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Abstract

Multivariate elliptically-contoured distributions are widely used for modeling economic and

financial data. We study the problem of estimating moment parameters of a semi-parametric

elliptical model in a high-dimensional setting. Such estimators are useful for financial data

analysis and quadratic discriminant analysis.

For low-dimensional elliptical models, efficient moment estimators can be obtained by plug-

ging in an estimate of the precision matrix. Natural generalizations of the plug-in estimator to

high-dimensional settings perform unsatisfactorily, due to estimating a large precision matrix.

Do we really need a sledgehammer to crack an egg? Fortunately, we discover that moment pa-

rameters can be efficiently estimated without estimating the precision matrix in high-dimension.

We propose a marginal aggregation estimator (MAE) for moment parameters. The MAE only

requires estimating the diagonal of covariance matrix and is convenient to implement. With mild

sparsity on the covariance structure, we prove that the asymptotic variance of MAE is the same

as the ideal plug-in estimator which knows the true precision matrix, so MAE is asymptotically

efficient. We also extend MAE to a block-wise aggregation estimator (BAE) when estimates of

diagonal blocks of covariance matrix are available. The performance of our methods is validated

by extensive simulations and an application to financial returns.

1 Introduction

The classical multivariate statistics is largely motivated by relaxing the Gaussian assumption, which

is not satisfied in many applications. There is an extensive literature in finance on the tail-index

estimates of stock returns; while being unimodal and symmetric, the empirical returns exhibit lep-

tokurtosis, which means that they have heavier tails and flatter peaks than those of normal data
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(Fama, 1965; Bollerslev and Wooldridge, 1992; Eberlein and Keller, 1995; Frahm et al., 2003; Cizek

et al., 2005). Empirical evidence of the violation of Gaussian assumption has also been observed

in genomics (Liu et al., 2003; Posekany et al., 2011; Hardin and Wilson, 2009) and in bioimaging

(Ruttimann et al., 1998). The family of multivariate elliptically contoured distributions (Kelker,

1970), which we shall call elliptical distributions in short, provides a natural generalization of mul-

tivariate Gaussian distributions. Recently, many statistical methods for elliptically distributed data

have been proposed, including works on covariance matrix estimation (Fan et al., 2018), graphical

modeling (Han and Liu, 2012), classification (Fan et al., 2015b), etc.

The elliptical distributions are typically used as a semi-parametric model. Given a mean vector

µ = (µ1, . . . , µp)
T ∈ Rp, a covariance matrix Σ = (σjk)1≤j,k≤p ∈ Rp×p and a probability characteris-

tic function φ : [0,∞)→ R, we say a random vector Y = (Y1, . . . , Yp)
T has an elliptical distribution

E(µ,Σ, φ) if

Y = µ+ ξΣ1/2U , (1)

where U is a random vector that is uniformly distributed on the unit sphere Sp−1, and independent

of U , ξ is a nonnegative random variable whose characteristic function is φ. For model identifiability,

we normalize ξ such that

E(ξ2) = p. (2)

Under (1)-(2), µ and Σ are the mean vector and covariance matrix of Y , respectively. The variable

ξ determines which sub-family the distribution belongs to. When ξ2 is a chi-square random variable,

it belongs to the multivariate Gaussian sub-family, and when ξ2 follows an F -distribution, it belongs

to the multivariate t sub-family or multivariate Cauchy sub-family. For most applications, the sub-

family of the elliptical distribution is unknown, leaving the distribution of ξ unspecified.

Although full knowledge of the distribution of ξ is often not required, an estimate of its moment

parameters is useful to statistical analysis and for understanding the tail of the distributions. One

application is in quadratic classification. When data from two classes both follow elliptical distri-

butions but have unequal covariance matrices, Fan et al. (2015b) showed that an estimate of E(ξ4)

is desired for building a quadratic classifier. Another application is to capture the tail behavior of

financial returns by estimating the leptokurtosis. Modeling the returns of a set of financial assets by

an elliptical distribution, the leptokurtosis equals to {p(p+ 2)}−1E(ξ4)− 1, so the problem reduces

to estimating E(ξ4).

For any m ≥ 1, define the m-th scaled even moment of ξ by

θm ≡ p−mE(ξ2m). (3)

The first scaled even moment θ1 is 1. In this paper, we are interested in estimating θm for any fixed

m ≥ 2, given independent and identically distributed (i.i.d.) samples Y1, · · · ,Yn from (1).
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1.1 The plug-in estimators

We consider an ideal case where (µ,Σ) are known. Given iid samples Y1, · · · ,Yn from an unknown

elliptical distribution, each Yi has a decomposition Yi = µ+ ξiΣ
1/2Ui, and ξ1, . . . , ξn are iid copies

of ξ. Using the fact that Ui takes values on the unit sphere, we observe ξ2
i = (Yi−µ)TΩ(Yi−µ) for

i = 1, . . . , n, where Ω ≡ Σ−1. Hence, in the ideal case, ξ1, . . . , ξn are directly observed. It motivates

the following estimator of θm:

θ̂ I
m(µ,Ω) =

1

npm

n∑
i=1

(ξ2
i )m =

1

npm

n∑
i=1

{(Yi − µ)TΩ(Yi − µ)}m. (4)

We call θ̂ I
m(µ,Ω) the Ideal Estimator. The ideal estimator is not feasible in practice, and a natural

modification is to plug in estimates of (µ,Ω). This gives rise to the plug-in estimator:

θ̂ I
m(µ̂, Ω̂) =

1

npm

n∑
i=1

{(Yi − µ̂)TΩ̂(Yi − µ̂)}m, (5)

This estimator was proposed by Maruyama and Seo (2003) in the setting of a fixed dimension,

where they used the sample mean to estimate µ and the inverse of the sample covariance matrix to

estimate Ω. In the modern high-dimensional settings where p grows with n, one can on longer use

the inverse of sample covariance matrix to estimate Ω; Fan et al. (2015b) proposed plugging in an

estimator of Ω from high-dimensional sparse precision matrix estimation methods, with stringent

structural assumptions on Ω.

However, the plug-in estimators perform unsatisfactorily for high-dimensional settings due to

the difficulty of estimating Ω. Existing methods of estimating Ω only perform well under stringent

conditions, such as the sub-Gaussian assumption on the distribution and/or structural assumptions

on Ω (e.g., sparsity). Especially, the structural assumption on Ω is critical for the success of these

methods. Figure 1 shows the performance of the plug-in estimator when the structural assumption

required by Ω̂ is violated. We consider two estimators of Ω, the CLIME estimator (Cai et al., 2011)

which requires sparsity of Ω, and the POET estimator (Fan et al., 2013) which assumes a factor

structure with sparse covariance of the idiosyncratic component. On the left panel of Figure 1,

we generate elliptical data with a sparse covariance matrix, Σi,j = a|i−j|, 1 ≤ i, j ≤ p, where a

controls the sparsity level and varies in {0.5, 0.55, . . . , 0.85, 0.9}. Here, the structural assumption

of POET is not satisfied, and the associated plug-in estimator of θ2 performs unsatisfactorily. On

the right panel, we generate data with a sparse precision matrix Ω, where each entry of the upper

triangle of Ω has a probability of a to be nonzero,1 with a chosen from {0.5, 0.55, . . . , 0.85, 0.9}.
1We generate Ω using fastclime.generator(·) in the R package clime, where the graph argument is set “random”.
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Figure 1: Plug-in estimators and MAE (p = 100, n = 20, true distribution is multivariate Gaussian).

For plug-in estimators, we use two estimators of Ω, CLIME (Cai et al., 2011) and POET (Fan et al.,

2013). CLIME requires Ω to be sparse and POET assumes Σ has a low-rank plus sparse structure.

When these structural assumptions are violated, the plug-in estimator of θ2 has a poor performance

(y-axis is log of squared errors). In contrast, MAE always outperforms the plug-in estimators.

The assumption of CLIME is violated, so the associated plug-in estimator of θ2 has a unsatisfactory

performance.

In fact, the philosophy of plug-in estimators is problematic. Estimating large precision matrices

is a well-known difficult problem (even for Gaussian data), as one needs to estimate a large number

of parameters. On the other hand, our problem only involves estimating one single parameter θm.

Intuitively, the latter should be much easier than the former. The plug-in estimators are realy using

“a sledgehammer to crack an egg.”

1.2 The marginal aggregation estimator (MAE)

Is it possible to avoid using the “sledgehammer” of precision matrix estimation? We show that this

is possible by a new marginal aggregation estimator. In model (1), letting Ũj be the j-th coordinate

of Ũ ≡ Σ1/2U , we have

Yj = µj + ξ Ũj , j = 1, . . . , p. (6)

Our key observation is that each individual coordinate of Y contains information of ξ. It motivates

us to construct an estimator of θm using only one coordinate of samples. Let σjj be the j-th diagonal

of Σ. We notice that (6) implies ξ2m = (Yj − µj)2m/Ũ2m
j . The random variable Ũj is unobserved,
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but its distribution is known once σjj is given. It can be shown that (see Proposition 3.1)

E(Ũ2m
j ) = p−mcm σ

m
jj , where cm = (2m− 1)!! (p/2)m

Γ(p/2)

Γ(p/2 +m)
. (7)

Inspired by (6)-(7), we introduce an estimator of θm using the marginal data Y1j , . . . , Ynj :

θ̂M
m,j(µj , σjj) =

1

npm

n∑
i=1

(Yij − µj)2m

E(Ũ2m
j )

=
1

cm σmjj

1

n

n∑
i=1

(Yij − µj)2m. (8)

We call θ̂M
m,j(µj , σjj) the Marginal Estimator. It only requires knowledge of (µj , σjj) and successfully

avoids precision matrix estimation. For each 1 ≤ j ≤ p, we can define a marginal estimator and

we will show that all marginal estimator contains the same amount of information about θm (see

Theorem 2.4). All these marginal estimators are unbiased, so taking their average gives rise to a

new unbiased estimator:

θ̂M
m (µ,diag(Σ)) =

1

p

p∑
j=1

θ̂M
m,j(µj , σjj) =

1

cm np

p∑
j=1

{
1

σmjj

n∑
i=1

(Yij − µj)2m

}
. (9)

We call θ̂M
m (µ, diag(Σ)) the Marginal Aggregation Estimator (MAE). The “aggregation” of marginal

estimators helps reduce the asymptotic variance. Our proposed estimator is a natural plug-in version

of (9) given by

θ̂M
m (µ̂, diag(Σ̂)) =

1

cm np

p∑
j=1

{
1

σ̂mjj

n∑
i=1

(Yij − µ̂j)2m

}
, (10)

where cm is as in (7), µ̂ is an estimator of µ, and {σ̂jj}pj=1 are the estimators of {σjj}pj=1.

Compared with the plug-in estimator (5), MAE is numerically more appealing, as it only needs

to estimate the diagonal entries of Σ. Back to the example in Figure 1, we implement MAE using

sample mean as µ̂ and sample covariance matrix as Σ̂. MAE significantly outperforms the plug-in

estimators, even when the structural assumptions of the plug-in estimators are satisfied.

1.3 Organization of the paper

In Section 2, we study the theoretical properties of MAE. Under mild regularity conditions, we show

that MAE is unbiased and root-n consistent, regardless of the structure of Σ. We also show that

MAE is asymptotically efficient, with an asymptotic variance matching that of the ideal estimator

when (µ,Σ) are given. We also discuss how to construct a confidence interval of θm.

In Section 3, we generalize the idea of MAE to develop estimators of θm that use a small

subset of the coordinates. We introduce the block-wise estimator and the blockwise aggregation

estimator (BAE), analogous to the marginal estimator and MAE. These ideas help further reduce

the estimation errors in the second order.
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Section 4 validates the theoretical insight by extensive simulations. Section 5 gives an application

of MAE to time series data. We consider an extension of model (1) to multivariate time series:

Yt = µt + Bft + ξtΣ
1/2
t Ut, t = 1, · · · , T,

where µt is the time-varying mean, ft ∈ RK is a vector of K observed factors, and B is a p ×K
matrix of factor loadings. We extend MAE to a method for estimating the realized ξt. Its application

to stock returns provides a new index that captures information of whole market. Section 6 contains

conclusions and discussions. All the proofs are relegated to the appendix.

Notation: Throughout this paper, for any vector v and matrix M, we let ‖v‖ denote the Euclidean

norm of v and let ‖M‖, ‖M‖F and ‖M‖max denote its spectral norm, Frobenius norm and entry-wise

maximum norm, respectively. We use θ̂M
m,j(µj , σjj), θ̂

M
m (µ,diag(Σ)), θ̂ I

m(µ,Ω) and θ̂B
m(µ,diagA(Σ))

to denote the Marginal Estimator, MAE, Ideal Estimator, and BAE (to be introduced), respectively,

with given (µ,Σ); when (µ,Σ) are replaced by (µ̂, Σ̂), it means we plug in estimators of the mean

vector and covariance matrix. We frequently use notations (θm, cm, ηm, rm), where θm is defined in

(3), cm is defined in (7), ηm and rm are defined in Definition 2.1. For all settings in this paper, ηm

is a constant, (θm, cm, rm) depend on p but are at the constant scale.

2 Theoretical properties of MAE

We study the asymptotic properties of MAE defined in (10), assuming both (n, p) tend to infinity.

First, we study the consistency of MAE. The following theorem shows that, when the distribution

is marginally sub-Gaussian, if we plug in the sample mean and sample covariance matrix as (µ̂, Σ̂),

then MAE is always root-n consistent.

Theorem 2.1 (Root-n consistency). Under model (1), suppose log2(p) = o(n) and max1≤j≤p ‖Yj−
µj‖ψ2 ≤ C, where ‖ · ‖ψ2 denotes the sub-Gaussian norm.2 Given iid samples {Yi}ni=1, consider the

MAE in (10), where (µ̂, Σ̂) are the sample mean vector and sample covariance matrix. Then,

|θ̂M
m (µ̂,diag(Σ̂))− θm| = OP(n−1/2).

The root-n consistency of MAE requires no conditions on either Σ or Ω. It confirms our previous

insight that estimating moment parameters is an “easier” statistical problem than estimating large

matrices. On the other hand, the plug-in estimators only perform well when the assumed structural

assumptions (e.g., sparsity) on Σ or Ω are satisfied.

2For a random variable X, its sub-Gaussian norm is defined as ‖X‖ψ2 = supk≥1 k
−1(E|X|k)1/k.
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Many distributions in the elliptical family are heavy-tailed and don’t satisfy the marginal sub-

Gaussianity assumption. In these cases, we prefer to use robust estimators of µ and Σ (Fan et al.,

2017; Sun et al., 2018+). They are M-estimators with robust loss functions or rank-based estimators.

