'

Define A* = min{d;—d;,d;,,—d;,, 1, mini<j<;, |ds [} and define k = (maxi<j<, |d5 ;) /A
Below, the notation || - ||2—sco Tepresents the mazimum row-wise £2-norm of a matriz, and
My, . is the m-th row of M*. Suppose for a number v > 0, the following assumptions are

satisfied:

Al (Incoherence): maxi<m<n || My, .|| < yA*.

A2 (Independence): For any 1 < m < n, the entries of the m-th row and column of

M are independent with the other entries.

e A3 (Spectral norm concentration): For a number oy € (0,1), P(||[M — M*|| < yA*) >
1 —do.
e A4 (Row concentration): There is a number 61 € (0,1) and a continuous non-

decreasing function () with p(0) = 0 and ¢(z)/z being non-increasing in Rt such

that, for any 1 < m < n and non-stochastic matriz Y € R™",

* * Y F
P <‘(M — M)y, Y2 <A ||Y||2—>oo()0<\/ﬁ“||y““2_>)> >1—461/n.

Let Iy = ({1,...,8—1}U{S+T+1,...,K0})ﬂ{j : ‘d;‘ > maxlgigr\d§+r]} and Ay =

min{min;ep, ]d;ﬁ — d}|, minjey, \d;‘ —di,,|}. Define U* = M, ..., NK,] and

maxjep, (|dj|/AG), if Lo # 0,

0 otherwise.

R =

Then, with probability 1 — §g — 201, for an orthogonal matriz O € R™",
IUO = MU*(D*) ™ [las00 < Clr(k + (1)) (v + (7)) + Fy] - 1T [l200- (D.24)

Proof of Lemma D.4: Fix 1 < m < n. Let M be the matrix by setting the m-th

row and the m-th column of M to be zero. Let ngm),ném), .. .,n,({”) be the eigenvectors
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of M(™. Write UM = [\ (M Let H = U'U*, H™ = (UMYU* and V(™) =
UM M) _ 7*. We aim to prove

[ My, V|| <6(k + R)YA* | U* |2 00

+ A%(7) (4KIIUH [[ 2500 + 6[1U*[|2-500) - (D.25)

Once (D.25) is obtained, the proof is almost identical to the proof of (B.26) in [1], except
that we plug in (D.25) instead of (B.32) in [1]. This is straightforward, so we omit it.
What remains is to prove (D.25). Without loss of generality, we only consider the case

where Iy # (). In the proof of [1, Lemma 5], it is shown that

1M VOO N < M V| 4 ([(M = M) VO,

(M = M*)n. VI < A% (7) (45U Hll2 00 + 6[1U*||2500) -
Combining them gives
M VO <[ M5, V| + A% (7) (K[| U H] 2500 + 6] U [|2-500 ) - (D.26)

We further bound the first term in (D.26). Recall that I is the index set of eigenvalues

that are not contained in D* and have an absolute value larger than || D*||. Let M* =

> jer, iy (ny)'.

MV < MV 4 (Mg, — M)V ™)
<M VI 4 | M = Moo [V

<M V| 4 6] M* = M|l 00,

where the last line uses ||V (™| < 67, by (B.12) of [1]. Note that M*—M* = > jen, 4y (7).

By definition of Iy, for any j ¢ lo, |d}| < maxi<i<, |ds,, [ < kA*. Tt follows that
I = N e < (i 451) 1T s < AT
Combining the above gives
1M, VO < [ My, VO | 4 659 A% ([T [|2-500- (D.27)
Write D = diag(d;)jejo, Us = [U;]je[m Uo = [njljer Uém) = [n](m)]jelo, and H(gm) =

(Uém))’ Ui. We similarly have ||Uém)Hém) — U§|| < 640, where g is defined in the same
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way as v but is with respect to the eigen-gap A§. It is not hard to see that vy = yA*/A{.
Hence,

U™ HE™ — UG | < 63A%/AG.
By mutual orthogonality of eigenvectors, (Uém))’ U™ =0 and (UZ)'U* = 0. Tt follows that

1M, VO = (e, UG AS U U™ HO™ — U
= |lef, UG AG (UG WU HO |
< |l [UsAG (UG YU ™|
= e UsAS (UG — U™ H™ Y U™
< e Us A5 (U — U™ HE™MY |
<0 l2moo - 1AGI] - UG — US™ HE™ |
< 6([Aoll"/A3) - VAT |2500-

We plug it into (D.27) and note that & = ||Ag||*/Af. It gives
1M, V| < 6(5 + F)y AT |25 00- (D.28)
Combining (D.26) and (D.28) gives (D.25). O

We now come back to the proof of Lemma D.2. We have divided nonzero eigenvalues
of Q into four groups: (i) A1, (ii) positive eigenvalues in Ao, ..., Ag, (iii) zero eigenvalues,
and (iv) negative eigenvalues in Ag, ..., Ag. We shall apply Lemma D.4 to each of the four
groups. To save space, we only consider applying it to group (ii). The proof for other
groups is similar and omitted.

Now, M = A and M* = Q = diag(Q2) + (A — EA). We check conditions Al-A4. By
Lemma C.2, A* > CB,K16||?> and » < C. For an appropriately large constant C >0,

we take

7= CB M 10172 K v Grnax 161
Consider Al. Since Q(i,j) < CO(i)0(j), we have maxi<i<p ||| < Clmax|f|]. From
the universal inequality ||0]| < \/fmax||0]l1 and the assumption fpax = O(1), this term is

O(\/Omax||0]]1), which is bounded by yA* when C is appropriately large. Hence, Al is
satisfied. A2 is satisfied because the upper triangle of A contains independent variables.

By (D.16), A3 is satisfied for 5o = o(n=3). We then verify A4. Since ||diag(Q)|| < C,
|diag(£2);.Yl2 < C||Y|l2— 00> 1<i<n. (D.29)
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Fix1<i<mnand1l<k<r. Let yp € R” be the k-th column of Y. Using the Bernstein’s

inequality, for any ¢t > 0,

2
P“y“A"‘EA”*>t)§ze”)(‘le19@4n263+ﬂwu0J3>' (D0

Note that Q3, 7)Yz (5) < Cllyel%bOmax|l0]l1. Moreover, Opmax||0]|1 > log(n) by (D.17).
We take t = C/|yk]|oo /Omax]|f]|1 log(n) for a large enough constant C' > 0. It follows that

with probability 1 — o(n™%),

(A = EA)i. | < lklloo - Cv/Omax|0]l1 log(n).

Combining it with the probability union bound and (D.29), with probability 1 — o(n™3),

I(A = 9);i.Yll2 < Cv/Omax|0]]1 log(n) - [|Y 2500

C'V/Omax 10]11 log ()
K=16,]10]2

< AY 200 - (D.31)

292

<~ ax> We obtain

Moreover, in (D.30), if we use an alternative bound } Q3 5y () <kl
a different bound as follows: With probability 1 — o(n™%),

(A —EA);.| < Cmax{|yl|fmaxv/10g(n), [|ykllec log(n)}.

Due to the probability union bound and (D.29), with probability 1 — o(n™3),

1A = Q). Ylls < Cmax{ [V || Ohmax /08, [V l2-00 log(n)}

Omax 1 Y 1
< A*Y[l200 max{ nlog(n) _|[Vir og(n) } . (D.32)

E=Bu[l017 v/nllYllamoo ™ K150 [10]12

Let t1 = C(K78,001%) " /Omax||0]]1 log(n), t2 = C(K~1,]0]|?)  max\/nlog(n), and
t3 = C(K~13,]/0]|?)~!log(n). Define the function
o(x) = min{ty, max{tox,t3}}.

Then, (D.31)-(D.32) together imply that with probability 1 — o(n™?),

~ Y|r
A—EA), Y|, < A*|Y (”7) D.33
We look at the function $(z). Note that (v/n]|Y|l2—00) 1|V ]|+ takes values in the interval
[n=1/21]. By (D.17), t; > t3. Moreover, since ||f]|1 < nfmax, When & = 1, tox > Cty.

Last, when # = n~ /2, tyx < t3. Combining the above, we conclude that in [n~/2, 00), the
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function ¢(z) first stays flat at t3, then linearly increases to t; and then stays flat at t;.
Hence, we construct a function ¢(z), which linearly increases from 0 to t3 for z € [0, n~1/2],
then linear increases from t3 to t; for z € [nfl/ 2 ty/t1], and then stays constant as t; for
x € [ta/t1,00). It is seen that ¢(0) = 0, ¢(z)/z is non-increasing, and p(x) < ¢(z) < ¢ in
the interval [n=1/2,1]. By (D.33) and that @(z) < p(z), A4 is satisfied with §; = o(n™3).

Furthermore, since ¢(z) < t,

) < Va0l Tog(rn)
A= TTR1B,6]2

So far, we have shown that Al1-A4 hold.

