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ABSTRACT
We collected and cleaned a large dataset on publications in statistics. The dataset consists of the co-author
relationships and citation relationships of 83,331 articles published in 36 representative journals in statistics,
probability, and machine learning, spanning 41 years. The dataset allows us to construct many di!erent
networks, and motivates a number of research problems about the research patterns and trends, research
impacts, and network topology of the statistics community. In this article we focus on (i) using the citation
relationships to estimate the research interests of authors, and (ii) using the co-author relationships to
study the network topology. Using co-citation networks we constructed, we discover a “statistics triangle,”
reminiscent of the statistical philosophy triangle (Efron 1998). We propose new approaches to constructing
the “research map” of statisticians, as well as the “research trajectory” for a given author to visualize his/her
research interest evolvement. Using co-authorship networks we constructed, we discover a multi-layer
community tree and produce a Sankey diagram to visualize the author migrations in di!erent sub-areas.
We also propose several new metrics for research diversity of individual authors. We "nd that “Bayes,”
“Biostatistics,” and “Nonparametric” are three primary areas in statistics. We also identify 15 sub-areas, each
of which can be viewed as a weighted average of the primary areas, and identify several underlying reasons
for the formation of co-authorship communities. We also "nd that the research interests of statisticians
have evolved signi"cantly in the 41-year time window we studied: some areas (e.g., biostatistics, high-
dimensional data analysis, etc.) have become increasingly more popular. The research diversity of statis-
ticians may be lower than we might have expected. For example, for the personalized networks of most
authors, the p-values of the proposed signi"cance tests are relatively large.
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1. Introduction

In the past decades, the size of the scienti!c community has
grown substantially. The rapid growth of the scienti!c com-
munity motivates many interesting Big Data projects, and one
of them is how to use the vast volume of publications of a
scienti!c !eld to delineate a complete picture of the research
habits, trends, and impacts of this !eld. These studies are useful
for examining national and global scienti!c publication-related
activities, ranking universities, and making decisions of fund-
ing, promotions, and awards.

There are two main approaches to studying scienti!c publi-
cations, the subjective approach and the quantitative approach.
The subjective approach is more traditional, but it is time-
consuming and susceptible to bias. The quantitative approach
(which uses statistical tools for analyzing such data) is compa-
rably inexpensive, fast, objective, and transparent, and will play
an increasingly more important role (Silverman 2016).

From a statistical standpoint, most existing quantitative
approaches are overly simple, using preliminary metrics (e.g.,
counts of articles or citations) for analysis. The h-index and
journal impact factor are examples of more sophisticated
approaches, but they are still not principled statistical methods.
Statistical modeling of publication data is a signi!cantly
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underdeveloped area, where we have only a small number of
interesting articles, sparsely scattered over the spectrum, and
typically, each focusing on only a speci!c problem.

On the other hand, this can also be viewed as a golden
opportunity for statisticians. The publication data provide a
valuable data resource, important problems in science and social
science, and interesting Big Data projects that demand sophis-
ticated statistical tools. Having seen such an opportunity, Hall
encouraged statisticians to take on a more active role in such
research (Hall 2011). Hall’s viewpoint is shared by Donoho
(2017), among others. In his illuminating article “50 Years of
Data Science” (Donoho 2017), Donoho predicted that “science
about data science” will become one of the major divisions of
data science, and one task of this division is to evaluate scienti!c
research outputs.

This article is a response to the call by Hall and others. We
contribute a large-scale high-quality dataset on the publications
of statisticians and use it to showcase how modern statistical
tools can be employed for analysis of such kind of data.

1.1. A New Dataset About the Publications of Statisticians
We present a new dataset about the publications of statisticians,
collected and cleaned by ourselves with enormous e"orts. The
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dataset consists of co-author relationships and citation relation-
ships of 83K research articles published in 36 representative
journals in statistics, probability, machine learning, and related
!elds, spanning 41 years. See the table below. More information
of these journals is presented in Table B.1 of the supplement.

#Journals Time span #Authors #Articles

36 1975–2015 47,311 83,331

One might think that the dataset is easy to obtain, as BibTeX
and citation data seem to be easy to download. Unfortunately,
when we need a large-volume, high-quality dataset, this is not
the case. For example, the citation counts from Google Scholar
are not always accurate, and many online resources do not allow
for large volume downloads. Our data were downloaded from
a handful of online resources by techniques including but not
limited to web scraping. The dataset was also carefully cleaned
by a combination of manual e"orts and computer algorithms we
developed. Both data collection and cleaning are sophisticated
and time-consuming processes, during which we had to over-
come a number of challenges. For a detailed discussion on data
collection and cleaning, see Section B.2 of the supplement.

1.2. Results, Findings, and Challenges

First, we overview the results. Our dataset provides rich mate-
rial for research and motivates many interesting problems for
research trends, patterns, and impacts of the statistics commu-
nity. In this article, we focus on two topics: (1) How to use the
citation data to estimate the research interests of statisticians,
and (2) How to use the co-authorship data to study the network
topology of statisticians.

Section 2 studies the !rst topic. How to model the research
interests of an author is an open problem in bibliometrics. Our
idea is to !rst use the co-citation relationships to construct a
citee network and then model the research interests of the author
as the mixed-memberships he/she has over di"erent network
communities. This gives rise to the degree-corrected mixed-
membership (DCMM) model (Jin, Ke, and Luo 2017). Such a
framework allows us to use principled statistical tools to attack
problems about research interests. Speci!cally, we develop new
models, methods, and theory for (i) estimating the research
interests of authors, (ii) clustering authors by research interests,
(iii) studying how the research interests of an author evolve
over time, and (iv) measuring the research interest diversity
of individual authors. We discover a “Research Map” (a cloud
of points in R2, each representing the research interests of an
author), which consists of a “statistics triangle” and 15 sub-
regions. The vertices of the triangle represent the three primary
research areas in statistics: “Bayes,” “Biostatistics,” and “Non-
parametric,” and each sub-region represents an interpretable
sub-area in statistics. The relative position of each author to the
three vertices represents the weights of his/her research interests
in the three primary areas. We also develop a new algorithm that
allows us to plot the “research trajectory” on the “Research Map”
for an author to visualize the evolvement of his/her research
interests over time, and propose two new metrics to measure
the citation diversity of individual authors.

Section 3 studies the second topic, where the focus is commu-
nity detection. We develop new models and methods for (i) hier-
archical clustering, (ii) dynamic clustering, and (iii) measuring
the co-authorship diversity. For (i), we develop a new approach
and build a 4-layer community tree with 26 leaves. Each leaf
represents an interpretable co-authorship community where the
authors may have some ties (e.g., colleagues, advisor-advisee) or
share something (e.g., research interests or geological location)
in common. For (ii), we use a Sankey plot to visualize the birth
and growth of some communities and the migration of authors
among di"erent communities. For (iii), we propose a new idea
to measure the research diversity of an author, by constructing
the so-called “personalized networks.”

Second, we discuss our !ndings. First, it is debatable what
are primary areas and representative sub-areas in statistics.
In Section 2, we suggest that “Bayes,” “Biostatistics,” and
“Nonparametric” are the three primary areas in statistics, and
identify 15 representative sub-areas. The “statistics triangle” is
reminiscent of Efron’s triangle of statistical philosophy (Efron
1998), where the three vertices are “Bayes,” “Fisherian,” and
“Frequentist.” Note that our triangle is based on data while
Efron’s triangle is more philosophical. Second, in the 41-
year time span of our dataset, the research community of
statistics has undergone signi!cant changes: Some research
areas (e.g., biostatistics) have become much more popular.
Some research areas (e.g., nonparametric and semiparametric
regressions) have signi!cantly shi#ed the focus (e.g., with a
signi!cant surge of interest in high-dimensional data analysis
a#er 2000). Last, the research of statisticians may be less diverse
than expected: most researchers continue to collaborate with
the same cluster of people over many years, with a large
p-value for the signi!cance test over his/her personalized
network.

Last, we discuss some challenges we face. Getting meaningful
results from a large dataset is never easy (let alone the time
and e"orts required for obtaining the dataset). We need new
methods for computing trajectories in Section 2.2 and for con-
structing hierarchical community tree in Section 3.1. We also
need new ideas to relate research interests to network mixed-
memberships in Section 2.1 and to connect research diversity
of an author to a network global testing problem on his/her
personalized networks in Section 3.3.

Even with a handful of new approaches we develop, we still
face great challenges: how to properly construct the network and
choose the model, how to make inference, and how to interpret
the results. To deal with such challenges, we need many new
ideas. For example, in Section 2, we discover that ignoring some
“old” citations makes the constructed citee network more useful.
We also !nd that, to get meaningful results, it is critical to use
a network model that allows for severe degree heterogeneity.
Also, in our study for “research trajectory,” we !nd that naively
applying existing spectral approaches may face challenges, and
to overcome the challenge, we propose dynamic network embed-
ding as a new approach to dynamic network analysis. There are
many such examples in Sections 2 and 3.

In summary, our !ndings are the combined results of (a)
a large-scale high-quality dataset we collected, (b) many new
approaches we developed, and (c) many new ideas and sub-
stantial e"orts in data analysis. We will make our dataset and
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code available so researchers can conveniently use our study as
a template to study other research communities.

1.3. Contributions, Broader Impacts, and Disclaimers

We have several major contributions. First, we contribute a high-
quality, large-scale dataset, which provides material for research
in bibliometrics, statistics, and data science. Second, we set an
example for how quantitative analysis of large publication data
can be executed. We create a template where we showcase how to
use modern statistical tools to study a vast volume of publication
data. We build large co-authorship and co-citation networks,
propose new network models, and demonstrate how to use the
output to label research areas, identify latent communities, and
measure research diversities. While we use the statistics com-
munity as our object of study in this template, our approaches
(data collection, research template, methods, and theory) are
easily extendable to study other scienti!c communities (e.g.,
economics). Third, while our focus is on the new dataset, we
also contribute in methods and theory. We introduce a handful
of methods for network data analysis; some are new, and some
are carefully adapted from the recent literature. Our approaches
to computing research trajectory, building community tree, and
measuring research diversity are especially novel. Last but not
the least, as statisticians, we know partial ground truth of our
community. For this reason, our dataset may provide a bench-
mark for comparing di"erent methods in statistics, machine
learning, and especially network analysis, and so largely help the
development of methods and theory in these areas.

Our study has (potential) impacts in science, social science,
and even real life. It provides an array of ready-to-use and
easy-to-extend statistical tools which the administrators, award
committee, and individuals can use to study the research pro!le
of an individual, an area, or the whole statistics community.
For example, suppose a committee wishes to learn the research
pro!le of an individual researcher. Our study provides a long list
of tools to help characterize and visualize the research pro!le of
the researcher: his/her research interests and his/her position on
the Research Map, his/her research interest trajectory, to which
network community he/she belongs, his/her research diversity
in terms of citation and in terms of co-authorship, his/her
personalized networks, the importance of his/her research area,
his/her research impact and ranking relative to his/her peers.
Such information is not available from his/her curriculum vitae
or pro!le on Google Scholar, and can be very useful for the
award committee or administrators for decision making.

Our study also provides a useful guide for researchers (espe-
cially, junior researchers) in selecting research topics, looking
for references, and building social networks. It also helps under-
stand several important problems in social science and science:
characterizing research evolvement, predicting emerging com-
munities and signi!cant advancement in each research area,
checking whether the development of di"erent areas is balanced,
and identifying unknown biases in publications. We discuss
these with more details in Section 4.

For disclaimers, note that we have to use real names as our
data are about real-world publications, but we have not used any
information that is not publicly available. It is not our intention
to rank a researcher (or an article, or an area) over others. While

we tried very hard to create a high-quality dataset, the time and
e"ort one can invest is limited, so is the scope of our study; as
a result, some of our results may have biases. Our article can be
viewed as a starting point for an ambitious task, where we create
a research template with which the researchers in other !elds
(e.g., economics) can use statisticians’ expertise in data analysis
to study their own !elds. For this reason, the main contributions
of our article are still valid. See Section A of the supplement for
a longer version of the disclaimers.

1.4. Contents

Section 2 studies co-citation networks, where the focus is to
study how to estimate the research interests of an author and
how the research interests evolve over time. Section 3 focuses
on co-authorship networks. It studies hierarchical and dynamic
community detection, and proposes two new diversity mea-
sures. Section 4 is the conclusion.

2. Learning Research Interests by Co-Citation
Networks

A good understanding of the research interests of statisticians
helps understand the research trends, research impacts, and
network topology of the statistics community, and also helps
understand the research pro!le of individual statisticians. For
example, suppose we are given an author with a total of 1000
citation counts. To decide whether he/she is highly cited, it is
crucial to understand his/her major areas of interest, because
the average citation count for a researcher in one area may be
a few times higher than that of another.

The citation counts in our dataset provide a valuable resource
to study the research interests. In this section, we consider four
problems: (a) how to model the research interests of individual
authors; (b) how to estimate his/her research interests and how
to use the estimated research interests for author clustering; (c)
how to study the dynamic evolvement of research interests of
an author; (d) how to measure the diversity of research interests
of an author. We propose new approaches to studying (a)–(d).
Below is a sketch of our ideas.

Consider Problem (a) !rst. How to model research interests
of individual authors is an open problem. We observe that two
authors being frequently cited together in the same articles (i.e.,
co-cited) indicates that their works are scienti!cally related and
that they share some common research interests. Motivated by
this, we propose the following approach to tackling Problem
(a). First, we use the co-citation relationship to construct an
undirected network which we call the citee network (see Sec-
tion 2.1). We assume that the citee network has K communities,
each representing a primary research area in statistics (primary
areas can be further divided into sub-areas). For author i, we
model his/her research interest as a weight vector πi ∈ RK ,
with πi(k) being the fraction of his/her interest in community k,
1 ≤ k ≤ K. We further model the citee network with the recent
Degree Corrected Mixed-Membership (DCMM) model, where πi
are the vectors of mixed-memberships.

In a network, communities are tight-knit groups of nodes
that have more edges within than between (Goldenberg et al.
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2010). For example, suppose K = 3 and we have three com-
munities, each being a primary area in statistics: “Bayes,” “Bio-
statistics,” and “Nonparametric.” Suppose for author i, πi =
(0.5, 0.3, 0.2)′. In this case, we think author i has 50%, 30%, and
20% of his research interest or impact in these primary areas,
respectively.

The DCMM model is a recent network model (Jin, Ke, and
Luo 2017; Zhang, Levina, and Zhu 2020). It models both severe
degree heterogeneity and mixed-memberships and is reasonable
for the current setting. Let A ∈ Rn,n be the adjacency matrix
of the citee network, where A(i, j) = 1 if i $= j and there
is an edge between nodes i and j and A(i, j) = 0 otherwise.
As above, let πi be the K-dimensional vector that models the
research interests of author i, 1 ≤ i ≤ n. For a nonnegative,
unit-diagonal matrix P ∈ RK,K that models the community
structure and parameters θ1, θ2, . . . , θn > 0 that model the
degree heterogeneity, we assume that the upper triangle of A
contains independent Bernoulli variables, where for any 1 ≤ i <

j ≤ n,

P
(
A(i, j) = 1

)
= θiθj

K∑

k,#=1
πi(k)πj(#)P(k, #) = θiθj · π ′

i Pπj.

(2.1)
This provides a reasonable model for the research interests of
individual authors, and addresses an interesting problem in
social science and bibliometrics.

Consider Problems (b) and (c). We !rst use the mixed-
SCORE (Jin, Ke, and Luo 2017) to estimate the research interests
of individual authors. We discover a statistical triangle and build
the Research Map for statisticians. We then develop a new idea
to compute the research trajectory of an author. To this end, we
need a new clustering algorithm for building the research map,
and a new algorithm to draw the trajectory. We now discuss
them separately.

The clustering problem is well-studied (e.g., Zhao, Levina,
and Zhu 2011; Amini et al. 2013, among others). Unfortunately,
these algorithms have focused on the DCBM model (Karrer
and Newman 2011). Compared to the DCMM model in (2.1),
DCBM requires each πi to be degenerate (one entry is 1, all
other entries are 0), and is not appropriate for the citee network
considered here. Our idea is to combine mixed-SCORE (Jin,
Ke, and Luo 2017) with classical clustering algorithms. Suppose
we have estimated the research interest vectors π1, π2, . . . , πn
by mixed-SCORE, and let π̂1, π̂2, . . . , π̂n be the estimates. We
view this step as a dimension reduction step, and propose an
author clustering algorithm where we directly apply k-means
to π̂1, . . . , π̂n. Compared to existing clustering algorithms, our
method works for the DCMM model where we allow mixed-
memberships, and so is di"erent.

The problem of estimating the trajectory is related to the
problem of dynamic mixed-membership analysis. Consider a
sequence of citee networks, each for a di"erent time window. We
extend the DCMM model for static networks in (2.1) to dynamic
networks, where πi may vary with time. In such a setting, how
to estimate πi is largely an open problem. Related works include
Kim et al. (2018) and Liu et al. (2018), but these articles focus
on settings where each static network satis!es the MMSB model
(a special DCMM where we do not allow degree heterogeneity).
For this reason, it is unclear how to extend their approaches to

our setting. The approach of naively applying mixed-SCORE to
each individual network in our setting does not work well either;
see Section 2.2.

We propose the dynamic network embedding as a new
approach to analyzing dynamic DCMM. For each author
in our dataset, the approach produces a research trajectory
which visualizes how his/her research interests evolve over
time. Compared with the approach where we naively apply
mixed-SCORE to each network in our setting separately,
two approaches are the same for the !rst time window, but
are signi!cantly di"erent for all other time windows; the
new approach is more satisfactory both numerically and
theoretically.

Consider Problem (d). How to measure the diversity of the
research interests of individual authors is a problem of great
interest. Using the research trajectory developed for Problem (c),
we propose two diversity metrics: One measures the signi!cance
of research interest expansion of an author and the other mea-
sures his/her persistence of research interest expansion. Com-
pared with other diversity metrics, our metrics are new, for
they are based on our proposed new approach to estimating the
research trajectories.

Sections 2.1, 2.2, and 2.3 discuss Problem (b), (c), and (d)
respectively. Note that Problem (a) is already fully addressed.