Compared to the sample mean and sample covariance estimators, these robust estimators lead to

sharper bounds of ‖µ̂− µ‖∞ and ‖Σ̂−Σ‖max in the case of heavy-tailed data. The next theorem

studies MAE with general mean/covariance estimators.

Theorem 2.2 (Consistency, with general mean/covariance estimators). Under model (1), suppose

log2(p) = o(n) and θ2m ≤ C. Given iid samples {Yi}ni=1, consider the MAE in (10). We assume

the estimators (µ̂, Σ̂) satisfy max1≤j≤p |µ̂j−µj | ≤ αn and max1≤j≤p |σ̂jj−σjj | ≤ βn with probability

1− o(1), where αn → 0 and βn → 0 as n, p→∞. Then, for any ε > 0, with probability 1− ε, there

is a constant Cε > 0 such that∣∣θ̂M
m (µ̂,diag(Σ̂))− θm

∣∣ ≤ Cε(n−1/2 + max{αn, βn}
)
.

The typical error rate of robust estimators is αn �
√

log(p)/n and βn �
√

log(p)/n (Fan et al.,

2017; Sun et al., 2018+), so the associated MAE satisfies |θ̂M
m − θm| = OP(

√
log(p)/n). Compared

with the rate in Theorem 2.1, the extra
√

log(p) factor here is a price paid for heavy tails.

Next, we study the asymptotic variance of MAE. By Theorem 2.1, MAE is already rate-optimal.

We would like to see whether it also achieves the optimal “constant”. We shall compare its asymp-

totic variance with that of the Ideal Estimator (4). Since the Ideal Estimator knows the true (µ,Σ),

for a fair comparison, we consider MAE with true (µ,Σ).

Definition 2.1. For any k ≥ 1, let ηk = E[N(0, 1)2k] and rk = (Eξ2k)/(Eχ2k
p ), where χ2

p denotes

the chi-square distribution with p degrees of freedom.

The quantities rk capture the difference between moments of an elliptical distribution and mo-

ments of a multivariate Gaussian distribution with matching mean and covariance matrix. It de-

pends on p but is at the constant scale under our settings.

Theorem 2.3 (Variance). Under model (1), suppose log2(p) = o(n) and θ2m ≤ C. Given iid sam-

ples {Yi}ni=1, consider the MAE in (9) where (µ,Σ) are given. Let Λ = [diag(Σ)]−1/2Σ[diag(Σ)]−1/2

be the correlation matrix. There is a constant Cm > 0, independent of the distribution of ξ, such

that
var
(
θ̂M
m (µ,diag(Σ))

)
θ2
m

≤ 1

n

r2m − r2
m

r2
m

+
1

np

r2m

r2
m

η2m − η2
m

η2
m

+
Cm
n

r2m

r2
mη

2
m

‖Λ− I‖2F
p2

.

When m = 2, the equality holds with Cm = 72.
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The upper bound for the variance has three terms: The first term is O(n−1); as we shall see,

this term matches with the variance of the benchmark estimator. The second term is O(n−1p−1)

and is negligible for diverging p. The third term is caused by correlations among different marginal

estimators θ̂M
m,j . This term is negligible as long as ‖Λ− I‖2F = o(p2); consider a special case where

‖Σ‖ is bounded, then ‖Λ− I‖2F = O(p); so the requirement of ‖Λ− I‖2F = o(p2) is mild. Indeed, if

requires that the sparsity of correlation coefficients:
∑

i 6=j λij = o(p2), where Λ = (λij). The next

proposition confirms that the asymptotic variance of MAE is the same as the asymptotic variance

of the Ideal Estimator:

Proposition 2.1 (Comparison with benchmark). Let {Yi}ni=1 be iid samples of model (1). Suppose

θ2m ≤ C. For the Ideal Estimator in (4),

var
(
θ̂ I
m(µ,Ω)

)
θ2
m

=
1

n

r2m − r2
m

r2
m

+
1

np

r2m

r2
m

2m2
[
1 +O(p−1)

]
.

As a result, if ‖Λ− I‖2F = o(p2), where Λ = [diag(Σ)]−1/2Σ[diag(Σ)]−1/2 is the correlation matrix,

then
var
(
θ̂M
m (µ,diag(Σ))

)
var
(
θ̂ I
m(µ,Ω)

) → 1.

Last, we construct confidence intervals of θm. Since MAE is the average of p strongly dependent

marginal estimators, its asymptotic normality is hard to approach. We instead use the marginal

estimator in (8) to construct confidence intervals.

Theorem 2.4 (Asymptotic normality). Under model (1), suppose log2(p) = o(n) and max1≤j≤p ‖Yj−
µj‖ψ2 ≤ C, where ‖ · ‖ψ2 denotes the sub-Gaussian norm. Given iid samples {Yi}ni=1, consider the

Marginal Estimator in (8) for an arbitrary 1 ≤ j ≤ p, where (µ̂j , σ̂jj) are the sample mean and

sample variance of {Yij}ni=1. Then,

√
n
(
θ̂M
m,j(µ̂j , σ̂jj)− θm

)
√

c2m
c2m
θ̂2m − θ̂2

m

→d N(0, 1),

where ck = (2k−1)!! (p/2)k Γ(p/2)
Γ(p/2+k) for k ≥ 1, and (θ̂2m, θ̂m) are consistent estimators of (θ2m, θm).

This theorem shows somewhat surprisingly that all marginal estimator contains the same amount

of information about θm. Given consistent estimators (θ̂2m, θ̂m), the asymptotic level-α confidence

interval of θm is

θ̂M
m,j ±

q1−α/2√
n

√
c2m

c2
m

θ̂2m − θ̂2
m, (11)
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where q1−α/2 is the (1−α/2)-quantile of a standard normal. It doesn’t matter which of 1 ≤ j ≤ p we

use, as these marginal estimators have the same asymptotic variance. For the estimators (θ̂2m, θ̂m),

we suggest using MAE.

If we only need a point estimator but not a confidence interval, we prefer MAE to the Marginal

Estimator, as MAE has a smaller variance in many scenarios. For example, when ‖Λ−I‖2F = o(p2),

by plugging in the true (µ,Σ),

var(θ̂M
m )

θ2
m

∼
var
(
θ̂ I
m)

θ2
m

∼ 1

n

r2m − r2
m

r2
m

,
var(θ̂M

m,j)

θ2
m

∼ 1

n

(η2m/η
2
m)r2m − r2

m

r2
m

.3

Since η2m > η2
m, the latter variance is strictly larger. In contrast, MAE is first-order efficient.

3 Extension to blockwise aggregation

In the construction of MAE, each marginal estimator only uses one coordinate of the samples. It

is convenient to implement and gives rise to an estimator that is first-order efficient, provided that

the third term in Theorem 2.3 is negligible. It turns out that, the second order term in the variance

can be improved upon by using blockwise aggregation, and so is the third term, which is related to

the correlation structure. Our simulation studies below show that the improvement is real. This

motivates us to extend the marginal estimator to a blockwise estimator that uses a small number of

coordinates of the samples and takes into account their correlation structures. We then generalize

MAE to BAE — an aggregation of many blockwise estimators.

BAE can be applied to settings where the covariance matrix is approximately blockwise diagonal

after row/column permutation. Figure 2 gives such an example, where the S&P 500 stocks divide

into many small-size blocks according to sectors or industries of stocks and the stock returns within

each block are correlated but admits block structure after taking out the market factor. BAE can

take advantage of the within-block correlations and further improve MAE in the second order term.

3.1 A block-wise aggregation estimator (BAE)

We fix a block J ⊂ {1, 2, . . . , p} and let K = |J |. For any vector v ∈ Rp and matrix M ∈ Rp×p, let

vJ be the subvector of v containing the coordinates indexed by J and let MJJ be the submatrix of

M containing the entries indexed by J×J . By Fang and Zhang (1990), when Y follows an elliptical

distribution (1), the subvector YJ satisfies that

YJ
(d)
= µJ +B1/2ξ ·Σ1/2

JJ UK , (12)

3This expression combines the asymptotic variance in Theorem 2.4 and the fact that cmθm = rmηm
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Figure 2: Estimated Σ after factor-removal from S&P500 returns in 2010—2012. Red squares:

Sector blocks. Black squares: Industry groups. (From Fan et al. (2015a))

where B is a random variable that follows a beta distribution Beta (K2 ,
p−K

2 ), the random vector UK

follows a uniform distribution on the unit sphere SK−1, and (ξ,B,UK) are mutually independent.

Since ‖UK‖ = 1,

ξ2m =
{(YJ − µJ)TΣ−1

JJ (YJ − µJ)}m

Bm
.

The random variable B is not directly observable, but its expectation is known:

Proposition 3.1. For each m ≥ 1 and 1 ≤ K ≤ p, define c∗m,K = pmE(Bm) with B ∼ Beta (K2 ,
p−K

2 ).

Then,

c∗1,K = K, c∗m,K = p× K + 2m− 2

p+ 2m− 2
× c∗m−1,K for m ≥ 2.

Replacing Bm by its expectation, we immediately have an estimator of θm based on {Yi,J}ni=1:

θ̂B
m,J(µJ ,ΣJJ) =

1

npm

n∑
i=1

{(Yi,J − µJ)TΣ−1
JJ (Yi,J − µJ)}m

EBm

=
1

nc∗m,K

n∑
i=1

{(Yi,J − µJ)TΣ−1
JJ (Yi,J − µJ)}m. (13)

We call θ̂B
m,J(µJ ,ΣJJ) the Blockwise Estimator. Now, given a collection of blocksA = {J1, J2, . . . , JN},

we can define a blockwise estimator for each J ∈ A and then take their average:

θ̂B
m

(
µ, diagA(Σ)

)
=

1

|A|
∑
J∈A

θ̂B
m,J(µJ ,ΣJJ). (14)

10



We call θ̂B
m

(
µ, diagA(Σ)

)
the Blockwise Aggregation Estimator (BAE). Here diagA(Σ) denotes the

collection of diagonal blocks ΣJJ with J ∈ A. Our final estimator is a plug-in version of BAE by

plugging in an estimator µ̂ and estimators of those diagonal blocks of Σ.

Since BAE only estimates the small-size diagonal blocks of Σ and does not need to estimate Ω,

it inherits a nice property of MAE: root-n consistency is guaranteed with no conditions on Σ or Ω.

Theorem 3.1 (Root-n consistency). Fix m ≥ 2 and K ≥ 1. Under model (1), suppose log2m(p) =

o(n) and max1≤j≤p ‖Yj − µj‖ψ2 ≤ C. We assume the minimum eigenvalue of any K ×K diagonal

block of Σ is lower bounded by C. Let A be a collection of nonrandom, non-overlapping blocks such

that the size of each block is bounded by K. Given iid samples {Yi}ni=1, consider the BAE in (14),

where (µ,Σ) are estimated by the sample mean vector and sample covariance matrix. Then,

|θ̂B
m(µ̂, diagA(Σ̂))− θm| = OP(n−1/2).

Theorem 3.2 (Consistency, with general mean/covariance estimators). Fix m ≥ 2 and K ≥ 1.

Under model (1), we assume log2m(p) = o(n), θ2m ≤ C, and the minimum eigenvalue of any K×K
diagonal block of Σ is lower bounded by C. Let A be a collection of nonrandom, non-overlapping

blocks where the size of blocks is bounded by K. Given iid samples {Yi}ni=1, consider the BAE in

(14), where (µ̂, Σ̂) satisfy ‖µ̂−µ‖∞ ≤ αn and maxJ∈A ‖Σ̂JJ −ΣJJ‖ ≤ βn with probability 1−o(1),

with αn → 0 and βn → 0 as n, p → ∞. Then, for any ε > 0, with probability 1 − ε, there is a

constant Cε > 0 such that∣∣θ̂B
m(µ̂,diagA(Σ̂))− θm

∣∣ ≤ Cε(n−1/2 + max{αn, βn}
)
.

We note that MAE is a special case of BAE, with all block size equal to 1. The motivation of

generalizing MAE to BAE is to better take advantage of correlation structures, and this is revealed

by comparing the asymptotic variances of two methods; see Section 3.2 below. To implement BAE,

we need to determine the collection of blocks, and in Section 3.3 we discuss how to select blocks.

3.2 Variance comparison

We compute the asymptotic variance of BAE and compare it with the asymptotic variances of MAE

and Ideal Estimator. Same as before, in the variance calculation we assume (µ,Σ) are given.

Definition 3.1. For each k ≥ 1, let hm(k) =
k·var(χ2m

k )

(Eχ2m
k )2

, where χ2
k denotes the chi-square distribution

with k degrees of freedom. Given a collection of blocks A, let h̄m(A) = p
|A|2

∑
J∈A

hm(|J |)
|J | .

11



Theorem 3.3 (Variance of BAE). Let {Yi}ni=1 be iid samples of model (1). Fix m ≥ 2 and suppose

θ2m ≤ C. There exists a constant C̃m > 0, independent of the distribution of ξ, such that for any

collection A of non-overlapping blocks,

var
(
θ̂B
m

(
µ,diagA(Σ)

))
θ2
m

≤ 1

n

r2m − r2
m

r2
m

+
1

np

r2m

r2
m

h̄m(A) +
Cm
n

1

|A|2
∑
I,J∈A
I 6=J

‖Σ−1/2
II ΣIJΣ

−1/2
JJ ‖

2.

The upper bound of the variance has three terms:

• The first term is O(n−1), which also appears in the variance of MAE and Ideal Estimator. It

is the dominating term of the variance.

• The second term is O(p−1n−1), where the constant in front of it is related to a quantity h̄m(A).

We call h̄m(A) the block-division factor, as it is only a function of A. To see how this factor

changes with block size, let’s consider a special case where all blocks have an equal size k and

p is a multiple of k. Then,

h̄m(A) = hm(k) =
k · var(χ2m

k )

(Eχ2m
k )2

.

It is a monotone decreasing function of k (see Figure 3). Hence, increasing the block size leads

to a reduction of this term, which indicates that the second order efficiency of MAE can be

improved with m > 1.

• The last term comes from the correlations among estimators associated with different blocks.

It doesn’t exist for the Ideal Estimator, but both MAE and BAE have this extra term. For

MAE, all off-diagonal entries of Σ contribute to this term. However, for BAE, only off-diagonal

blocks contribute. Especially, when Σ is blockwise diagonal with respect to A, this extra term

becomes zero. Again, increasing the block size leads to a reduction of this term.