We now apply Lemma D.4. As mentioned, we only study the eigenvectors in group (ii),
which correspond to positive eigenvalues among Ao, ..., Ax. Let A; be the diagonal matrix
consisting of these eigenvalues and let =¢; be the matrix formed by associated eigenvectors.
Define their empirical counterparts, A; and Zg1, in the same way. In Lemma D.4, we take
U= ém, U* = =1, and U* = Z. Since Ao, ..., Ak are at the same order, k < C. Also,
k< A/(M —|X\2]) < C by our assumption. It follows from (D.24) that there exists an

orthogonal matrix O such that

OB T o)
K5

12010 — AZ01 AT 2500 <

By Lemma C.3, ||Z]l200 = O(VK||0]| '0max). Plugging it into the above inequality, we
find that

) 032 K372, /0], 1
12010 — AZ01A] oo < & . X@th og(n) 31

By definition of eigen-decomposition, 2Zg; = Zg1A1. It follows that
AZg AT = QAT 4+ (A — Q)20 AT = Zo1 + (A — Q)Zn AT
Plugging it into (D.34) yields

COMAIK3 /0] Tog(n = A-
B H0|!|!3H1 d )+H(A—Q):01A11H2—>oo- (D.35)

To bound the second term on the right hand side, we apply the first line of (D.31) by letting

12010 — Zo1]l2500 <

= Zo1. It turns out that with probability 1 — o(n=3),

I(A = 2)Z01 A7 Hl200 < (max (A= Q)i Zoull2) - [1A7 ]

< OV Omax|[0]1 log(n) - | Z01]l200 - |AT]
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< CVOmax 0]l log(n) - VE 0]~ Omax - K 5,162, (D-36)

where in the last inequality, the bound of ||[A[!] is from Lemma C.2 and the bound of
|Z01|l2—s00 is from Lemma C.3. Combining (D.35)-(D.36) gives
Chax K2/ T0] Tog(n)

B0l '

Note that the left hand side only involves eigenvectors in group (ii). We can prove similar

12010 — Eo1|2-500 <

results for the other three groups of eigenvectors. For group (i), A* > CK~1||§]|~! and
102500 < C||0]| *0max, and the resulting bound is
Obuiac /6] Tog ()
1611
Furthermore, if 8, = o(1), by Lemma C.2, A\; — |Xo| > C~1\; > C~1K||f]|?. Compared

[w&r = &1lloo <

with the case of 3, > ¢, the A* of group (i) is larger by a factor of K, so all the bounds

concerning fl are reduced by a factor of K. O

D.3 Proof of Theorem 3.1

Without loss of generality, we assume T" = oo, so that no thresholding is applied in obtaining
R. Note that max; ||r;|| < maxy |Jvx]| < CVK by Lemma C.4. For any threshold vK <
T < o0, the threshold always reduces errors. Therefore, the error bounds for the case of no
thresholding immediately imply the error bounds for the case of thresholding.

The second claim is straightforward. We only show the first claim. By Lemma C.3, we
can choose the sign of £; such that it is a strictly positive vector. By definition of err,, we

can re-write

3/2
o 811 G /TOTT Tog(n)
" Omin CE—

Then, the statements (c)-(d) of Lemma D.2 can be re-expressed as

2 Hmin = —_ emin —
i = €lloe = O (it Kerm), s XS0 = Zioll = O K28, err ). (D37

We now show the claim. Let (w, X) be the same as in Lemma D.2, and define H = wX’ €
RE-LE=L Fix 4. By definition of (r;,#;) and H,

1 1 .
TP = =240, Hf; = wX'ti = ——X'E; .
a0l ' owh()
It follows that
1 A 1 1
Hf;—ri= ———(X'Zi0—Zi0) + | —— — ——|Zio
o wm( 0~ Si0) wéi (@) @™
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b e o whi() &)
= —Z ( 6,0 — ‘—‘Z,O) - . r
wéi (7) wé1(i)
First, by Lemma C.3, &(7) > COmin/||0]); also, by (D.37), [wé1 (i) — &1(7)] < Omin/||0]]. We
thus have wél (1) > €1(7)/2 > COmin/||0||. Second, using the first bullet point of Lemma C.4,

7.

we have ||r;|| < maxg ||vg|| < CV K. Plugging these results into the above equation gives

Clie|l

gmin

[H? —ri]| <

(I1XZi0 — Zsoll + VEIwéa(3) - €1(3)]). (D.38)

The claim follows by plugging (D.37) into (D.38). O

D.4 The /2-norm deviation bound for R

Theorem 3.1 is about the row-wise large deviation bound for R. For completeness of theory,
we also present the ¢2-norm deviation bound for R. This result will be useful in the proofs

of Theorems 3.5-B.1 about faster rates of Mixed-SCORE. Recall the following definition:

erry = [(0350°%) ) (Bmin.)] - (n6?) /2.

max

Lemma D.5. Under conditions of Theorem 3.1, with probability 1 — o(n™3),
n
nUY | HE = ril|P < CKPB P (erry ).
i=1
Proof of Lemma D.5: As explained in the proof of Theorem 3.1, we only need to prove the

claim for the special case of T' = oo in obtaining R (i.e., no thresholding is applied). By

definition of err;, we can re-write it as

18] /e 61
9min\/ﬁ H9H2

Then, the first two bullet points of Lemma D.2 can be re-expressed as

* j—
err,, =

Joé =l = O 22 keerry ). 0% — Zolle = O k25 ey ).
Combining it with (D.38) gives
n! zn: [H?s = rif|* < %3”2 (120X — SollF + K||wés — &1[1*) < CK3B, % (erry)?.
i=1 min
This proves the claim. O
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D.5 A property of the rotation matrix H

Lemma D.6. Let H be the orthogonal matriz in Theorem 3.1. With probability 1 —o(n=3),
|Hdiag(Xs, ..., Ax) — diag(Aa, - . ., Ag ) H|| < C/Bmax ||0]]1 -

Proof of Lemma D.6: Write for short Ay = diag(j\g, ey ;\K) Let 2o, Zo, w and X be the

same as in Lemma D.2. In the proof of Theorem 3.1, we have seen that

H=wX' where w e {£1}.
It follows that
|HAg — AogH|| = |[(HAo — AgH)'|| = || XAg — Ao X]||

= II(
< [1(E6Z0) Ao — Ao(Z0Z0) || + 2II=5Z0 — X - [| Aol (D.39)

[I]>

0Z0) Ao — Ag(E0Z0) + (H — ZZ0)Ag — Ao(H — ZZ)|

We shall apply [1 Lemma 2[: in our setting, their notations H and sgn(H) correspond to

our notations of = _0_0 and X. By their Lemma 2,
1Z0Z0 — X||'/2 < CllA - QI /A%, [[(EpZ0)Ao — Ao(ZZ0) || < 24 - |, (D.40)

where A* is the eigen-gap quantity defined in the proof of Lemma D.2 and satisfies A* >
CB.K~10]2. Additionally, by Lemma C.2 and Lemma D.1, [[Ag|| < [[Ao|| < CB.K1|0))? <
CA*, with probability 1 — o(n=3). Combining these with (D.39)-(D.40), we have: with
probability 1 — o(n™3),
1HAo — AoH|| < [|(25Z0)Ao — Ro(Z6Z0) | +2/1ZZ0 — X || - [[Ao]
<2[A-Ql+C(|A-QlI/A%)?-CA*
<CllA-Q

S C\/ Hmax”gula

where the third line is because ||[A — Q|| < A* and the last line is from (D.16). O

E Vertex Hunting

Mixed-SCORE as a generic algorithm, where the VH step is a plug-in step. To analyze the
errors of Mixed-SCORE, we must first understand the errors of different VH approaches.
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Definition E.1 (Efficiency and strong efficiency of Vertex Hunting). A Vertex Hunting
algorithm is said to be efficient if it satisfies maxi<p<g ||HOp—vi|| < Cmaxi<i<p [|[HF—7il|,
and it is said to be strongly efficient if maxj<p< g ||H0p—vg|| < C’(nfl Yoy ||H7%—n||2)1/2,

where H is the same orthogonal matriz as in Theorem 3.1.
Consider all 4 VH approaches: SVS, SVS*, CVS, and SP in Table 1. We show

e All approaches are efficient under some regularity conditions.

e SVS and SVS* are also strongly efficient in some settings (however, CVS and SP are
generally not strongly efficient; this is because SVS and SVS* use a denoise stage

while CVS and SP do not).

E.1 Efficiency of SP and CVS

The next lemma gives the efficiency of CVS and SP.

Lemma E.1 (Efficiency of CVS and SP). Suppose conditions of Theorem 3.2 hold. Suppose
we apply either CVS or SP algorithm to the n rows of R. With probability 1 — o(n=3), the
estimated 01, . . ., Ok satisfy that maxi<p<k ||HOp—vg| < Cmaxi<i<p ||[HPi—r;||. Therefore,

both the C'VS and SP algorithms are efficient.

Proof of Lemma E.1: Without loss of generality, we only consider the case that H equals to
the identity matrix. When H is not the identity matrix, noticing that max;<p<x ||H0; —
V|| = maxy << |0y — H'vgl|, we only need to plug H'vy,. .., Hvg into the proof below.

We first prove the efficiency of the CVS algorithm. Write h = maxj<i<p |7 — 7i]]. We

aim to show

min_||og — 0¢]| < Coh, forall1 <k <K. (E.41)
1<U<K
It means for each true vertex vy, there is at least one of {01, 09,...,0x} that is within a

distance of Coh to vj,. At the same time, since h = o(v'K) and the distance between any two
vertices is > CvVK (see Lemma C.4), each 0, cannot be simultaneously within a distance
Coh to two vertices. The above imply that there is a one-to-one correspondence between
true and estimated vertices such that for each true vertex the corresponding estimated
vertex is within a distance C’OB to it. The claim then follows.

It remains to show (E.41). Fix 1 < k < K. Recall that w; is the unique weight vector

such that r; = Zﬁil w;(s)vs, 1 < i < n. For a constant C7 > 0 to be decided, let
Vor = {1 <i<n:wi(k) >1—Ci K 2h}.
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Let 45 be such that 05 = f'gs, 1 < s < K. We shall first prove that
{%la%2a"'>%K}mVOk7£®- (E42)

This means at least one of the estimated vertices has to come from the point set {7; : i €

Vor}. We shall next prove that

max ||7; — vg|| < Coh. (E.43)

1€Vok
Then, the estimated vertex which comes from {7; : i € Vyi} is guaranteed to be within a
distance Cph to the true vy, i.e., (E.41) holds.