2.1. Estimation of Research Interests, Author Clustering

We construct a citee network using the co-citations during
1991–2000. We limit the time to 1991–2000, for later we will
use this network as a reference network to study the research
trajectories of selected authors. For each year t, 1991 ≤ t ≤
2000, de!ne a year-t weighted network where each node is an
author, and for any two nodes i and j, the weight of the edge
between them is the number of times that the articles by author
i published between year t − 9 to t and the articles by author j
published between year t − 9 and t have been cited together in
an article by another author published in year t. This results in
a weighted adjacency matrix for year t. Summing the adjacency
matrices for t = 1991, 1992, . . . , 2000 gives rise to a weighted
network. Let the degree of node i be the sum of weights of edges
between node i and the other nodes. We remove all nodes with
a degree smaller than or equal to 60, and de!ne a symmetric
unweighted network using the remaining nodes, where two
nodes have an edge if and only if the weight between them in the
previous network is no less than 2. We call the giant component
of this network the citee network for 1999 and 2000, which has
2831 nodes (these nodes form a subset of most active and most
cited authors).

There are di"erent ways to construct the citee network (we
have studied many options and recommend the one above). We
restricted to “fresh” citations only (a citation from one article
to the other is considered “fresh” if the two publication times
are no more than 10 years apart). We have removed low-degree
nodes and low-weight edges in the intermediate weighted graph
to reduce noise. In Section C.3 of the supplement, we have
also studied the case where the threshold 60 is replaced by 50
and 70, and observed similar results (e.g., similar triangle and
research map for statisticians). Thresholding the edge weights
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is a common practice. It may cause some information loss. But
since the goal is to identify active communities, it is unclear
how such a loss may a"ect the results. Also, just as in di"erent
!elds of science, the average citations (per article or author) can
vary dramatically in di"erent areas. For this reason, we may
threshold the edge weights adaptively with di"erent thresholds
for di"erent areas. However, it is not immediately clear how
to implement such an approach. We leave these studies to the
future.

We wish to use this citee network to study the research
interests of individual authors. We model this network with the
aforementioned DCMM model (2.1). Under this model, each
of the K communities can be interpreted as a research area,
and the research interest of author i is modeled by the mixed-
membership vector πi ∈ RK . How to estimate πi is known
as the problem of mixed-membership estimation, where we
use the method mixed-SCORE (Jin, Ke, and Luo 2017). The
approach uses SCORE embedding which embeds all authors to
a low dimensional space and provides a way to visualize the
research interest of each author. Speci!cally, let ξ̂1, . . . ξ̂K ∈
Rn be the !rst K eigenvectors of the adjacency matrix. Each
node i is embedded into a (K − 1)-dimensional space by the
vector

r̂i =
[
ξ̂2(i)/ξ̂1(i), ξ̂3(i)/ξ̂1(i), . . . , ξ̂K(i)/ξ̂1(i)

]
, 1 ≤ i ≤ n.

(2.2)
Now, !rst, the embedded points are approximately contained in
a simplex with K vertices in RK−1, where each vertex represents
a community. Second, each embedded point r̂i is approximately
a convex combination of the vertices: r̂i ≈ ∑K

k=1 wi(k)vk, where
v1, v2, . . . , vK are the vertices of the simplex. The weight vector
wi is an order-preserving transformation of πi, in the sense that
wi ∝ πi ◦ b, where ◦ is the Hadamard product and b ∈ RK is a
positive vector (not depending on i). Therefore, if an embedded
point r̂i is close to one vertex, then wi is nearly degenerate (with
only one nonzero entry that is 1), and node i is a pure node (i.e.,
node i is called a pure node of community k if πi(k) = 1 and
πi(#) = 0 for all # $= k). If r̂i is deeply in the interior of the
simplex, then all entries of wi are bounded away from 0 and
node i is highly mixed; see Jin, Ke, and Luo (2017) for more
discussions.

Why K = 3 is the Most Reasonable Choice. To use mixed-
SCORE, we need to decide K, which is unknown. First, we
use the scree plot of the adjacency matrix to determine the
range of K as [2, 6]. Second, we implemented mixed-SCORE
for each K ∈ {2, 3, . . . , 6} and investigated the goodness of
!t, by checking whether the rows of R̂ !t the aforementioned
(K − 1)-dimensional simplex structure (it is hard to visualize
the simplex when K ≥ 4, so we plot two coordinates of r̂i’s at
a time to visualize a projection of the simplex to R2). Last, for
each K, we manually check the large-degree pure nodes in each
community and see whether the results !t with our knowledge
of the statistics community. The above analysis suggests K =
3 as the best choice. See Section C.2 of the supplement for
details.

The Statistics Triangle. Since K = 3, the simplex in SCORE
embedding is a triangle, each vertex representing (perceivably)
a primary statistical research area. See Figure 1. To interpret

these areas, we apply mixed-SCORE to the citee network with
K = 3, and obtain an estimate for the membership vectors
π1, π2, . . . , πn by π̂1, π̂2, . . . , π̂n. We divide all the nodes into
three groups: If the largest entry of π̂i is the kth entry, then
node i is assigned to group k, 1 ≤ k ≤ 3. In Section C of the
supplement, we investigate the research interests of authors in
each group, using the topic weights estimated from abstracts of
their articles. It suggests that the three vertices represent three
primary research areas: “Bayes,” “biostatistics,” and “nonpara-
metric statistics.” This triangle is reminiscent of the statistics
philosophy triangle by Efron (1998), where the three vertices are
“Bayes,” “Fisherian,” and “frequentist.” Efron argued that they
are the three major philosophies in statistics, and most statistics
methodologies (e.g., bootstrap) can be viewed as weighted aver-
ages of these three philosophies. Di"erent from Efron’s triangle,
our statistics triangle is data-driven.

The Research Map. Perceivably, we can further split each primary
area into sub-areas, and a convenient approach is to use SCORE
embedding. For each author i in the citee network, 1 ≤ i ≤ n,
since K = 3, r̂i can be viewed as a point in R2. The distance
between authors in this space is a measure of closeness of
their research areas. Therefore, it makes sense to further cluster
the authors into sub-areas by applying the K-means algorithm
to {r̂i}n

i=1. We have tried the K-means algorithm with L =
10, 11, . . . , 20 clusters, and picked L = 15 due to that the result
is most reasonable. We then apply the K-means with L = 15 and
obtain 15 clusters, each of which can be interpreted as a sub-area
in statistics a#er a careful investigation of the research works
by representative authors in the cluster (while we try very hard
to !nd a reasonable label for each cluster, we should not expect
that a simple label is able to explain the research interests of all
authors in the cluster).

Figure 1 shows the 15 clusters and their labels, which we
call the research map of the citee network. In this map, each
point represents r̂i for some node i, 1 ≤ i ≤ n, and the
two axes are the two entries of r̂i, respectively. The statistics
triangle is illustrated by the dashed green lines, where the three
vertices are estimated by mixed-SCORE and represent the three
primary areas “Bayes,” “Biostatistics,” and “Nonparametric.” We
also present the Voronoi diagram for the clusters (boundaries
are illustrated by dashed blue lines), and the names for the 5
authors with the largest degrees in each cluster.

For each author, his/her position on the research map illus-
trates the weight his/her citation has in each of the three primary
areas. For example, Raymond Carroll and Bradley Efron are
located deeply in the interior of the triangle, suggesting that
their citations between 1991 and 2000 have substantial weights
in each of the three primary areas. Authors who are located
around each corner of the triangle include Nicholas Polson
(“Bayes”), Michael Proschan (“Biostatistics”), and Theo Gasser
(“Nonparametric”), suggesting that their citations between 1991
and 2000 are mostly from one community. Note that, since the
results are based on the citee network, the areas from which an
author attracts citations may not be exactly the same as the areas
he/she works on. For example, though Donald B. Rubin rarely
works in Longitudinal I (GEE), he is clustered to GEE for he is
cited together with quite a few authors in GEE (e.g., Scott Zeger,
Nan Laird, and Daniel F. Heitjan).



474 P. JI ET AL.

Figure 1. The research map. Each gray dot represents a 2-dimensional SCORE embedding vector r̂i , 1 ≤ i ≤ n, and the 15 clusters and Voronoi diagram are obtained by
applying the K-means algorithm to r̂1, r̂2, . . . , r̂n . The dashed green line represents the triangle, where the vertices represent the 3 primary areas. In each cluster, the cluster
center is also presented (blue crosses), together with 5 authors with highest degrees (blue dots). The results are based on citations: it is possible that an author does not
work in an area, but have many citations in that area.

2.2. Evolvement of Author Research Interests

The research map in Figure 1 was established using the co-
citations during 1991–2000. We now study how individual
authors’ research interests evolve between 2001 and 2015, and
propose dynamic network embedding as a new approach. For
each author, the approach produces a trajectory on the research
map to visualize his/her research interest evolvement.

We consider 21 time windows (see Table 1) and construct
a citee network for each of them. As the numbers of articles
published per year are steadily increasing, we use gradually
smaller windows so the average node degrees of all 21 citee
networks are roughly the same. We use the citee network for
the !rst window (1991-2000) asthe reference network for our
study below. This network is the same as the citee network
that we use to study the statistics triangle and the research
map in Figure 1. Recall that this network has 2831 nodes. We
restrict each of the other 20 networks to the same set of nodes.
We propose a dynamic DCMM model by extending the (static)
DCMM model (2.1). Consider T citee networks for the same set

Table 1. The 21 time windows we use to study the research trajectories.

Window 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Start 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11
End 00 01 01 02 03 04 04 05 06 07 07 08 09 10 10 11 12 13 13 14 15
Length 10 10 9 9 9 9 8 8 8 8 7 7 7 7 6 6 6 6 5 5 5

NOTE: For example, the !rst window is from 1991 to 2000, covering a 10-year time period.

of n nodes, and let A1, A2, . . . , AT be the adjacency matrices. Let
P ∈ RK,K be the time-invariant community structure matrix,
and let θ

(t)
i > 0 and π

(t)
i ∈ RK be the degree parameter and

mixed membership vector of node i at time t, 1 ≤ i ≤ n, 1 ≤
t ≤ T. Write θt = diag(θ1t , . . . , θnt) and %t = [π1t , . . . , πnt]′.
Given {(θt , %t}T

t=1, we assume A1, A2, . . . , AT are independently
generated. Also, the upper triangle of At contains independent
Bernoulli variables satisfying

P
(
At(i, j) = 1

)
= θ

(t)
i θ

(t)
j · (π

(t)
i )′P(π

(t)
j ), 1 ≤ i < j ≤ n.

(2.3)
Here, we assume A1, A2, . . . , AT are independent given
{(θt , %t}T

t=1, but this can be relaxed to allow for weak depen-
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dence. Also, to allow $exible temporal dependence in
{(θt , %t}T

t=1, we do not impose any extra conditions on them.
How to estimate π

(t)
i is known as the problem of dynamic

mixed membership estimation. Existing works include Kim
et al. (2018); Liu et al. (2018). However, these works focus on
the dynamic MMSB model (a special dynamic DCMM) where
it is required θ

(t)
i ≡ αt for all 1 ≤ i ≤ n at each time t. It is

therefore unclear how to extend their ideas to our setting.
Alternatively, one may use naive mixed-SCORE (i.e., we

apply mixed-SCORE to each network in the sequence sepa-
rately). Unfortunately, the approach is also unsatisfactory. One
challenge is that the estimates {π̂ (t)

i }1≤i≤n for each time window
t are up to an unknown permutation among the K communities.
Since we have T di"erent time windows, we have a large number
of possible combinations of such permutations, and it is unclear
how to pick the right one. The other challenge is that, each
At is constructed for a relatively short time period, and can
be very sparse. In such cases, spectral decomposition of At
may be rather noisy, and the naive mixed-SCORE may perform
unsatisfactorily.

We propose dynamic network embedding as a new approach
to dynamic mixed membership estimation. Note that the net-
work A1 from the !rst window was used in Section 2.1 to build
a “research map” for all the authors. This motivates us to treat
A1 as a reference network and project all the other networks
onto this “research map.” Let λ̂1, λ̂2, . . . , λ̂K be the K largest
eigenvalues (in magnitude) of A1, and let ξ̂1, ξ̂2, . . . , ξ̂K be the
corresponding eigenvectors. For each 1 ≤ t ≤ T and each node
1 ≤ i ≤ n, de!ne a (K − 1)-dimensional vector r̂(t)

i by (ei: the
ith standard basis vector of Rn)

r̂(t)
i (k) = [λ̂1(e′

iAt ξ̂k+1)]/[λ̂k+1(e′
iAt ξ̂1)], 1 ≤ k ≤ K − 1.

(2.4)
Now, for each time t, we obtain the low-dimensional embedding
{r̂(t)

i }1≤i≤n of all n nodes, and for each node i, we obtain the
embedded “trajectory” as (r̂(1)

i , r̂(2)
i , . . . , r̂(T)

i ). For t = 1, r̂(1)
i

coincides with the SCORE embedding (2.2). It implies that the
starting point of each embedded trajectory is always the position
of this author in the “research map.” For t > 1, the proposed
embedding is di"erent from the SCORE embedding (2.2) for
At . Note that in (2.2), we use the eigenvectors of At to construct
the embedding at t, while in Equation (2.4), we use the eigen-
vectors and eigenvalues of A1 to construct the embeddings for
all t.

We now explain how the approach overcomes the two chal-
lenges aforementioned. First, the new approach uses the same
(ξ̂1, ξ̂2, . . . , ξ̂K) to obtain the embeddings for all t, so that these
networks are projected to the same low-dimensional space.
Consequently, the projected points r̂(t)

i are automatically aligned
across time. Second, in spectral projection and its variants (e.g.,
SCORE), the data to project (rows of At) and the projection
directions (eigenvectors of At) are dependent of each other. On
the contrary, in Equation (2.4), the data to project, Atei, and
the projection direction, ξ̂k, are independent of each other, for
any t ≥ 2. Thus, the projected points are much less noisy. In
the preliminary theoretical analysis, we !nd that r̂(t)

i has a sharp
large-deviation bound even when At is very sparse and when ξ̂k

is only a moderately good estimate of the population eigenvector
of A1.

We explain why the approach is reasonable. De!ne a
population counterpart of Equation (2.4). In model (2.3), let
((t) = diag(θ (t)

1 , . . . , θ (t)
n ), %(t) = [π (t)

1 , . . . , π (t)
n ]′, and )t =

((t)%(t)P(%(t))′((t), 1 ≤ t ≤ T. Let * = diag(λ1, λ2, . . . , λK)

and + = [ξ1, ξ2, . . . , ξK], where λk is the kth largest (in
magnitude) eigenvalue of )1 and ξk is the corresponding
eigenvector. For 1 ≤ t ≤ T and 1 ≤ i ≤ n, de!ne r(t)

i ∈ RK−1

by

r(t)
i (k) = [λ1(e′

i)tξk+1)]/[λk+1(e′
i)tξ1)], 1 ≤ k ≤ K − 1.

(2.5)

Theorem 2.1. Consider the dynamic DCMM model (2.3). For
each 1 ≤ t ≤ T, letting Mt = P(%(t))′((t)+*−1 ∈ RK,K ,
we suppose rank(Mt) = K and min1≤k≤K{Mt(1, k)} > 0. Let
v(t)

k = 1
Mt(k,1) [Mt(k, 2), Mt(k, 3), · · · , Mt(k, K)]′, 1 ≤ k ≤ K,

and let S t ⊂ RK−1 be the simplex with K vertices v(t)
1 , . . . , v(t)

K .
For all 1 ≤ t ≤ T, !rst, each r(t)

i is contained in the simplex
St . If i is a pure node of community k (π (t)

i = ek), then r(t)
i

is located on the vertex v(t)
k . If i is not a pure node of any

community, then r(t)
i is in the interior of St (including the

edges and faces, but not any of the vertices). Second, each r(t)
i

is a convex combination of v(t)
1 , v(t)

2 , . . . , v(t)
K , denoted by r(t)

i =
∑K

k=1 w(t)
i (k)v(t)

k . The coe%cient vector w(t)
i ∈ RK satis!es that

w(t)
i = (π

(t)
i ◦ ht)/||(π (t)

i ◦ ht)||1, where ◦ is the Hadamard
product and ht ∈ RK is a positive vector that does not depend
on i.

Theorem 2.1 is proved in the supplement. By Theorem 2.1, in
the noiseless case, the embedded data cloud {r(t)

i }1≤i≤n at every
t form a low-dimensional simplex, similar to that in Jin, Ke, and
Luo (2017). We can then borrow the idea there and estimate
π

(t)
i from the embedded data cloud via a simplex vertex hunting

algorithm. This explains the rationale of our procedure. To focus
on real data analysis, we relegate more detailed analysis of the
approach to a forthcoming article. We now apply the procedure
to our dataset.

Research Trajectories for Individual Authors. Recall that we have
constructed a 2831-node citee network for each of the 21 time
windows in Table 1. Applying Equation (2.3), we get an embed-
ding r̂(t)

i for each author i at each time t. Viewing r̂(t)
i as a

point on the research map, we have 21 points for author i,
each corresponding to a time window. Connecting these time-
ordered points gives rise to the research trajectory of author i,
which visualizes how the research interests of author i evolve
over time. The starting point of his/her research trajectory is the
same as his/her position in the research map in Figure 1.

In Figure 2, we present the research trajectories of a handful
of representative authors in statistics. For better visualization,
note that the whole region covered by Figure 2 is the zoom-
in of the rectangular region bounded by dashed yellow lines
in Figure 1. Since all of these authors happen to be in the
reference citee network, the starting point of each author’s tra-
jectory is the same as his/her position on the research map in
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Figure 2. Research trajectories of representative authors (this is a zoomed-in view
of the region in Figure 1 within the dashed yellow square, with the same Voronoi
diagram). Each trajectory has 21 knots, corresponding to the 21 time windows
in Table 1 (knots 1, 11, and 21 are marked with 1, 11, and 21, respectively). The
starting point (marked with 1) is the same as the author’s position in Figure 1. For
interpretation, we selected some authors we are familiar with, but we can plot the
trajectory for any author with a reasonably long publication history in our dataset.
The results are based on citations: it may happen that an author (e.g., D. Rubin) does
not work in an area, but have many citations in that area.