From MAE to BAE, we can see that the dominating term in the variance bound remains the

same, but the other two terms are reduced and the performance still improves. However, we cannot

use too large blocks, because BAE needs to invert an estimate of ΣJ,J and the error of estimating

Σ̂J,J increases as the block size increases.

We now give a more thorough comparison of four estimators, the Ideal Estimator (IE) θ̂ I
m, the

Marginal Estimator (ME) θ̂M
m,j , the MAE θ̂M

m , and the BAE θ̂B
m; see Table 1. We conclude that

• IE has the optimal variance, but it works unsatisfactorialy in the real case of unknown (µ,Σ),

as it requires estimating Ω.

• ME avoids estimating Ω and works in the real case, but its asymptotic variance is non-optimal.

12
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Figure 3: Plot of h̄m(A) when all blocks have an equal size k (m = 2; the x-axis represents k). As

the block size increases, h̄m(A) decreases, suggesting a variance reduction.

• MAE aggregates a number of ME’s and achieves the optimal variance when ‖Λ−I‖2F = o(p2).

• Compared with MAE, BAE relaxes the condition of ‖Λ−I‖2F = o(p2) and reduces the second-

order term of the variance.

From ME to BAE, we have used two methodological ideas: to aggregate “local” estimators and to

use a block of coordinates in each “local” estimator. Both help reduce the variance of the estimator,

with the first idea playing a more significant role.

Table 1: Variance comparison of estimators (known (µ,Σ); ∗∗ means the constant is optimal).

IE ME MAE BAE

dominating term 1
n

(
r2m
r2m
− 1
)∗∗ 1

n

( r2mη2m
r2mη

2
m
− 1
)

1
n

(
r2m
r2m
− 1
)∗∗ 1

n

(
r2m
r2m
− 1
)∗∗

2nd-order term 1
np

r2m
r2m
hm(p)∗∗ — 1

np
r2m
r2m
hm(1) 1

np
r2m
r2m
hm(k)

correlation term 0∗∗ 0∗∗ C
np

∑
1≤i 6=j≤p |Λjj |2

C
np

∑
I 6=J∈A ‖ΛI,J‖2F

Remark 1. IE and MAE are special cases of BAE with equal-size blocks of k = 1 and k = p,

respectively. We note that hm(1) = η2m−η2m
η2m

and hm(p) = 2m2[1 +O(p−1)], so Theorem 3.3 matches

with the variance bounds of MAE (Theorem 2.3) and the IE (Proposition 2.1).

Remark 2 (multivariate Gaussian). Let’s consider a special case where the data are multivariate

Gaussian but the user doesn’t know and still applies the estimators in this paper. For Gaussian

distributions, the first term in the variance bound disappears, so the estimators considered here all

have a faster rate of convergence as O(p−1n−1). This is the only case where a large p helps, i.e.,

“dimensionality is a blessing.” Moreover, the difference between MAE and BAE is more prominent,

13
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Figure 4: Comparison of IE, MAE and BAE for multivariate Gaussian distributions (y-axis is

var(θ̂2
2/θ

2
2). Left: Σ = Ip. Right: Σ is a blockwise diagonal matrix with 2×2 blocks whose diagonals

are 1 and off-diagonals are ρ, where ρ takes values in {0.1, 0.5, 0.8}. The pairwise estimator refers

to BAE with k = 2. Curves are from theoretical calculations (see Corollary C.1 in the appendix).

The variance of IE and BAE is independent of ρ, so there is only one curve for all values of ρ.

as the second term in the variance bound is now dominating. Figure 4 displays the error bound

according to Theorem 3.3 for the case of Σ = I and Σ being a blockwise diagonal matrix with 2×2

blocks whose off-diagonal element is ρ. The results favor BAE, especially for the blockwise Σ with

large within-block off-diagonals.

3.3 Construction of blocks

We provide two approaches of selecting the blocks. The first approach works well when the true Σ is

approximately block-wise diagonal, such as example on the returns of the S&P 500 components(see

Figure 2). The second approach is a random scheme and works for general settings.

BAE1: Constructing blocks from a raw estimate of Σ. Let Σ̃ be a raw estimate of Σ; for example,

it can be the sample covariance matrix or the robust estimator of Σ in Section 4. Fixing a threshold

t ∈ (0, 1), we define a graph Gt with nodes {1, 2 · · · , p}, where there is an undirected edge between

nodes i and j if and only if the estimated absolute correlation exceeds t, namely,

|Σ̃(i, j)|/
√

Σ̃(i, i)Σ̃(j, j) > t, for 1 ≤ i < j ≤ p.

The nodes of this graph uniquely partitions into components (a component of a graph is a maximal

connected subgraph). We propose using

A = {all components of Gt}.
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Figure 5: Construction of a blockwise correlation matrix by thresholding. Left panel: Graph of the

original correlation matrix. Right panel: Transformation into a block diagonal correlation matrix.

See Figure 5 for an illustration of this procedure.

This approach guarantees that all blocks are non-overlapping. Numerical evidence suggests that

it performs well with an appropriate choice of t, especially when the true Σ is blockwise diagonal.

However, the threshold t is a tuning parameter, and it can be inconvenient to select t in a data-driven

fashion. Below, we introduce a tuning-free approach.

BAE2: Randomly selecting pairs as blocks. In this approach, we let

A =
{
p pairs uniformly drawn from {(i, j) : 1 ≤ i < j ≤ p} without replacement

}
.

This approach is designed for block size equal to 2, and the obtained blocks may overlap. Although

it sounds ad-hoc, this approach has an appealing numerical performance. When the number of

pairs are sampled sufficiently large, by the law of large numbers, it approaches the all pairwise

aggregation estimator and this explains why the approach has an appealing numerical performance.

This approach can easily be extended to blocks of any size that is smaller than n so long as the

estimated covariance matrix for each block can be easily inverted and estimated well.

4 Simulations

We investigate the performance of estimators on extensive simulations. To have realistic simulation

settings, we use a Σ calibrated from stock returns. The calibration procedure is the same as that

in Fan et al. (2015c) and Fan et al. (2013). Fix p. We take the daily returns of p companies in S&P

500 index with the largest market capitalization from July 1st, 2013 to June 29th, 2018 (data were

downloaded from the COMPUSTAT website). We fit the Fama-French three-factor model to the
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excess returns {Yt}Tt=1:

Yt = a + Bft + ut,

where B ∈ Rp×3 is the factor loading matrix, ft ∈ R3 denotes the Fama-French factors with

covariance matrix cov(ft) ∈ R3×3 and ut is the idiosyncratic component. This factor model induces

a covariance structure for Yt:

ΣY = cov(Y ) = B cov(ft)B
T + Σu,

where Σu is the covariance matrix of idiosyncratic noise ut. We downloaded the factors {ft}Tt=1 from

the Kenneth French data library and used the method in Fan et al. (2013) with the recommended

threshold (for estimating sparse Σu) to get and estimate Σ̂Y . We then use Σ̂Y as the true Σ to

generate data from model (1).

When implementing the estimators, we plug in two different estimators of (µ,Σ). The first

choice is to use sample mean and sample covariance matrix. The second choice is to use robust

M-estimators, called adaptive Huber estimator (Fan et al., 2017; Sun et al., 2018+), which are

designed for heavy-tailed data. These estimators lead to better large-deviation bounds. In detail,

for a tuning parameter τ > 0 chosen by cross-validation, we estimate µ by (µ̂1, . . . , µ̂p)
T, where

µ̂j = argmin
β∈R

n∑
i=1

`τ (Yij − β), with `τ (u) =


1
2u

2, if |u| ≤ τ,

τ |u| − 1
2τ

2, if |u| > τ,

the Huber loss. We estimate Σ by (σ̂jk)1≤j,k≤p, where

σ̂jj = β̂j − µ̂2
j · 1{β̂j > µ̂2

j}, with β̂j = argmin
β>0

n∑
i=1

`τjj
(
Y 2
ij − β

)
,

σ̂jk = β̂jk − µ̂jµ̂k, with β̂jk = argmin
β∈R

n∑
i=1

`τjk
(
YijYik − β

)
.

Here, each tuning parameter τjk is selected via cross-validation using the data {(Yij , Yik)}ni=1.

Experiment 1: Performance of MAE. Fix m = 2. We consider four sub-experiments:

• Experiments 1.1 and 1.3: We fix p = 500 and let n vary in {50, 100, 150, 200, 250, 300}. The

data follow multivariate Gaussian distributions (Experiment 1.1) or multivariate t-distributions

with degrees of freedom equal to 4.5 (Experiment 1.3).

• Experiments 1.2 and 1.4: We fix n = 100 and let p vary in {250, 400, 550, 700, 850, 1000}. The

data follow multivariate Gaussian distributions (Experiment 1.2) or multivariate t-distributions

with degrees of freedom equal to 4.5 (Experiment 1.4).
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In all settings, p > n, so we focus on the challenging case of high-dimensionality. For each setting,

we compare four estimators:

• θ̂ I(µ,Σ): Ideal Estimator, which knowns (µ,Σ).

• θ̂M(µ,Σ): MAE with given (µ,Σ).

• θ̂M(µ̂, Σ̂): MAE, where (µ,Σ) are estimated using the sample mean/covariance matrix in Ex-

periment 1.1&1.2 and using the aforementioned robust-M estimators for Experiment 1.3&1.4.

• θ̂ I(µ̂, Σ̂P ): Plug-in Ideal Estimator, with plugged-in estimators of (µ,Σ). We use the sample

mean to estimate µ̂ and use POET (Fan et al., 2013) (with a default threshold) to estimate

Σ.

The results are presented in Figure 6, where the y-axis is log{(θ̂2/θ2−1)2}, based on the average over

200 repetitions. As we have expected, the Ideal Estimator always gives the lowest error, however,

such an estimator is not practically feasible. Instead, we plug estimates of (µ,Σ) into the Ideal

Estimator to make it practically feasible, then it has an unsatisfactory performance; this confirms

our previous insight about the drawback of the plug-in estimator. Our proposed MAE works well,

always significantly better than the plug-in estimator. The performance of MAE becomes better as

the sample size n grows, and its performance stays relatively stable as the dimension p grows. This

is desirable: our proposed estimator doesn’t face any curse of dimensionality. The results are similar

for the multivariate Gaussian data and the multivariate t-data, except that for Gaussian data, MAE

with (µ̂, Σ̂) even outperforms MAE with true (µ,Σ). One possible reason is the self-normalization

phenomenon: An estimator, when divided by its sample variance, gives better performance than

that divided by the true variance.

Experiment 2: Confidence Interval. For each of the experiments above: Experiments 1.1,

1.2, 1.3 and 1.4, we calculate the probability that the true value of θ2 lies in the confidence interval

derived in Theorem 2.4 and presented in Equation (11). In Table 2, we see that for a 95% confidence

interval, the empirical coverage probabilities are close to the confidence level.

Experiment 3: Performance of BAE. We study whether BAE, which uses a block of coordi-

nates at a time and takes advantage of the correlation structure, can further improve the performance

of MAE. The four sub-experiments, Experiments 3.1-3.4, have the same settings as those of Exper-

iments 1.1-1.4. When implementing BAE, we use the second approach in Section 3.3 to choose the

blocks; note that the blocks all have a size 2 and may overlap. We use the sample mean/covariance

to estimate (µ,Σ) for multivariate Gaussian data and the robust M-estimators for multivariate t
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Figure 6: Experiment 1 (MAE). Top two panels: Experiment 1.1&1.2 (multivariate Gaussian data).

Bottom panels: Experiment 1.3&1.4 (multivariate t data). Errors are the average of 200 repetitions.

Black-squared for the ideal-estimator θ̂I2(µ,Σ); blue-diamond for the plug-in estimator θ̂I2(µ̂, Σ̂);

red-dot for the MAE θ̂M2 (µ,Σ); green-triangle for the plug-in MAE θ̂M2 (µ̂, Σ̂)

data. Since we focus on the comparison between MAE and BAE, we do not report the errors of the

Ideal Estimator and plug-in estimator in this experiment.

The results are presented in Figure 7. First, we can see that BAE improves the performance

of MAE, especially when p is large. Second, the self-normalization phenomenon is also observed:

BAE with (µ̂, Σ̂) even outperforms BAE with true (µ,Σ), especially for Gaussian data.
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Table 2: Empirical coverage probability that θ2 lies in the 95% confidence interval by Equation (11)

for data following multivariate Gaussian or multivariate t-distributions, across a variety of settings.

n = 100 p = 250 400 550 700 850 1000

Gaussian 92.0% 95.0% 93.5% 95.5% 95.5% 96.5%

Student’s t 96.5% 98.0% 94.5% 97.0% 96.0% 96.5%

p = 500 n = 50 100 150 200 250 300

Gaussian 95.5% 94.2% 93.5% 93.0% 95.5% 94.0%

Student’s t 98.0% 96.0% 95.5% 93.5% 94.5% 97.0%

5 Application: Estimating realized ξt in a time series

Given the returns of a panel of stocks, we are interested in extending the idea of MAE to provide a

daily risk index for the whole panel of stocks. We cast it as the problem of estimating the realized ξt

in a multivariate time series with elliptically-distributed noise. Let Y1, . . . ,YT ∈ Rp be the returns of

p stocks during a time period of T days. We extend model (1) to an elliptical model for multivariate

time series

Yt = µt + Bft + ξtΣ
1/2
t Ut, t = 1, · · · , T, (15)

where µt is the time-varying mean, ft ∈ RK is a vector of K factors, and B is a p ×K matrix of

factor loadings. We are interested in estimating the daily realized ξt.

Our method has four steps:

1. Estimate µt. For daily or higher frequency data, we set µ̂t ≡ 0, since it is commonly believed

that the short-time returns are not predictable. For weekly or monthly data, we estimate µt

by the weekly or monthly average.

2. Obtain the factor-adjusted returns Ẑt. Let f̂t ∈ RK contain either observed factors or data-

drive factors from PCA (Fan et al., 2013). We then follow the approach in Fan et al. (2013)

to get B̂, the estimated factor loading matrix. Let

Ẑt = Yt − µ̂t − B̂f̂t, t = 1, · · · , T.