It remains to show (E.42)-(E.43). First, consider (E.42). In the proof of Lemma C.4,
we introduce a one-to-one linear mapping 75 from the standard simplex Sy to the Ideal
Simplex S guch that Tor(w;) = r; for all 1 < i < n. We have shown that both 75 and
T, L are Lipschitz with the Lipschitz constants at the order of VK and 1 / VK, respectively.

As a result, there is a constant Co > 1 such that, for any w,w € Sy,
Cy WEK||Jw — @] < || Ta(w) — Ta(@)|| < CoVE|Jw — @] (E.44)

Below, we first use (E.44) to show the distance from vy, to the convex hull of {r; : ¢ ¢ Vor}
is sufficiently large, and then prove (E.42) by contradiction. We take C7 = 5C5. Take an

arbitrary point z* from the convex hull H{r; : i ¢ Vo }. Since T, is a linear mapping,

*

y* = T, *(x*) is a convex combination of {w; : i ¢ Vo}. By definition, for each i ¢ Vo,
0 < wi(k) < 1—C1K~'/2h. As aresult, y*(k), as a convex combination of {w;(k) : i & Vo },
also satisfies that 0 < y*(k) < 1 — C1K~Y/2h. This implies

IT5 " (%) = exll = lly* — exll = CLK~"?h,  for any * € H{ri i ¢ Voi}-
Combining it with (E.44), we have
o = vill = I Ta(y") = Talex) | = C3 'K - CLE12h > 5h.
Since x* is taken arbitrarily from the convex hull H{r; : i ¢ Vor}, we have
d(vk, H{ri : i & Vor}) > 5h. (E.45)

Come back to the proof of (E.42). When this claim is not true, the estimated simplex S is
contained in the convex hull of {7; : i ¢ Vyi }. It follows that

d(vg,8) > d(vg, H{F: i ¢ Vor})
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> d(vk,H{ri ci ¢ VOk}) —h

> 4h.

Let ji be a pure node of community k. Then, ||7;, —vg|| = ||, — 75, ] < h. Tt follows that
max d(7;,S) > d(#j,,8) > d(vp, S) — h > 3h. (E.46)
1<i<n

At the same time, consider the simplex S* formed by 7,7y, ..., Tjx, Where j, is a pure

node of community s, for 1 < s < K. Note that r;,,r,,..., 7, form the Ideal Simplex S*

and maxj<j<, d(r;, S*) = 0. It follows that

max d(7;,8*) < max d(r;, S*) + 2h < 2h. (E.47)

1<i<n ~ 1<i<n

Note that S is the solution of the combinatory search step. It has to satisfy

max d(fi,g’) < max d(fi,g'*).
1<i<n 1<i<n

This yields a contradiction to (E.46)-(E.47). Hence, (E.42) must be true.
Next, consider (E.43). It is easy to see that

max |7 — vg|| < max |[r; — vk + h
’LEVok ZEVOIC

= max || Ty(w;) — Ta(ex)|| + h
1€V

< CyVK max ||w; — eg|| + h,

1€Vok

where we have used (E.44) in the last line. For any i € Vo, ||wi — ex]|®> = [1 — wi(k)]? +
S pe w2 () < 1= wi(k)]? + [ wi(0]? < 2(C1K~Y21)? = 50C3 K ~1h2. Tt follows that

max |7 — vg|| < (5v/2C2 + 1)h.
1€Vok

Hence, (E.43) is true by choosing Cy = 5v/2C% + 1.
We then prove the efficiency of the SP algorithm. For space limit, the exact description

of the SP algorithm is not given in the main paper. We include it here:
e Initialize V; = (1,7)) € RE for 1 <i < n.

e At iteration £ =1,2,..., K: Find i} = argmax;;,[|Yi|| and let u, = Y;, /[|Y;,[|. Set

the k-th estimated vertex as vy, = 7;,. Update Y; to (1 — uzu},)Y;, for 1 <i <n.
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This algorithm has been analyzed in various literature. We only need to adapt the existing

results. The next lemma is from [5, Theorem 3].

Lemma E.2. Fizxm > r and n > r. Consider a matrix Y = SM + Z, where S € R™*"
has a full column rank, M € R"™"™ is a nonnegative matriz such that the sum of each
column is at most 1, and Z = [Zy,...,Zy,] € R™*"™. Suppose M has a submatriz equal

to I,. Write € = maxi<i<y || Zi||. Suppose € = O(\"}:;g((?)), where omin(S) and k(S) are

the minimum singular value and condition number of S, respectively. If we apply the SP
algorithm to columns of Y, then it outputs an index set I C {1,2,...,n} such that || =7

and max; <<, minjex | Sk — Yj|| = O(ex?(S)), where Sy, is the k-th column of S.

Given K, the estimated vertices by SP are {Y}} ;cx. Hence, the above lemma says the
maximum (2-error on estimating vertices is O(ex?(S)) = O(k?(S) maxi<i<y || Zi|).
In our setting, we apply SP to ¥; = (1,7})’, 1 <1 < n. We shall re-write the data in the

same form as in Lemma E.2. Recall that H is the orthogonal matrix in Theorem 3.1 and

v1, ...,V are vertices of the Ideal Simplex. By definition,
1 e 1 1
Ww; =
H_l?)l H_l’l)K H_ITZ'

Let oy = (1, (H Yvp)'Y, 7 = (1, (H 1)), 2z = (0, (F — H'ry)), 1< k< K,1<i<n.
It is seen that
(Lﬁ)/ =Y, = [171, - ,ﬁK]wi + z;.

Write Y = [Y1,...,Y,] € REX" V = [4y,...,0x] € REXE W = [wy,...,w,] € REX" and

Z =[z1,..., 2, € REX" The above can be re-written as
Y =VW+Z. (E.48)

This reduces to the form in Lemma E.2 with m = K. To apply Lemma E.2, we note that

V can be re-written as

- 1 ... 1
V =diag(1,H %) - Q, where @ =

Ul e UK
Since diag(1, H~!) is an orthogonal matrix, the singular values of V are the same as the
singular values of ). Moreover, by (C.15), all the singular values of ) are at the order of
VK. Tt follows that

omin(V) < VK,  k(V)=<1. (E.49)
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Umin(v)

\/f/#(f/)
estimating vertices is O(maxi<;<, || Zi||) = O(maxi<;<p [|Fi—H 1r;]|) = O(maxi<;<p || HF;—

In particular, V has a full rank, and = 1. By Lemma E.2, the maximum ¢?-error on

ri||). The claim follows immediately. O

E.2 Strong efficiency of SVS and SVS*

SVS and SVS* both have a denoise stage, where we use k-means to reduce the n rows of R
into L “cluster centers”, with an L that is (usually a few times) larger than K. We have
seen that the denoise stage makes SVS and SVS* more accurate numerically (see Figure 4).
We now give a theoretical justification, where we show that SVS and SVS* are strongly
efficient (see Definition E.1). Without loss of generality, we focus on SVS. The analysis of
SVS* is very similar, which is discussed in the remark in the end.

First, consider Setting 1. Let So = Sp(e1, e, ...,ex) be the standard simplex in R¥,
where the vertices ej, es,...,ex are the standard Euclidean basis vectors of RX. Fix a
density g defined over Sy and let R = {7 € Sy : g(m) > 0} be the support of g. We suppose

there is a constant ¢y > 0 such that
R is an open subset of Sy, and distance(ex, R) > cp, 1 < k < K. (E.50)

Let d,(m) denote the point mass at m = v. Let €1,...,ex > 0 be constants such that

Zszl e, < 1. We invoke a random design model where 7;’s are iid drawn from a mixture

K K
Fm) = e b () + (1= k) - g(m). (E.51)

k=1 k=1
Lemma E.3 (Efficiency of SVS, Setting 1). Suppose conditions of Theorem 3.2 hold. Ad-
ditionally, suppose K is fized and rows of Il are iid generated from (E.50)-(E.51). We
apply the SVS algorithm to rows off% with an L that does not change with n. Then, there
exists Lo = Lo(g, €1,...,ex) such that, as long as L > Lg, with probability 1 — o(n~=3), the
estimated v, ..., 0k satisfy maxi<p<i |HOp — vgl] < Cmaxi<i<y ||HT — ril|. As a result,

the SVS algorithm is efficient.

Lemma E.3 is proved in Section E.2.1. Its proof utilizes the Borel-Lebesgue covering
theorem to characterize the local centers produced in the denoise stage.

Remark. A noteworthy implication of Lemma E.3 is that the performance of SVS is
robust to the choice of L: an overshooting of L only has negligible effects (so as long as

computation is not a serious issue, we can choose a larger L in SVS). This is intuitively
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explained as follows. As L increases, more local centers emerge, and we have two represen-
tative scenarios. In the first scenario, new “local centers” emerge in the interior of the Ideal
Simplex, while “local centers” that fall close to one of the vertices of Ideal Simplex remain
unaffected. In this case, as “local centers” that fall in the interior of the Ideal Simplex won’t
be selected in the second stage of SVS, the estimated vertices remain roughly the same as L
increases. In the second scenario, near a vertex of the Ideal Simplex, the number of “local
centers” increases as L increases. However, all these “local centers” remain close to the
vertex, and in its second stage, SVS selects one of these “local centers” as the estimated
vertex. In this case, the estimates of vertices also remain roughly the same as L increases.
The above heuristic explanation is made rigorous in the proof of Lemma E.3.