Figure 1. We have the following observations: (a) A few authors
(e.g., Xihong Lin, Jun Liu, Xiao-Li Meng, Larry Wassermann,
and Bin Yu) exhibit a signi!cant change of research interest
from 2000 to 2015, suggesting that they persistently tried to
broaden their research horizon and scope of interest. (b) The
research trajectories of Peter Bickel, Raymond Carroll, Jianqing
Fan, Peter Hall, and Robert Tibshirani stayed in the regions of
Decision Theory and Non-parametric I and II, and the research
trajectories of Danyu Lin, Donald Rubin, and Zhiliang Ying
stayed in the regions of Survival Analysis II and Longitudinal
I (GEE). A possible reason is that the research areas of these
authors in 1991–2000 continued to be “hot areas” for the time
period 2000–2015. (c) The two subregions, Non-parametric I
and II, are among the most “popular” research areas between
1991 and 2015. Research leaders (e.g., Peter Bickel, Jianqing Fan,
Peter Hall, and Robert Tibshirani) who worked in these areas in
1990s continued to work in these research areas in 2000–2015.
At the same time, research leaders who used to work on some
seemingly distant areas or in distant regions (e.g., Xihong Lin,
Jun Liu, Larry Wasserman, and Bin Yu) gradually migrate to the
center of these two regions. These two sub-areas highly overlap
with the research area of high-dimensional data analysis, which
was one of the most rapidly growing areas in statistics between
2000 and 2015. The claim is con!rmed by investigating more
authors in these two subregions.

2.3. Diversity of Author Research Interests

The research trajectories in Section 2.2 suggest that research
interests of some authors may vary more signi!cantly than
those of others. This motivates us to propose some metrics

Figure 3. The two diversity metrics of 1,202 authors (x-axis: se−distance; y-axis:
max−distance). The red dots represent the 10 highest-degree authors. The orange
dots represent (among the top 200 highest-degree nodes) the 5 authors with
the largest se−distance and the 5 authors with the largest di"erences between
max−distance and se−distance.

for research diversity of individual authors. Recall that the 21
knots for the trajectory of author i are r̂(1)

i , . . . , r̂(21)
i . We intro-

duce two diversity metrics: Ei = ||r̂(21)
i − r̂(1)

i || and Mi =
max2≤k≤21 ||r̂(t)

i −r̂(1)
i ||,1 where Ei is called se−distance (distance

between the starting point and the ending point) and Mi is
called max−distance (maximum distance between a point and
the starting point). A large Ei suggests that the research areas for
author i in 2011–2015 (the last time window) are signi!cantly
di"erent from his/her research areas in 1991–2000, and a large
Mi suggests that the research areas for author i in at least some
of the time windows are signi!cantly di"erent from his/her
research areas in 1991–2000.

Figure 3 presents the two metrics for a total of 1202 authors.
The reference network has 2,831 nodes in total, but in the 21
citee networks (each for a di"erent time window) only 1202
authors are always in the giant component, so we present only
the Ei and Mi for these 1202 authors. In this !gure, the 10
highest-degree nodes are marked with red dots, where their
names are also presented in red. Also, among the 200 authors
who have the largest degrees, the !ve authors who have the
largest Ei values (Charles J. Stone, Leo Breiman, Arthur Cohen,
Kun Sik Chan, Stephen Portnoy) are marked with orange dots,
and the 5 authors who have the largest (Mi−Ei) values (Luoping
Zhao, Richard H. Jones, Chien Fu Wu, D.M. Titterington, David
Harrington) are also marked with orange dots.

For author i, if both Mi and Ei are large, we call the changes
of the research areas of author i signi!cant and persistent (SP),
and for short, author i is an SP type. If Mi is large but Ei is
relatively small, we call the changes of the research areas of
author i signi!cant but not persistent (SnP), and for short, author
i is an SnP type. For the 20 authors whose names are showed in

1Here, r̂(t)
i are de"ned by (2.5) through the leading eigenvalues and eigen-

vectors (λ̂k , ξ̂k) of At0 with t0 = 1. Since we use the "rst one in the 21
networks as the reference, t0 = 1 is the most natural choice. For robustness
check, we have also studied the case of t0 ∈ {2, 5, 10}; see Section C.4 of the
supplement. The results are largely similar to those in this section.
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the !gure, Charles J. Stone has the largest Ei value and is seen to
be an SP type, and Lueping Zhao has the largest Mi value and is
seen to be an SnP type.

3. Learning Communities from Co-authorship
Networks

The study of co-authorship patterns and community structures
in an academic society is an interesting topic (Newman 2004).
The co-author relationship in our dataset provides a valuable
resource to study the community structure, which is the focus
of this section. Compared to the co-citation relationship (focus
of Section 2), the co-author relationship is quite di"erent in
nature: Citations are primarily driven by scienti!c relevance, but
collaborations may be driven by many factors (e.g., geographical
proximity, academic genealogy, and cultural ties). Therefore,
the study below may shed new insight which we do not see in
Section 2. We focus on the following problems: (a) hierarchical
community detection (and especially interpretation of di"erent
communities), (b) evolvement of communities, and (c) diversity
measure of individual authors. We discuss these in Sections 3.1-
3.3 separately.

3.1. Estimation of the Hierarchical Community Structure

Compared to the citee networks, the e"ect of mixed-
memberships in co-authorship networks is notably less signi!-
cant; see Section D.5 of the supplement for detailed discussion.
So instead of focusing on the mixed-memberships as in
Section 2, we focus on the problem of recursive community
detection: We think that the co-authorship network has many
communities (each is a research sub-area in statistics), and the
sub-areas may have a tree structure. The goal is to (possibly
recursively) cluster the authors into these sub-areas.

A popular strategy to recursive community detection is as
follows: First, we partition the network into K0 groups, for
a small integer K0 < K, where K is the total number of
communities. This gives rise to K0 subnetworks restricted to
each group. Next, for each subnetwork, we test whether it has
only one community (null hypothesis) or multiple communities
(alternative hypothesis). If the null hypothesis is rejected, then
this subnetwork is further split. The algorithm stops when the
null hypothesis is accepted in every subnetwork. The output is a
hierarchical tree, with each leaf being an estimated community.

As the mixed-membership e"ect here is less signi!cant than
that in citee networks, it is reasonable to use the DCBM model
(Karrer and Newman 2011). Compared with the DCMM model
in (2.1), DCBM is a special case where we require all vectors
πi to be degenerate (i.e., one entry is 1, all other entries are
0), and so the nodes partition to non-overlapping communities
C1, C2, . . . , CK . Let A ∈ {0, 1}n×n be the symmetrical adjacency
matrix of a co-authorship network, where A(i, j) = 1 if and
only if authors i and j have co-authored articles in the range of
interest. In DCBM, we assume

P(A(i, j) = 1) = θiθjPk#, if i ∈ Ck, j ∈ C#,
for all 1 ≤ k, # ≤ K. (3.6)

where (P, θ1, θ2, . . . , θn) are the same as those in Equation (2.1).
In this subsection, we assume both the whole network and

subnetworks satisfy the DCBM. A more careful modeling for the
hierarchical structure is possible (e.g., Li et al. 2020). But since
our primary focus here is to analyze a valuable new dataset, we
leave this to the future.

There are many interesting works on recursive community
detection (e.g., Li et al. 2020), but they focused on the stochastic
block models, a special case of the DCBM model in Equation
(3.6) that does not allow degree heterogeneity. It is unclear how
to extend their methods to our settings. We propose a new
algorithm for recursive community detection, consisting of a
community detection module and a hypothesis testing module.
Both modules are able to properly deal with severe degree
heterogeneity. We now discuss them separately.

The community detection module clusters the nodes in a
network into K0 communities, for a given K0 ≥ 2. We use
the following algorithm. For a tuning parameter c0 > 0, let
In be the identity matrix, let µ̂k be the kth largest eigenvalue
(in magnitude) of A + c0In, and let ξ̂k be the corresponding
eigenvector, 1 ≤ k ≤ K0. De!ne a matrix R̂ ∈ Rn,K0−1 by
R̂(i, k) = ξ̂k+1(i)/ξ̂1(i). For a threshold t > 0, we apply element-
wise truncation on R̂ and obtain a matrix R̂∗ ∈ Rn,K0−1 by
R̂∗(i, k) = sgn(R̂(i, k)) · min{|R̂(i, k)|, t}, 1 ≤ i ≤ n, 1 ≤
k ≤ K0 − 1. We then apply the k-means algorithm to the rows
of R̂∗, assuming there are ≤ K0 clusters. There are two tuning
parameters (c0, t). We set c0 = 1 and t = log(n).

The approach extends SCORE (Jin 2015), where c0 = 0.
Recall that we call ξ̂k the kth largest eigenvector of A if it
corresponds to the kth largest (in magnitude) eigenvalue of
A. SCORE uses the !rst K eigenvectors of A for clustering,
but unfortunately, the estimated network is dis-assortative (a
network is assortative if for any pair of communities, they have
more edges within than between (Lu and Szymanski 2019). For
co-authorship networks, such a result is hard to interpret. Note
that for an assortative network, a negative eigenvalue is more
likely to be spurious than a positive one. This motivates the
above approach, where we replace A by A + c0In: the term c0I
penalizes the rankings of negative eigenvalues, so the set of !rst
K eigenvectors of A + c0In is di"erent from those of A. How
to choose c0 is an interesting problem. We !nd all estimated
networks for c0 ≥ 1 are assortative, so we choose c0 as 1
for convenience. The asymptotic consistency of the proposed
approach is similar to that of the original SCORE.

Given a cluster (subnetwork), the hypothesis testing module
determines whether the cluster should be further split. To abuse
the notation a little bit, let A be the adjacency matrix of the
network formed by restricting nodes and edges to the set of
nodes in the current cluster. As before, we assume A follows a
DCBM model with K0 communities and test the null hypothesis
K0 = 1. We use the Signed-Quadrilateral (SgnQ) test by Jin,
Ke, and Luo (2021). De!ne η̂ = 1√

1′
nA1n

A1n ∈ Rn and A∗ =
A − η̂η̂′ ∈ Rn,n. The SgnQ test statistic is

ψn = 1√
2

(∑
i1,i2,i3,i4(distinct) A∗

i1i2 A∗
i2i3 A∗

i3i4 A∗
i4i1

2(||η̂||2 − 1)2 − 1
)

. (3.7)

It was showed in Jin, Ke, and Luo (2021) that under mild
conditions, ψn → N(0, 1) in the null hypothesis. This asymp-
totic normality holds even when the network has severe degree
heterogeneity. Then, we can compute the p-value conveniently
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Figure 4. The community tree for co-authorship network. Each rightmost leaf community is labeled with the last names of 2 or 3 authors, selected by node betweenness
and closeness. For each leaf, the representative nodes are shown in Table 3 (and Tables D.4–D.6 in the supplement).

and use it to set the stopping rule of the recursive algorithm (e.g.,
when p-value is ≥ 0.05, a cluster will not be split).

The Co-authorshp Network (36 Journals). We build a co-
authorship network using all the data in 36 journals during
1975-2015 as follows: Each node is an author; there is an edge
between two nodes if they have co-authored at least m0 articles
in the data range. As we wish to focus on (a) the subset of long-
term active researchers, and (b) solid collaborations, choosing
m0 = 1 would be too low (see Ji and Jin 2016): we may include
too many edges between active researchers and nonactives
ones (e.g., a Ph.D. advisee who joined industry and stopped
publishing in academic journals). We take m0 = 3 and focus
on the giant component, which has 4383 nodes. Taking m0 = 2
may also be a reasonable choice, but the network is comparably
denser and larger (10,741 nodes), and so requires more time
and e"orts to interpret the results (as we need to check each
identi!ed community one by one manually). Below, we present
the result for m0 = 3, and leave the results for m0 = 2 to
Section D.6 of the supplement, where we see the results of two
cases are largely consistent.

We now apply our proposed algorithm. Note that the com-
munity detection module still requires an input of K0. Similar
to that in Section 2.1, we choose K0 by combining the scree
plot, goodness-of-!t, and evaluation of output communities

(details are in Section D.4 of the supplement). Since we use the
eigenvectors of (A + In) for community detection, the scree
plot contains the absolute eigenvalues of (A + In) instead of
those of A. The stopping rule of the recursive algorithm is set as
follows: Either the SgnQ p-value is > 0.001 or the community
has ≤ 250 nodes. The output is a hierarchical community tree in
Figure 4.

The Hierarchical Community Tree. First, we investigate the 6
communities in the !rst layer. To help for interpretation, we
apply topic modeling on article abstracts (see Section D of
the supplement, especially Figure D.6). Combining the topic
modeling results with a careful read of the large-degree nodes
in each community, we propose to label these communities as in
Table 2, where we also list some comments on each community.2

Next, we look at the other layers of the tree. The stopping rule
of recursive partition is that either the SgnQ p-value is > 0.001
or the community size is ≤ 250, but there are a few exceptions
in Figure 4: (a) C6 has 264 nodes, but its giant component
has no more than 250 nodes. We thus keep C6 unchanged. (b)
The second largest component of C4 contains 60 nodes which

2In Section 2.1, “Bayes” is one of the three vertices of the statistics triangle.
Here, Bayes continues to play an important role, but it splits into multiple
communities and so the word “Bayes” does not appear in the community
labels.
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Table 3. The leaf communities and the representative authors (ordered by degree within leaf community).

ID Name #Authors p-value Representative Authors

C1-1-1 Shen-Wong–Hettmansperger 144 0 Hannu Oja, Harvard Rue, Friedrich Gotze, Wei Pan, Thomas P. Hettmansperger, Jun Liu,
Xiaotong Shen, Douglas A. Wolfe, Ishwar Basawa, Leonhard Held

C1-1-2 Manteiga-Fraiman 118 0.04 Wenceslao Gonzalez-manteiga, Graciela Boente, Juan Antonio Cuesta, Daniel Pena, Antonio
Cuevas, Ricardo Fraiman, Richard Johnson, Michael Akritas

C1-1-3 Mardia-Jupp 102 0 Christian Genest, Ian Dryden, Kanti V. Mardia, Rainer Von Sachs, Wensheng Guo
C1-1-4 Hall-Müller 331 0.34 Peter Hall, James S. Marron, Jianqing Fan, Liang Peng, Byeong U. Park, Hans-Georg Müller, M.

C. Jones, Laurens De Haan, Theo Gasser, Wolfgang Hardle
C1-1-5 Basu-Lindsay 68 0.012 Bruce Lindsay, Dankmar Bohning, Domingo Morales, Leandro Pardo, Dongwan Shin, Aya-

nendranath Basu, Maria Luisa Menendez, Konstantinos Zografos
C1-1-6 Gao-Tong 189 0 Marc Hallin, Wai Keung Li, David Nualart, David Nott, Howell Tong, Vo Anh
C1-2 Dette-Bretz 104 0.0049 Holger Dette, Frank Bretz, Axel Munk, Tony Hayter, Wei Liu, Henry Wynn
C1-3 Robert-Brown 249 0 William Strawderman, George Casella, Kerrie Mengersen, Christian Robert, Lawrence Brown,

Tony Cai, Eric Moulines, Murad Taqqu, Anthony Pettitt
C2 Kenward-Molenberghs 202 0 Geert Molenberghs, Emmanuel Lesa"re, Marc Aerts, Christophe Croux, Helena Geys, Mike

Kenward, Paddy Farrington, Byron J. T. Morgan, Ariel Alonso
C3-1 Balakrishnan-Gupta 311 0 Narayanaswamy Balakrishnan, Arjun Gupta, Manlai Tang, Yasunori Fujikoshi
C3-2 Bolfarine-Cordeiro 58 0.0003 Gauss M. Cordeiro, Heleno Bolfarine, Victor H. Lachos, Reinaldo B. Arellano-valle
C3-3 Pepe-Leisenring-Sun 86 0.0002 Jianguo Sun, Govind S. Mudholkar, Margaret Pepe, Liuquan Sun, Wendy Leisenring, Yudi

Pawitan, Xinyuan Song, Xingwei Tong, Xian Zhou, Ziding Feng
C4-1 Ibrahim-Herring 142 0.003 Joseph Ibrahim, David Dunson, Hongtu Zhu, Andy Lee, Ming-hui Chen, Keith E. Muller, Kelvin

K. W. Yau, Haitao Chu, Wing Fung
C4-2 Bass-Perkins 104 0 Yuval Peres, Richard Bass, Zhen Qing Chen, Frank Den Hollander, Davar Khoshnevisan,

Donald Dawson, Klaus Fleischmann, Edwin Perkins, Jay Rosen
C4-3 Mason-Horvath 109 0 Lajos Horvath, Josef Steinebach, Miklos Csorgo, Luc Devroye, Piotr Kokoszka, Evarist Gine,

Armelle Guillou, Marie Huskova, David Mason, Ricardas Zitikis
C4-4 Williamson-Lipsitz 120 0.0003 Stuart Lipsitz, Robert H. Lyles, Enrique Schisterman, Brian Reich, John Williamson, Peter

Diggle, Nan Laird, Huiman X. Barnhart, Amita Manatunga
C4-5 Ying-Wei 60 0.008 Lee-jen Wei, Zhiliang Ying, Tze Leung Lai, Danyu Y. Lin, David Siegmund, Daniel Krewski, Lu

Tian, Tianxi Cai, Louis Gordon, Sin-ho Jung
C5-1 Tsiatis-Betensky 185 0.009 Paul Yip, Xiaohua Zhou, Rebecca Betensky, John Crowley, Adrian Raftery, Anastasios Tsiatis, Ji

Zhu, Richard Huggins, George Michailidis, John Oquigley
C5-2 Mukerjee-Reid 193 0 Rahul Mukerjee, Zhidong Bai, Christos Koukouvinos, Kashinath Chatterjee
C5-3-1 Chen-Turnbull–Johnson 201 0.31 Wesley Johnson, Brian Ca"o, Dongchu Sun, Weichung J. Shih, Bruce Turnbull, Richard Lock-

hart, Richard Simon, Gemai Chen, Mathias Drton, Galin L. Jones
C5-3-2 Carroll-Wang 231 0 Raymond Carroll, Mitchell Gail, Xihong Lin, Laurence Freedman, Hua Liang, Jianhua Huang,

David Ruppert, Suojin Wang, Kevin W. Dodd, Dean Follmann
C5-4 Buhlmann-Wellner 166 0.0013 Mark Van Der Laan, Aad Van Der Vaart, Peter Buhlmann, Subhashis Ghosal, Ram Tiwari, Larry

Wasserman, Bin Yu, Joseph Kadane, Thomas Kneib
C5-5 Whilte-Higgins 71 0.016 Martin Schumacher, Simon Thompson, John Whitehead, Nicky Best, Ian White, Julian P. T.