3. Estimate Σt. We assume Σt is a diagonal matrix and estimate its diagonal elements by fitting

an ARCH model on each coordinate of Zt. In detail, for each 1 ≤ j ≤ p, let Zt(j) be the j-th

coordinate of Zt. We assume there is idiosyncratic noise {εt(j)}Tt=1 such that

Zt(j) = λt(j)εt(j), where λ2
t (j) = a0 + a1Z

2
t−1(j) + . . .+ akZ

2
t−k(j),
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Figure 7: Experiment 3 (BAE). Top two panels: Experiment 3.1&3.2 (multivariate Gaussian data).

Bottom panels: Experiment 3.3&3.4 (multivariate t data). Errors are the average of 200 repetitions.

Magenta-star for the BAE θ̂B
2 (µ,Σ); blue-diamond for the plug-in BAE θ̂B

2 (µ̂, Σ̂); red-dot for the

MAE θ̂M2 (µ,Σ); green-triangle for the plug-in MAE θ̂M2 (µ̂, Σ̂)

where k is the order of ARCH model and (a0, . . . , ak) are parameters. We estimate (a0, . . . , ak)

using the conditional maximum likelihood estimator and then construct {λ̂t(j)}Tt=1. Let

Σ̂t = diag
(
λ̂t(1), . . . , λ̂t(p)

)
.

4. Estimate ξt. We adapt the idea of MAE to the current setting. Let Zt = Yt −Bft. Our model
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Figure 8: The estimated ξ̂t for 11 GCIS sectors. For a better representation, we have smoothed the

curves by taking a moving average on a 65-day window.

becomes Zt = ξtΣ
1/2
t Ut, i.e., the j-th component of Zt is Zt(j) = ξt(Σ

1/2Ut)j . It follows that

ξ2
t =

Z2
t (j)

(Σ1/2Ut)2
j

≈ Z2
t (j)

E[(Σ1/2Ut)2
j ]

=
pZ2

t (j)

Σt(j, j)
,

where Σt(j, j) is the j-th diagonal of Σt. Here, the last equality is due to c1 = 1 in Equation (7).

We approximate (Zt,Σt) by (Ẑt, Σ̂t) and get a marginal estimator of ξ2
t : ξ̂2

t,j = pẐt(j)/Σ̂t(j, j).

We then aggregate them:

ξ̂2
t =

p∑
j=1

Ẑ2
t (j)

Σ̂t(j, j)
, t = 1, 2, . . . , T. (16)

In Section D of the appendix, we investigate the performance of our estimator in simulations. Under

a variety of settings, our estimated curve of ξ̂t fits the true curve of ξt very well. See details therein.

We applied our estimator to the S&P 500 stock returns. We took the daily returns of 300 stocks

from the S&P 500 index with the largest market capitalization, from July 1, 2008 to June 29, 2012.

Each stock is assigned a Global Industry Classification Standard (GCIS) code. The GCIS code

divides 300 stocks into eleven sectors: Energy, Consumer Discretionary, Communication Services,

Consumer Staples, Financials, Health Care, Industrials, Information Technology, Materials, Real

Estate, and Utilities. We applied our estimator to stocks in each sector. When implementing our
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Table 3: Pairwise correlations of ξ̂t across GCIS sectors. Numbers ≥ .45 are marked in circles.

E CD CO CS F HC IN IT M R U

Energy (E) – .36 .43 .42 .53 .37 .44 .35 .48 .47 .46

Consumer Discretionary (CD) .36 – .30 .35 .43 .34 .37 .33 .33 .36 .35

Communication Services (CO) .43 .30 – .33 .43 .33 .40 .32 .39 .44 .41

Consumer Staples (CS) .42 .35 .33 – .42 .36 .37 .35 .38 .38 .43

Financials (F) .53 .43 .43 .42 – .42 .50 .40 .49 .52 .52

Health Care (HC) .37 .34 .33 .36 .42 – .40 .39 .37 .36 .33

Industrials (IN) .44 .37 .40 .37 .50 .40 – .39 .49 .44 .45

Information Technology (IT) .35 .33 .32 .35 .40 .39 .39 – .36 .33 .34

Materials (M) .48 .33 .39 .38 .49 .37 .49 .36 – .42 .43

Real Estate (R) .47 .36 .44 .38 .52 .36 .44 .33 .42 – .46

Utilities (U) .46 .34 .41 .43 .52 .33 .45 .34 .43 .46 –

method, we set µ̂t ≡ 0 in Step 1, used three observed Fama-French factors as f̂t in Step 2, and set

the order of ARCH model to k = 2 in Step 3.

The curves of estimated ξ̂t for 11 sectors are displayed in Figure 8 (the curves are smoothed by

taking a moving average on a 65-day window). The estimated ξ̂t for all sectors largely synchronize,

reaching their peaks during the 2008 financial crisis. In the crisis, the estimated ξ̂t for the Financials

sector is significantly larger than that of other sectors. The large value of ξ̂t for the Financials sector

remains in the post-crisis period until May, 2009. We also computed the pairwise correlations among

ξ̂t of 11 sectors, as shown in Table 3. It suggests that the ξ̂t for the Energy sector and the Financials

sector are highly correlated with each other. These two sectors are also highly correlated with sectors

of Materials, Real Estate, and Utilities. In comparison, for the Consumer Discretionary sector and

Information Technology sector, their ξ̂t are less correlated with those of other sectors.

6 Discussion

In this paper, we consider the problem of estimating the even moments of ξ in an elliptical dis-

tribution Y = µ + ξΣ1/2U . A natural idea is the plug-in estimator (Maruyama and Seo, 2003;

Fan et al., 2015b), which requires an estimator Ω̂ of the precision matrix and whose performance

crucially relies on structural assumptions on Ω or Σ. Instead, we propose a marginal aggregation

estimator (MAE) that only needs to estimate the diagonal of Σ. Our approach validates the insight

that estimating a large precision matrix is statistically more challenging than estimating a moment

parameter—it is unnecessary to use the sledge hammer to crack an egg. We prove that MAE is

root-n consistent, under no conditions on Σ or Ω. We also show that MAE achieves the first-order

efficiency, with an asymptotic variance matching with the variance of an ideal estimator when (µ,Σ)
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are given. We further generalize MAE to a block-wise aggregation estimator (BAE) that needs to

estimate small-size diagonal blocks of Σ. BAE takes advantage of correlations among coordinates

and improves MAE on the second-order efficiency. Our proposed estimators are conceptually simple

and easy to implement.

Estimating the moment parameters of an elliptical distribution is useful in quadratic discriminant

analysis (Fan et al., 2015b) and estimating tail behavior of financial returns (Fama, 1965; Bollerslev

and Wooldridge, 1992; Eberlein and Keller, 1995; Frahm et al., 2003; Cizek et al., 2005). In an

application on the stock returns, we propose a multivariate time series model with factor structures

and elliptically distributed idiosyncratic noise. We extend MAE to an estimator for estimating the

day-to-day value of ξt. We apply the method to stocks of each industry sector. It produces an

“tail index” for each industry sector. These tail indices reveal interesting difference among industry

sectors, especially during the financial crisis.

The study leaves a few open questions for future work. The first is how to improve the estimators

for heavy tailed data. Our current approach plugs into MAE the robust estimators of mean and

covariance matrix. Instead, we may construct a robust M-estimator for simultaneously estimating

(θm, µj , σjj) with marginal data and then aggregate these marginal estimators of θm in a similar way.

We hope such an approach helps remove the
√

log(p)-factor in the error rate of Theorem 2.2. The

second is the optimal strategy of constructing blocks in BAE. There is a trade-off in choosing the

blocks: With larger blocks, it reduces the variance of the estimator when true (µ,Σ) are plugged in,

but at the same time, the errors of estimating diagonal blocks of Σ increase. How to construct the

blocks in a data-driven way is an interesting question. Third, the current theory for BAE assumes

non-overlapping blocks. The results can be extended to overlapping blocks, with nontrivial efforts.

We leave it for future work. The last problem is to extend our estimators to time dependent data,

where the distribution of ξ have change-points. For financial data, such change-points may relate

to financial boom or crisis. We propose a kernel-smoothed version of MAE: Given data {Yt}nt=1, for

a kernel function Kh(·) with bandwidth h, let

θ̂m,t =
1∑n

s=1Kh(s− t)

n∑
s=1

Kh(s− t)
[ p∑
j=1

p−1(Ys,j − µ̂j)2m

cmσ̂2m
jj

]
.

We can similarly define the one-sided versions of the kernel estimator. We can combine these

estimators with change-point detection methods, which we leave for future work.

References

Bollerslev, T. and Wooldridge, J. (1992). Quasi-maximum likelihood estimation and inference in

dynamic models with time-varying covariances. Econometric Reviews 11 143–172.

23



Cai, T., Liu, W. and Luo, X. (2011). A constrained `1 minimization approach to sparse precision matrix

estimation. Journal of the American Statistical Association 106 594–607.
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A Proof of main results

A.1 Proof of Theorem 2.1

Write for short θ̂M
m = θ̂M

m (µ̂,diag(Σ̂)) and θ̃M
m = θ̂M

m (µ,diag(Σ)). By Theorem 2.3, θ̃M
m is unbiased and

satisfies

var
(
θ̃M
m

)
≤ θ2

m ·
(

1

n

r2m − r2
m

r2
m

+
1

np

r2m

r2
m

η2m − η2
m

η2
m

+
Cm
n

r2m

r2
mη

2
m

‖Λ− I‖2F
p2

)
.

We note that (ηm, Cm) are constants, (θm, rm, r2m) are bounded above/below by constants, and all entries

of the correlation matrix Λ are bounded by 1. Hence, the right hand side is O(n−1), and it implies

|θ̃M
m − θm| = OP(n−1/2).

To show the claim, it suffices to show that

|θ̂M
m − θ̃M

m | = OP(n−1/2). (17)

Below, we show (17). Write for short Xij = (Yij − µj)/
√
σjj , for 1 ≤ i ≤ n, 1 ≤ j ≤ p. For any k ≥ 0, let

Skj = 1
n

∑n
i=1X

k
ij . Using these notations,

θ̃M
m =

1

npcm

p∑
j=1

n∑
i=1

(
Yij − µj√

σjj

)2m

=
1

cm
· 1

p

p∑
j=1

S(2m)j .

At the same time, noticing that (µ̂j − µj)/
√
σjj = S1j and (Yij − µ̂j)/

√
σjj = Xij − S1j , we have

θ̂M
m =

1

npcm

p∑
j=1

n∑
i=1

(
Yij − µ̂j√

σ̂jj

)2m

=
1

npcm

p∑
j=1

[
σmjj
σ̂mjj

n∑
i=1

(
Yij − µ̂j√

σjj

)2m]

=
1

npcm

p∑
j=1

[
σmjj
σ̂mjj

n∑
i=1

(Xij − S1j)
2m

]

=
1

npcm

p∑
j=1

[
σmjj
σ̂mjj

n∑
i=1

2m∑
k=0

γkS
k
1jX

2m−k
ij

]
, where γk ≡ (−1)k

(
2m

k

)

=
1

cm

2m∑
k=0

γk

[
1

p

p∑
j=1

σmjj
σ̂mjj

Sk1j

( 1

n

n∑
i=1

X2m−k
ij

)]

=
1

cm

2m∑
k=0

γk

[
1

p

p∑
j=1

σmjj
σ̂mjj

Sk1jS(2m−k)j

]
.

Combining the above gives

θ̂M
m − θ̃M

m =
2m

cm

1

p

p∑
j=1

(σmjj
σ̂mjj
− 1
)
S(2m)j +

2m

cm

1

p

p∑
j=1

σmjj
σ̂mjj

S1jS(2m−1)j

+
1

cm

2m∑
k=2

γk

[
1

p

p∑
j=1

σmjj
σ̂mjj

Sk1jS(2m−k)j

]
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= (I1) + (I2) + (I3). (18)

To bound the right hand side of (18), we define an event. By (6), Yij = µj + ξi(Σ
1/2Ui)j . Let Λ =

[diag(Σ)]−1/2Σ[diag(Σ)]−1/2. Then, Xij =
Yij−µj√
σjj

= ξi(Λ
1/2Ui)j . It follows that

Skj =
1

n

n∑
i=1

ξki (Λ1/2Ui)
k
j . (19)

Note that EXij = (Eξki )E[(Λ1/2Ui)
k
j ]. At the same time, since Xij ∼ N(0, 1) when ξ2

i ∼ χ2
p, it holds that

E[Nk(0, 1)] = (Eχkp)E[(Λ1/2Ui)
k
j ]. Together, we have E(Xk

ij) = E[Nk(0, 1)] · [(Eξki )/(Eχkp)]. Our assumption

of θ2m ≤ C guarantees (Eξki )/(Eχkp) ≤ C for 1 ≤ k ≤ 4m. It follows that E(Xk
ij) ≤ C and var(Xk

ij) ≤ C for

1 ≤ k ≤ 2m. As a result,

E(|Skj |2) ≤ C, E
(
|Skj − ESkj |2

)
= O(n−1), 1 ≤ k ≤ 2m. (20)

Using the marginal sub-Gaussianity, for any ε > 0, there exists a constant C > 0 such that, with probability

≥ 1− ε,
max

1≤k≤2m
1≤j≤p

|Skj − ESkj | ≤ C
√

(log p)/n. (21)

Let B be the event that (21) holds. To show (17), it suffices to show that

|θ̂M
m − θ̃M

m | · IB = OP(n−1/2). (22)

We now show (22). Consider (I2) and (I3). By (19) and using that (Λ1/2Ui)j has a symmetric

distribution, we have ESkj = 0 for any odd k. As a result, over the event B, |S1j | ≤ C
√

(log p)/n,

|S(2m−1)j | ≤ C
√

(log p)/n and |S(2m−k)j | ≤ C, for all 1 ≤ j ≤ p and 1 ≤ k ≤ 2m. Additionally, since

σ̂jj/σjj = 1
n

∑n
i=1

(Yij−µ̂j√
σjj

)2
= 1

n

∑n
i=1(Xij − S1j)

2 = S2j − S2
1j , where ES2j = 1, it holds that σjj/σ̂jj ≤ C

over the event B. It follows that

|(I2)| ≤ C max
1≤j≤p

{
σmjj
σ̂mjj
|S1j ||S(2m−1)j |

}
= O(n−1 log(p)).

|(I3)| ≤ C max
1≤j≤p

{ 2m∑
k=2

σmjj
σ̂mjj
|S1j |k|S(2m−k)j |

}
= O(n−1 log(p)). (23)

Consider (I1). Since σ̂jj/σjj = S2j − S2
1j , we write

σ̂jj/σjj − 1 = (S2j − ES2j)− S2
1j .