Next, consider Setting 2. Let Ny = {1 <i < n:m(k) =1} be the set of pure nodes of
community k, 1 <k < K, and let M = {1 <1i <n:maxj<x<g m(k) < 1} be the set of all
mixed nodes. We assume there are constants c1,c2 € (0, 1) such that

min_|Ng| > ein, min Y " 6%(i) > col|]%. (E.52)

1<k<K 1<k<K
- T T iEN

Furthermore, for a fixed integer Lo > 1, we assume there is a partition of M, M =
MiU---UMyg,, aset of PMF’s v1,- -+ ,7r,, and constants ¢z, cq > 0 such that (eg: k-th

standard basis vector of R¥)

i - i - > E.
{oomin =l min e — el } > o (.53)

and for each 1 < /¢ < Ly (note: err, is the same as that in (3.10)),
Ml > el M| 2 B %ers, o i~ 3] < 1/ log(n). (E.54)
? 4

In this setting, we assume that the true m;’s form several loose clusters, where the m;’s in

the same cluster are within a distance of O(ﬁ) from each other. We note that —— is
g(n) log(n)

much larger than the order of noise, maxj<i<p |[H7; — r;|| (see Theorem 3.1). Hence, the

assumed clustering structure is “loose”.

Lemma E.4 (Strong efficiency of SVS, Setting 2). Suppose conditions of Theorem 3.2 hold.
Additionally, suppose K is fized and (©,11) satisfy (E.52)-(E.54). For any integer L > 1,
denote by eL(R) the sum of squared residuals of applying k-means to rows of R to get L
clusters. We apply the SVS algorithm to rows of R, with a data-drive choice of L:

A

Ln(A) =min{L > K +1: e;(R) < ex_1(R)/log(log(n))}. (E.55)
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With probability 1 — o(n=3), the estimated ©1,...,0x satisfy

n 1/2
Ho, — <c< “INTHF — 1y 2) . E.56
1%2([(” Uk ’UkH < n ; H [} rz” ( )

As a result, the SVS algorithm is strongly efficient.

Lemma E.4 is proved in Section E.2.2. The proof requires unconventional analysis of k-
means. The challenge comes from that the clusters of m;’s are loose. Using the conventional

analysis of k-means, the VH error is governed by the largest within-cluster variance, which
1

can be as large as O(log(n)

) for loose clusters (see (E.54)). The key of the proof is to show
that the loose clusters in the interior have negligible effects on the estimated vertices.
Remark. Lemmas E.3-E.4 can be easily extended to SVS*. Let h = max; | H#; — 7.
In the proofs of these lemmas, we have shown the following properties of the k-means cluster
centers: With high probability, (a) all k-means centers are within a distance of O(h) to the
Ideal Simplex, and (b) for each vertex vy, there is at least one k-means center that is within
a distance of O(ﬁ) to vg. SVS* applies SP to these k-means centers. Therefore, we can
apply Lemma E.1 pretending that the k-means centers are the data points. This gives the

desired claims for SVS*.
E.2.1 Proof of Lemma E.3

Lemma E.3 follows directly from the next lemma:

Lemma E.5. Suppose the conditions of Lemma E.3 hold. We apply the SVS algorithm
to {7}, with L being a properly large constant. Write h = maxi<i<p |H7; — 7i||. The

following statements are true.

o In the local clustering sub-step, all the local centers output by k-means are within a
distance of Ch to the Ideal Simplex. Moreover, for each true vertex vy, there is at

least one local center that is within a distance of Ch to i, 1 <k<K.

o The combinatorial search sub-step selects exactly one local center among those within
a distance of Ch to a true vk, 1 < k < K. As a result, up to a permutation of

estimated vertices, maxi << |[HOp — vg|| < Ch.

Proof of Lemma E.5: As explained in the proof of Lemma E.1, we can assume H = [ _1

without loss of generality.
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We first argue that, once the first bullet point is proved, the second bullet point follows
directly. Let 1y, Mg, ..., mr be the local centers by k-means. The combinatorial search step
of SVS is an application of CVS on these local centers, and we hope to apply Lemma E.1.

Note that when the first bullet point of the claim is true, we have:
o d(ij, Sy < Ch, 1< j < L.
e For each 1 < k < K, there exists j, such that |7, — vg| < Ch.

By Lemma C.4, the distance between two different v, and vy is lower bounded by a constant

times VK, while h = o(VK). As a result, any 7; cannot be simultaneously within a

distance of Ch to two vertices, which implies that ji, ja, ..., jx are distinct. Define
argmingc giaeat ||z — M|, 7 & {j1,J2,- .., ik},
m; =
Uk, J=Jk1<k<K.

We then have
e The points mq,ma, ..., my, are in the Ideal Simplex S
o ||/ —my|| <Ch,1<j<L.
e For each 1 <k < K, there is at least one m; located at the vertex vy.

If we view 1,7, ..., as the data points and view m,,,..., m;, as the “pure nodes”,

we can apply Lemma E.1 to get maxi<i<x ||0r — vg|| < Cmaxi<j<p |m; — mj| < Ch.
Therefore, it suffices to prove the first bullet point of the claim. For any L > 1, let

RSS(L) be the objective achieved by applying k-means to mixed r;’s assuming < L clusters:

RSS(L) = min Z ||r; — (closest-cluster-center) ||?.

L cluster centers .
mixed nodes 17

In preparation, we study RSS(L) as a function of L.

We provide an upper bound of RSS(L) by constructing a feasible solution to the k-
means problem. In the proof of Lemma C.4, we see that there is a one-to-one mapping
T =T o T} from the standard simplex Sy to the Ideal Simplex S such that r; = T (73)

and that (note: we have used that K is a constant)

Oz —yll < |T(x) = T(y)|| < Clle —yll,  for any z,y € Sp. (E.57)
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1
For an integer s = |[L¥-1T — 1], we consider the following choice of centers:

1 —1
{T(x) :x € 8, entries of x take value on {0, ey i ,1}}.
s s

The total number of centers is bounded by (s + 1)%~! < L. We then assign each r; to the
nearest center. The ¢*°-distance from each m; to the nearest x above is at most 1/s, so
the BEuclidean distance is at most v/K /s; combining it with (E.57), the Euclidean distance
from 7; = T(m;) to the nearest T'(z) above is at most Cv/K /s. It follows that

RSS(L) < n(CVK /s)>.

The choice of s guarantees that s > Lﬁ — 2. As a result, for a constant ¢ that does not
depend on L,
RSS(L) < n-&L 7o, (E.58)

We are now ready to prove the first bullet point. Note that each #; is within a distance
Ch to the corresponding r; and that all the r;’s are in the Ideal Simplex. Hence, all data
points {7;}?_; are within a distance Ch to the Ideal Simplex. It is easy to see that all local
centers output by k-means must also be within a distance Ch to the Ideal Simplex. What
remains is to show that there is at least one local center within a distance of Ch to each

true vertex vg. Fix vg. Our strategy is as follows: for a constant ¢y to be decided,

(a) We first show that there exists at least one local center within a distance £y to vy.

(b) We then show that, for each local center within a distance ¢y to v, the associated

data cluster consists of only pure #; from community k.

Then, by the nature of k-means, such a local center equals to the average of all the #;
assigned to this cluster. Since each 7; corresponds to a pure node of community k, it is
within a distance Ch to vi. As a result, the local center must also be within a distance Ch
to vg. This gives the first bullet point.

What remains is to prove (a) and (b). Fix vg. Consider (a). Suppose there are no local
centers within a distance £y to vg. Then, each pure r; from community k has a distance
> f{y to the nearest local center; hence, the distance from 7; to the nearest local center is at
least £y — Ch > (g /2. At the same time, by the generating process of m;’s, with probability
1 — o(n3), the number of pure nodes of community k is at least ney/2. These pure nodes

contribute a sum-of-squares of
> (ner/2) - (€o/2)* = n(f3ex/8).
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Additionally, the mixed 7;’s are assigned to at most L clusters. Since ||f; — z||> > ||r; —
z||2/2 — O(h?) for any point x, we immediately know that the sum-of-squares contributed
by mixed 7;’s is

> —RSS(L) — O(nh?).

DN |

Combining the above, the objective attained by k-means is

> —RSS(L) +n(l3e/9) (E.59)

1
2
At the same time, we construct an alternative solution by letting (L — K) of the local centers
be those associated with RSS(L — K), letting the remaining K centers be vy, vs,..., vk,
and assigning each #; to the center closest to the corresponding 7;. Since ||f; — z|* <

2||r; — |2 + O(h?), the sum of squares attained by this solution is
< 2RSS(L — K) + O(nh?). (E.60)
A contradiction is obtained as long as
IRSS(L — K) — %RSS(L + K) < n(€2e/9) — O(nh?)
< n(£3/10).

According to (E.58), the above is true if we choose L > (206/63)%. This proves (a).
Consider (b). Fix k. Let m* be a local center such that ||/m* — vg| < fo. By the

assumption (E.50), for any m; # ey, its distance to e (e is the k-th standard basis of

RE) is at least ¢g. Combining it with (E.57), for any node i that is not a pure node of

community k, the distance from r; to vy, is at least C~'cg. As a result, for any such node,
|7 — m*|| > C teg — by — Ch.
By taking {9 = C~'¢g/4.1, for any node i not pure of community F,
the distance from 7; to the center m* is at least 3/y. (E.61)
We shall also show that, for any node 7 not pure of community k,
the distance from 7; to the nearest center is at most 2.5¢. (E.62)

By (E.61)-(E.62), these nodes cannot be assigned to m*. Therefore, the cluster associated

with m* consists of only those 7; such that ¢ is a pure node of community k. This proves

(b).
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What remains is to prove (E.62). If i is a pure node of a different community ¢, then
by (a) above, the distance from r; = v, to the nearest center is £y + Ch < 2.5¢y. Hence, we
only need to consider i that is a mixed node. Since max; ||#; — r4]| < Ch < 0.5(y, it suffices

to show that
the distance from a mixed 7; to the nearest center is at most 2¢. (E.63)

Let Sy = So(ey, ..., ex) € RE be the standard (K — 1)-simplex, and denote by B(z;c) an
open ball in Sy centered at x with a radius c¢; we notice that here an “open ball” means
the intersection of Sy and an open ball in R¥. Let R be the closure of R, where R is the

support of f(-). We consider the open cover of R:
{B(z,C ) : x € R}.