Higgins, Jon Wake!eld, Dan Jackson, Sylvia Richardson
C5-6 Walker-Ghosh 197 0 Stephen Walker, Malay Ghosh, Alan Gelfand, Pranab Kumar Sen, Robert Kohn
C5-7 Li-Tsai 159 0.034 Lixing Zhu, Robert Tibshirani, Dennis Cook, Chih-ling Tsai, Runze Li, Jun Shao, Trevor Hastie,

Shein-chung Chow, Riquan Zhang, Andreas Buja
C6 Taylor-Kalb#eisch 264 0 Jeremy Taylor, Xin Tu, Daniel Commenges, Donald R. Hoover, Thomas Ten Have

NOTE: To label a community, two or three authors are selected by node betweenness and closeness; if any of them is also a representative author, we present his/her full
name in italics. More details are in Tables D.4–D.6 of the supplement.

Table 2. The communities C1, C2, . . ., C6 and a brief description for each commu-
nity.

Community Description

C1. Nonparametric Statistics Decision theory, nonparametric methods, high-
dimensional statistics

C2. Biostatistics (Europe) Biostatisticians from Europe, and their close col-
laborators

C3. Mathematical Statistics Testing, computational statistics, probability,
and other classical topics in probability and sta-
tistical theory

C4. Biostatistics (UNC) Survival analysis, longitudinal data analysis,
Biostatisticians from University of North Car-
olina (UNC) and collaborators

C5. Semi-parametric Statistics Semiparametric methods, machine learning,
variable selection, biostatistics

C6. Biostatistics (UM) Biostatisticians from University of Michigan
(UM) and close collaborators

form a tight-knit group. While these nodes are not in the giant
component, we keep them as a separate community C4-5. (c)
C3-1 has 311 nodes and its p-value ≈ 0. However, a#er we

further split it into 2 sub-communities by SCORE, one sub-
community contains only 8 nodes, and the other has a p-value
0.1. We thus keep C3-1 unchanged.

For each leaf community (i.e., the community corresponding
to a leaf in the tree), we provide a manual label using two
commonly used centrality measures, the betweenness (Freeman
1977) and the closeness (Bavelas 1950). For a node in a commu-
nity, its betweenness is de!ned as the number of pairs of nodes
in the same community that are connected through this node
via the shortest path (therefore, a node with a large between-
ness plays an important role in bridging other nodes), and the
closeness of the node is de!ned as the reciprocal of the sum of
distances from all other nodes in the same community to this
node. Given a leaf community, we use the last names of the two
nodes with largest betweenness and the one node with largest
closeness to label the community (of course, if the latter happens
to be one of the former, we will not use the same name twice).
As a result, each leaf community is labeled with the last names
of either two or three authors (not necessarily in alphabetical
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order). Table 3 presents a few representative nodes for each leaf
community. More information of each leaf community is in
Tables D4–D.6 of the supplement.

The results con!rm that there are multiple factors for the for-
mation of a tightly knit cluster of co-authorship: similar research
interest, academic genealogy, friendship, colleague relationship,
geological proximity, or close cultural ties. Below are some
examples.

Example 1. Similar research interest. A number of leaf
communities can be interpreted as groups of researchers
sharing similar research interest. For example: C1-3: Robert-
Brown (Decision theory), C1-1-4: Hall-Müller (Nonparametric
statistics), C4-2: Bass-Perkins (Probability), C4-5: Ying-Wei
(Sequential data analysis), C5-4: Bühlmann-Wellner (Theoretical
machine learning), C5-3-2: Carroll-Wang (Semi-parametric
statistics), C5-7: Li-Tsai (Variable selection and dimension
reduction).

Example 2. Geological and cultural factors. It is more likely
for people who are geologically or culturally close to each other
(e.g., colleagues, researchers in neighboring institutes or in the
same region or country) to form tightly knit clusters. For exam-
ple: C2: Kenward-Molenberghs (Biostatisticians in Belgium), C4-
1: Ibrahim-Herring (Statisticians in the North Carolina research
triangle), and C5-5: White-Higgins (Biostatisticians in the U.K.).
Additionally, C4-1 also contains a group of statisticians in Hong
Kong, China. This group is brought together with the North
Carolina group largely due to the collaboration between Joseph
Ibrahim (faculty at University of North Carolina (UNC)) and
Qi-Man Shao (faculty at the Chinese University of Hong Kong).
Our analysis also suggests that the geological and cultural e"ect
plays a more important role in forming clusters among biostatis-
ticians than (say) among theoretical statisticians, and a possible
reason is that collaborated research in biostatistics depends
more on manpower and data sharing. For example, to comply
with the data-sharing policies, it is simply easier for one to
collaborate with someone in the same institute/country than
with others.

Example 3. Academic genealogy. The academic advisor-
advisee relationship is also a common source of collabora-
tion. For example, the leaf community C1-1-1 Shen-Wong-
Hettmansperger has a component of 29 nodes, which is largely
formed by students of three authors, Wing H Wong, Jun Liu, and
Xiaotong Shen; Liu and Shen are former students of Wong. We
also note that this leaf community has sub-communities. For
example, the network has a component of 24 nodes containing
Thomas P. Hettmansperger. We did not further split C1-1-1
simply because its size falls below 250.

Recall that we name the !rst-layer communities, C1, C2,
…, C6, using the results of topic learning (see Figure D.6 and
Table 2). In most cases, the interpretations of umbrellaed leaf
communities match with the name of the !rst-layer community.
One exception is “C3-3 Pepe-Leisenring-Sun.” It is under “C3
Mathematical Statistics” but consists of a group of biostatis-
ticians. A#er some investigation, we !nd that this group is
brought together with other groups in C3 largely by the author
Xingqiu Zhao. She collaborated with both Narayanaswamy Bal-
akrishnan, a hub node of C3, and Jianguo Sun, a hub node of
C3-3.

The community tree is constructed by SCORE. To compare
with other clustering methods, we apply Newman-Girvan’s
modularity approach (Newman’s spectral approximation)
(Newman 2006) to the same co-authorship network, and obtain
six communities. We then check the numbers of nodes in the
intersection between each of these communities and each of 26
leaves in our tree. The results are in Table D.7 of the supplement.
We !nd that for most of the 26 leaf communities identi!ed by
SCORE, the majority of nodes in the community are contained
in one of the six communities identi!ed by Newman’s approach.
Therefore, at least to some extent, two clustering results are
consistent with each other.

3.2. Evolvement of Co-authorship Clusters

Our dataset spans a relatively long time period (1975–2015),
and it is interesting to study and visualize how the network
communities evolve over time. The Sankey plot is a popular
visualization tool for dynamic networks. However, to have a
nice plot with interpretable results, we face many challenges:
(a) the co-authorship network constructed using all data has
too many communities (so it is hard to interpret all of them,
and the resultant Sankey plot will also be too crowded); (b) it is
unclear how to determine the number of communities; (c) it is
also unclear how to interpret each community.

For (a), we decided to focus on the co-authorship network
constructed with only articles from four representative jour-
nals, AoS, Bka, JASA, and JRSSB (the full journal names are
in Table B.1). Compared to the co-authorship network con-
structed with the articles in all 36 journals, research interests
of the authors in the current network are more homogeneous.
As a result, the network has many fewer communities and is
comparably easier to analyze. We have also spent a lot of e"orts
in dealing with challenges (b)–(c); see details below.

The Dynamic Co-authorship Networks (4 Journals). We consider
three time windows in our study: (i) 1975–1997, (ii) 1995–2007,
and (iii) 2005–2015. As in many works on dynamic network
analysis (Kim et al. 2018), we let the adjacent time windows be
slightly overlapping, so the results on community detection will
be much more stable. For each time period, we construct a co-
authorship network where each author who has ever published
in any of the four aforementioned journals during this time
period is a node, and two nodes have an edge if and only if
they have co-authored one or more articles. For each network,
there are relatively few nodes outside the giant component, so
we remove them and consider the giant component only. Denote
the resultant co-authorship networks for the three time periods
by G1, G2, and G3, respectively.

The Sankey Diagram. By careful investigation, we found that the
three networks have 3, 4, and 3 communities, respectively. Once
these numbers are determined, we !rst perform a community
detection for each network by applying the modi!ed SCORE
described in Section 3.1, and then use the estimated community
labels to generate a Sankey diagram; see Figure 5. Since the sets
of nodes of three networks are di"erent, we focus on the set
V = (G1 ∩ G2) ∪ (G2 ∩ G3), which has 1687 nodes, for the
Sankey diagram.
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Figure 5. Evolution of communities in the dynamic co-authorship network (based on articles in 4 journals). The representative authors are selected by average degree in
two adjacent networks.

We explain some notations in Figure 5. Consider the network
for the time Period 1 !rst. By similar analysis as before, we
propose to label the three communities obtained from applying
modi!ed SCORE to the network by semiparametric statistics
(SP), nonparametric statistics (NP), and Bayes (Bay). We do not
have a separate community for biostatisticians, but a signi!cant
number of biostatisticians (e.g., Jason Fine, Lu Tian, Hongtu
Zhu) are outside V , and another signi!cant number of them
(e.g., Lee-jen Wei, Zhiliang Ying, Joseph Ibrahim, Nicholas P.
Jewell) are in SP. Let SP1, NP1, and Bio1 be the intersection of
V and each community, respectively. We have V = SP1∪NP1∪
Bio1 ∪ O1, where O1 = V \ G1.

The discussion of the third network is similar, except that the
estimated communities are interpreted as high-dimensional data
analysis (HD), nonparametric and semiparametric (NP/SP), and
Bayes (Bay). Similarly, V = HD ∪ (NP/SP) ∪ Bay3 ∪ O3, where
O3 = V \ G3.

Last, consider the second network. The four communities
obtained by applying SCORE can be similarly interpreted as
seimparametric statistics and Bayes (SP/Bay), nonparametric
(NP), Bayes (Bay), and biostatistics (Bio). We have V =
(SP/Bay) ∪ NP2 ∪ Bay2 ∪ Bio2, where NP2 is the intersection
of NP with G2; similar for Bay2 and Bio2. Note here that V is a

subset of G2 (but not a subset of G1 or G3), and so O2 = V \ G2
is an empty set. See Figure 5 for details.

The Sankey diagram suggests several noteworthy observa-
tions. First, in time Period 1, our algorithm suggests that there is
no “Bio” community, although many biostatisticians (e.g., Jason
Fine, Hongtou Zhu, Lu Tian) are outside the set V (recall that
V = (G1∩G2)∪(G2∩G3)). In time Period 2, our algorithm sug-
gests that there is a “Bio” community, where a signi!cant frac-
tion of the members come from the outside of V , and another
signi!cant fraction (e.g., Lee-jen Wei, Zhiliang Ying, Joseph
Ibrahim, Nicholas P. Jewell) come from SP in time Period 1.
Second, from time Period 2 to time Period 3, a noticeable point
is the rise of the community of high dimensional data analy-
sis (HD), which attracts authors from nonparametric statistics
(e.g., Jianqing Fan, David Dunson, James S. Marron, Lixing
Zhu), semiparametric statistics and Bayes (e.g., Dongling Zeng,
Xuming He, Jun Liu, Larry Wassermann), and biostatistics (e.g.,
Joseph Ibrahim, Zhiliang Ying, Hongtu Zhu, Jason Fine). Last, in
all three time periods, there are signi!cant migrations between
semiparametric statistics and nonparametric statistics.

Also, as examples, we note that (a) Raymond Carroll, Malay
Ghosh, Bruce Lindsay, Ross Prentice, Jon N. K. Rao, James
Robins, and Naisyin Wang remain in “SP” all the time; (b)
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Figure 6. Left: histogram for the numbers of co-authors of 1000 authors who have the largest number of co-authors in our dataset. Right: histogram for the SgnQ p-values
for the 1000 personalized co-authorship networks. A smaller p-value suggests that the personalized network is more likely to have multiple tight-knit groups (so the author
is more diverse in terms of co-authorship).

Peter Hall, Hans-Georg Müller remain in “NP” all the time; (c)
Jianqing Fan, Trevor Hastie, James S. Marron, Robert Tibshirani
stay in “NP” in time Period 1, 2, and migrate to “HD” in Period 3;
(d) Bradley Carlin, Xuming He, Jun Liu, Rahul Mukerjee, Lous
Ryan, Anastasios Tsiatis, and Martin Wells, stay in “SP” in time
Period 1, 2 and migrate to “HD” in Period 3. (e) Danyu Y. Lin,
Lee-jen Wei, Zhiliang Ying start from “SP” in time Period 1,
migrate to “Bio” in Period 2, and migrate to “HD” in Period 3.

3.3. A New Approach to Measuring an Author’s Research
Diversity

In Section 2.3, we have proposed two diversity metrics for the
research interests of individual authors, using the trajectory. In
this section, we propose a new approach to measuring research
diversity by using the personalized networks and a recent tool
in network global testing. The approach is quite di"erent from
that in Section 2.3 (and also those in the literature), and provides
new insight on the research diversity of statisticians.

Fixing a node in a symmetrical network, the personalized net-
work (also called the ego network) is the subnetwork consisting
of the node itself and all of its adjacent nodes. We construct a
co-authorship network similar to that in Section 3.1 but with
m0 = 1: Every author who ever published an article in any of
the 36 journals between 1975 and 2015 is a node, and two nodes
have an edge if and only if they co-authored one or more articles.
Once this large network is constructed, for every author, we can
obtain a personalized co-authorship network accordingly.

We model each personalized co-authorship network with a
DCBM model (2.1) with K communities. We consider the global
testing problem (Yuan, Feng, and Shang 2018) where we test H0:
K = 1 versus H1: K > 1. Viewing each community as a tight-
knit group, this is testing whether the given personalized co-
authorship network has only one or multiple tight-knit groups.
We approach the testing problem by the SgnQ test (Jin, Ke, and
Luo 2021) which was already described in Section 3.1. Let Qi
be the test score ψn in Equation (3.7) for the personalized co-
authorship network of author i. According to Jin, Ke, and Luo
(2021), when the null hypothesis is true, Qi → N(0, 1) as the
size of the personalized network grows to ∞. We thus calculate
the p-value by pi = P(N(0, 1) ≥ Qi) and assign pi to author i.
We propose to use pi to measure the co-authorship diversity of
author i: a large p-value suggests that his/her co-authors form

a tightly knit group, and a small p-value suggests that his/her
co-authors are from two or more groups and so he/she is more
diverse in co-authorship.

Figure 6 presents the results for the personalized co-
authorship networks of 1000 authors who have the largest
numbers of co-authors in our dataset. The le# panel presents
the histogram for the numbers of co-authors of these 1000
authors, and the right panel presents the histogram for the
p-values of their personalized co-authorship networks. The p-
values spread between 0 and 0.8, and 190 of them are smaller
than 5%. Therefore, for about 80% of these 1000 authors, their
co-authors form a tight-knit group.

Moreover, Table 4 presents the p-values from the SgnQ test
for the personalized networks of 15 authors who have the largest
numbers of co-authors. Take the !rst two authors, for exam-
ple. They both have a large number of co-authors, but the p-
value for Raymond Carroll is 0.02 while the p-value for Peter
Hall is 0.23. This suggests that Hall’s co-authors are likely to
form a tight-knit group, while Carroll’s co-authors may come
from multiple groups. To identify such groups, we perform a
community detection on Carroll’s personalized co-authorship
network (excluding Carroll3) by SCORE (see Section 3.1 and Jin
2015) and !nd that the research areas of a group of co-authors
(e.g., Laurence Freedman, Victor Kipnis, Douglas Midthune,
etc.—they work or used to work for National Cancer Institute
(NCI)) are quite di"erent from those of the other co-authors
of Carroll. This explains why Carroll’s network has a relatively
small p-value. See Figure 7 (le# panel) for the personalized co-
authorship network of Carroll, where the p-value of any node
presented there is the p-value for his/her own personalized co-
authorship network.
Extension to Measuring the Diversity of Citers and Citees. We
extend the study to personalized citer/citee networks. In a citer
network, two authors have an edge if they have both cited some
other authors. In a citee network, two authors have an edge if
they have been both cited by some other nodes. Similarly as
above, we construct a personalized citer network and a person-
alized citee network for each author i. We apply the SgnQ test
and denote the two test scores by Tciter

i and Tcitee
i , respectively.

3We exclude Carroll here for the edges between him and all other nodes
contain little information of the community structure, but have a signi"cant
e!ect in the spectral domain, which makes the estimated communities by
SCORE (a spectral method) less clear.
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Table 4. Numbers of co-authors and p-values of the personalized co-authorship networks for the 15 authors who have the largest numbers of co-authors in our dataset
(zero p-value means < 10−6).

Name #Coau p-value Name #Coau p-value Name #Coau p-value

Raymond Carroll 234 0.02 Geert Molenberghs 146 0 Pranab Kumar Sen 112 0.71
Peter Hall 222 0.23 James S. Marron 130 0.007 Lixing Zhu 103 0.65
Naray. Balakrishnan 186 0.70 Malay Ghosh 119 0.51 David Dunson 101 0.64
Jeremy Taylor 159 0 Emmanuel Lesa"re 119 0 Jianqing Fan 101 0.38
Joseph Ibrahim 158 0.01 Xiaohua Zhou 119 0.31 Stuart Lipsitz 98 0.11

Figure 7. Left: The personalized co-authorship network of Raymond Carroll (the most collaborative author; see Table 4). Only nodes with 40 or more co-authors are shown.
Di"erent colors of names indicate two communities identi!ed by SCORE. Similar plot can be generated for any author whose personalized network is reasonably large
(≥ 50 nodes, say). Right: The pair SgnQ test statistics (Tciter

i , Tcitee
i ) on personalized citer and citee networks of 1000 authors with highest degrees. The red dots correspond

to high-degree authors. The yellow dots correspond to authors with either the largest or the smallest values of (Tciter
i − Tcitee

i )

Figure 7 shows the two test scores for 1000 authors with the
largest numbers of co-authors. First, for most authors (705 out
of 1000) the personalized citer network is more diverse than the
personalized citee network. This is because each author typically
focuses on only a few research areas, but his/her work may
be cited by researchers from various areas. Second, there is a
group of authors whose Tcitee

i is much smaller than Tciter
i , most

of whom are theoretical statisticians (e.g., Bradley Efron, Iain
Johnstone). This is probably because theoretical articles mainly
cite theoretical articles but can be cited by many methodol-
ogy and applied articles. Third, there is a group of authors in
biostatistics (e.g., Michael Kosorok, Tze Leung Lai), whose test
score for the citee network is much larger than that for the
citer network. This is probably because biostatistics articles cite
a variety of methodology articles; another reason is that many
citations to articles in biostatistics are from other disciplines not
covered by our dataset. Last, for Raymond Carroll, Jianqing Fan,
Peter Hall, and Joseph Ibrahim, both test scores are relatively
large, suggesting that they are diverse both in citer and citee.

