
Supplement of “Sharp Impossibility Results for

Hyper-graph Global Testing”

In this supplement file, we first present the impossibility results for RMM-DCMM, which is

omitted from the main text due to space limit. Then, we prove all the theorems and lemmas.

Note that in this paper, C is a generic constant that may vary from occurrence to occurrence.

A The region of impossibility for RMM-DCMM

For RMM-DCMM models, we allow mixed-memberships. The discussion is quite similar, and

the impossibility result in Section 2.2 continues to hold under a mild condition.

Similarly, consider a model pair, where we have a null DCMM model and an RMM-DCMM

model with K communities as the alternative. Denote the Bernoulli probability tensors by Q
and Q∗, respectively. Similarly, for 1 ≤ i1, i2, i3 ≤ n, we assume

Qi1i2i3 = θi1θi2θi3 , (A.1)

Q∗
i1i2i3 = θ∗i1θ

∗
i2θ

∗
i3 · π

′
i1(Pπi3)πi2 , (A.2)

where the community structure tensor P is as in (1.2), and πi and h = EF [πi] are as in (1.5). Sim-

ilarly, for any matrixD = diag(d1, d2, . . . , dK) with dk > 0, 1 ≤ k ≤ K, let PD be the tensor with

the same size of P satisfying PD
k1k2k3

= dk1
dk2

dk3
Pk1k2k3

. Also, let hD = E[D−1πi/∥D−1πi∥1]
and ãD = (PDhD)hD. We assume that there is a matrix D such that

ãD = 1K , min
1≤k≤K

{hDk } ≥ C. (A.3)

Recall that in Lemma 2.1, we have shown that such a matrix D always exists for DCBM. To see

the point, note that if we do not allow mixed-memberships, then each realized πi is degenerate

(i.e., only one entry is 1, all other entries are 0). In this case, hD = EF [πi] = h, and ãD = aD.

Therefore, (A.3) always holds, by Lemma 2.1. For this reason, (A.3) is only a mild condition.

Suppose now (A.3) holds for a matrix D = D0. Let P∗ and ã∗ be PD and ãD evaluated at

D = D0, respectively. By definitions, ã∗ = 1K . For 1 ≤ i ≤ n, let

θ∗i = θi/∥D−1
0 πi∥1, π∗

i = D−1
0 πi/∥D−1

0 πi∥1. (A.4)

Combining them with (A.2), for all 1 ≤ i1, i2, i3 ≤ n, we have Q∗
i1i2i3

= θ∗i1θ
∗
i2
θ∗i3 ·π

′
i1
(Pπi3)πi2 =

θi1θi2θi3π
∗
i1

′(P∗π∗
i3
)π∗

i2
. By similar calculations, for 1 ≤ i1 ≤ n, the leading term of the expected

degree of node i1 under the alternative is θi1∥θ∥21(π∗
i1
)′ã∗ = θi1∥θ∥21, where the right hand side

is the leading term of the expected degree of node i1 under the null. Therefore, we have the

desired degree matching as before. The following theorem is proved in Section D.

Theorem A.1 (Impossibility for DCMM). Fix K > 1. Given (θ,P, h, F ), consider a pair of

models, an alternative with K communities and a null, as in (A.2) and (A.1) respectively, where

(A.3) holds and θ∗ is given by (A.4). Suppose (2.6) hold and ∥θ∥1∥θ∥2µ2
2 = o(1). As n → ∞,
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the χ2-divergence between the pair tends to 0. Therefore, the two models are asymptotically

indistinguishable in the sense that the sum of Type I and Type II errors of any test is no smaller

than 1 + o(1).

Similarly, in the parameter space (θ,P, h, F ) for DCMM, we call the region prescribed by

∥θ∥1∥θ∥2µ2
2 → 0 the Region of Impossibility. For any model in this region, we can pair it with a

null so they are asymptotically inseparable.