Since R is closed and bounded, it is a compact set. According to the Borel-Lebesgue

covering theorem, the above open cover has a finite sub-cover:
{B(z1,C ), B(z2,C~ 4y), ..., B(xp, C ) }, where x1,...,1, € R.

This means each 7; # ey, is contained in one B(x;, C~'4y). Recalling that T is the mapping
in (E.57), define
B =T (B(xz;,C™'4)), 1<j<p.
Then, r; = T'(m;) is contained in B;. Moreover, for any y,§ € B}, [ly—7|| < Cmax, sep;,c-14) <

20g. Therefore, if we can show that
each B} contains at least one local center,1 < j < p, (E.64)

then the distance from r; to this local center is bounded by 2¢y. This gives (E.63), and in
turn gives (E.62).

What remains is to prove (E.64). Note that R is an open set. By definition of open sets,
for each of x1,x2,...,p, there is a 7; > 0 such that the closed ball B(xj,Tj) is contained

in R. We define the closed balls
BB; = B(mj,min{Tj,C_lfo/Q}), 1<j<p.

Let wj = [ f(m)1{r € BBj}dr = (1 — S5 &) [g(m)1{r € BB;}dr, 1 < j < p. Note

that each of these closed balls is contained in the support of g with a nonzero radius and
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that g as a probability density is measurable. We immediately know that w; > 0. From
the assumption (E.51) and elementary large-deviation inequalities (e.g., the Hoeffding’s

inequality), we know that with probability 1 — o(n=3), for 1 < j < p,
the number of 7;’s contained in BB, is at least nw;/2. (E.65)

With (E.65), we now prove (E.64) by contradiction. Suppose (E.64) does not hold, i.e.,
there exists 55} such that

Bjm{mlmeP"amL}:@?

where 7v1, 72, . .., i, are the local centers output by k-means. By definition of B} and the

fact that T is a one-to-one mapping, we have
B(aj, C~ o) N {T ™ (i), T~ (h2), ..., T~ (sg) } = 0.

Note that BB; is a ball also centered at z; but with a radius no larger than half of the
radius of B(xj,Cflﬁo). As a result, for any x € BB;, its distance to the nearest one of
T=Y(mq), -+, T~ (my) is at least C~14y/2; combining it with (E.57), the distance from

T(z) to the nearest one of 71, Mo, ...,y is at least C~2(y/2. It follows that
for any m; € BB;, 1r§r§i£L i = 1| > C24/2.
Note that max; ||7; — ]| < Ch = o(1). We further conclude that

for any m; € BB;, the distance from 7;

(E.66)

to the nearest local center is > C~2/y/3.

Combining (E.65)-(E.66), the sum-of-squares attained by k-means is
> (C™24y/3)* - (nw;/2) > n(wminC~*03/18),
where wmin = min{wy,...,wp}. At the same time, the objective attained by k-means should
be
< RSS(L) + n(Ch?).

A contradiction is obtained as long as

RSS(L) < n(wminC~*¢2/18) — n(Ch?). (E.67)

Comparing it with (E.58), as long as L > (2%04'5)1(271, the inequality (E.67) will be true.
0%Wmin

We then have a contradiction, which implies that (E.64) must hold. The proof is now
complete. n
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E.2.2 Proof of Lemma E.4

Lemma E.4 follows directly from the next lemma:

Lemma E.6. Suppose the conditions of Lemma E.4 hold. We apply the SVS algorithm to

{#:}2 with L = L, (A), where L,(A) is defined in (E.55). Leth* = \/n=1S 1 [[H#; — 4|2
and h = maxi<j<y, |[H?; — r4||. With probability 1 — o(n™3), the following statements are
true.

o Ln(A)=Lo+K.

e The local clustering sub-step identifies (Lo + K) local centers, where there is a unique
(K —1)-simplex such that K of these centers (denoted by 1,02, . ..,V ) are its vertices,
and all other centers are within a distance of Ch to this simplex. These K local centers

will be identified by the combinatorial search sub-step.

e The above K local centers satisfy oy, = |Nj| ™ dien; Tis 1 <k < K. As a result, up

to a permutation of estimated vertices, maxj<p<g || Hor — vg|| < Ch*.

Proof of Lemma E.6: As explained in the proof of Lemma E.1, we can assume H = I

without loss of generality. By Theorem 3.1 and Lemma D.5, with probability 1 — o(n=3),

- R Cerry, "2 2 o Cn(err )2
= max - < S5 n(h) Zuz il < S E®)

where we have absorbed the factors of K into the constants. We also note that err) <
erry/+/log(n). Below, we restrict to the event of (E.68).
First, we study f/n(A) Recall that v1, 72, ..., 7L, are as in (E.53). Let T" be the mapping

as in (E.57); note that T'(m;) = r; for 1 <4 < n. Introduce
mj:T(PYj)v 1§J§L0

By (E.57), the assumptions (E.53)-(E.54) imply that the distance between any two of
{v1,v2,..., v, m1,ma,...,mp,} is at least ¢, and max;enq; |7 — my|| < C1/log(n), where

¢ > 0 and C7 > 0 are constants. In particular,

Lo
C|M| _
ol < h 2 =p1 C—m|%.
On = nlog(n)’ where  ap =7 ;ZGZM:J [7i — my|
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We now study er,(R). When L = Lo+ K, by choosing this choice of centers {v1,...,vx, m1, ..
it is easy to see that

C|M|
log(n)’

where the last inequality is due to (E.68) and the assumption that |[M| > ng; 2err? >

n —

Lotk (R) < naj +C |7 —ril|* < (E.69)
=1

nB,%(err})?log(n). When K < L < Ly + K, suppose there are L; of {v,v2,...,vx} and
Ly of {my,ma,...,mr,} such that no local centers are within a distance of ¢/3 of them.
Since the distance between any two of {vi,ve,...,vx, m1,ma,...,mr,} is at least ¢, we
have that (L1 + Lo) is at least (Lo + K) — L. For any such v and i € N}, or such m; and

i € Mj, the distance from 7; to the nearest local center is at least ¢/3 — h > c/4. Tt follows

that
er(R) > (¢/4)% - (Ly min INk| + La min |M,]) > C|M], (E.70)
J
where the last inequality is due to ming |[Ny| > ¢in and min; M| > c4| M|. At the same
time, by choosing the centers to be {v1,vs,..., vk} and (L — K) of {my,ma,...,mr,},
n
eL(R) < C(Lo+ K — L)IM|+CD_ ||fi — ri|> < CIM. (E.71)
i=1

By (E.69)-(E.71),

. . | <C/log(n), L=1Ly+ K,

er(R)/er—1(R)
>C, K+1<L<ILy+K.

Hence, the definition of L, (A) in (E.55) yields L, (A) = Lo+ K. This proves the first bullet

point.
Next, we consider the second bullet point. Suppose for Ly of {vy,vs,...,vx} and Lo
of {my,ma,...,mr,}, there are no local centers are within a distance of ¢/4 of them.

When L; + Ly > 1, using similar arguments as those for proving (E.70), we can see that
the associated sum-of-squares is lower bounded by C|M]|. However, in (E.69), we have
seen that the sum-of-squares attained by k-means is at most C|M|/log(n). Hence, the
above situation is impossible, i.e., for each of {vy, va, ..., vk, m1,...,mp,}, there is at least
one local center within a distance ¢/4 to it. Since that the distance between any two of
{v1,v2,..., v, m1,...,mr,} is at least ¢, these (Lo + K) local centers must be distinct.

Noting that there are at most f/n(A) = Lo + K cluster centers in total, we find that

there is exactly one local center within a distance ¢/4 (B.72)

to each of {v1,va,..., vk, M1, ma...,mr,}.
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Denote by mg‘k) the local center nearest to vg and by my;) the local center nearest to
mj, 1 <k < K,1<j< Ly Forany i€ N, the distance from 7; to m;k) is at most
¢/4+0(h) < ¢/3, but its distance to any other local center is at least ¢c—c/4—O(h) > 2¢/3;
hence, 7; can only be assigned to the cluster associated with m ( ) Similarly, for any i € Mj,
the distance from #; to 7;) is at most c¢/4 + O(log(n)) + O(h) < ¢/3, but the distance to
any other local center is at least ¢ — ¢/4 — O(log(n)) O(h) > 2¢/3; so #; must be assigned

to ;). We have proved that

the cluster associated with 7, is {fiie Ngh1<k<K, (£.73)

the cluster associated with m(j) is {7 11 e M;},1 <5 < Ly.

Then, it is easy to see that
e All the local centers are within a distance & to the Ideal Simplex.
e FEach ma) is within a distance Ch to v, 1 <k <K.

e Each 7; is within a distance C'/log(n) to m;, 1 < j < Ly.