We have proposed !ve metrics for measuring the research
interests and diversity: two (denoted by A1 and A2) in Sec-
tion 2.3 where we measure the diversity using the research
trajectory computed from the co-citation networks, and three
(denoted by B1-B3) in this section, for the co-authorship, citer,
and citee networks, respectively. These metrics measure diver-
sity from di"erent angles using di"erent types of networks. Also,
the networks are based on data in di"erent ranges. For these
reasons, our results on diversity may have some inconsistencies,
and we must interpret them with caution. For example, it is not

rare that an article on one research topic may impact several
other research topics, so an author who is not diverse in co-
authorship can be signi!cantly diverse in research impacts. For
example, most articles by Donald Rubin are in Bayesian statistics
and causal inferences, but he has impacts over many other areas
(e.g., GEE); see Figures 1 and 2. Xihong Lin is regarded as
highly diverse in research impact, but not regarded as diverse
in co-authorship (based on results in our data range); see Fig-
ures 2 and 7. Also, while Approaches A1–A2 and B3 are both
for citee networks, A1–A2 are for a dynamic DCMM setting
and measures how the membership vector, πit , evolve over
time, and B3 considers a (static) DCMM setting and measures
whether the personalized network has only one or multiple
communities.

For reasons of space, we focus on the network approach
in this article where we model the co-author relationships by
networks. As an extension, we may model the co-author rela-
tionships by the more sophisticated hypergraph model (e.g., Ke,
Shi, and Xia 2019; Jin, Ke, and Liang 2021; Yuan et al. 2021). In
comparison, the literature on the hypergraph approach is much
less developed than that of the network approach, so we leave
the study on the hypergraph approach to the future.

4. Conclusion

We have several contributions. First, we produce a large-scale
high-quality dataset. Second, we set an example for how to
conduct a data science project that is highly demanding (in data
resource, tools, computing, and time and e"orts). We showcase
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this by creating a research template where we (a) collect and
clean a valuable large-scale dataset, (b) identify a list of inter-
esting problems in social science and science, (c) attack these
problems by developing new tools and by adapting exiting tools,
(d) deal with a long array of challenges in real data analysis
so as to get meaningful results, and (e) use multiple resources
to interpret the results, from perspectives in science and social
science. We have also made signi!cant contributions in methods
and theory by developing an array of ready-to-use tools (for
analysis and for visualization).

Our study has (potential) impact in social science, science,
and real life. For example, suppose an administrator (in an
university or a funding agency) wants to learn the research
pro!le of a researcher. Our study provides a long list of tools to
characterize and visualize the research pro!le of the researcher.
Such information can be very useful for decision making. Our
study also provides a useful guide for researchers (especially
junior researchers) in selecting research topics, looking for ref-
erences, and building social networks.

In social science, an important problem is to study the
evolvement of a scienti!c community (Rosvall and Bergstrom
2010). We attack the problem by providing several tools
(e.g., research map, research trajectory, Sankey plot) for
characterizing and visualizing the evolvement of the statistical
community. Another important problem is to check whether
the development of a research !eld is balanced (e.g., if some
areas are over-studied or under-studied) and whether there
are unknown biases (e.g., whether scientists have biases when
publishing articles related to COVID-19) (Foster, Rzhetsky,
and Evans 2015). Our study can tell which areas have far more
researchers, articles, or citations than others, and so helps check
the balance of the !eld. Our study is also potentially useful for
checking unknown biases.

In science, an important problem is how to identify patterns
and so to predict new discoveries ahead of time. For example,
in material science, one can use the abstracts of published arti-
cles to recommend materials for functional applications several
years ahead of time (Tshitoyan et al. 2019). We can do similar
things with our dataset to predict emerging new areas and
signi!cant advancements. For example, in Ji et al. (2021), we
combine our citation data with the article abstracts (treated as
text data) to rank di"erent research topics and identify the most
active research topics. We !nd that in the past decade, machine
learning has been rising to one of the active research topics in
statistics.

Though our dataset is high quality, we still need some nec-
essary data preprocessing, and focus on networks with sizes
much smaller than 47K. The bottleneck for studying much
larger networks is the time and e"orts required to manually
label each research area and to interpret the results in each case.
For better use of such a valuable dataset, our hope is that, the
dataset (which will be publicly available soon) will motivate
many lines of researches, so over the years, researchers may
continue to use di"erent parts of the dataset for new projects
and new discoveries.

For future work, note that our dataset provides at least two
data resources: co-author relationships and citation relation-
ships. It is noteworthy that most existing works in bibliomet-
rics have been focused on one data source and one speci!c

problem. Our results suggest the following: (a) The two data
resources provide di"erent information for the same group of
researchers, and analysis of di"erent data resources may have
di"erent results. The data resources and the results complement
with each other. (b) Analysis focusing on only one aspect may
have limited insight. Combining analysis of di"erent aspects
helps paint a more complete picture. (c) Therefore, it is highly
preferable to combine the data resources for our study, with a
multi-dimensional framework and multi-way analysis. In our
real data analysis, we have combined the two data resources.
For example, in Section 3.3, we use di"erent metrics to measure
the diversity of an author, where some metrics are based on the
co-citation data and others are based on the co-authorship data.
How to combine di"erent data resources more e%ciently is an
interesting problem. We leave this to the future work.

Supplemental Material

Supplemental material contains a disclaimer, details of the dataset, supple-
mental data analysis results, and proof of Theorem 2.1.
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ABSTRACT
We congratulate the authors for their stimulating and thought-provoking work on network data analysis.
In the article, the authors not only introduce a new large-scale and high-quality publication dataset that
will surely become an important benchmark for further network research, but also present novel statistical
methods and modeling which lead to very interesting !ndings about the statistics community. There is
much material for thought and exploration. In this discussion, we will focus on the cocitation networks, and
discuss a few points for the coauthorship networks toward the end.
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1. Statistical Analysis of Cocitation Networks

As pointed out in the article, cociting two authors in an arti-
cle provides evidence that they tend to share some common
research interests. Based on this key observation, the authors
used the cocitation relationship to construct citee networks for
di!erent time windows, and have performed solid statistical
citee network analysis to study various aspects of research inter-
ests of statisticians including clustering, dynamic evolvement
and diversity. In the rest of the section, we provide three sets of
comments pertaining to weighted networks, model diagnostics
and spectral embedding.

1.1. Weighted Citee Network

The citee networks analyzed in the article are undirected binary
networks where an edge between two nodes is present if the edge
weight is above a certain threshold. While thresholding the edge
weights can reduce noise, it may result in loss of information.
It would be interesting to directly investigate the weighted citee
networks and check the impact of the weight information on the
conclusions about research interests. To this end, we show how
the authors’ methods can be easily adapted to handle weighted
networks, and provide some numerical results to discuss the
impacts of weights. Our analysis is intended to stimulate more
discussions and hence, illustrative rather than exhaustive.

We focus on the important citee network constructed using
the cocitations during 1991–2000. This is the network employed
to produce the research map in Figure 1 of the article. Following
the notation used in the article, let A ∈ Rn×n be the adjacency
matrix of the citee network. The authors model the citee net-
work with the Degree Corrected Mixed-Membership (DCMM)
model which speci"es that P(A) = ∏

i<j(θiθjπ ′
i Pπj)A(i,j)(1 −

θiθjπ ′
i Pπj)1−A(i,j), where θi > 0 is the degree heterogeneity

parameter of author i, and the weight vector πi ∈ RK models

CONTACT Yang Feng yang.feng@nyu.edu Department of Biostatistics, New York University, New York, NY.

the research interests of author i. A spectral method called
mixed-SCORE (Jin, Ke, and Luo 2017) is then performed for
mixed-membership estimation. Now, let Ã be the weighted
adjacency matrix of the weighted citee network, where Ã(i, j) ∈
{0, 1, 2, . . .} denotes the edge weight between node i and node j.
We could model {Ã(i, j)}i<j with some independent parametric
distributions supported on the integers such as Poisson and neg-
ative binomial. However, a#er a careful inspection of the mixed-
SCORE approach, we found that as with many other spectral
methods (e.g., Rohe, Chatterjee, and Yu 2011; Jin 2015; Lei
and Rinaldo 2015; Zhang, Levina, and Zhu 2020), mix-SCORE
can be considered as a nonparametric method that is robust
to parametric model speci"cation. In particular, the method is
expected to work well (e.g., achieving estimation consistency)
as long as the model is "rst-order correct, that is, E[Ã(i, j)] =
θiθjπ ′

i Pπj, for 1 ≤ i < j ≤ n, along with certain regularity
conditions on the tail distribution decay. Thusly motivated,
we will apply the same mixed-SCORE method to the weighed
adjacency matrix Ã, and perform the same downstream anal-
ysis to produce the research map. The procedure can be easily
implemented via a minor modi"cation of the code provided by
the authors.

The new research map is shown in Figure D1. Comparing
it to the original map in Figure 1 of the article, we have the
following observations and comments:

• We come up with the 15 cluster labels by carefully checking
research works of representative authors (with large degrees)
in each cluster. These labels are similar to the ones in the
original map and provide a reasonable representation of
subareas of the three primary research areas.

• A notable change is that the new map has more pure nodes
especially in the “nonparametric statistics” and “biostatistics”
research areas. Such a di!erence can be further con"rmed
from the estimated mixed-membership vectors {π̂}n

i=1 as
shown in Figure D2.

© 2022 American Statistical Association

https://doi.org/10.1080/07350015.2022.2037432
https://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2022.2037432&domain=pdf&date_stamp=2022-04-04
mailto:yang.feng@nyu.edu


JOURNAL OF BUSINESS & ECONOMIC STATISTICS 487

Figure D1. The research map obtained from the weighted citee network.

Figure D2. The estimated memberships {π̂}n
i=1 based on the binary and weighted

citee networks. The X and Y coordinates correspond to the “nonparametric statistics”
and “biostatistics” research areas.

• To examine the meaning of the aforementioned change, we
select representative authors who are not pure nodes in the

original map but become (nearly) pure in the new map.
This is summarized in Table D1. Let’s take David Donoho
as an example. According to his articles published in the 36
journals during 1982–2000 (there is a 10-year time lag in
citation), Donoho’s research works concentrated on nonpara-
metric estimation, wavelets and robust statistics, in our opin-
ion, of which little fraction is related to “Bayes” or “Biostatis-
tics.” Hence, it is perhaps more accurate to classify him as
a nearly pure node in the “nonparametric” vertex (note that
“nonparametric” is a broad notion in the statistics triangle).
Similar results apply to several other authors that we checked
in Table D1 including Jianqing Fan, Peter Hall and Kung Yee
Liang. Why is there such a change? A plausible explanation is
that in the citation network two authors working on di!erent
areas can be cocited in the same article, though usually with
a smaller chance compared with those working on the same
area. This type of edges can pull a pure node away from the
triangle corners. However, if we incorporate the edge weight
information, it is very likely that those noisy edges will be
down-weighted so that the location of (nearly) pure nodes
can be more accurately estimated. We did not go over all
the authors in Table D1 (and other authors with signi"cant
changes) and thus, do not claim that all the changes are
positive.

• A more complete comparative study of binary and weighted
citee network is desirable. However, since there is no ground
truth, it is not immediately clear how to evaluate various
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Table D1. Selective authors whose estimated membership vector has a large change.

Nonparametric Bayes Biostatistics

Matt P. Wand (0.55, 0.98) Adrian Smith (0.55, 0.95) Ross Prentice (0.59, 0.97)
Peter Hall (0.58, 1.00) Alan Gelfand (0.57, 0.95) Alan Agresti (0.58, 0.95)

Joseph Romano (0.54, 0.94) Peter Green (0.55, 0.91) Kung Yee Liang (0.55, 0.91)
Jianqing Fan (0.67, 1.00) Julian Besag (0.65, 0.98) Steve Self (0.65, 0.98)

David Ruppert (0.63, 0.96) Amy Racinepoon (0.67, 1.00) Andrea Rotnitzky (0.64, 0.97)
M. C. Jones (0.69, 1.00) Walter R. Gilks (0.60, 0.91) David Harrington (0.67, 1.00)

Wolfgang Härdle (0.70, 1.00) Bradley Carlin (0.62, 0.93) Garrett Fitzmaurice (0.67, 1.00)
James S. Marron (0.72, 1.00) Wing Hung Wong (0.63, 0.93) Lueping Zhao (0.67, 1.00)

Hans-georg Müller (0.75, 1.00) Martin Tanner (0.63, 0.93) John Neuhaus (0.60, 0.92)
David Donoho (0.73, 0.97) Luke Tierney (0.69, 0.99) Geert Molenberghs (0.68, 1.00)

NOTE: For each column, the pair (a, b) denotes the estimates for the corresponding membership coordinate based on the binary and weighted citee networks, respectively.

comparison results. For instance, the adjusted rand index
between the clustering results based on binary and weighted
citee networks is 0.226, indicating a signi"cant change on the
partitions of the subareas. But it is hard to argue which one
is better. One possible direction is to use article abstracts.
We noticed that the authors have applied topic modeling
techniques on abstracts to label the three vertices in the
triangle. Similar modeling strategies may be used to create a
research interest pro"le for each author. We believe that these
pro"les can serve as very informative nodal features to help
assess the results obtained from citee networks.

1.2. Model Diagnostics

The study of research interests in the article relies on the inter-
pretation and estimation of the membership vectors {πi}n

i=1 in
the Degree Corrected Mixed-Membership (DCMM) model or
its dynamic version. While the authors have obtained various
interesting results that are interpretable and sensible via these
models, it remains important to perform statistically sound
model diagnostics. This is crucial for drawing valid conclusions
from real data analysis. Model checking and diagnostics has not
yet been well studied in the community detection and block-
models literature. Existing related works focus on determining
the number of communities and model selection for stochastic
block model and degree corrected variants Yan et al. (2014),
Li, Levina, and Zhu (2016), Lei (2016), Saldana, Yu, and Feng
(2017), Wang and Bickel (2017), and Chen and Lei (2018). While
developing novel diagnostic tools for DCMM is beyond the
scope of this discussion, nevertheless, we would like to point out
several relevant points as follows:

• It is fairly challenging to derive a goodness-of-"t test for
DCMM. First of all, given that DCMM is already a very
general blockmodel, what is the appropriate full model to
test against? Second, the large-sample analysis of a given
test statistic is a nonstandard asymptotic problem, and the
asymptotic distribution will critically depend on the sparsity
level of the network.

• Can we have useful residual diagnostic plots to assess the
goodness of "t of DCMM? We describe a procedure directly
built on top of the mixed-SCORE method (Jin, Ke, and Luo
2017). Using the notation in Section 1.1 and further de"n-
ing # = diag(θ1, . . . , θn), $ = (π1, π2, . . . , πn)′, DCMM
assumes that E(A) = #$P$′#. The following has been
proved in Jin, Ke, and Luo (2017): (i) There exists a unique

nonsingular matrix B = (b1, . . . , bK) ∈ RK×K such that % =
#$B, where the columns of % are eigenvectors correspond-
ing to the K nonzero eigenvalues of E(A). (ii) {bi}K

i=1 can be
explicitly expressed using the K nonzero eigenvalues of E(A)

and the K vertices in the simplex formed by the embedding
of E(A). We then proceed with the following steps:

1. Based on (ii), use the vertices found by mixed-SCORE and
the K largest eigenvalues (in magnitude) of A to obtain B̂.

2. Based on (i), solve

#̂ = arg min
θi>0,1≤i≤n

‖%̂ − #$̂B̂‖2
F ,

where $̂ is the estimated memberships from mixed-
SCORE and %̂ is the eigenvector matrix of A.

3. Solve the least-squares problem with linear constraints to
obtain:
P̂ = arg minP:#̂$̂P$̂′#̂∈[0,1]n×n‖A − #̂$̂P$̂′#̂‖2

F .
4. Compute the residual matrix E ! A − #̂$̂P̂$̂′#̂.

Having the raw residuals, as in logistic regression diagnos-
tics, we can construct a deviance residual plot by grouping
the deviance residuals into bins. In the current case, the bins
are chosen to correspond to the inter-cluster and intra-cluster
edges where the clusters are the 15 subareas in the research
map.

• Some preliminary results obtained from the above method
are shown in Figure D3. It is clear from the le# plot that the
estimated degree parameters based on mixed-SCORE cap-
ture well the degree heterogeneity in the data. The correlation
between the observed degrees and estimated degree param-
eters is 0.965. For the deviance residual plot on the right, we
see a rather even variation as the "tted value varies, thus,
revealing no signi"cant inadequacy in the model. There is
one suspicious point that may deserve further investigation.
This point represents the bin formed by the intracluster data
from the 15th cluster whose cluster size is 88, the second
smallest among the 15 clusters.

1.3. Spectral Embedding and Mixed-Membership Vectors

At the heart of the citee network analysis is the SCORE embed-
ding, which embeds each node i into a (K − 1)-dimensional
space with r̂i =

[
ξ̂2(i)
ξ̂1(i) , ξ̂3(i)

ξ̂1(i) , . . . , ξ̂K (i)
ξ̂1(i)

]
, where ξ̂1, . . . , ξ̂K are

the "rst K eigenvectors of the adjacency matrix. The embed-
ding is further generalized to handle dynamic citee networks.
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Figure D3. Left plot shows the relationship between observed degrees and estimated degree parameters based on mixed-SCORE method. Right plot is the deviance
residual plot, where X-axis and Y-axis are the average of !tted values and average of deviance residuals (with normalization) within each bin, respectively.

These embedded points are the key statistics that the authors
use to produce research map, generate research trajectory for
individual author, and quantify diversity of author research
interests. Given the importance of the embedding, we would like
to highlight a few points that might be helpful toward a better
understanding of the embedding.