Over the event B, maxj |S1j | ≤ C
√

(log p)/n and max1≤j≤p |σ̂jj/σjj−1| ≤ C
√

(log p)/n. This means, for all

1 ≤ j ≤ p, σ̂jj/σjj is contained in a diminishing neighborhood of 1. We use Taylor expansion of the function

(1 + x)−m − 1. It gives

σmjj
σ̂mjj
− 1 = −mσ̂jj − σjj

σmjj
+O(n−1 log(p))

= −m[(S2j − ES2j)− S2
1j ] +O(n−1 log(p))
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= −m(S2j − ES2j) +O(n−1 log(p))

= −m
n

n∑
i=1

{
ξ2
i (Λ1/2Ui)

2
j − (Eξ2

i )E[(Λ1/2Ui)
2
j ]
}

+O(n−1 log(p)). (24)

where the third line is due to max1≤j≤p |S1j | ≤ O(
√

(log p)/n) over the event B and the fourth line is due

to (19). By (19) and (24),

(I1) = −2m2

cmp

p∑
j=1

[
1

n

n∑
i=1

(
ξ2
i (Λ1/2Ui)

2
j − (Eξ2

i )E[(Λ1/2Ui)
2
j ]
)][ 1

n

n∑
k=1

ξ2m
k (Λ1/2Uk)2m

j

]
+ o(n−1/2)

= − 2m2

cmpn2

n∑
i,k=1

{ p∑
j=1

[
ξ2
i (Λ1/2Ui)

2
j − (Eξ2

i )E[(Λ1/2Ui)
2
j ]
][
ξ2m
k (Λ1/2Uk)2m

j

]}
+ o(n−1/2)

≡ − 2m2

cmpn2

n∑
i,k=1

Qik + o(n−1/2). (25)

Write Rij = (Λ1/2Ui)j for short. Then,

Qik =

p∑
j=1

[
ξ2
iR

2
ij − (Eξ2

i )(ER2
ij)
]
ξ2m
k R2m

kj . (26)

We introduce positive random variables {ωi}ni=1 such that ω2
i
iid∼ χ2

p and that {ωi}ni=1 are independent of

{(ξi,Ui) : 1 ≤ i ≤ n}. Then, Zi ≡ ωi(Λ1/2Ui) ∼ N(0, Ip). For even integers s, t and 1 ≤ j, j′ ≤ p,

E[Zsi (j)Zti (j
′)] = E(ωs+ti )E(RsijR

t
ij′).

For all s, t such that s + t ≤ 4m, the left hand side is uniformly bounded by a constant. Additionally, by

elementary probability, E(ωs+ti ) � p(s+t)/2. It follows that

max
1≤j,j′≤p

E(RsijR
t
ij′) ≤ Cp−(s+t)/2, for even s, t such that s+ t ≤ 4m. (27)

In particular, by taking s = 2` and t = 0 in the above, we have ER2`
ij ≤ Cp−` for all 0 ≤ ` ≤ 2m. Additionally,

θs = p−sEξ2s by definition, so the assumption θ2m ≤ C guarantees

E(ξ2s
i ) ≤ Cps, 0 ≤ s ≤ 2m. (28)

Using (27)-(28), we first bound |
∑n
i=1Qii|. It is seen that

E|Qii| ≤
p∑
j=1

E(ξ2m+2
i )E(R2m+2

ij ) + (Eξ2
i )(ER2

ij)E(ξ2m
i )E(R2m

ij ) ≤ Cp.

As a result,

E
( 1

pn2

∣∣∣ n∑
i=1

Qii

∣∣∣) = O(n−1) =⇒ 1

pn2

∣∣∣ n∑
i=1

Qii

∣∣∣ = oP(n−1/2). (29)

We then bound |
∑
i 6=kQik|. Consider (i, k, i′, k′) such that i 6= k and i′ 6= k′. By (26), EQik = 0 for i 6= k.

Therefore, if (i, k, i′, k′) are mutually distinct, E(QikQi′k′) = 0. It follows that

E
[(∑

i6=k

Qik

)2]
= 6

∑
distinct i,k,k′

E(QikQik′) + 2
∑

distinct i,k

E(Q2
ik).
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By (26) and (27)-(28),

E(QikQik′) = E
{ p∑
j,j′=1

[
ξ2
iR

2
ij − (Eξ2

i )(ER2
ij)
][
ξ2
iR

2
ij′ − (Eξ2

i )(ER2
ij′)
]
ξ2m
k ξ2m

k′ R
2m
kj R

2m
k′j′

}
≤

p∑
j,j′=1

E(ξ4
i )E(R2

ijR
2
ij′)(Eξ2m

k )(Eξ2m
k′ )E(R2m

kj R
2m
k′j′) ≤ Cp2,

E(Q2
ik) = E

{ p∑
j,j′=1

[
ξ2
iR

2
ij − (Eξ2

i )(ER2
ij)
][
ξ2
iR

2
ij′ − (Eξ2

i )(ER2
ij′)
]
ξ4m
k R2m

kj R
2m
kj′

}
≤

p∑
j,j′=1

E(ξ4
i )E(R2

ijR
2
ij′)(Eξ4m

k )E(R2m
kj R

2m
kj′ ) ≤ Cp2.

Moreover, the total number of such distinct (i, k, k′) is O(n3). It follows that

E
[( 1

pn2

∑
i 6=k

Qik

)2]
= O(n−1) =⇒ 1

pn2

∣∣∣∑
i6=k

Qik

∣∣∣ = OP(n−1/2). (30)

Pluging (29) and (30) into (25) gives

(I1) = OP(n−1/2). (31)

We further plug (23) and (31) into (18). It gives (22). The proof is now complete.

A.2 Proof of Theorem 2.2

Similar to the proof of Theorem 2.1, let θ̃M
m and θ̂M

m denote the MAE with true (µ,Σ) and estimates (µ̂, Σ̂);

here, (µ̂, Σ̂) are not necessarily the sample mean and sample covariance matrix. It follows from Theorem 2.3

that E[(θ̃M
m − θm)2] ≤ Cn−1. By Markov’s inequality, for any constant C1 > 0,

P
(
|θ̃M
m − θm| > C1n

−1/2
)
≤ E[(θ̂M

m − θm)2]

C2
1n
−1

≤ C

C2
1

. (32)

Hence, given ε > 0, we can choose an appropriate C1 > 0 such that the above probability is bounded by ε/3.

Below, we bound |θ̂M
m − θ̃M

m |. Letting Xij = (Yij − µj)/
√
σjj and X̂ij = (Yij − µ̂j)/

√
σ̂jj , we have

θ̂M
m − θ̃M

m =
1

npcm

p∑
j=1

n∑
i=1

(
X̂2m
ij −X2m

ij ),

where

X̂ij = Xij +Xij

(√
σjj√
σ̂jj
− 1

)
+
µj − µ̂j√

σ̂jj
≡ Xij + ∆ij .

It follows that

θ̂M
m − θ̃M

m =
1

npcm

p∑
j=1

n∑
i=1

2m∑
k=1

(
2m

k

)
X2m−k
ij ∆k

ij

=
1

npcm

p∑
j=1

n∑
i=1

2mX2m−1
ij ∆ij +

2m∑
k=2

(
2m

k

)
· 1

npcm

p∑
j=1

n∑
i=1

X2m−k
ij ∆k

ij
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≡ (J1) + (J2).

First, we consider (J1). By direct calculations,

(J1) =
2m

npcm

p∑
j=1

n∑
i=1

X2m
ij

(√σjj√
σ̂jj
− 1
)

+
2m

npcm

p∑
j=1

n∑
i=1

X2m−1
ij

µj − µ̂j√
σ̂jj

=
2m

pcm

p∑
j=1

S(2m)j

(√σjj√
σ̂jj
− 1
)

+
2m

pcm

p∑
j=1

S(2m−1)j

√
σjj√
σ̂jj

µj − µ̂j√
σjj

,

where Skj = 1
n

∑n
i=1X

k
ij for k ≥ 0. Under our assumption, maxj |σjj/σ̂jj | . 1, and |

√
σ̂jj/σjj−1| ≤ C|σ̂jj−

σjj |. Moreover, by similar technique in the proof of Theorem 2.3, we can prove that, 1
p

∑p
j=1 E|Skj | ≤ C, for

1 ≤ k ≤ 2m. As a result, for any ε > 0, there exists C2 > 0 such that, 1
p

∑p
j=1 |S(2m)j | ≤ C2 simultaneously

for 1 ≤ k ≤ 2m, with probability 1− ε/3. On this event,

|(J1)| ≤ C
(1

p

p∑
j=1

|S(2m)j |
)
|σ̂jj − σjj |+ C

(1

p

p∑
j=1

|S(2m−1)j |
)
|µ̂j − µj | ≤ C max{αn, βn}. (33)

Next, we consider (J2). By our assumption, |∆ij | ≤ αn + βn|Xij |. It follows that

|∆ij |k ≤ Cαkn + Cβkn|Xij |k.

Plugging it into the definition of (J2), we have

|(J2)| ≤ C
2m∑
k=2

1

np

p∑
j=1

n∑
i=1

|Xij |2m−k(αkn + βkn|Xij |k)

≤ C
2m∑
k=2

αkn

( 1

np

p∑
j=1

n∑
i=1

|Xij |2m−k
)

+ C

2m∑
k=2

βkn

( 1

np

p∑
j=1

n∑
i=1

|Xij |2m
)
.

Again, we can easily prove that 1
np

∑p
j=1

∑n
i=1 E|Xij |k ≤ C for all 1 ≤ k ≤ 2m. It follows that, for any ε > 0,

there exists C3 > 0, such that 1
np

∑p
j=1

∑n
i=1 |Xij |k ≤ C3 simultaneously for all 1 ≤ k ≤ 2m. On this event,

|(J2)| ≤ C
2m∑
k=2

(αkn + βkn) ≤ C max{α2
n, β

2
n}. (34)

Combining (33)-(34) gives |θ̂M
m − θ̃M

m | ≤ C max{αn, βn}. We further combine it with (32). It gives the claim.

A.3 Proof of Theorem 2.3

Write for short θ̂M
m = θ̂M

m (µ,Ω) and θ̂M
m,j = θ̂M

m,j(µj , σjj). First, we show that θ̂M
m is unbiased. Recall that

θ̂M
m = p−1

∑p
j=1 θ̂

M
m,j . It suffices to show θ̂M

m,j is unbiased for each 1 ≤ j ≤ p. Recall that

θ̂M
m,j =

1

ncm

n∑
i=1

(Yij − µj)2m

σmjj
, where cm = (2m− 1)!! (p/2)m

Γ(p/2)

Γ(p/2 +m)
. (35)

By the form of elliptical distribution, Yi − µ = ξiŨi, where ξi and Ũi are independent of each other. We

have seen in Section 1.2 that EŨ2m
ij = p−mcmσ

m
jj . It follows that

E[(Yij − µj)2m] = (Eξ2m
i )(EŨ2m

i ) = (pmθm)(p−mcmσ
m
jj) = cmθmσ

m
jj .
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Plugging it into (35) gives

Eθ̂M
m,j =

1

ncm

n∑
i=1

E[(Yij − µj)2m]

σmjj
=

1

ncm

n∑
i=1

cmθmσ
m
jj

σmjj
= θm. (36)

This proves that each θ̂M
m,j is unbiased. It follows that θ̂M

m is also unbiased.

Next, we calculate the variance of θ̂M
m . For each 1 ≤ i ≤ n, let W (i) = (W

(i)
1 , . . . ,W

(i)
p )T , where

W
(i)
j = (Yij − µj)2m/σmjj , 1 ≤ j ≤ p. Noting that {W(i)}ni=1 are iid random vectors, we have

var
(
θ̂M
m

)
= var

(
1

npcm

p∑
j=1

n∑
i=1

W
(i)
j

)
=

1

n
var

(
1

pcm

p∑
j=1

W
(1)
j

)
. (37)

It suffices to calculate the variance in the case of n = 1. From now on, we fix n = 1. Let Y = µ+ ξU be the

observed realization of the elliptical distribution. Write

θ̂M
m =

1

cmp

p∑
j=1

Wj , where Wj ≡
(Yj − µj)2m

σmjj
.

We now calculate var(Wj) and cov(Wj ,Wk). Recalling that Ũ = Σ1/2U , we define random vectors

Z ≡ χ2
p · Ũ and Z̃ ≡ diag(Σ)−1/2Z, (38)

where χ2
p is a chi-square random variable independent of Ũ . Since the multivariate normal distribution is

a special elliptical distribution with ξ ∼ χ2
p, we immediately have Z ∼ N(0,Σ). It follows that EZ̃2m

j =

σ−mjj (EZ2m
j ) = σ−mjj (Eχ2m

p )(EŨ2m
j ). At a result, for all m ≥ 1,

E[(Yj − µj)2m] = (Eξ2m)(EŨ2m
j ) = Eξ2m ·

σmjj(EZ̃2m
j )

Eχ2m
p

= σmjj · rmEZ̃2m
j .

It follows that

var(Wj) =
E[(Yj − µj)4m]

σ2m
jj

−
(
E[(Yj − µj)2m]

σmjj

)2

= r2m(EZ̃4m
j )− r2

m(EZ̃2m
j )2

= r2m · var(Z̃2m
j ) + (r2m − r2

m) · (EZ̃2m
j )2. (39)

Similarly, since Yj − µj = ξŨj and Zj = χ2
pŨj , we have

E
[
(Yj − µj)2m(Yk − µk)2m

]
= (Eξ4m)

(
E[Ũ2m

j Ũ2m
k ]
)

= (r2mEχ4m
p )
(
E[Ũ2m

j Ũ2m
k ]
)

= r2mE[Z2m
j Z2m

k ]

= σmjjσ
m
kk · r2mE[Z̃2m

j Z̃2m
k ].

Therefore,

cov(Wj ,Wk) =
E
[
(Yj − µj)2m(Yk − µk)2m

]
σ2m
jj σ

2m
kk

− E[(Yj − µj)2m]

σmjj

E[(Yk − µk)2m]

σmkk
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= r2mE[Z̃2m
j Z̃2m

k ]− r2
m(EZ̃2m

j )(EZ̃2m
k )

= r2m · cov(Z̃2m
j , Z̃2m

k ) + (r2m − r2
m) · (EZ̃2m

j )(EZ̃2m
k ). (40)

Combining (39) and (40) and noting that Z̃j ∼ N(0, 1) for all 1 ≤ j ≤ p, we rewrite

cov(Wj ,Wk) = r2m cov(Z̃2m
j , Z̃2m

k ) + (r2m − r2
m)η2

m, where ηm = E[N(0, 1)2m].