J

We now show that m( 1) (2), . ,me) will be selected by the combinatorial search. The
proof is similar to that of Lemma E.1 but is simpler. Suppose one Thz‘k) is not selected by
the combinatorial search. By (E.73), the other local centers are contained in the convex
hull H{# : i ¢ Ny}. Hence, the estimated simplex & € H{#; : i ¢ N;}. We notice that
the distance from ey to the convex hull of all m; # e is lower bounded by a constant, as a
result of the assumptions (E.53)-(E.54). Using (E.57), we know that the distance from v
to the convex hull H{r; : i ¢ N;} is also lower bounded by a constant. Then,

(1, 8) > d(fyy, H{Fi i ¢ Ni})
> d(vg, Hiri i ¢ Ni}) — O(h)
> C.
At the same time, if we pick the K local centers rh?l), m*Q), . ,m*K),

max d(iy, Sy, iy, -, Mix))) < Ch

This yields a contradiction since h = o(1). As a result, all of m’{l),m 2y ,ThZ‘K) will be

selected by the combinatorial search.
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Last, we prove the third bullet point. So far, we have seen that 0 = ﬁ”f(kk) (up to a label

permutation). By (E.73) and the nature of k-means solutions,
bp =[N P> A, 1<k<K.
iEN}

We note that 0 < ZieNk |7 — 0 ||? = ZZeNk{Hm—ka —2(0, — ) (Fs —vp) + || ox — v ||2)} =

Siens, 17 — vl — [Nilllog — vrl|?. As a result,

19 — i |* < ZHH v < N len nl?, 1<k<K
[Nl | Wil

Since |[Ng| > cin, it follows that

n
— ] < C,|nt hi— 1|2 < Ch*. E.74
1I<I}€a<XK |0k — vgl| n Z |7 —ril|* < ( )
This proves the third bullet point. O

F Rates of Convergence of Mixed-SCORE

We prove the main results about Mixed-SCORE, including Theorems 3.2-B.1.

F.1 Proofs of Theorem 3.2

Let H be the orthogonal matrix as in Theorem 3.1. We aim to show that, with probability

1—o(n=3), forall 1 <i<n,
|7t — millh < C||H?; — ;|| + C max ||[Hoy — vi|| + CKerry,. (F.75)
1<k<K

Once (F.75) is true, by efficiency of the VH algorithm (see Definition E.1) and the bound
in Theorem 3.1, we immediately have that, with probability 1 — o(n=3),

Jnax 17 — milly < CK328  erry,. (F.76)

Note that ||7; —m; || < |7 — il oo |7 — il < [|7i —m]|3. It follows that L S°7 | ||74; —m;|? <
maxi<;<p || — m||? < maxi<i<p, |7 — m||3 < CK38,2err?, with probability 1 — o(n™3).
Moreover, Y 1 |7 — m;||> < 2 always holds. Combining these arguments gives
L
E{E Zl |7 — 7r22||} < CK3B%err 4 o(n™3).
P
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This proves the first claim. The second claim follows directly by noting that err? < (nf?)~1
if emax S Cpmin-
Below, we show (F.75). In the Membership Reconstruction (MR) step, we compute w;

and by, then use them to construct
7 (k) = max{0, w;(k) /b1 (k)}, 1<k<K, (F.77)

and then estimates m; by #; = 7 /||##|l1. We shall study @; and b; separately and then
combine their error bounds to get (F.75).
First, we study w;. By definition,
1 - 1 1 1 - 1 1

w; = : W; = . (F.78)
vT - VUK T H’ﬁl H@K Hfi

We thus write

w; —w; = Q_l ( ! - Q_l !
Hﬁl T3
R 1 1 R 1
- Ql[( - ]—(Q‘l o)
Hr; T T;
R 0 R N 1
- Q! ( A Q@ -QQ!
Hr;—r; T;
N 0 N N
= -1 - 71(@ - Q)wz
Hﬂ — T
It follows that
s — wil| < QI+ (IH#; — il + [1(Q — Q)wl]). (F.79)

This matrix Q is studied in the proof of Lemma C.4, where we prove [|Q7!|| = O(1/VK);
see (C.15). This means the minimum singular value of @ is lower bounded by CvVK.
Moreover, |Q — Q|| < ||Q — Qllr < VK maxi<p<f |[Hp — ]| = o(VK). As a result, the
minimum singular value of Q is also lower bounded by CvVK. It leads to

I~ < ¢/VK.

We note that (Q —Q)w; € RX is a vector whose first entry is 0 and whose remaining entries

are equal to 2522 w; (k) (0 — vg,) € RE7L. Since w; contains the coefficients of writing r;
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as a convex combination of vy, ..., vk, we have ||w;||; = 1. Therefore,
K K
1@ = @uill = || Y2 wilk) (How = v)| < 3 wi(R)|H 5 = vel] < mase [[Ho — vy
k=1 k=1
Plugging in the above results into (F.79) gives
Hu% — wzH < CK—1/2(“Hfi — T’2H + 1ISI}CaSXK HHQAjk — UkH) (F.SO)
Next, we study b;. Recall that
bi(k) = [M + tpdiag(Ag, -+ A ) i) 2.

By Lemma 2.1, b1 (k) has the same form except that (5\;6, 0) are replaced with their popu-
lation counterparts. Letting Ag = diag(As, - - - , Ax) and Ag = diag(j\g, e ,;\K), we write

= )\1 + QA};CA()’LA)k,

1
= =\ + v Agvg.
b2(k) b7 (k) ’
By direct calculations,

1 1 3 A
] < A = ]+ [0tk — v Ao
(k) bi(k) ' '

= |5\1 — >\1| + |’LA)];H/H[\02A}]€ - U;eAQ’UH
< |AL = M|+ |0 H AgHby, — v}, Agug| + [0, H'(HAg — AgH) | + |0, (Ao — Ag)ug|
< (A = M| + [0 H Ao Hiy, — viAovg| + 03P H Ao — Ao H || + [|ox|1*]| Ao — Aol
< (1+ |luk]|?)] max (Ao — Ne| + [0, H' Ao Hoy, — vl Agug| + || 0w ]| ?| HAo — AgH]|.
First, by Lemma D.1, maxg |A; — A¢| < Cv/0max||0][1. Second, by Lemma D.6, ||[HAg —

AoH|| < C+/Omax||0]]1. Third, by Lemma C.4, |jvg|| < CVK; since maxg ||6,—v¢|| = o(VK),
it follows that ||03]] < Cv/ K. Combining the above gives

1 1 o )
’m — W| S "U;CH/AOH'Uk — 'U;CAO'U]{;| + CK\/ QmaxﬂeHl (F81)
1 1

Since f},’gltf’f\on);€ = u,ngvk + 2U;€A0(H’f)k — i)+ (Hop — vk)’Ao(H@k — vg), we have
|07, H' Ao H oy, — vi Agur| < 2l|vg[|| Ao || Hox, — vl + [ Aol || Hox — vk,

By Lemma C.2 and Lemma D.1, [|[Ag| < CB K 1|02 and ||Ag — Ao|| < Cr/Omax|0]]1 =
o(KB;71|6]1%). Tt follows that ||Ag|| < CB.K~'[0]|2. Also, as we have argued before,
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vkl € CVK and ||Hoy, — vg|| = o(vVK). Plugging these results into the above inequality
gives
|0, H' Ao Hi — v, Agvg| < CE 28, |10|||[ Hi — v |-
We then plug it into (F.81) to get
1 1
Bk k)
In the proof of Lemma C.3, we have shown by (k) < ||#]|~'; see (C.11). Then, b%—%k) = ||0]%.

Combining it with (F.82), we have —+— = —1~[1 + o(1)] < ||0]|?. It follows that
b2(k)  bi(k)

| | < CE™28,]017 | H oy — vkl + CK /Omax 0] (F.82)

1 _ 1,
D2(k)  bi(k)

< CK 2B, 01| H oy, — vil| + ClOI ™" K/ Omax[16]11
< CKY28,||0|||| Hoy, — vkl + CK||0]lerrn, (F.83)

<clo)|

where the last line is because erry, = (fmax/Omin)-||0]] 2/ Omax||0]]1 log(n) > |0]| 72/ Omax||0]]1-
Last, we combine the results for (i0;,b1) to prove (F.75). Recall that #* is as defined in

(F.77). Introduce its non-stochastic counterpart 7} by

wi(k) = wi(k)/by(k), 1<k<K. (F.84)

(2

Since 7} (k) > 0, in (F.77), the operation of truncating at zero can only make it closer to

7} (k). It follows that

|77 (k) — i (k)] < |ai(k) /b (k) =} (k)|

= |di (k) /b1 (k) — wi(k) /b1 (k)]
1 . 1 1
%) Wi (k) — wi(k)| + wi(k)\m T bk .