• Research interest representation. The embedded points {r̂i}
are used to represent the research interests of authors. As
explained in the article, each embedded point r̂i is approx-
imately contained in a simplex with r̂i ≈ ∑3

k=1 wi(k)vk
where {vk}3

k=1 are the vertices representing three primary
research areas, and wi ∝ πi ◦ b characterizes the position
of r̂i within the simplex. However, when the elements of
the positive vector b take substantially di!erent values, the
weight vector wi and the membership vector πi can dif-
fer signi"cantly. As a result, the research map that consists
of {r̂i} may not be an authoritative description of research
interests, because the positions of embedded points do not
truly re$ect the research interests which are modeled by
{πi} in DCMM. We have checked the estimated b from the
mixed-SCORE method for the citee network constructed
during 1991–2000. It is (0.037, 0.026, 0.035) for the binary
network and (0.014, 0.009, 0.011) for the weighted network.
Hence, this may not be of concern in the current article, but
nonetheless deserves attention when applying the embed-
ding to other citation data. The general question here can be
formulated as: is it better to use {π̂i} instead of {r̂i} to study
research interests?

• Statistical variations of the embedding. The theoretical anal-
ysis in Jin, Ke, and Luo (2017) shows that {r̂i} and {π̂i}
obtained from mixed-SCORE enjoy nice convergence prop-
erties (along with some minimax optimality). An interest-
ing and important future research topic is to characterize
the asymptotic distributions. Such asymptotic results can
be used to perform more sophisticated data analysis. For
instance, depending on the parameter con"gurations in the
model, the asymptotic covariance matrix of each r̂i may vary

considerably. Incorporating the heterogeneity could lead to
a better clustering method for the partition of sub-areas.
Similar ideas have been explored in other network models
Athreya et al. (2016), Tang (2018), and Huang, Weng, and
Feng (2020). Also, by taking into account the statistical vari-
ations of embedding, it is possible to design more accurate
metrics for the diversity of author research interests (e.g.,
using a weighted distance). Finally, results on asymptotic
distributions enable us to quantify uncertainty and answer
various questions via statistical inferential techniques such
as hypothesis tests and con"dence intervals.

• Geometry of membership vectors. In DCMM, the membership
vectors {πi} model research interests of authors and lie in a
simplex. Is there a more appropriate distance function than
the common distances such as Euclidean distance for the
space? Addressing this question may help us better interpret
embedding results from estimated vectors {π̂i}, and better
quantify the di!erence of membership vectors in problems
such as evolvement of author research interests. Let d(·, ·) be
a distance function. One potentially desirable property for
d(·, ·) to satisfy is that π ′

i Pπj > π ′
i Pπk whenever d(πi, πj) <

d(πi, πk). This property implies that if author i’s research
interests are more similar (in terms of the metric d) to author
j’s than to author k’s, then author i has a higher probability to
connect with author j than author k in the network, modulo
degree heterogeneity of authors j and k. Other properties that
account for the community structure matrix P are possible.
We do not aim to advocate a speci"c property here, but rather
bring up the issue that common distances may fall short of
characterizing the complete role of membership vectors in
the network.

2. Statistical Analysis of Coauthorship Networks

In the analysis of coauthorship networks, the article focused on
using only the coauthorship information. The authors provided
a very intuitive view on the hierarchical community structure. It
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occurs to us that the articles contain many other useful informa-
tion, including the title, abstract, keywords, author a%liations,
all of which could be used in the network model. There are two
categories of auxiliary information.

• Incorporate the information for each article in the model.
The available information could include the title, keywords,
abstract, the journal published, as well as the number of
citations. Of course, some of them are unstructured informa-
tion, which may require further modeling. For example, topic
modeling could be applied to abstract to extract compact
information. There has been a great deal of research on using
the edge information in the stochastic block model (e.g., Wu,
Levina, and Zhu 2017; Huang and Feng 2018).

• Incorporate the information of each author in the model. This
could include the authors’ a%liation, the year of getting
Ph.D., and advisor name(s). There exist many works on
incorporating these nodal information into the stochastic
block model (e.g., Yan et al. 2019; Weng and Feng 2021).
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Data Come First: Discussion of “Co-citation and Co-authorship Networks of
Statisticians”

David Donoho

Stanford University, Stanford, CA

I salute the authors for their gi! to the world of this new
dataset! They have clearly invested plenty of time, e"ort, and IQ
points in the study of the statistics literature as a bibliometric
laboratory, and our #eld will grow and develop because of this
dataset, as well as methodology the authors developed and/or
#ne-tuned with those data.

Strikingly, the article also conveys a great deal of enthusiasm
for the data! This seems such a departure from the pattern of
many articles in statistics today.

The enthusiastic spirit reminds me of some classic work by
great #gures in the history of statistics, who o!en were fasci-
nated by new kinds of data which were just becoming available
in their day, and who were inspired by the new data to invent
fundamental new statistical tools and mathematical machin-
ery. Francis Galton was interested in the relationships between
father’s height and son’s height, himself compiling an extensive
bivariate dataset of such heights, leading to the invention of the
bivariate normal distribution and the correlation coe$cient.

Time and time again, new types of data came #rst, new
types of models and methodology later. Indeed, this seems
almost inevitable. As new technologies come onstream, new
kinds of measurements become available, and new settings for
data analysis and statistical inference emerge. This is plain to see
in recent decades, where computational biology produced gene
expression data, DNA sequence data, SNP data, and RNA-Seq
data, each new data type leading to interesting methodological
challenges and scienti#c progress.

For me, each e"ort by a statistics researcher to understand
a newly available type of data enlarges our #eld; it should be a
primary part of the career of statisticians to cultivate an interest
in cultivating new types of datasets, so that new methodology
can be discovered and developed.

CONTACT David Donoho donoho@stanford.edu Stanford University, Stanford, CA.

However, many Ph.D. statisticians, particularly those who are
early in their careers, might not agree; they might even have
di$culty “getting” the point I’m trying to make. The data-#rst
approach I cited earlier, giving the example of Galton, has not
been academically dominant in recent decades. This approach
might be considered something like footprints le! in the forest
by our ancestors: and in this case, those footprints became
overgrown and hidden over the last century. It’s a wonder they
were not lost forever.

Since the 1930s really, the literature of statistics—the very
topic of this article (!)—has focused on models and methodol-
ogy #rst; in some articles, occasionally data are provided as a
kind of a!erthought, simply to illustrate the article’s methodol-
ogy concretely—the same way we might “tack on” a bibliography
at the end of a article, we “tack on” a data example.

Indeed, this article uncovers a statistics triangle, revealing
that our #eld’s literature is clustered around speci#c types of
models and methodology. If the #eld were instead data-#rst, its
literature might instead be organized around datasets; in which
case the authors might have uncovered a very di"erent type of
clustering.

Remarkably, the authors discovered this model-#rst struc-
ture of the literature because they were willing to depart from
the models-#rst tradition and work instead within the data-#rst
tradition, developing a fresh high-quality dataset which could
support scrutiny and discovery.

The authors could, amazingly, transcend their own modern,
theory-driven upbringing and reinvent or relearn the largely
forgotten data-#rst attitudes of an era prior to today’s. But doing
so has paid o" ! Kudos to the authors for showing us the way,
I hope that others can be inspired and that the literature of
statistics will grow because of this shining example of the fruits
of a data-#rst orientation.

© 2022 The Authors. Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which
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1. Introduction

We congratulate the authors on an interesting paper and on
making an important contribution to the network analysis
community through compiling a large new dataset which
will spur further work on multilayer, dynamic and other
complex network settings. This discussion focuses on the
paper’s particular methods and applications in dynamic network
analysis. Complexity of dynamic network data leads to many
necessary analyst choices in both data processing and network
modeling. Where possible, we will compare the choices made
in this paper with other possibilities from recent literature on
dynamic network analysis.

One of the important points of the paper is that much of
our network data has always been dynamic. For instance, com-
munication networks consisting of sent and received E-mails
come with time stamps, whether we choose to incorporate them
or not. Developing statistical methods that take advantage of
this time varying structure will lead to greater e!ciency, novel
insights, and generally allow us to take full advantage of rich
modern datasets like the one featured in this paper.

2. Choices in Data Processing

Dynamic network data typically arrive in one of two general
settings, which we term snapshots and events. Snapshot data,
consisting of time stamped networks collected at prespeci"ed
times, generally arise from the active querying of a complex
system at those times. Conversely, event data, consisting of time
stamped dyadic events between nodes, is a natural outcome
from passive observation of a complex system. It is common,
however, as this paper does, to aggregate event data into "xed
time windows, which results in a format similar to snapshot
data. Typically, this makes it easier to extend single network
methods to the aggregated data, but there is a growing literature
on directly modeling event data (Crane and Dempsey 2018;
Matias, Reba#a, and Villers 2018; Kreiß, Mammen, and Polonik
2019, among others), including "rst steps toward models for
nondyadic (hyperedge) events (Mulder and Ho$ 2021).

Windowing, the choice of how to aggregate the observed
events, is an important stage in the processing of dynamic
network data. This paper chooses to summarize 30 years of data
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into 21 overlapping time windows of varying length from 5 to 10
years in Section 2, and then summarizes the same data into three
overlapping time windows in Section 3. For spectral methods
like those applied here, varying window length gives the analyst
direct control of the edge density and ultimately the eigengap,
especially important for methods which operate on snapshots
independently, and thus, require su!cient signal strength for
each snapshot. Overlapping and nonoverlapping windows will
in%uence downstream modeling assumptions, with overlapping
windows suggesting serial dependence among snapshot entries.
As noted by Kim et al. (2018), overlapping windows can also aid
interpretation by stabilizing results over time. However, stability
of results to window choice is also important, and would help
increase con"dence in the "nal results.

The node set will not necessarily remain constant across
dynamic network snapshots. In Section 2, the authors restrict
the node set to nodes present in the "rst snapshot; for cita-
tions that makes sense, since a paper can continue to be cited
inde"nitely. However, the node set of the coauthorship net-
work in Section 3 changes across the three snapshots. Since
the proposed estimation method operates on each snapshot
independently, nodes have no e$ect on the analysis of snapshots
where they do not appear. An alternative approach might be to
explicitly model the arrival and departure of nodes from the
system, as done, for example, in the dynamic stochastic block
model (SBM) proposed by Matias and Miele (2017). This can
potentially allow for more e!cient information sharing across
snapshots.

3. Choices in Network Modeling

The citation network analysis in Section 2 works with 21
network snapshots constructed by aggregating overlapping time
windows. The dynamic degree-corrected mixed-membership
(DCMM) model assumes independence of the network
snapshots a&er accounting for the latent community structure.
Dependence across networks is a challenging new area of
research, including recent work on multiple community detec-
tion with dependence (Yuan and Qu 2021), and applications of
more classical time series models to individual node-pair series
(Jiang, Li, and Yao 2021).
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The dynamic DCMM model presented here, along with
many other dynamic extensions of the SBM, and more general
network latent space models can be categorized according
to which parameters are constant over time and which are
allowed to vary. In contrast to the dynamic DCMM model,
Pensky and Zhang (2019) and Matias and Miele (2017) propose
dynamic extensions of the SBM in which both the community
memberships and community structure matrix are allowed to
vary. In order to still share information across time, Pensky
and Zhang (2019) assume smoothness of the parameters, while
Matias and Miele (2017) community membership is governed
by a Markov chain with nontime varying parameters. These
models allow for greater %exibility and potentially better "t to
the data, but they are typically challenging to "t, and can present
issues in model identi"ability and interpretability, as we discuss
below.

An o&en cited property of network latent space models,
including the SBM, is their intrinsic nonidenti"ability to a
class of transformations, which could be permutations (SBM),
rotations (RDPG, the random dot product graph model),
or inde"nite orthogonal transformations (generalized RDPG
(Rubin-Delanchy et al. 2020)). In the dynamic setting, this
can lead to time varying nonidenti"ability, in which the
parameters at each snapshot are unknown up to a snapshot-
speci"c unknown transformation. In the case of the dynamic
DCMM model, parameter sharing (a constant K×K community
structure matrix P) makes the model well identi"ed, limiting the
nonidenti"ability to a single unknown transformation.

Although the dynamic DCMM model is well identi"ed, the
authors still need to account for time varying nonidenti"ability
in their estimation procedure. An intermediate stage of their
estimation procedure embeds each network snapshot, and a
naive approach could produce embeddings {r̂(t)

i }n
i=1 for each

snapshot with arbitrarily rotated (misaligned) columns. While
the theoretically aligned embeddings may exhibit smoothness
over time, this smoothness can be lost due to misalignment.
The interpretability of a dynamic network model via plots of
embedded trajectories like Figure 2, or those presented in Sewell
and Chen (2015), also relies on correct alignment.

The reference network projection approach taken in Section
2.2 can be viewed as a particular method of aligning a collection
of (K − 1)-dimensional network embeddings (which may be
the end goal of analysis or an intermediate step followed by
clustering) by representing them all in the same basis. The
authors note that it also serves as a denoising step. We also
note that it relies on the assumption of homogeneity of the
community structure matrix over time, so that projection onto
the reference network eigenvectors does not interfere with the
signal strength in the other snapshots.

Other approaches could align embeddings at consecutive
times by solving a (possibly inde"nite) Procrustes problem
(Sanna Passino et al. 2021). This approach is a simple post-
processing step which is logical under the assumption of
network smoothness over time, but it does not necessarily "x
issues caused by misalignment in the modeling and estimation
stages. Alignment can be ensured during the estimation
stage by jointly embedding a concatenated object, such as
an omnibus adjacency matrix (Levin et al. 2017). However,
the omnibus adjacency matrix is an nT × nT object that
can be computationally unwieldy for operations like singular
value decomposition. Estimation e!ciency of the omnibus
embedding depends on the homogeneity of the network over
time (Draves and Sussman 2021).

4. Conclusion

In this discussion, we have used the methodology and analysis
presented in the accompanying paper to consider new opportu-
nities presented by dynamic network data, but also new issues
which require careful consideration in data processing, mod-
eling and interpretation. At the data processing stage, we have
highlighted how control over windowing and aggregation can
in%uence signal strength, smoothness across snapshots, and het-
erogeneity of the (possibly time varying) node set. At the mod-
eling stage we discuss dependence, the key issue of alignment,
and argue that nonidenti"ability in network models requires
careful consideration in the dynamic setting. The authors of
this paper have revealed many insights about their new dataset
by taking advantage of its dynamic structure, but as with any
statistical analysis, these insights depend on choices, and the
number of choices grows quickly with the complexity of the
data. Recognizing these choices and their potential alternatives
is a necessary step toward a complete and principled framework
for dynamic network analysis.
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1. Introduction

We thank the authors for their new contribution to a high quality
dataset and interesting !ndings from the modeling and analysis
of the co-citation and co-authorship networks of statisticians.
Leveraging this dataset, there are lots of additional questions
that might be answered, and analyses done. Network motif
analysis is one such, with roots in the triad census of tradi-
tional social network analysis (Wasserman and Faust 1994, chap.
14.2.1) and !rst introduced in its modern form by Milo et al.
(2002) in systems biology. It has since been applied to various
scienti!c domains, for example, social science, neuroscience, to
study network structures and the underlying complex systems
(see Stone, Simberlo", and Artzy-Randrup (2019) for a survey
article).

While the notion of network motif was originally de!ned
for static networks as small subgraph patterns occurring fre-
quently in a given network, several ways have been proposed
to extend it to dynamic networks consisting of a set of vertices
and a collection of timestamped edges. One widely used one is
from Paranjape, Benson, and Leskovec (2017), where temporal
motifs are de!ned as an ordered sequence of timestamped edges
among a subset of nodes conforming to a speci!ed pattern as
well as a speci!ed duration of time δ in which the edges must
occur. In contrast to their static counterparts, such temporal
motifs take into account not only subgraph isomorphism but
also edge ordering and duration, which can be regarded as
the simple building blocks for temporal structures of dynamic
networks.

There are a few works in the literature on motif anal-
ysis for journal citation networks (Wu, Han, and Li 2008;
Zeng and Rong 2021) and author collaboration networks
(Chakraborty, Ganguly, and Mukherjee 2015), but none of
them seem to be from the perspective of temporal motifs.
In this discussion, we construct temporal citation networks
among statisticians using the publication data provided in the
article, and focus on analyzing the frequency and distribution
of temporal motifs in such dynamic networks. This analysis
provides initial insights into the temporal patterns of citing
behaviors among authors of various statistics journals from 1975
to 2015.
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2. De!nition of Temporal Author Citation Networks

The co-citation and co-authorship networks studied in the
article are in the form of matrices or time series of matrices.
Here, we consider networks in a di"erent form consisting of a
set of vertices and a collection of timestamped directed edges.

The dataset provided in the article contains two data
resources: one is the citation records consisting of pairs of citing
and cited article; the other is the article related information
including authors, year and journal name of publication for
each article. Using both sources of information, we construct
a temporal author citation network as a series of timestamped
directed edges, where nodes represent authors and a directed
timestamped edge pointing from a citer to a citee represents
that an author cited at least one article from another author
within a given year. We exclude all self-loops. The resulting
network includes 1,768,050 citing interactions among 43,521
authors from year 1975 to year 2015.

We also construct temporal networks in the same manner for
the following three di"erent subcategories of journals: (a) the
four #agship journals consisting of AoS, Bka, JASA and JRSSB;
(b) the IMS family, consisting of AoAS, AoP, AoS, StSci, EJS
and JCGS; and (c) the RSS family, consisting of JRSSA, JRSSB
and JRSSC (see Table B.1 in the article for full journal names),
where only citing interactions among authors and their articles
published within each journal subcategory are considered for
each of the three temporal networks constructed. The resulting
networks for the three journal subcategories contain 230,821,
93,180 and 25,940 citing interactions among 8998, 7363 and
4001 authors, respectively, from year 1975 to year 2015.

With all these networks, we are interested in understanding
the temporal patterns of citing behavior among authors and its
change over time.

3. Temporal Motif Analysis Results

For each of the constructed temporal networks, we use the
snap1 package to count the number of occurrences of several

1https://snap.stanford.edu/temporal-motifs/code.html.
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Figure 1. Top: frequency distributions of the 36 two/three-node, three-edge temporal motifs in four temporal citation networks constructed within di!erent categories of
journals. Bottom: the 36 temporal motifs with IDs corresponding to the x-axis of the bar plots, ordered by relative frequency for all journals.

temporal motifs in the network within a sliding observation
window of δ = 5 years, with results2 shown in Figure 1.
However, this is not an exact but an overestimated motif count
in our networks since all temporal motif counting methods are
currently built upon the assumption that each event in the given
network has a unique timestamp, and it is not the case for our
networks with edge resolution of one year. Consequently, some
citing interactions with nonunique timestamps are mistakenly
counted as motif instances by the algorithm. We adjust for
one source of such error where all three citing interactions in
the motif instance are of the same timestamps by subtracting
such false counts (as illustrated in yellow in Figure 1) from the
total counts, while the other source of false motif counts where
only two citing interactions are of the same timestamps cannot
be easily adjusted for given the restrictions in current motif
counting methods. To fully address this issue, either !ner time
resolution of timestamped edges or a motif counting method
adapted for nonunique timestamps is needed. For now, we use
the partially adjusted counts in the following temporal motif
analysis, which are the best estimates we can come up with so
far for the true motif counts.