As a result,

var(θ̂M
m ) =

1

c2mp
2

∑
1≤j,k≤p

cov(Wj ,Wk)

=
1

c2mp
2

[
r2m

∑
1≤j,k≤p

cov(Z̃2m
j , Z̃2m

k ) + (r2m − r2
m)p2η2

m

]
=

1

c2m

[
r2m ·

1

p2
var
( p∑
j=1

Z̃2m
j

)
+ (r2m − r2

m) · η2
m

]
. (41)

Moreover, since EŨ2m
ij = p−mcmσ

m
jj and EZ̃2m

j = σ−mjj (Eχ2m
p )(EŨ2m

j ), we have

cm =
pmEZ̃2m

j

Eχ2m
p

=
pmE[N(0, 1)2m]

r−1
m Eξ2m

=
pmηm

r−1
m (pmθm)

=
ηmrm
θm

.

Plugging it into (41) gives

var(θ̂M
m ) = θ2

m

[
r2m

r2
m

var
(∑p

j=1 Z̃
2m
j

)
p2η2

m

+
r2m − r2

m

r2
m

]
.

This is for the case of n = 1. For a general n, we combine it with (37) to get

var(θ̂M
m )

θ2
m

=
1

n

[
r2m

r2
m

var
(∑p

j=1 Z̃
2m
j

)
p2η2

m

+
r2m − r2

m

r2
m

]
. (42)

What remains is to calculate the variance of
∑p
j=1 Z̃

2m
j . By definition,

Z̃ ∼ N(0,Λ), where Λ = [diag(Σ)]−1/2Σ[diag(Σ)]−1/2.

Here Λ coincides with the correlation matrix of the elliptical distribution. It is seen that

var
( p∑
j=1

Z̃2m
j

)
=

p∑
j=1

var(Z̃2m
j ) + 2

∑
1≤j<k≤p

cov(Z̃2m
j , Z̃2m

k )

= p(η2m − η2
m) + 2

∑
1≤j<k≤p

βm(Λjk),

where βm(Λjk) denotes the covariance between X2m
1 and X2m

2 when (X1, X2)T follows a bivariate normal

distribution with covariances var(X1) = var(X2) = 1 and cov(X1, X2) = Λjk. The following lemma is proved

in Section B.1:
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Lemma A.1. Let X = (X1, X2)T be a bivariate normal random vector satisfying E(X2
1 ) = E(X2

2 ) = 1 and

cov(X1, X2) = ρ. Let ηm = E[N(0, 1)2m] and βm(ρ) = cov(X2m
1 , X2m

2 ) for m ≥ 2. Define

Bm(s) =
∑

1≤k1,k2≤m
k1+k2=s

(
2m

2k1

)(
2m

2k2

)
· ηm−k1ηm−k2(ηs − ηk1ηk2), s = 2, 3, . . . ,m

Then, for all m ≥ 2,

βm(ρ) =

m∑
s=2

Bm(s)(1− |ρ|)m−s|ρ|s.

As a result, βm(ρ) = 72ρ2 for m = 2, and βm(ρ) ≤ Cmρ
2 for m ≥ 3, where Cm > 0 is a constant that only

depends on m.

By Lemma A.1,

var
( p∑
j=1

Z̃2m
j

)
≤ p(η2m − η2

m) + 2Cm
∑

1≤j<k≤p

Λ2
jk ≤ p(η2m − η2

m) + Cm‖Λ− I‖2F . (43)

Plugging it into (42) gives

var(θ̂M
m )

θ2
m

≤ 1

n

r2m − r2
m

r2
m

+
1

np

r2m

r2
m

(
η2m − η2

m

η2
m

+
Cm
η2
m

‖Λ− I‖2F
p

)
.

Moreover, for m = 2, the equality holds for Cm = 72. Since ηm = 3 and η2m = 105, we have

var(θ̂M
m )

θ2
m

=
1

n

r2m − r2
m

r2
m

+
1

np

r2m

r2
m

(32

3
+

8‖Λ− I‖2F
p

)
, for m = 2.

A.4 Proof of Proposition 2.1

Write θ̂ I
m = θ̂ I

m(µ,Ω) for short. By definition, θ̂ I
m = 1

npm

∑n
i=1 ξ

2m
i , and θm = p−mE(ξ2m). Therefore

var(θ̂ I
m) =

1

np2m
var(ξ2m) =

1

n
(θ2m − θ2

m).

We divide both sides by θ2
m and note that θm = p−m(Eξ2m) = p−mrm(Eχ2m

p ). It follows that

var(θ̂ I
m)

θ2
m

=
1

n
·
r2m(Eχ4m

p )− r2
m(Eχ2m

p )2

r2
m(Eχ2m

p )2

=
1

n
·
r2mvar(χ2m

p ) + (r2m − r2
m)(Eχ2m

p )2

r2
m(Eχ2m

p )2

=
1

n

[
r2m

r2
m

var(χ2m
p )

(Eχ2m
p )2

+
r2m − r2

m

r2
m

]
, (44)

By elementary statistics, Eχ2m
p =

∏m−1
j=0 (p+ 2j). As a result,

var(χ2m
p )

(Eχ2m
p )2

=

∏2m−1
j=0 (p+ 2j)−

∏m−1
j=0 (p+ 2j)2

(Eχ2m
p )2
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=

∏m−1
j=0 (p+ 2j)

(Eχ2m
p )2

{2m−1∏
j=m

(p+ 2j)−
m−1∏
j=0

(p+ 2j)
}

=
1

Eχ2m
p

{[
pm +

(
pm−1

2m−1∑
j=m

2j
)]
−
[
pm +

(
pm−1

m−1∑
j=0

2j
)]

+O(pm−2)

}
=

1

Eχ2m
p

·
[
2m2pm−1 +O(pm−2)

]
=

2m2

p
[1 + o(1)]. (45)

Plugging (45) into (44) gives the claim.

A.5 Proof of Theorem 2.4

Fix 1 ≤ j ≤ p. Using the Slutsky’s lemma, we only need to prove

θ̂M
m,j(µ̂j , σ̂jj)− θm√

c2m
c2m

θ2m − θ2
m

→d N(0, 1). (46)

Write for short θ̂M
m,j = θ̂M

m,j(µ̂j , σ̂jj). Let Xij = (Yij − µj)/
√
σjj and Skj = 1

n

∑n
i=1X

k
ij , for 1 ≤ i ≤ n and

k ≥ 0. Then, µ̂j = S1j , σ̂jj = S2j − S2
1j , and

Yij − µ̂j√
σ̂jj

=

√
σjj√
σ̂jj

Yij − µ̂j√
σjj

=

√
σjj√
σ̂jj

(Xij − S1j).

It follows that

θ̂M
m,j =

1

ncm

n∑
i=1

(
Yij − µ̂j√

σ̂jj

)2m

=
1

ncm

σmjj
σ̂mjj

n∑
i=1

(Xij − S1j)
2m

=
1

ncm

σmjj
σ̂mjj

n∑
i=1

2m∑
k=0

γkS
k
1jX

2m−k
ij , where γk ≡ (−1)k

(
2m

k

)

=
1

cm

σmjj
σ̂mjj

2m∑
k=0

γkS
k
1jS(2m−k)j . (47)

Let S = (S1j , S2j , . . . , S(2m)j)
T. Below, we first derive the asymptotic normality of S, then we use the delta

method to prove (46).

First, we study the random vector S. It is not hard to see that ESkj = EXk
ij . By (6), Xij = ξi(Λ

1/2Ui)j ,

where {(ξi,Ui)}ni=1 are mutually indepependent and Λ = [diag(Σ)]−1/2Σ[diag(Σ)]−1/2 is the correlation

matrix. Since Xij ∼ N(0, 1) when ξi ∼ χ2
p, the symmetry of N(0, 1) implies that (Λ1/2Ui)j has a symmetric

distribution. Hence, EXk
ij = 0 for an odd k. For an even k = 2s, by definition of cm in (7), E[(Λ1/2U)2s

j ] =

p−scs; also, E(ξ2s
i ) = psθs; combining them gives EX2s

ij = E(ξ2s
i )E[(Λ1/2U)2s

j ] = csθs. It follows that

E(Sk) =

0, k is odd,

ck/2θk/2, k is even.
(48)
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Moreover, cov(Skj , S`j) = 1
n cov(Xk

ij , X
`
ij) = 1

n [EXk+`
ij − (EXk

ij)(EX`
ij)]. It follows that

Cov(Sk, S`) =
1

n


0, k is odd, ` is even,

c(k+`)/2θ(k+`)/2, k and ` are odd,

c(k+`)/2θ(k+`)/2 − ck/2θk/2c`/2θ`/2, k and ` are even.

(49)

By classical central limit theorem,

√
n[cov(S)]−1/2(S − ES)→d N

(
0, I2m

)
. (50)

Next, we prove (46). Define a function h : R2m → R by h(x) =
∑2m
k=0 γkx

k
1x2m−k. By (48),

h(ES) =

2m∑
k=0

γk(ES1j)
kES(2m−k)j = E[S(2m)j ] = cmθm.

Note that ∂
∂x1

h(x) =
∑2m
k=1 kγkx

k−1
1 x2m−k, and ∂

∂xk
h(x) = γ2m−kx

2m−k
1 for k 6= 1. Combining them with

(48) and (49) gives

5h(ES) = (0, 0, . . . , 0, 1)T, [5h(ES)]T cov(S) [5h(ES)] = c2mθ2m − c2mθ2
m.

We then apply the delta method and obtain
√
n[h(S)− cmθm]√
c2mθ2m − c2mθ2

m

→d N(0, 1). (51)

By (47), θ̂M
m,j =

σm
jj

σ̂m
jj
· c−1
m h(S). Since

σm
jj

σ̂m
jj
→ 1 in probability, using the Slutsky’s lemma, we have

√
n(θ̂M

m,j − θm)
1
cm

√
c2mθ2m − c2mθ2

m

→d N(0, 1).

This proves (46).

A.6 Proof of Theorem 3.1

Write for short θ̂B
m = θ̂B

m

(
µ̂, diagA(Σ̂)

)
and θ̃B

m = θ̂B
m

(
µ, diagA(Σ)

)
. It follows from Theorem 3.3 that

E[(θ̃B
m − θm)2] = O(n−1/2). This implies |θ̃B

m − θm| = OP(n−1/2). Hence, it suffices to show

|θ̂B
m − θ̃B

m| = OP(n−1/2). (52)

First, we derive an expression of θ̂B
m − θ̃B

m. Let Xi,J = Σ
−1/2
J,J (Yi,J − µJ) and X̂i,J = Σ̂

−1/2

J,J (Yi,J − µ̂J)

for all 1 ≤ i ≤ n and J ∈ A. Then,

θ̂B
m =

1

n|A|
∑
J∈A

n∑
i=1

‖Xi,J‖2

c∗m,|J|
, θ̃B

m =
1

n|A|
∑
J∈A

n∑
i=1

‖X̂i,J‖2

c∗m,|J|
. (53)

Let S1,J = 1
n

∑n
i=1Xi,J and S2,J = 1

n

∑n
i=1Xi,JX

T
i,J . By direct calculations,

Σ−1/2(µ̂J − µJ) = S1,J , Σ
−1/2
J,J Σ̂J,JΣ−1/2 = S2,J − S1,JS

T
1,J .
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Define an event B such that
max1≤i≤n,J∈A ‖Xi,J‖ ≤ C

√
log(n ∨ p),

max1≤i≤n,J∈A,1≤k≤4m

∣∣‖Xi,J‖k − E‖Xi,J‖k
∣∣ ≤ C√log(n ∨ p),

maxJ∈A ‖S1,J‖ ≤ C
√

(log p)/n,

maxJ∈A ‖S2,J − ES2,J‖ ≤ C
√

(log p)/n.

(54)

It is not hard to see that the event B holds with probability 1−o(1) (see the proof of Theorem 2.1 for similar

arguments). On the event B, noting that ES2,J = I|J|, we have

(Σ
−1/2
J,J Σ̂J,JΣ−1/2)−1 =

[
I|J| + (S2,J − ES2,J)− S1,JS

T
1,J

]−1

= I|J| − (S2,J − ES2,J) +O(n−1 log(p)).

It follows that

‖X̂i,J‖2 = (Yi,J − µ̂J)TΣ̂
−1

J,J(Yi,J − µ̂J)

=
[
Σ
−1/2
J,J (Yi,J − µ̂J)

]T[
Σ
−1/2
J,J Σ̂J,JΣ−1/2

]−1[
Σ
−1/2
J,J (Yi,J − µ̂J)T

]
= (Xi,J − S1,J)T

{
I|J| + (S2,J − ES2,J)

}
(Xi,J − S1,J) +O(n−1 log2(n ∨ p))

= ‖Xi,J‖2−2ST
1,JXi,J +XT

i,J(S2,J − ES2,J)XT
i,J +O(n−1 log2(n ∨ p))︸ ︷︷ ︸

≡∆i,J

. (55)

Over the event B, |∆i,J | ≤ Cn−1/2 log(n ∨ p). As a result,

‖X̂i,J‖2m = (‖Xi,J‖2 + ∆i,J)2m

=

m∑
k=0

(
m

k

)
‖Xi,J‖2(m−k)∆k

i,J

= ‖Xi,J‖2m +m‖Xi,J‖2m−2∆i,k +O(n−1 logm(n ∨ p)).

Plugging it into (53), we obtain

θ̂B
m − θ̃B

m =
m

n|A|
∑
J∈A

n∑
i=1

1

c∗m,|J|
‖Xi,J‖2m−2∆i,J +O(n−1 logm(n ∨ p))

=
m

n|A|

n∑
i=1

∑
J∈A

1

c∗m,|J|
‖Xi,J‖2m−2XT

i,J(S2,J − ES2,J)XT
i,J

− 2m

n|A|

n∑
i=1

∑
J∈A

1

c∗m,|J|
‖Xi,J‖2m−2ST

1,JXi,J +O(n−1 logm(n ∨ p))

= (K1) + (K2) + o(n−1/2). (56)

Next, we bound (K1) and (K2). Note that S2,J − ES2,J = 1
n

∑n
k=1[Xk,JXk,J − E(Xk,JXk,J)]. This

allows us to re-write

(K1) =
m

n2|A|

n∑
i,k=1

∑
J∈A

1

c∗m,|J|
‖Xi,J‖2m−2XT

i,J

[
Xk,JXk,J − E(Xk,JXk,J)

]
XT
i,J︸ ︷︷ ︸

≡Qik

.
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It is not hard to see that E|Qii| ≤ C|A| and that E|QikQi′k′ | ≤ C|A|2 when {i, k, i′, k′} has at least two

distinct values (see the proof of Theorem 2.1 for similar arguments). As a result,

E
∣∣∣ m

n2|A|

n∑
i=1

Qii

∣∣∣ = O(n−1) =⇒
∣∣∣ m

n2|A|

n∑
i=1

Qii

∣∣∣ = oP(n−1/2).