< (F.85)

S

We sum over k on both sides and note that b1 (k) = ||0]|~* (see the paragraph above (F.83))

and |lw;||1 = 1. Tt yields

1 1
7 — < C0||||ldi — willy + |— — ——
| < clofl [t \bl(k) bl(k)l
1
< OO VK |l; — wi| + max |-—— — ——]
1<k<k bi(k)  by(k)
< H#; —rg Héy, — Kerry,), F.
< C|0||(||H? 7"'”@2%” by, — vg|| + Kerry,) (F.86)
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where in the second line we have used Cauchy-Schwarz inequality and in the last line we have

plugged in (F.80) and (F.83). By definition, &; = @ /||7}||1. By the triangular inequality,

1 1 1
(k) — mi(k)| < 7= |77 (k) — 73 (B)| + 77 (B) | e — |
751 | Era (U Foa (P
1 i (k)
= |7 (k) — 7 (k)| + = 177 = |l
”7% 1 ||7Tz 1
1 ~ ok * ~ ~ % *
< = (175 (k) — mf (R + ma(k) |77 — 7F 1), (F.87)

where the last inequality is because |||7}||1 — |7} |l1| < |77 — 77]|1. We sum over k on both

sides and note that >, 7;(k) = 1 by definition. It follows that

|7 — mill1 < E 2|77 — mi -
3

By (F.84), [[7*|l1 > [|wi|1 - ming ﬁ. In the paragraph above (F.83), we have seen that
bi(k) < ||0]|~*. This suggests that ||7}||; > C||0]|. As a result,

|7 = mills < CIOIH - 177 — 5[l

< CO(||H?; — ri|| + max |[Hoy, — vg|| + Kerry,). (F.88)
1<k<K

This gives (F.75). The proof is now complete. O

F.2 Proof of Theorem 3.3
First, consider P — P. Let Q and Q be the same as in (F.78). Then,

P = diag(by)Q'AQdiag(by), P = diag(b;)Q'AQdiag(b;).
It follows that

1P — Pl < |Odiag(bn) 214 — Al + | Qdiag(b1) — Qdliag(by) || A Qdiag(by)]
+ || Qdiag (by)[|[[A]l|Qdiag(by) — Qdiag(b)1]]. (F.89)
Recall that we have the following facts (they hold with probability 1 — o(n=3)):

e ||A] < C||0||7" (by Lemma C.2); [A — Al < C\/Bmax|0]] < ||0]|2erry (by Lemma D.1

and the definition of erry,).

e |Q|| < CVK (by Lemma C.4); \\Q—QH < CVEK max << | Hip—vi|| < CK?B; Yerry,
(by Theorem 3.1 and the definitions of @ and Q)
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o C7H97t < bi(k) < C||8]| 7, for 1 <k < K (by (C.11) in the proof of Lemma C.3);

\ﬁ — ﬁ\ < CKY28,10|||Hop — vi|| + CK||0]|err, < CK||0]|err, (by (F.83) in

the proof of Theorem 3.2).

From the third bullet point, |b1(k) — b1 (k)| < C|0]|~ 2‘1) " bl(k ] < CK|6|~terr,. From
the second bullet point, HQ - Q| < CK?B.terr,, and HQH <2||Q|| £ CVK. As a result,

|Qdiag(by) — Qdiag(b)1 ] < [|Q|/]|diag(bi) — diag(bi)[| + [|Q — Q||| diag(b1)]]
< CVK - K||0|| err, + CK2B; Yerr, - |0] 7!
< C(K3? + K2810] L erry. (F.90)

It further implies ||Qdiag(by)|| < 2/|Qdiag(b)|| < CvVEK|0|~'. We then plug these results
into (F.89) and use the first bullet point above. It gives

|1P — P|| < [|Qdiag(by)|*|A — A|| + 3||Qdiag(by) — Qdiag(by)||||Al|[|Qdiag (1)
< C(VEKO)™)2 - [10]Perrn + C(K32 + K28, 10| erry, - [10]* - VE 0]~
< C(K? 4+ K% Yerr,. (F.91)
This proves the first claim.

Second, consider ||© — ©||%, which by definition is equal to Y7, [6(i) — 6(i)|>. Recall
that 6(i) = & (i)/(x/b1) and 0(i) = &, (i) /(#/by). Tt follows that

1 1
% B by ’
| 71Dy — miby |
EAAEAS

10Gi) = 6(i)] < | ,b ||§1() &)+ 1630

< 60~ 0+ 1)
Ca@-a@l, 146

> 7 — il B1lloo + |7l 1161 = b1loo)-
0] |ﬁ;bly\wgbl\(”’ ill1 161/l + [ 7ill1 ][0 o)

Note that ||#;]1 = 1, by(k) < ||0]| 7", and ||by —b1]lee < CK||0] terrn, = o(||0]|1). It further
implies /by = #1b; = ||#]|~!. We plug these results into the above inequality to get

10G6) = 0(0)| < ClIONIEE) — Ea(@)] + ClIONIE @) [17i — milla + CK[|0]lerralér (8)]-

We take the sum of squares of i = 1,2, ..., n on both sides and note that ||€]\ = 1. Moreover,

by Lemma D.2, ||&; — & || < C||0]| 72K \/Omax ||0]]1 < Kerry. It follows that
16— 13 < C8I71é — &al* + CIPIP (max 17 — wil}}) + CK>|6]Perr?
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< C|0|* (K%erry + K38, 2err? + CK?err?)

< ||0))> - CK3B, %err?. (F.92)

This proves the second claim. ]

F.3 Proofs of Theorems 3.4, 3.5 and B.1

Theorem 3.4 is a direct consequence of Theorem 3.2 and Lemma E.1. For Theorem 3.5 and
Theorem B.1, their first claims about the VH step follow from Lemma E.3 and Lemma E.4,
respectively. We now show their second claims, where we aim to obtain a faster rate for
L5 I# — m]|* when the VH step is strongly efficient.

In (F.87), we have shown that for every 1 < k < K,

|7i(k) = mi(k)| <

(175 (k) = 7 (B)| + 7 (k) |75 — 77 1)

Taking the sum of squares over k on both sides and using the universal inequality (a+b)? <

2a® + 2b%, we have

. 2 . . .
170 = mi|? < e (175 = 112+ 7l - 177 — = )13).
i ll1
In the paragraph above (F.88), we have shown that |71 > C||f]|. Additionally, ||7;]|* <

|7 l[1]|7illoo < 1. It follows that

(2 K3

~ C Ak * ~ *
17 — mil|* < W(Hm — PP+ 177 — 71 (F.93)

In light of (F.93), we first derive upper bounds for |77 —7}|| and |77 — 7|1, respectively.

By (F.85) and (F.83),

AP T
b ) el =

| < CKV2B,]16][| Hog — vkl| + C10] ™ K v/ Oumax [0]]1-

|75 (k) — i (k)| <
I
bi(k) bi(k)

Also, by (k) =< by (k) =< ||0]| 7" (see the paragraph above (F.83)). It follows that

. * . LN H O, — v K+\/0Omax|0
72 (k) — ()] < CIl9] \wi<k>—wi<k>r+0wi<k>(5 10116 = ol | ”1).

VK 1911

Note that

erry, = {1011/ Bminv/n)] - 1072V Omax 10111 > 11017/ O 1011
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We further have
135 ) 7 ()] < C0l i (k) — ()| + Coun (R (5628 Ho— v+ Keerrs,) . (F.94)
It follows that

I =i 1P < CHOIP s — will” + ol (B 87 max [ — o + KP(err)”) .

I =il < OO b —will + il (K78 max. || Hox — vl + Kerrs, ).

Note that ||wz||1 = 1, Hw1||2 < Hw1||1||w1|\oo < 1, and ||7f)z —wiHl < \/EHU% —wiH. Addi-
tionally, by (F.80),
N —1/2 ~ N
||w; —wi|]| < CK / (HHn — il + 1g}§a§XK |Hvy — ka)

Combining the above gives

I = w12 < Cllol? (K[ — il + K~ b max || Hiy —og|* + K*err; 7).

1% =1l < CHON (I1E7: = rill + max || oy — el + Kerrs,). (F.95)

Next, we plug (F.95) into (F.93) to get

|7 — || < C||[Hes — 742 + C(lr<r}€a<x | Hop — vk||) + CK?(err?)?.

Summing over ¢ on both sides gives

_IZ||7TZ—7QH2<Cn_IZHHn—nH2+C( max ||Hvk—vk\|) + OK2(err?)2.
=1 =

By strong efficiency of the VH step, maxj<g<f ||[Hop — vi|| < /n 1Y [[HF; — ri]|? (see
Definition E.1). It follows that
n n
n”UY = mll? < Cn Y CIHR — )P+ CK3 (erry).
i=1 i=1

Using Lemma D.5, n=1 Y0 | ||[H#; — ri||* < CK3B,,%(err}:)?. Therefore,

n
nY A — il < CKPB % (erry)? + CK? (erryy)® < CKPB, % (erry ).

i=1
Additionally, err} = [||0]|/(v/1max)] - €rrn//log(n) < erry,/+/log(n). We thus have
= CK33; terr?
- i —mil|] < CK3B, Herr)? < ——— 1, F.96
n ; H7T T Hl = C 6n (€T7’n> = log(n) ( )

This proves the claim.
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G More Simulation Results

We present additional simulation results. They are not included in the main article due to
space limit. For most experiments below, we set n = 500 and K = 3. For 0 < ng < 160, let
each community have ng number of pure nodes. Fixing = € (0,1/2), let the mixed nodes
have four different memberships (z, z,1—2x), (z,1—2z,z), (1—2z,z,z) and (1/3,1/3,1/3),
each with (500—3ng)/4 number of nodes. Fixing p € (0, 1), the matrix P has diagonals 1 and
off-diagonals p. Fixing z > 1, we generate the degree parameters such that 1/6(¢) b U(1,z2),
where U(1, z) denotes the uniform distribution on [1, z]. The tuning parameter L is selected
as in (2.8). For each setting, we report n=' Y"1 | ||#; — m;||* averaged over 100 repetitions.

Experiment 5: Connectivity across communities. Fix (z,ng,z) = (0.4,80,5)
and let p range in {0.05,0.1,0.15,--- ,0.5}. The larger p, the more edges across different
communities. The results are presented in Figure 1. We see that the performance of Mixed-
SCORE improves as p decreases. One possible reason is that, for p large, it is relatively

more difficult to identify the vertices of the Ideal Simplex. Furthermore, Mixed-SCORE is
better than OCCAM in all settings.

0.05 0.15 0.25
!

0.1 02 03 04 0.5
Figure 1: Estimation errors of Mixed-SCORE and OCCAM (y-axis: n= 1 Y0, [|7; — m ).