Figure 1 shows frequency distribution of all the two/three-
node, three-edge temporal motifs (36 motifs in total shown on
the bottom of Figure 1 with motif ID from 1 to 36), re#ecting

2Analysis code is available at https://github.com/KolaczykResearch/
TempMotifOnStatCitationNets.

the behavior of citing patterns among two or three authors
publishing in di"erent categories of journals. The plots are rich
and space here precludes a comprehensive analysis, but here
are a few examples of !ndings that can be obtained from the
plots. In the full journal analysis, we can see that the most
frequently occurring citing patterns (M34, M35, M36) are two
authors successively citing another author in 5 years which
re#ects the broad impact of some seminal works, while the
least frequent ones (M1, M2, M3, M4) are two authors citing
each other, or one author citing another author multiple times
in 5 years, which demonstrates that reciprocal citations across
time occur relatively more rarely in the community of statis-
tics. The motif frequency distributions for the three subsets
of journals look di"erent from each other and also di"erent
from the one for all journals. The most eye-catching di"erences
are: (a) the frequency of motif M34, M35 and M36 decreases
in the AoS, Bka, JASA and JRSSB category compared with
other journal categories although they still occurred quite fre-
quently; (b) while all the triadic patterns seem to occur less
frequently in each journal category, the frequency of two triadic
patterns (M11 and M12) seems to be more prominent in the RSS
family.

Figure 2 shows the frequency distribution of the 36 temporal
motifs across four decades, from which we can see a change
in the behavior of citing patterns from 1975 to 2015. One
interesting observation is that the two lines for 1996–2005 and
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Figure 2. The comparison of motif frequency distributions across four decades: 1975–1985, 1986–1995, 1996–2005, and 2006–2015. Motif IDs in the x-axis correspond to
the temporal motifs shown on the bottom of Figure 1.

2006–2015 align quite well with each, indicating that the citation
pattern during 2006–2015 didn’t change much from that during
1996–2005. However, the citation patterns from 1975 to 2005
seem to evolve every 10 years. For example, the frequency of
motif M27, M34, M35 and M36 increases while that of motif
M11, M12, M25 and M28 decreases from 1975 to 2005.
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We want to congratulate the authors on a fascinating article
containing an insightful analysis and their hard work curating
the high-quality co-citation and co-authorship networks. These
datasets alone are a valuable contribution to the statistics profes-
sion, which will undoubtedly inspire future data science projects
and advances in methodology. In fact, we are eager to use these
networks in our own classrooms and research. Furthermore,
the authors use these networks to tackling exciting questions
in network science that go beyond the familiar problems of
edge imputation and predicting node labels. In doing so, the
authors perform a terri!c analysis accompanied by exciting new
methodology. This analysis serves as a great !rst step in under-
standing these networks, and the ideas initiated in this article
will certainly stimulate many further research questions. For
example, how do individuals in"uence the research trajectory of
others? Or, how do the components of the proposed “research
map” change over time? As statisticians, we have a !rst-hand
understanding of the complex system these networks describe,
which can help us contextualize these problems and validate our
inferences. As such, we look forward to this dataset becoming a
standard benchmark to test new models and scalable inference
procedures.

A central challenge of the work is rigorously quantifying
the time-varying research patterns and trends of the statistics
community, which naturally leads to the statistical modeling of
dynamic networks. The authors skillfully use various dynamic
block models to uncover statisticians’ community structure. In
the remainder of this discussion, we focus on an alternative
statistical network model known as latent space models. Specif-
ically, we brie"y describe the latent space modeling approach,
highlight !ve further research questions, and demonstrate how
latent space models may be used to answer them. Although
other models, such as block models, may be appropriate to tackle
these questions as well, we hope that this discussion gives future
researchers an expanded toolset to investigate this rich data
source.

Latent space models (LSMs) are a popular approach to mod-
eling networks !rst proposed by Ho#, Ra$ery, and Handcock
(2002) for static networks and later generalized to dynamic
networks by Sarkar and Moore (2006) and Sewell and Chen
(2015). These models embed the nodes of a network into a
low-dimensional latent space, which can provide meaningful
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visualizations and insights into the evolution of a network. In
particular, consider T binary undirected networks on a common
set of n nodes, and let A1, . . . , AT be their adjacency matrices
with entries At(i, j). Also, let uit ∈ Rd be the latent position of
the ith node at time t. Dynamic LSMs posit that

P(At(i, j) = 1) = f (hψ (uit , ujt), θ), (1)

where hψ is a similarity function that depends on parameters ψ ,
f is an inverse-link function, and θ are additional parameters. To
capture temporal correlations, the latent positions evolve over
time as Markov processes:

ui1
iid∼ N(0, τ 2Id), uit ∼ N(ui(t−1), σ 2Id), t = 1, . . . , T.

Furthermore, one assumes A1, . . . , AT are independent given
the latent positions. As de!ned, LSMs are "exible models that
can capture various properties of dynamic networks.

1. The role of node and dyad attributes. Incorporating addi-
tional features such as author characteristics (e.g., institution,
department, academic rank, etc.) could yield interesting insights
into the statistics community’s co-citation and co-authorship
patterns. As the authors observe in the text: “collaborations may
be driven by many factors (e.g., geographical proximity, aca-
demic genealogy, cultural ties).” In Section 3, the authors answer
this question by associating clusters inferred with a degree-
corrected block model with attributes in a post hoc manner.
Another approach is to incorporate the features directly into the
network model. The LSM framework can formally quantify the
e#ect of covariates on edge formation by using the following
likelihood in Equation (1):

logit{P(At(i, j) = 1)} = βT
t Xijt + uT

itujt ,

where Xijt is a vector of dyad-speci!c covariates and βt is a time-
varying vector of coe%cients. This approach can be understood
as a generalized bilinear mixed-e#ect model (Ho# 2005, 2021).
The latent positions are mean-zero random-e#ects (E[uT

itujt] =
0) that capture residual network correlations such as transitivity.
For example, we can use this model to investigate whether
geographical proximity has had a decreasing e#ect over time
on co-authorship as virtual communication platforms became
popular.

© 2022 American Statistical Association

https://doi.org/10.1080/07350015.2022.2044828
https://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2022.2044828&domain=pdf&date_stamp=2022-04-04
mailto:yuguo@illinois.edu


498 J. D. LOYAL AND Y. CHEN

2. Inferring an evolving research map. Just as the co-
authorship community structure changes over time, it is
reasonable to assume that the research areas of the research
map do not remain static from 1991 to 2015. In fact, statistical
network analysis has emerged as a popular research topic during
this time. An alternative to the mixed-membership model for
community detection involves clustering the nodes according to
their positions in latent space (Handcock, Ra$ery, and Tantrum
2007; Sewell and Chen 2017). To infer an evolving community
structure, Loyal and Chen (in press) focused on the following
LSM likelihood

logit{P(At(i, j) = 1)} = β0 −
∥∥uit − ujt

∥∥
2 ,

and proposed a Bayesian nonparametric approach that can infer
additions, deletions, splits, and mergers of communities. This
model could elicit changes in statistics research areas when
applied to the co-citation networks.

3. Measuring research attraction. We can use dynamic LSMs
to answer our previous question on how individuals in"uence
the research trajectory of others through a concept called edge
attraction (Sewell and Chen 2015). The edge attraction between
nodes i and j measures the tendency of node i to move through
the latent space in the direction of another node j. Sewell and
Chen (2015) developed a test for the presence of edge attrac-
tion between two nodes. It would be exciting to develop a
similar concept for the research trajectories estimated by the
dynamic DCMM model to study the co-movement of statisti-
cians’ research interests.

4. Accounting for co-citation and co-authorship counts. When
constructing the co-citation and co-authorship networks,
the authors convert the weighted networks of counts into
unweighted networks by applying a threshold to the edge
weights. This procedure may a#ect the detected communities
since it equates edges with low and high counts. It would be
interesting to compare how the research map and co-authorship
communities change (or not) when accounting for an edge’s
strength. In the context of LSMs, the model accounts for
weighted edges by assuming the dyads in the networks, At(i, j),
arise from a generalized mixed model

g(E[At(i, j)]) = βTXijt + hψ (uit , ujt),

where g is a link function. Sewell and Chen (2016) introduced
likelihoods for various weighted networks, including networks
with count-valued edges. As before, a clustering model can be
applied to the latent positions to detect communities in the
networks.

5. Pooling information across co-citation and co-authorship
networks. The analysis in Section 3 indicates that both co-
citation and co-authorship relations contain information about

statistics research areas with many communities corresponding
to statistics sub-!elds. It would be interesting to combine these
two relations by viewing the co-authorship and co-citation
networks as components of a dynamic multilayer network,
a collection of dynamic networks de!ned on a common set
of nodes. Speci!cally, let Ak

t indicate the adjacency matrix
for relation k (i.e., co-citation or co-authorship) measured at
time t with entries Ak

t (i, j). To infer structure shared across
the two relations, Loyal and Chen (2021) proposed modeling
these adjacency matrices with a shared dynamic latent space as
follows:

logit{P(Ak
t (i, j) = 1)} = θk

it + θk
jt + uT

it %kujt ,

where θk
it ∈ R models degree heterogeneity across time and

relation, and %k is a diagonal matrix that allows the relations
to apply di#erent weights to the shared latent features. One can
infer communities shared by the co-citation and co-authorship
relations by clustering the latent positions.

Again, we want to congratulate the authors for a !ne contri-
bution. The authors do a tremendous job developing methods
and theory to answer complex questions in network science. In
particular, it is exciting to see the power of modern statistical
network analysis in uncovering information about our academic
community. We look forward to the ideas presented in this arti-
cle and the co-citation and co-authorship networks stimulating
more exciting research in the future.
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We would like to thank all discussants for their thoughtful
and stimulating comments. We are especially glad to hear that
our dataset is a valuable contribution to modern large-scale
datasets and that our approaches and !ndings will likely inspire
many other research projects. Below are our responses.

1. The Two Traditions: Data-First and Model-First

We thank David Donoho for very encouraging comments. As
always, his penetrating vision and deep thoughts are extremely
stimulating. We are glad that he summarizes a major philo-
sophical di"erence between statistics in earlier years (e.g., the
time of Francis Galton) and statistics in our time by just a
few words: data-!rst versus model-!rst. We completely agree
with his comment that “each e"ort by a statistics researcher to
understand a newly available type of data enlarges our !eld;
it should be a primary part of the career of statisticians to
cultivate an interest in cultivating new types of datasets, so that
new methodology can be discovered and developed”; these are
exactly the motivations underlying our (several-year) e"orts
in collecting, cleaning, and analyzing a large-scale high-quality
dataset.

We would like to add that both traditions have strengths,
and combining the strengths of two sides may greatly help
statisticians deal with the so-called crisis of the 21st century in
statistics we face today.

Let us explain the crisis above !rst. In the model-!rst tra-
dition, with a particular application problem in mind, we pro-
pose a model, develop a method and justify its optimality by
some hard-to-prove theorems, and !nd a dataset to support
the approach. In this tradition, we put a lot of faith on our
model and our theory: we hope the model is adequate, and
we hope our optimality theory warrants the superiority of our
method over others. Modern machine learning literature (espe-
cially the recent development of deep learning) provides a di"er-
ent approach to justifying the “superiority” of an approach; we
compare the proposed approach with existing approaches by the
real data results over a dozen of benchmark datasets. To choose
an algorithm for their dataset, a practitioner does not necessarily
need warranties from a theorem; a superior performance over
many benchmark datasets says it all. To some theoretical statis-
ticians, this is rather disappointing, as they come from a long

CONTACT Jiashun Jin jiashun@cmu.edu Carnegie Mellon University, Pittsburgh, PA; Zheng Tracy Ke zke@fas.harvard.edu, Harvard University, Cambridge,
MA.

model-!rst tradition where they believe that numerical study
alone is inadequate for justifying the optimality of a method,
and the best way to construct a superior method is by careful
modeling and careful analysis. What is even more disappointing
to them is that, frequently, over these benchmark datasets, the
methods with support of optimality theorems underperform
those without. This is what some statisticians call the crisis of
statistics in the 21st century: Statistical models and methods—
bread and butters to statisticians—face unprecedented chal-
lenges in !nding their relevance and signi!cance in modern
scienti!c research, and fears that statistics will be crushed by
some other !elds spread on social media such as Facebook and
WeChat, day a#er day, in recent years.

There are no easy ways to deal with such a major challenge,
but many statisticians are trying. In doing so, we must combine
the strengths of both traditions, and especially, put a lot more
e"orts in generating large-scale modern datasets. Our article is
a combined e"ort of both traditions: On one hand, we collected
and cleaned a large-scale high quality dataset, which motivates
a long list of interesting problems and generates several research
areas. On the other hand, to solve these problems, we need to use
our training in statistical modeling and theory to develop new
methods. Especially, since we emphasize on methods that are
truly e"ective in analyzing our dataset instead of methods with
strong theoretical support, our methods are more competitive
in real applications. Our results will be much less satisfying if
we only do one of the two. By combining the strengths of the
two traditions, we believe that we can !rmly keep the statistical
models and theories in the central stage of modern scienti!c
research.

2. The Dataset We Collected and Cleaned (MADStat)

While small-size datasets on scienti!c publications are easily
accessible nowadays (e.g., by queries with Google Scholar), they
are no substitute for large-scale high-quality datasets which
require many online resources and web scraping techniques and
demand substantial e"orts in cleaning and wrangling the data.

Recent literature discusses a few well-known datasets on sci-
enti!c publications (based on CiteSeer, Cora, PubMed, WebKB,
and ArXiv; see https://linqs.soe.ucsc.edu/data and https://getoor.
soe.ucsc.edu/bio). Compared with those sources, our dataset
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is the !rst high-quality large-scale paper-level dataset on the
publications of statisticians; it not only has many more entries
(each entry being one paper) but also has more features. Our
dataset o"ers 83,331 entries, while most earlier datasets provide
no more than 4K entries (the ArXiv dataset is larger, with
about 30K entries). For each entry, our dataset contains many
attributes or features including title, authors, abstract, keywords,
MSC subject classi!cation, references, and citation counts.

We call our dataset MADStat (which stands for Multi-
Attribute Dataset on Statisticians). Note that the dataset reported
in Ji and Jin (2016) is a subset of MADStat.

In comparison, each entry of the ArXiv dataset only contains
a binarized word count vector and a list of keywords. Other
datasets are similarly short on features, and only one of them
(CiteSeer for Entity Resolution) contains author information.
Using these features in MADStat, we can tackle many problems
that cannot even be properly stated based on other datasets.
For example, we can use MADStat to study the citation patterns
and personalized co-authorship networks of individual authors,
dynamic evolvement of citations and co-authorships (for an
individual or for a group of authors), and journal ranking;
such studies are out of reach for alternative datasets, lacking,
as they do, author attributes, publication year, or journal infor-
mation. We can also apply Natural Language Processing (NLP)
tools, since MADStat contains the original text of abstract of
each article. Competing datasets may only contain word counts
(insu$cient for advanced NLP). Our forthcoming article Ke
et al. (2022) uses MADStat for text learning, journal ranking,
topic ranking, and citation prediction.

3. Incorporating Edge Weights in the Citee Networks

The dynamic citee network in Section 2 in our article is a
collection of 21 unweighted citee networks, each for a di"erent
time window. These unweighted networks are constructed from
the original weighted networks by hard thresholding the edge
weights. As a result, the adjacency matrix of each unweighted
network is binary, so DCMM model is natural. The DCMM
model is well-studied; see Jin and Ke (2021) for a survey of recent
literature.

Weng and Feng pointed out that using the DCMM model
may lose some information hidden in edge weights, and pro-
posed to study the 21 original weighted citee networks instead,
modeling each of them by a Poisson-DCMM model (a variant
of DCMM which assumes that the upper triangle of A contains
independent Poisson variables). They made a great point by
arguing that one can continue to use mixed-SCORE for anal-
ysis of Poisson-DCMM, as mixed-SCORE is a nonparametric
method that is robust to parametric model speci!cation and is
expected to work well as long as the model is !rst-order correct.
Weng and Feng also reported that the memberships inferred
from a Poisson-DCMM model di"er notably from a DCMM
model (e.g., some nodes have purer memberships).

Weng and Feng’s study is very interesting and opens door
for a new line of research. We also agree that the membership
matrix ! under the DCMM and the membership matrix under
the Poisson-DCMM (denoted by !̃) can be quite divergent.
For explanation, let Ã be the adjacency matrix of an original
weighted network, and let A be the binary adjacency matrix

by hard thresholding the entries of Ã at a threshold t > 0.
We model A with DCMM, where E[A] = " − diag(") and
" = #!P!′#. We model Ã with Poisson-DCMM, where we
similarly have E[Ã] = "̃ − diag("̃) and "̃ = #̃!̃P̃!̃′#̃. By
de!nitions, for 1 ≤ i $= j ≤ n,

"̃(i, j) = E[Ã(i, j)], and "(i, j) = P(Ã(i, j) ≥ t).

Therefore, while perhaps for some parameter range both models
turn out to be reasonable, in general the two triplets, (#̃, !̃, P̃)

and (#, !, P), can be quite di"erent, and we should not be
surprised by divergences in membership estimation. Also, the
two matrices ! and !̃ should be interpreted di"erently: the
former is the membership matrix where we use the co-citation
counts in a conservative way (by only considering whether the
count exceeds t), and the latter corresponds to a more aggressive
use of co-citation counts.

We chose to use the unweighted networks for two main
reasons. First, on one hand, the co-citation counts have severe
heterogeneity: they may range from 1 to a few thousands for
di"erent nodes; on the other hand, co-citation counts should be
largely ancillary to the membership vectors πi: for example, an
adviser and his/her advisee may have very di"erent co-citation
counts but similar research interests. We believe DCMM is
more robust than Poisson-DCMM to severe heterogeneity in co-
citation counts (this was also noted by Weng and Feng in Section
1.1 of their discussion). Second, from a theoretical perspective,
membership estimation under DCMM has been carefully ana-
lyzed (Jin, Ke, and Luo 2017; Zhang, Levina, and Zhu 2020; Ke
and Wang 2022), while Poisson-DCMM lacks such results.