Moreover, noting that EQik = 0 for i 6= k, we have E(QikQi′k′) = 0 for {i, k, i′, k′} that are mutually distinct.

It follows that

E
( m

n2|A|
∑

1≤i 6=k≤n

Qik

)2

=
m2

n4|A|2
∑

(i,k,i′,k′):at least
two are equal

E(QikQi′k′) ≤
m2

n4|A|2
· n3 · C|A|2 = O(n−1)

=⇒
∣∣∣ m

n2|A|
∑

1≤i 6=k≤n

Qik

∣∣∣ = OP(n−1/2).

Combining the above gives

(K1) = OP(n−1/2). (57)

Similarly, since S1,J = 1
n

∑n
k=1Xi,J , we re-write

(K2) = − 2m

n|A|

n∑
i,k=1

∑
J∈A

1

c∗m,|J|
‖Xi,J‖2m−2XT

k,JXi,J︸ ︷︷ ︸
Rik

.

Then, ERik = 0 for i 6= k, E|Rii| ≤ C|A|, and E(RikRi′k′) ≤ C|A|2 when {i, k, i′, k′} has at least two distinct

values. As a result,

E
∣∣∣ m

n2|A|

n∑
i=1

Rii

∣∣∣ = O(n−1) =⇒
∣∣∣ m

n2|A|

n∑
i=1

Rii

∣∣∣ = oP(n−1/2)

E
( m

n2|A|
∑

1≤i6=k≤n

Rik

)2

= O
(n3|A|2

n4|A|2
)

= O(n−1) =⇒
∣∣∣ m

n2|A|
∑

1≤i 6=k≤n

Rik

∣∣∣ = OP(n−1/2).

We immediately have

(K2) = OP(n−1/2). (58)

Plugging (57)-(58) into (56) gives (52). The claim then follows.

A.7 Proof of Theorem 3.2

Similar to the proof of Theorem 2.1, let θ̃B
m and θ̂B

m denote the BAE with true (µ,Σ) and estimates (µ̂, Σ̂);

here, (µ̂, Σ̂) may not be the sample mean and sample covariance matrix. By Theorem 3.3, E[(θ̃M
m − θm)2] ≤

Cn−1. It follows from the Markov’s inequality that, for any ε > 0, there is a constant Cε > 0 such that, with

probability 1− ε/2,

|θ̃M
m − θm| ≤ Cεn−1/2.

To show the claim, it suffices to show that, there is a constant C ′ε > 0 such that with probability 1− ε/2,

|θ̂B
m − θ̃B

m| ≤ Cε max{αn, βn}. (59)
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We now show (59). Let Xi,J = Σ
−1/2
J,J (Yi,J − µJ) and X̂i,J = Σ̂

−1/2

J,J (Yi,J − µ̂J). Then,

θ̂B
m − θ̃B

m =
1

n|A|
∑
J∈A

n∑
i=1

‖X̂i,J‖2m − ‖Xi,J‖2m

c∗m,|J|
.

By direct calculations,

∆i,J ≡ ‖X̂i,J‖2 − ‖Xi,J‖2

= (Yi,J − µJ)T(Σ̂
−1

J,J −Σ−1
J,J)(Yi,J − µJ) + 2(µJ − µ̂J)TΣ̂

−1

J,J(Yi,J − µJ)

+ (µJ − µ̂J)TΣ̂
−1

J,J(µJ − µ̂J)

= XT
i,J

(
Σ

1/2
J,J Σ̂

−1

J,JΣ
1/2
J,J − I|J|

)
Xi,J − 2

[
Σ
−1/2
JJ (µ̂J − µJ)

]T(
Σ

1/2
J,J Σ̂

−1

J,JΣ
1/2
J,J

)
Xi,J

+
[
Σ
−1/2
JJ (µ̂J − µJ)

]T(
Σ

1/2
J,J Σ̂

−1

J,JΣ
1/2
J,J

)[
Σ
−1/2
JJ (µ̂J − µJ)

]
. (60)

As a result,

θ̂B
m − θ̃B

m

=
1

n|A|
∑
J∈A

1

c∗m,|J|

n∑
i=1

[ m∑
k=1

(
m

k

)
‖Xi,J‖2(m−k)∆k

i,J

]

=
m

n|A|
∑
J∈A

1

c∗m,|J|

n∑
i=1

‖Xi,J‖2(m−1)∆i,J + rem

=
m

n|A|
∑
J∈A

1

c∗m,|J|

n∑
i=1

‖Xi,J‖2m−2XT
i,J

(
Σ

1/2
J,J Σ̂

−1

J,JΣ
1/2
J,J − I|J|

)
Xi,J + rem

− 2m

n|A|
∑
J∈A

1

c∗m,|J|

n∑
i=1

‖Xi,J‖2m−2[Σ
−1/2
JJ (µ̂J − µJ)]T(Σ

1/2
J,J Σ̂

−1

J,JΣ
1/2
J,J )Xi,J . (61)

Introduce

S̃
(m)
2,J =

1

n

n∑
i=1

‖Xi,J‖2m−2Xi,JX
T
i,J , S̃

(m)
1,J =

1

n

n∑
i=1

‖Xi,J‖2m−2Xi,J .

Then, (61) can be rewritten as

θ̂B
m − θ̃B

m =
m

|A|
∑
J∈A

1

c∗m,|J|
tr
[(

Σ
1/2
J,J Σ̂

−1

J,JΣ
1/2
J,J − I|J|

)
S̃

(m)
2,J

]
− 2m

|A|
∑
J∈A

1

c∗m,|J|
[Σ
−1/2
JJ (µ̂J − µJ)]TS̃

(m)
1,J + rem. (62)

First, we study the main terms in (62). Note that S̃
(m)
2,J is the sample covariance matrix of {‖Xi,J‖m−1Xi,J :

1 ≤ i ≤ n}, and S̃
(m)
1,J is the sample mean of {‖Xi,J‖2m−2Xi,J : 1 ≤ i ≤ n}. Using similar calculations as in

the proof of Theorem 3.3, we can prove that∥∥∥ 1

|A|
∑
J∈A

ES̃(m)
2,J

∥∥∥ ≤ C, ∥∥∥ 1

|A|
∑
J∈A

ES̃(m)
1,J

∥∥∥ ≤ C.
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Combining it with the Markov inequality, for any ε > 0, there is C > 0 such that, with probability 1− ε/4,∥∥ 1
|A|
∑
J∈A S̃

(m)
2,J

∥∥ ≤ C and
∥∥ 1
|A|
∑
J∈A S̃

(m)
1,J

∥∥ ≤ C. On this event, the sum of the first two terms in (62) is

bounded in absolute value by

C
∥∥∥ 1

|A|
∑
J∈A

S̃
(m)
2,J

∥∥∥ ·max
J∈A

∥∥Σ1/2
J,J Σ̂

−1

J,JΣ
1/2
J,J − I|J|

∥∥+ C
∥∥∥ 1

|A|
∑
J∈A

S̃
(m)
1,J

∥∥∥ ·max
J∈A

∥∥Σ−1/2
JJ (µ̂J − µJ)

∥∥
≤ C max

J∈A

∥∥Σ1/2
J,J Σ̂

−1

J,JΣ
1/2
J,J − I|J|

∥∥+ C max
J∈A

∥∥Σ−1/2
JJ (µ̂J − µJ)

∥∥ ≤ C max{αn, βn}. (63)

Next, we study the remainder terms in (62). By (60) and our assumption on (µ̂, Σ̂), we have

‖∆i,J‖ ≤ Cβn‖Xi,J‖2 + Cαn‖Xi,J‖.

It follows that ‖∆i,J‖k ≤ Cβkn‖Xi,J‖2k + Cαkn‖Xi,J‖k. Then,

|rem| ≤ C
m∑
k=2

1

n|A|
∑
J∈A

n∑
i=1

βkn‖Xi,J‖2n + C

m∑
k=2

1

n|A|
∑
J∈A

n∑
i=1

αkn‖Xi,J‖2n−k

≤ C
m∑
k=2

βkn

( 1

n|A|
∑
J∈A

n∑
i=1

‖Xi,J‖2n
)

+ C

m∑
k=2

αkn

( 1

n|A|
∑
J∈A

n∑
i=1

‖Xi,J‖2n−k
)
.

Using similar calculations as in the proof of Theorem 3.3, we can prove that 1
n|A|

∑
J∈A

∑n
i=1 E‖Xi,J‖k ≤ C,

for all 1 ≤ k ≤ 4m. It follows from the Markov inequality that, for a constant C > 0, with probability 1−ε/4,
1

n|A|
∑
J∈A

∑n
i=1 ‖Xi,J‖k ≤ C, for all 1 ≤ k ≤ 2m. On this event,

|rem| ≤ C(α2
n + β2

n). (64)

Combining (63) and (64) gives |θ̂B
m − θ̃B

m| ≤ C max{αn, βn}. This proves (59), and the claim follows imme-

diately.

A.8 Proof of Theorem 3.3

Fix a collection A of blocks. Write for short θ̂Bm = θ̂Bm(µ,diagA(Σ)). For preparation, first, we verify that

θ̂Bm is an unbiased estimator. For any J ∈ A, by (12) and the fact that ‖U|J|‖ = 1, we have[
(YJ − µJ)TΣ−1

J,J(YJ − µJ)
]m

= ‖Σ−1/2
JJ (YJ − µJ)‖2m = ‖ξB1/2U|J|‖2m = ξ2mBm.

As a result,

E
[
(YJ − µJ)TΣ−1

J,J(YJ − µJ)
]m

= (Eξ2m)(EBm) = θm · c∗m,|J|. (65)

In particular, it implies that

θm =
1

|A|n
∑
J∈A

[
1

c∗m,|J|

n∑
i=1

E
{

(Yi,J − µJ)TΣ−1
JJ (Yi,J − µJ)

}m]
.

Therefore, θ̂Bm is unbiased. Additionally, we have

var(θ̂Bm)

θ2
m

=
1

n|A|2
var

(∑
J∈A

[
(YJ − µJ)TΣ−1

J,J(YJ − µJ)
]m

θm · c∗m,|J|

)
. (66)
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Second, we introduce an alternative expression of θm · c∗m,|J|. Consider the special case ξ ∼ χ2
p. Since

Y ∼ N(µ,Σ) in this case, we then have YJ ∼ N(µJ ,ΣJ,J) and (YJ − µJ)TΣ−1
J,J(YJ − µJ) ∼ χ2

|J|. Hence,

in (65), the left hand side equals to Eχ2m
|J| . At the same time, the right hand side is equal to θm · c∗m,|J| =

p−mEξ2m · c∗m,|J| = p−mEχ2m
p · c∗m,|J|. Equating the left/right hand sides gives

c∗m,|J| =
pmEχ2m

|J|

Eχ2m
p

.

We combine it with the definition of θm = p−mEξ2m and rm = Eξ2m/Eχ2m
p . It implies that

θm · c∗m,|J| = Eξ2m ·
Eχ2m
|J|

Eχ2m
p

= rm · Eχ2m
|J| . (67)

We now show the claim. For J ∈ A, let WJ = [(YJ − µJ)TΣ−1
J,J(YJ − µJ)]m. By (66)-(67),

var(θ̂Bm)

θ2
m

=
1

n|A|2
var

(∑
J∈A

WJ

rm · Eχ2m
|J|

)

=
1

n|A|2r2
m

∑
J∈A

var(WJ)

(Eχ2m
|J| )

2
+

1

n|A|2r2
m

∑
I,J∈A
I 6=J

cov(WI ,WJ)

(Eχ2m
|I| )(Eχ

2m
|J| )

≡ (I) + (II). (68)

Consider (I). Combining (65) and (67), we have

EWJ = rm · Eχ2m
|J| , EW 2

J = r2m · Eχ4m
|J| . (69)

Hence,

(I) =
1

n|A|2r2
m

∑
J∈A

r2mEχ4m
|J| − r

2
m(Eχ2m

|J| )
2

(Eχ2m
|J| )

2

=
1

n|A|2r2
m

∑
J∈A

r2m var(χ2m
|J| ) + (r2m − r2

m)(Eχ2m
|J| )

2

(Eχ2m
|J| )

2

=
1

n|A|2
∑
J∈A

[
r2m

r2
m

var(χ2m
|J| )

(Eχ2m
|J| )

2
+

(r2m − r2
m)

r2
m

]

=
1

np
· r2m

r2
m

· p

|A|2
∑
J∈A

hm(|J |)
|J |︸ ︷︷ ︸

h̄m(A)

+
1

n|A|
· (r2m − r2

m)

r2
m

, (70)

where the last two lines are from Definition 3.1.

Consider (II). Fix I and J . Note that

cov(WI ,WJ) = E(WIWJ)− (EWI)(EWJ).

We have had an expression of EWI as in (69). We still need to get an expression of E(WIWJ). For the set

I ∪ J , we apply (12) and find that(
YI

YJ

)
=

(
µI

µJ

)
+ ξ ·B1/2 ·Σ1/2

I∪J,I∪JU|I|+|J|,
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where B is a Beta distribution with parameters |I|+|J|2 and p−(|I|+|J|)
2 . Let ŨI and ŨJ be the vectors formed

by the first |I| coordinates and the last |J | coordinates of Σ
1/2
I∪J,I∪JU|I|+|J|, respectively. We then have

WI = ξ2mBm‖Σ−1/2
II ŨI‖2m and WJ = ξ2mBm‖Σ−1/2

JJ ŨJ‖2m. As a result,

E(WIWJ) = Eξ4m · EB2m · E
(
‖Σ−1/2

II ŨI‖2m‖Σ−1/2
JJ ŨJ‖2m

)
. (71)

We then use the cross-moments of multivariate normal distributions to get the last term above. Let ξ2
0 ∼ χ2

p

be a random variable independent of B and U|I|+|J|. The random vector(
ZI

ZJ

)
≡ ξ0 ·B1/2 ·

(
ŨI

ŨJ

)
∼ N

(
0, ΣI∪J,I∪J

)
.