Experiment 6: Mixed memberships taking continuous values. In this exper-
iment, we generate the mixed memberships from a continuous distribution. Set (n, K) =
(500, 3) and let P have diagonals 1 and off-diagonals 0.3. Each community has ng = 25 pure
nodes. The m; of remaining nodes are iid drawn as follows: We generate m;(1) and 7;(2)
independently from U(1/6,1/2) and set m;(3) = 1 — m;(1) — m;(2). The degree parameters
(i) are tid drawn from a, - U(1,2), where «,, > 0 controls the sparsity of the network. Let
ay, range in {0.02,0.04,0.06, - - - ,0.20}. The results are presented in Table 1. This setting
does not satisfy the regularity conditions (E.53)-(E.54) on m;’s, however, Mixed-SCORE
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still has a good performance and outperforms OCCAM. It suggests that the regularity
conditions on 7;’s are only for theoretical convenience, and our method indeed works for

broader settings.

Table 1: Estimation errors in Experiment 6, where m;’s take continuous values.

o, 0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.12 | 0.14 | 0.16 | 0.18 | 0.20
Mixed-SCORE | .38 | 35 | .36 | .32 | .30 | .28 | .23 | .18 | .15 | .12
OCCAM 44 | 42 | 41 | 41 | 38 | 36 | 32 | .28 | .26 | .23

Experiment 7: Tuning parameter selection. We first study the choice of the
tuning parameter L in Mixed-SCORE. We aim to see (i) how the estimation errors change
for a range of L, and (i) how the adaptive choice L% (A) in (2.8) performs. Fix (x,p, z) =
(0.4,0.2,5) and let ng range in {60, 80, 100}. For each setting, we run Mixed-SCORE with
L e {4,5,---,9} and L*(A). The results are displayed in Figure 2. First, when there are
relatively few mixed nodes (e.g., ng = 100), small values of L yield good performance; but as
the number of mixed nodes going up, we favor larger values of L; these match our theoretical
results (Lemmas E.3-E.4). Second, under the circumstances of a moderate number of mixed
nodes (e.g., ng = 60, 80), for a range of L (e.g., L € {7,8,9}), the statistical errors of Mixed-
SCORE are similar, and L% (A) falls in this range with high probability. Figure 3 shows the
estimated 2-simplex in one repetition (ng = 80), and the simplex changes very little when

L falls in a range.

0.14
I

-

T T T T T T T T T T T T
4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9

0.08
I

005 010 015 020 025 0.30
0.10 0.12
I I
0.06 007 008 009 010 011
| I

Figure 2: Performance of Mixed-SCORE as the tuning parameter L varies (y-axis: esti-
mation errors; L) (A) is plotted in red; both mean and standard deviation are displayed).
From left to right, there are 60,80, 100 pure nodes in each community, respectively.

Experiment 8: Comparison with latent space approach. We compare Mixed-

SCORE with the Bayesian method based on LPC [6] (we use the R package latentnet).
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Figure 3: Illustration of the Vertex Hunting step. From left to right, L = 7,8,9. Although
the local cluster centers (blue points) are different, the estimated 2-simplex (dashed black)
changes very little, and it approximates the IS (solid red) well.

In this experiment, we fix n = 120, K = 3, (x,p,z) = (0.4,0.3,5), and let ny range in
{12,16,20,---,32,36} (so the number of mixed nodes in each group decreases from 21 to
3). The results are displayed in Figure 4. We find that, when the fraction of mixed nodes is
comparably small, LPC has a perfect performance; however, as the fraction of mixed nodes
increases to more than 40%, the performance of LPC deteriorates rapidly; one reason is
that, when ng is not very large, LPC often estimates the PMF of all the nodes as the same.
In contrast, the performance of Mixed-SCORE is quite stable. In terms of computing time,
Mixed-SCORE takes only seconds for one repetition while LPC takes > 20 minutes (both

measured in R).

1.0

—e— Mixed—SCQRE
LPC

0.8
I

0.6

04

0.2

0.0
I

15 20 25 30 35
n_O

Figure 4: Estimation errors of Mixed-SCORE and LPC (y-axis: n= 2>, |74 — m|?).

H More Real Data Results

We present additional results for the trade networks. First, we plot the rows of R for the

GOS network (see Figure 6a for a comparison). Recall that edges in the GOS network indi-
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cate significant over-estimation of trade flows in the initial gravity model. This embedding
is not as informative as the embedding we obtained for the GUS network. One interesting
observation is that countries with high GDPs tend to cluster together and countries with

low GDPs tend to cluster together.

T T T T T
-8 -6 -4 -2 0

Figure 5: Rows of R for the GOS network after fitting a gravity model. We set K = 3 in
Mixed-SCORE, so the Ideal Simplex is a triangle. Each 7; corresponds to a country, whose
ISO3 code is shown (orange color: top 15 countries with highest GDPs). In each plot, the
dashed triangle is the estimated simplex from SVS with L = 40. We note that although
each r; is in the Ideal Simplex, some 7;’s can be outside the estimated simplex due to noise
corruption.

Next, we present the estimated mixed memberthips of representative countries in the

trade in service (TIS) network.

Table 2: The estimated 7; for the 10 countries with largest total service exports. By
Figure 6b, the three communities are interpreted as ‘North Africa’, ‘Southeast Asia’ and
‘South/Central Europe’.

Service
Economy export | degree | 7;(1)  7;(2) 7i(3)
USA 3,998,419 451 0.128 0.424 0.448
UK 1,914,255 341 0.202 0.319 0.479
Germany 1,534,393 29 | 0.348 0.215 0.436
France 1,354,407 26 | 0.243 0.193 0.564
China 1,146,845 14 | 0.130 0.606 0.264
Netherlands | 1,064,165 19 1 0.218 0.215 0.567
Japan 882,650 17 | 0.124 0.611 0.265
India 865,543 6 | 0.033 0.598 0.369
Singapore 830,975 20 | 0.313 0.554 0.134
Ireland 811,105 12 | 0.144 0.269 0.586
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We also present additional results for the citee network. The following table shows those

“high-degree and relatively pure” nodes in each of the three communities.

Table 3: Estimated PMF of the 100 nodes with the highest degrees in the Citee network, among
which only the 12 purist nodes in each community are reported.

Name Deg. | MulTest SpatNon VarSelect || Name Deg. | MulTest SpatNon VarSelect | Name Deg. | MulTest SpatNon VarSelect
Felix Abramovich 366 | 0.943 0 0.057 Peter Muller 429 | 0.326 0.613 0.061 Lixing Zhu 432 | 0.121 0 0.879
Joseph Romano 377 | 0.868 0 0.132 Jeffrey Morris 452 | 0.146 0.519 0.335 Zhiliang Ying 382 | 0.107 0.027 0.866
Sara van de Geer 372 | 0.834 0 0.166 Michael Jordan 383 | 0.321 0.495 0.184 Zhezhen Jin 361 | 0.134 0 0.866
Yoav Benjamini 478 ] 0.821 0 0.179 Mahlet Tadesse 383 | 0.373 0.493 0.134 Dennis Cook 424 | 0.253 0 0.747
David Donoho 484 | 0.819 0 0.181 Naijun Sha 383 | 0.373 0.493 0.134 Wenbin Lu 405 | 0.255 0 0.745
Christopher Genovese | 521 | 0.810 0 0.190 Michael Stein 379 | 0.093 0.449 0.458 Dan Yu Lin 527 | 0.257 0 0.743
Larry Wasserman 535 | 0.800 0 0.200 Adrian Raftery 413 | 0.175 0.446 0.379 Donglin Zeng 489 | 0.270 0 0.730
Jon Wellner 387 0.798 0.05 0.152 Robert Kohn 429 0.310 0.428 0.262 Gerda Claeskens 404 0.247 0.033 0.720
Alexandre Tsybakov 521 | 0.784 0 0.216 George Casella 430 | 0.303 0.425 0.271 Yingcun Xia 358 | 0.302 0 0.698
Jiashun Jin 441 | 0.780 0 0.220 Marina Vannueci 571 | 0.304 0.418 0.278 Naisyin Wang 586 | 0.283 0.043 0.674
Yingying Fan 410 | 0.741 0 0.259 Bernard Silverman | 577 | 0.514 0.395 0.091 Hua Liang 509 | 0.334 0 0.666
John Storey 544 | 0.737 0 0.263 Catherine Sugar 501 | 0.450 0.360 0.190 Wolfgang Karl Hardle | 456 | 0.343 0 0.657

I Using Mixed-SCORE for the Estimation of 2

In Remark 9 of Section 5.1, we mentioned that Mixed-SCORE can be used to estimate
Q, where we let Q) = OIIPII'O by using II from Mixed-SCORE and (@, P) in Section 2.4.
Alternatively, we may also estimate Q by the standard PCA, where 2 = Zi{:l kakék The

following simulation results suggest that the Q by Mixed-SCORE is much better than the

Q by standard PCA.

Parameters Q:Zsz1 Meéx€e  Mixed-SCORE
0,1 ~ Unif(5,10), a1=(.6,.2,.2), as=(.3, .4,.3) 78.84 46.63
0,1 ~ Unif(5,10), a1=(.4,.2, .4), as=(.2, .6, .2) 78.78 44.43
0; " ~ Unif(5,10), a1=(4, .2, .4), as=(.1,.8,.1) 80.65 44.84
0; ~ Unif(0.05,0.2), a1=(.4,.2, .4), aa=(.2,.6,.2) 71.83 44.31
0; ~ Unif(0.05,0.2), a1=(.6,.2,.2), aa=(.3, .4,.3) 71.73 38.86

Table 4: Comparison of the Frobenius errors of estimating ) based on 100 repetitions.

Settings: K = 3, n = 540; There are n/6 pure nodes for each community, and the 7;’s

of the remaining nodes are i.i.d. drawn from a mixture distribution 0.5 Dirichlet(cy) +

0.5 Dirichlet(a2). The diagonals of P are 1 and off-diagonals are 0.3.
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