Chen and Loyal also noted the possible information loss by
using unweighted networks, and proposed to tackle the problem
by a Latent Space Model (LSM). For 1 ≤ t ≤ 21, let At be
the adjacency matrix for the tth weighted citee network. They
proposed to model At with a generalized mixed e"ect model:

g(E[At(i, j)]) = βTXijt + hψ (uit , ujt),

where g and hψ are prespeci!ed functions, Xijt are covariates,
and uit are latent variables similar to πit in our dynamic DCMM
model. Chen and Loyal further proposed to model uit with
a Markov process prior and obtain the posterior of uit with
a Markov chain Monte Carlo (MCMC) algorithm. See Sewell
and Chen (2015, 2016) for details. In comparison, LSM is more
%exible to incorporate edge weights and dyadic covariates than
DCMM, but the MCMC algorithm for model !tting can be
harder to analyze and computationally more challenging than
mixed-SCORE (mixed-SCORE is a spectral method, which is
computationally fast and minimax optimal (Ke and Wang 2022).
It remains unclear which of the two approaches perform better
in analyzing the citee networks. For limit of space, we leave the
study to future work.

4. Dynamic Network Modeling

As pointed out by MacDonald, Levina and Zhu, there are two
common approaches to modeling the citation counts. The !rst
one is the event approach, where we treat citation counts as a
stream of time-stamped events. For example, Zhu and Kola-
cyzk used this approach in their discussion and constructed a
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dynamic citation network with directed and time stamped edges
(see Section 7 for more discussions). The second one is the
aggregation approach: we divide time into a number of windows,
treat data points in each window as a snapshot, and aggregate the
data of each snapshot to obtain a static network. We took the sec-
ond approach in modeling the citee network. This approach is
popular in dynamic network analysis and has some advantages.
First, aggregating many time-stamped citation counts together
is an important step to ensure the stability of downstream anal-
ysis. Second, aggregating the data into 21 (slightly overlapping)
static networks allows us to conveniently adapt the well-studied
tools for static networks (e.g., Jin, Ke, and Luo 2017; Zhang,
Levina, and Zhu 2020) to analyze dynamic networks.

While MacDonald, Levina and Zhu largely agreed that the
aggregation approach is a reasonable choice for dynamic net-
work modeling, they pointed out some practical issues: (a) the
window size needs to be chosen carefully, (b) there may be
an identi!ability issue and an alignment issue across di"erent
snapshots, (c) there may be a smoothness issue across di"erent
snapshots, and (d) the node set may not remain constant across
di"erent snapshots. Some of these issues are faced by a general
dynamic network modeling strategy, not necessarily tied to the
approach in our article.

For (a), we completely agree. In fact, as the statistical commu-
nity has been steadily growing, in our dataset, we see far more
authors per year in 2010s than in 1990s. Therefore, we allow
the window sizes to vary, so that the networks corresponding
to di"erent time windows have similar numbers of nodes.

For (b)–(c), our approach was designed to tackle such issues.
In the proposed dynamic network embedding algorithm, we
create a universal embedding that embeds all nodes at all time
t to the same low-dimensional space (i.e., the Statistics Triangle
de!ned by the reference network). This o"ers an alignment for
networks corresponding to di"erent snapshots that is naturally
smooth; for a detailed explanation, see the paragraphs above
Theorem 2.1 of our article. McDonald, Levina and Zhu agreed
that this is a solution to the alignment issue and raised a great
question—how much the approach “relies on the assumption of
homogeneity of the community structure matrix over time.” We
indeed need some temporal smoothness conditions on parame-
ters of the dynamic DCMM model, to guarantee that the embed-
ding, which is de!ned by the eigenvalues and eigenvectors of
the !rst snapshot, maintains high signal-to-noise ratios for all
snapshots. Such conditions are given explicitly in our forth-
coming article (Cammarata et al. 2022). McDonald, Levina and
Zhu also pointed out other approaches to network alignment in
a dynamic setting, such as Procrustes analysis (Sanna Passino
et al. 2021) and the omnibus embedding (Levin et al. 2017). We
note that, !rst, these approaches still need temporal smoothness
conditions to maintain high signal-to-noise ratios for all snap-
shots; second, they, at least in their current form, do not allow
for degree heterogeneity. In comparison, our dynamic network
embedding approach always accommodates degree heterogene-
ity. We believe our approach provides a reasonably good solution
to the alignment issue and the smoothness issue. It is of great
interest to study other alignment approaches and adapt them to
the dynamic DCMM model, which we leave to future work.

For (d), this is an issue faced by all approaches that use the
snapshot data. Fortunately, in the citee networks, most of the

“leading nodes” (i.e., authors with large degrees) are also “active
nodes,” who remain active across the whole range of time. For
the dynamic network embedding approach in our article, the
e"ect of high-degree nodes is considerably larger than of small-
degree nodes, so at least for some tasks (e.g., following the
trajectory of a representative author), this issue does not have
a major e"ect in our analysis. Furthermore, in our forthcoming
article (Cammarata et al. 2022), we propose a slightly di"erent
embedding approach where instead of using the !rst citee net-
work as the reference network, we use the pooled network (the
network constructed by using all data points in the whole time
range) as the reference network. This can largely alleviate the
issue.

Loyal and Chen proposed an alternative aggregation
approach, where they used the same way to construct the 21
citee networks. However, instead of modeling each of these
citee networks with a DCMM model, they proposed to model it
with a latent space model (LSM). This gives rise to the dynamic
LSM. They proposed to analyze dynamic LSM with a Bayesian
nonparametric approach, and use the results to infer changes
of communities and to measure “research attraction.” Loyal
and Chen argued, by studying a concept called edge attraction
in dynamic LSM, one can visualize co-movements of research
interests of multiple authors, and also illustrate how individuals
in%uence the research trajectories of each other; see Sewell
and Chen (2015) for details. These comments suggested new
research topics and pointed out new uses of the MADStat
dataset, worthy of careful investigations in the future.

5. The Spectral Embedding and Visualization of the
Estimated Memberships

At the heart of our citee network analysis is the SCORE embed-
ding (Jin 2015), which produces the low-dimensional vectors
r̂1, r̂2, . . . , r̂n. Weng and Feng raised several questions about
this embedding: (a) In Figure 1, which is the better way to
visualize the research triangle, the plot of r̂1, . . . , r̂n or the plot
of π̂1, . . . , π̂n? (b) How to derive the limiting distribution of r̂i,
and (c) how to utilize such limiting distribution to improve com-
munity detection, diversity metric and other inference tasks?
(d) What is an appropriate distance metric for ri or πi that can
faithfully re%ect the closeness of author research interests?

For (a), we think both visualization approaches are inter-
esting, but to save space, we chose the !rst approach, and the
main reason is that r̂1, . . . , r̂n contain more information from
the raw data. To see the point, recall that π̂1, . . . , π̂n are obtained
as follows. First, we use r̂1, . . . , r̂n to estimate the vertices of
the Research Triangle, and use the leading eigenvalues and
eigenvectors of A to obtain an estimate of b by b̂ (see Jin,
Ke, and Luo 2017 for details). We then express each r̂i as a
convex combination of the estimated vertices, with ŵi being the
resulting combination coe$cient vector. Finally, letting π̃i be
the vector where π̃i(k) = ŵi(k)/b̂(k), 1 ≤ k ≤ K, we obtain
π̂i by !rst replacing each negative entry of π̃i by 0 and then
rescaling the resultant vector so all of its entries sum up to 1.
Due to regularization in the last step, it is relatively easy to !nd
π̂i by r̂i, but harder to !nd r̂i by π̂i. Moreover, π̂i depends on
the algorithm of estimating the vertices but r̂i does not. Vertex
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hunting can bring additional errors. For the above reasons,
the plot of r̂1, r̂2, . . . , r̂n is more informative and less prone to
noise. For (b), we echo that this is an important problem, as
knowing the limiting distribution of r̂i and π̂i can help many
inference problems (e.g., con!dence band for πi, ranking of πi
in a multiple testing setting, and membership pairwise compar-
ison; see, e.g., Huang, Weng, and Feng 2020). This problem is
closely related to the literature of entry-wise eigenvector analysis
(Tang and Priebe 2018; Abbe et al. 2020; Fan et al. 2022). In
the case of severe degree heterogeneity, Ke and Wang (2022)
derived sharp large-deviation bounds for every r̂i and charac-
terized precisely how these bounds vary with the individual
degree parameters. This proved Weng and Feng’s conjecture
that the “the asymptotic covariance matrix of each r̂i may vary
considerably.” For (c), we completely agree that it is bene!cial
to account for the asymptotic behavior of r̂i in estimation and
inference. For example, we may draw a con!dence ball for each
r̂i; since these con!dence balls have di"erent diameters, we may
use them to have a better assessment of author closeness in the
Research Triangle or develop a better test for the null hypothesis
of πi = πj. For (d), Weng and Feng suggested that a good
distance metric should satisfy some faithfulness properties such
that d(πi, πj) < d(πi, πk) always implies π ′

i Pπj > π ′
i Pπk. This is

an interesting point. In fact, for those real data where K is small
and P is strongly diagonal dominating, the Euclidean distance
metrics ('2-norm or '1-norm) seem to work reasonably well for
visualization and interpretation of memberships, but we agree
with Weng and Feng that designing a more appropriate distance
metric is practically valuable.

6. Joint Modeling of Di!erent Data Sources

The MADStat dataset provides several di"erent data sources,
including but not limited to (a) co-authorships, (b) citation
relationships, and (c) title, keywords, and abstracts (which can
be used as text documents). In Section 2 of our article, we focus
on a dynamic citee network constructed from (b); in Section 3,
we focus on a dynamic co-authorship network constructed from
(c). Seemingly, our study only covers a very small proportion
of research one can do with the dataset. The discussants have
suggested a few ideas for future research. Among them, joint
modeling and analysis of di"erent data sources is especially
interesting, so we discuss it below.

First, several discussants (Loyal and Chen, Weng and Feng)
suggested a combined analysis of the co-authorship network
and the co-citation network. This is a very interesting problem.
To approach it, one possibility is modeling these two networks
with two di"erent DCMM models, with some constraints on
parameters (e.g., the two models share the same membership
matrix). The spectral method, mixed-SCORE, in our article can
be extended to this setting. Let r̂coau

i and r̂cite
i be the embeddings

of node i in the co-authorship network and the co-citation net-
work, respectively. We concatenate them to get an embedding

r̂i =
[

r̂coau
i
r̂cite

i

]
, where r̂i is of dimension 2(K − 1).

It is not hard to see that r̂i inherits the simplex geometry, as
long as the two models share the same membership matrix.

Therefore, we can similarly develop a spectral method for esti-
mating the common membership matrix !. Another possibility
is suggested by Loyal and Chen, where they proposed to model
the two networks with two di"erent latent space models (LSMs)
sharing the same latent space. Let A(1) and A(2) be the adja-
cency matrices of the co-authorship network and the co-citation
network, respectively. In their discussion, they suggested the
following models:
logit(E[A(m)(i, j)]) = θ

(m)
i +θ

(m)
j +uT

it)
(m)ujt , m ∈ {1, 2}.

Here, the latent variables uit are shared by two models. Similar to
the DCMM approach, the LSM approach also pools information
of two networks.

Moreover, Weng and Feng suggested a combined analysis
of the networks with the text documents (title, abstract and
keywords) in our dataset. This is a great idea, and in fact, in our
forthcoming article (Ke et al. 2022), we have done two lines of
research. In the !rst one, we combine ideas on journal ranking
and text learning and propose the Ho"man–Stigler model as
a new model for jointly modeling citation counts and article
abstracts. We then analyze it by the topic-SCORE algorithm (Ke
and Wang 2017) and use the results to identify representative
topics in statistics, study how topic weights of a given author
evolve over time, identify the friendliest journal for a given topic,
and perform topic ranking and journal ranking. In the second
line, we extract 22 features by combining the text learning results
above with manual e"orts and use them to predict whether a
given article will be highly cited in the near future.

Finally, Weng and Feng also suggested us to combine the
MADStat dataset with other data resources, such as the math-
ematical genealogy, for analysis. This is a very interesting sug-
gestion, as the adviser-advisee relationship is one of the most
important co-authorship patterns; see Section 3 of our article.
If we have the mathematical genealogy data, we can have a
more careful study on how the relationship of adviser-advisee
a"ects the long-term co-author relationships and evolvement
of research interest. To incorporate such additional features to
our network analysis, we may use the LSM approach. In the
discussion of Loyal and Chen, they mentioned that the LSM
framework can admit dyadic attributes such as the advisor-
advisee dummy and geographical proximity between nodes.
They suggested to use this model-based approach to study those
factors that a"ect the formation of collaboration. These are all
great suggestions, which we leave to future work.

7. Counting Motifs, Graphlets, and Cycles

Zhu and Kolacyzk raised an excellent point that we may gain
interesting insights of the networks by counting the numbers of
small-size subgraphs (e.g., motifs, cycles, graphlets). Especially,
by treating the citation counts in MADStat as a time-stamped
stream of events, they closely investigated the frequencies of 36
motifs in four di"erent settings, and discovered some interesting
patterns of these motifs. For example, they found that the recip-
rocal citations across time occur relatively rare in the statistical
community. Their study points out a new use of the MADStat
dataset and opens doors for new research.

In connection with their study, we proposed to apply the
SgnQ test on personalized networks to measure the coauthor-
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ship diversity and citation diversity of individual authors; see
Section 3.3 of our article. The SgnQ statistic is a member of the
class of Signed-Polygon test statistics (Jin, Ke, and Luo 2021)
constructed from cycle counts. Such test statistics can be viewed
as some (properly centered and normalized) motif counts in a
symmetrical network, with the appealing property of a limiting
distribution of N(0, 1) under a null DCMM model with K = 1.
This poses an interesting question: Is it possible to borrow the
idea of SgnQ to develop a statistic from the temporal motif
counts such that it has a tractable distribution? We believe this
is possible. Assuming a dynamic DCMM model with K = 1, we
can estimate the mean and standard deviation of the temporal
motif counts and come up with a properly standardized test
statistic. At least for those two-node and three-node temporal
motifs discussed by Zhu and Kolacyzk, it is feasible to derive
the asymptotic distributions of such test statistics. We leave
the study to future work. It is worth mentioning that Zhu and
Kolaczyk (2022) and Chang, Kolaczyk, and Yao (2022) have
studied the distributions of temporal motif counts, have studied
the distributions of temporal motif counts in some related but
di"erent settings.

We further point out some other applications of temporal
motif counts in the MADStat dataset. First, we can use the per-
sonalized motif counts (i.e., count of motifs in a properly de!ned
ego dynamic citation network of a given author) to measure the
citation diversity of this author. Second, the personalized motif
counts can be used for citation prediction. Given an author, the
problem of citation prediction is to use his/her past citation
patterns to predict his/her total citation counts in the next 5
years (say). In our forthcoming article (Ke et al. 2022), we use
the MADStat dataset to extract 22 features and show that these
features are relatively powerful in predicting future citations.
Zhu and Kolacyzk mentioned that the motifs M34-36 re%ect the
broad impact of some seminal works and that if an individual
frequently serves as the top le# node in their motifs M34-36
(see Figure 1 of their discussion), then he/she is likely to receive
high citations. These !ndings suggest that the counts of some
particular motifs may be predictive for future citations.

8. Goodness of Fit (GoF) and Model Diagnostics

The DCMM model allows for severe degree heterogeneity and
mixed-memberships, and achieves a good balance between
practical feasibility and mathematical tractability. An interesting
question is whether DCMM is adequate for most real networks.
Weng and Feng proposed a deviance residual plot for model
diagnostics, and their results suggest that, at least for the
reference citee network, the DCMM model is adequate.

Weng and Feng’s approach is very interesting, but they did
not provide a goodness-of-!t (GoF) test that can output an
explicit p-value. From a practical perspective, it is desirable to
have a GoF metric with an explicit limiting null distribution. We
now borrow the ideas of model !tting and cycle counting (Jin
et al. 2022) to propose such a GoF metric. Given a symmetric
network with K communities, we test whether it satis!es a
DCMM model with K communities (i.e., goodness of !t). We
prefer not to specify the alternative hypothesis, leaving it %exible
to incorporate various cases where the assumed model does not
hold (e.g., misspeci!ed K, outlier nodes, edge dependency, etc.).

Our approach is a 4-step recipe. In step 1, we estimate ! by a
spectral method (e.g., mixed-SCORE). In Step 2, we estimate #

and P by re!tting the adjacency matrix A using the estimated !.
This gives rise to an estimate of ", denoted by "̂. In step 3, we
apply a cycle count statistic (see Section 7 and Jin, Ke, and Luo
2021) to the matrix Â = A − "̂. In Step 4, we standardize the
statistic by its estimated mean and standard deviation. Details
are in the forthcoming article (Jin and Ke 2022). In this recipe,
Steps 1–2 share a similar spirit as the approach of Weng and Feng
by creating a residual matrix A − "̂ (Weng and Feng also used
mixed-SCORE to estimate ! !rst, but their re!tting procedure
to obtain "̂ is di"erent), and Steps 3–4 serve to create a GoF
metric with a known limiting null distribution.

The above approach has been justi!ed in the simpler DCBM
setting (i.e., the network satis!es a DCBM model with K com-
munities in the null hypothesis, where DCBM is a special case
of DCMM with no mixed-memberships). In this case, we use
SCORE (Jin 2015) as the spectral method in Step 1, and our
recipe coincides with one step of the StGoF algorithm (Jin et al.
2022) at m = K (StGoF is a stepwise algorithm where we run a
GoF test successively for m ≥ 1). By Theorem 3.1 of Jin et al.
(2022), under the null hypothesis, the test statistic converges
to N(0, 1) in law as n diverges to ∞, and so we can use it
as a GoF metric. For the DCMM setting of interest here, we
follow the same recipe but use mixed-SCORE as the spectral
method in Step 1 and modify Steps 2–4 to accommodate mixed
memberships; the study of the asymptotic null distribution of
the GoF metric is technically more demanding, and details are
in Jin and Ke (2022).
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