It follows that

E
(
‖Σ−1/2

II ZI‖2m‖Σ−1/2
JJ ZJ‖2m

)
= Eχ4m

p · EB2m · E
(
‖Σ−1/2

II ŨI‖2m‖Σ−1/2
JJ ŨJ‖2m

)
. (72)

Write Z̃1 = Σ
−1/2
II ZI and Z̃2 = Σ

−1/2
JJ ZJ . Note that(

Z̃1

Z̃2

)
∼ N

(
0,

[
I|I| Γ

ΓT I|J|

])
, where Γ = Σ

−1/2
II ΣIJΣ

−1/2
JJ . (73)

Combining (71) and (72) gives

E(WIWJ) = E(‖Z̃1‖2m‖Z̃2‖2m) · Eξ
4m

Eχ4m
p

= E(‖Z̃1‖2m‖Z̃2‖2m) · r2m. (74)

We now combine (69) and (74) and note that ‖Z̃1‖2 ∼ χ2
|I| and ‖Z̃2‖2 ∼ χ2

|J|. It yields

cov(WI ,WJ)

(Eχ2m
|I| )(Eχ

2m
|J| )

=
r2mE(‖Z̃1‖2m‖Z̃2‖2m)− r2

m(Eχ2m
|I| )(Eχ

2m
|J| )

(Eχ2m
|I| )(Eχ

2m
|J| )

=
r2mE(‖Z̃1‖2m‖Z̃2‖2m)− r2

m(E‖Z̃1‖2m)(E‖Z̃1‖2m)

(Eχ2m
|I| )(Eχ

2m
|J| )

=
r2m cov(‖Z̃1‖2m, ‖Z̃2‖2m) + (r2m − r2

m)(E‖Z̃1‖2m)(E‖Z̃1‖2m)

(Eχ2m
|I| )(Eχ

2m
|J| )

= r2m
cov(‖Z̃1‖2m, ‖Z̃2‖2m)

(E‖Z̃1‖2m)(E‖Z̃1‖2m)
+ (r2m − r2

m).

As a result,

(II) =
1

n|A|2r2
m

∑
I,J∈A
I 6=J

[
r2m

cov(‖Z̃1‖2m, ‖Z̃2‖2m)

(E‖Z̃1‖2m)(E‖Z̃1‖2m)
+ (r2m − r2

m)

]

=
1

n
· r2m

r2
m

· 1

|A|2
∑
I,J∈A
I 6=J

cov(‖Z̃1‖2m, ‖Z̃2‖2m)

(E‖Z̃1‖2m)(E‖Z̃1‖2m)
+

1

n
· (r2m − r2

m)

r2
m

(
1− 1

|A|

)
. (75)
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We now plug (70) and (75) into (68). It gives

var(θ̂Bm)

θ2
m

≤ 1

n
· (r2m − r2

m)

r2
m

+
1

np
· r2m

r2
m

h̄m(A)

+
1

n
· r2m

r2
m

· 1

|A|2
∑
I,J∈A
I 6=J

cov(‖Z̃1‖2m, ‖Z̃2‖2m)

(E‖Z̃1‖2m)(E‖Z̃1‖2m)
. (76)

What remains is to bound the last term. Since the random vectors Z̃1 and Z̃2 jointly follow a multivariate

normal distribution as dictated in (73), we can apply the following lemma:

Lemma A.2. Let Z1 and Z2 be two random vectors such that(
Z1

Z2

)
∼ N

(
0,

[
Ik1 Γ

Γ′ Ik2

])
.

Then, for a constant C̃m > 0 that only depends on m but is independent of (k1, k2),

0 ≤ cov(‖Z1‖2m, ‖Z2‖2m)

(E‖Z1‖2m)(E‖Z1‖2m)
≤ C̃m‖Γ‖2.

We combine Lemma A.2 with (73) and them plug it into (76). It follows that

var(θ̂Bm)

θ2
m

≤ 1

n

(r2m − r2
m)

r2
m

+
1

np

r2m

r2
m

h̄m(A) +
1

n

r2m

r2
m

C̃m
|A|2

∑
I,J∈A
I 6=J

‖Σ−1/2
II ΣIJΣ

−1/2
JJ ‖

2.

This proves the claim.

B Supplementary proofs

B.1 Proof of Lemma A.1

Let θ = arcsin
(
sign(ρ) ·

√
|ρ|
)
∈ [−π2 ,

π
2 ]. We then have sin θ = sign(ρ) ·

√
|ρ| and cos θ =

√
1− |ρ|. Let

U1, U2, V be iid N(0, 1) random variables. It is easy to see that

(Z1, Z2)
(d)
=
(

(cos θ)U1 + (sin θ)V, (cos θ)U2 + (sin θ)V
)
.

For notation simplicity, we omit the superscript (d) in all equations. It follows that

Z2m
1 =

2m∑
k1=0

(
2m

k1

)
(cos θ)2m−k1(sin θ)k1U2m−k1

1 V k1 ,

Z2m
2 =

2m∑
k2=0

(
2m

k2

)
(cos θ)2m−k1(sin θ)k2U2m−k1

2 V k2 .

Then,

cov(Z2m
1 , Z2m

2 ) =

2m∑
k1,k2=0

(
2m

k1

)(
2m

k2

)
(cos θ)4m−k1−k2(sin θ)k1+k2

[
cov(U2m−k1

1 V k1 , U2m−k2
2 V k2)

]
.
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Note that for random variables (X,Y,W1,W2), whenX, Y and (W1,W2) are mutually independent, cov(XW1, Y W2) =

EX · EY · cov(W1,W2). Plugging it into the above expression, we obtain

cov(Z2m
1 , Z2m

2 )

=
∑

2≤k1,k2≤2m
k1,k2 even

(
2m

k1

)(
2m

k2

)
(cos θ)4m−k1−k2(sin θ)k1+k2(EU2m−k1

1 )(EU2m−k2
2 ) cov(V k1 , V k2)

=

m∑
s=2

(cos θ)2m−2s(sin θ)2s
∑

1≤k1,k2≤m
k1+k2=s

(
2m

2k1

)(
2m

2k2

)[
EU2(m−k1)

1

][
EU2(m−k2)

2

](
EV 2s − EV 2k1EV 2k2

)
.

Using our previous notations, ηm is the 2m-th moment of N(0, 1). By elementary statistics, ηm = (2m−1)!! =∏m−1
j=0 (1 + 2j). Using this formula, we can prove EV 2s − EV 2k1EV 2k2 ≥ 0. Hence,

cov(Z2m
1 , Z2m

2 ) ≥ 0.

At the same time, we note that cos2 θ = 1− |ρ| and sin2 θ = |ρ|. It follows that

cov(Z2m
1 , Z2m

2 ) ≤
m∑
s=2

(1− |ρ|)m−s|ρ|s ·
∑

1≤k1,k2≤m
k1+k2=s

(
2m

2k1

)(
2m

2k2

)
· ηm−k1ηm−k2ηs

︸ ︷︷ ︸
Bm(s)

≤
[
max
s
Bm(s)

]
·
m∑
s=2

(1− |ρ|)m−s|ρ|s ≤
[
max
s
Bm(s)

]
· |ρ|2.

The claim then follows.

B.2 Proof of Lemma A.2

Suppose the rank of Γ is k ≤ min{k1, k2}. Let Γ = H1ΛHT
2 be the singular value decomposition of Γ. We

note that all singular values have an absolute value no larger than 1. For ` = 1, 2, let H̃` ∈ Rk`,k`−k be such

that [H`, H̃`] form an orthogonal basis of Rk` . Define

A` =
[
H`(I−Λ)1/2, H̃`

]
, ` = 1, 2.

It is easy to see that A`A
′
` = I − H`ΛH′`. Let X1 ∼ N(0, Ik1), X2 ∼ N(0, Ik2), and W ∼ N(0, Ik) be

mutually independent random variables. We claim that(
Z1

Z2

)
(d)
=

(
A1X1 + H1Λ

1/2W

A2X2 + H2Λ
1/2W

)
.

This can be verified by computing the covariance matrix of the right hand side. We shall omit the superscript

(d) in all equations for notation simplicity. Write X` = (XT
`1,X

T
`2)T, corresponding to the first k` and the

last (k` − k) coordinates, respectively, ` = 1, 2. It follows that

‖Z`‖2 = ‖A`X` + H`Λ
1/2W ‖2
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= ‖H`(I−Λ)1/2X`1 + H̃`X`2 + H`Λ
1/2W ‖2

= ‖H`(I−Λ)1/2X`1‖2 + ‖H̃`X`2‖2 + ‖H`Λ
1/2W ‖2,

= ‖(I−Λ)1/2X`1‖2 + ‖X`2‖2︸ ︷︷ ︸
≡U`

+ ‖Λ1/2W ‖2︸ ︷︷ ︸
≡V

, (77)

where the third line is from the zero mean and mutual independence of (X`1,X`2,W ) and the last line is

due to that H′`H` = Ik and H̃`H̃
′
` = Ik`−k. Since (U1, U2, V ) are mutually independent, it follows that

cov
(
‖Z1‖2m, ‖Z2‖2m

)
= cov

 m∑
j1=1

(
m

j1

)
Um−j11 V j1 ,

m∑
j2=1

(
m

j2

)
Um−j22 V j1


=

m∑
j1,j2=1

(
m

j1

)(
m

j2

)
cov(Um−j11 V j1 , Um−j22 V j2)

=

m∑
j1,j2=1

(
m

j1

)(
m

j2

)
(EUm−j11 )(EUm−j22 ) cov(V j1 , V j2). (78)

It is not hard to see that cov(V j1 , V j2) ≥ 0. Hence, cov
(
‖Z1‖2m, ‖Z2‖2m

)
≥ 0. Furthermore, since all entries

of the diagonal matrix Λ are between 0 and 1, we have

U` ≤
k∑̀
j=1

X2
` (j), V ≤ ‖Λ‖

k∑
j=1

W 2(j),

where X`(j)’s and W (j)’s are all iid standard normal variables. In particular,

0 ≤ EUm−j`` ≤ Eχ2(m−j`)
k`

, cov(V j1 , V j2) ≤ EV j1+j2 ≤ ‖Λ‖j1+j2Eχ2(j1+j2)
k .

Plugging these results into (78) gives

cov(‖Z1‖2m, ‖Z2‖2m)

(E‖Z1‖2m)(E‖Z1‖2m)
=

cov(‖Z1‖2m, ‖Z2‖2m)

(Eχ2m
k1

)(Eχ2m
k2

)

≤
m∑

j1,j2=1

‖Λ‖j1+j2

(
m

j1

)(
m

j2

)
(Eχ2m−2j1

k1
)(Eχ2m−2j2

k2
)(Eχ2(j1+j2)

k )

(Eχ2m
k1

)(Eχ2m
k2

)

We note that m is bounded, but (k1, k2, k) can grow with (n, p). Note that Eχ2m
k =

∏m−1
j=0 (k + 2j) for all

k,m ≥ 1. As a result,

(Eχ2m−2j1
k1

)(Eχ2m−2j2
k2

)(Eχ2(j1+j2)
k )

(Eχ2m
k1

)(Eχ2m
k2

)
=

∏m−j1−1
j=0 (k1 + 2j)

∏m−j2−1
j=0 (k2 + 2j)

∏j1+j2−1
j=0 (k + 2j)∏m−1

j=0 (k1 + 2j)
∏m−1
j=0 (k2 + 2j)

=

∏j1+j2−1
j=0 (k + 2j)∏m−1

j=m−j1(k1 + 2j)
∏m−1
j=m−j2(k2 + 2j)

≤ 1.

Therefore,

cov(‖Z1‖2m, ‖Z2‖2m)

(E‖Z1‖2m)(E‖Z1‖2m)
≤

m∑
j1,j2=1

‖Λ‖j1+j2

(
m

j1

)(
m

j2

)
= O(‖Λ‖2). (79)

Noticing that Λ is a diagonal matrix containing the singular values of Γ, we have proved the claim.
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C The case of multivariate Gaussian distributions

We present a corollary about the errors of MAE and BAE for the special case of multivariate Gaussian

distributions. Here Rn(θ̂2) = E[(θ̂2 − θ2)2/θ2
2]. The proof is elementary and omitted.

Corollary C.1. Let Y1, · · · ,Yn be i.i.d. samples of N(µ,Σ). For a constant integer k ≥ 2, we assume the

blocks in BAE are Ji = {(i− 1)k + 1, (i− 1)k + 2, · · · ,min{ik, p}}, 1 ≤ i ≤ dp/ke.

• Suppose Σ = Ip. Then, Rn(θ̂ I
2) ∼ 8

np , Rn(θ̂M
2 ) ∼ 32

3np , and Rn(θ̂B
2 ) ∼ 8(k+3)

(k+2)np .

• Suppose Σ is a block-wise diagonal matrix with 2 × 2 blocks, where each block has diagonals 1 and

off-diagonals ρ ∈ (−1, 1). Let k = 2 in BAE. Then, Rn(θ̂ I
2) ∼ 8

np , Rn(θ̂M
2 ) ∼ 8(4+3ρ2+ρ4)

3np , and

Rn(θ̂B
2 ) ∼ 10

np .

D Simulations for the estimator in Section 5

We conducted simulations to investigate the performance of the estimator of realized ξt in Section 5.

In the first experiment, we generate {Yt}Tt=1 iid from model (1) with a constant covariance matrix Σ. The

covariance is set to be Σij = 0.3|i−j|, which is approximately banded. We fix T = 100 and let p varies. The

results are displayed in Figure 9, where we study both cases of multivariate Gaussian data and multivariate

t4.5 data. We see that the estimated values are very close to the true values in all the cases.

In the second experiment, we generate data using the calibrated covariance matrix from S&P500 stock

returns as in Section 4. In this case, the covariance matrix is heavily non-sparse, however, our estimator still

works very well, no matter for Gaussian data or heavy-tailed data with multivariate t-distributions.
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Figure 9: Estimated ξt (red broken line) versus true ξt (solid black line). The covariance matrix Σ

is sparse. Top four panels: multivariate Gaussian data. Bottom four panels: multivariate t data.
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Figure 10: Estimated ξt (red broken line) versus true ξt (solid black line). The covariance matrix

Σ is calibrated from S&P stock returns and is dense. Top four panels: multivariate Gaussian data.

Bottom four panels: multivariate t data.
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