We next generalize the result to non-uniform DCMM. Consider a DCMM null model with

probability tensors Q[M ] = {Q(2), . . . ,Q(M)} and an RMM-DCMM model with probability

tensors Q∗[M ] = {Q∗(2), . . . ,Q∗(M)}, where for every 2 ≤ m ≤M and 1 ≤ i1, i2, . . . , im ≤ n,

Q(m)
i1,i2,...,im

= θ
(m)
i1

θ
(m)
i2

· · · θ(m)
im

, (A.5)

Q∗(m)
i1,i2,...,im

= θ
∗(m)
i1

· · · θ∗(m)
im

× [P(m);πi1 , . . . , πim ], πi
iid∼ F. (A.6)

For any matrix D(m) = diag(d
(m)
1 , d

(m)
2 , . . . , d

(m)
K ) with d

(m)
k > 0, 1 ≤ k ≤ K, let P̃(m) be the ten-

sor with the same size of P(m) satisfying P̃(m)
k1k2···km

= d
(m)
k1

d
(m)
k2

· · · d(m)
km

P(m)
k1k2···km

. Also, let h̃(m) =

E[D(m)−1
πi/∥D(m)−1

πi∥1] and ã(m) =
∑

1≤i2,...,im≤K d
(m)
i1

·P(m)
i1···im ·(d(m)

i2
h̃
(m)
i2

) · · · (d(m)
im

h̃
(m)
im

), for

every 1 ≤ i1 ≤ K. We assume that there are matrices D(2), . . . , D(m) such that form = 2, . . . ,M

ã(m) = 1K , min
1≤k≤K

{h̃(m)
k } ≥ C. (A.7)

Note that (A.7) always holds for non-uniform DCBM, by Lemma C.1 in Section C below. For

this reason, (A.7) is only a mild condition.

Suppose now (A.7) holds for a matrix D(m) = D
(m)
0 , for m = 2, . . . ,M . Let P∗(m) and ã∗(m)

be P̃(m) and ã(m) evaluated at D(m) = D
(m)
0 , respectively. By definitions, ã∗(m) = 1K . For

1 ≤ i ≤ n, 2 ≤ m ≤M , let

θ
∗(m)
i = θ

(m)
i /∥D(m)

0

−1
πi∥1, π

∗(m)
i = D

(m)
0

−1
πi/∥D(m)

0

−1
πi∥1. (A.8)

This is analogous to the degree matching strategy in (A.4), and it is conducted for each m sepa-

rately. Let µ
(m)
2 be the second singular value of P (m). For short, let ℓm = ∥θ(m)∥m−2

1 ∥θ(m)∥2(µ(m)
2 )2.

The following Theorem is for non-uniform DCMM.

Theorem A.2 (Impossibility for non-uniform RMM-DCMM). Fix K > 1 and M ≥ 2. For

any given (h, F ) and {(θ(m),P(m))}2≤m≤M , consider a pair of models, a null as in (A.6) and

an alternative with K communities as in (A.5), where (A.7) hold and {θ∗(m)
i }1≤i≤n,2≤m≤M are

as in (A.8). Suppose ∥P (m)∥ ≤ C and max1≤i≤n θ
(m)
i ≤ C. If max2≤m≤M{ℓm} = o(1), then as

n→ ∞, the χ2-divergence between the pair tends to 0.

B Proof of Theorem 2.2

Fix an arbitrary (θ,P, h, F ) that satisfies the requirement of Theorem A.1. We consider a pair

of models: a null model where Qi1i2i3 = θi1θi2θi3 and a K-community uniform RMM-DCMM

model as in Theorem A.1. Let P(n)
0 and P(n)

1 denote the probability measures associated with

these two models, respectively. We further modify P(n)
1 as follows. In this RMM-DCMM, the

membership matrix Π is randomly generated. Let Π0 be a non-random membership matrix such

that (θ,Π0,P) ∈ Mn(K, c0, αn, βn). We define

Π̃ =

{
Π, if (θ,Π,P) ∈ Mn(K, c0, αn, βn),

Π0, otherwise.
, where πi

iid∼ F . (B.9)
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We construct a similar RMM-DCMM by replacing Π with Π̃ and denote P̃
(n)
1 the probability

measure associated with this new RMM-DCMM.

Consider a pair of hypotheses, where A is generated from P(n)
0 under the null hypothesis and

it is generated from P̃
(n)
1 under the alternative hypothesis. Given any test ψ, its sum of type I

and type II errors is equal to

P(n)
0 (ψ = 1) + P̃(n)

1 (ψ = 0)

= P0(ψ = 1) + EΠ̃

[
P1

(
ψ = 0|Π̃

)]
≤ sup

θ∈M∗
n(βn)

P(ψ = 1) + sup
(θ,Π,P)∈Mn(K,c0,αn,βn)

P(ψ = 0).

In the last inequality, we have used the fact that (θ, Π̃,P) ∈ Mn(K, c0, αn, βn) for any realization

of Π̃ (this is guaranteed by the construction in (B.9)). At the same time, by Neyman-Pearson

lemma,

P(n)
0 (ψ = 1) + P̃(n)

1 (ψ = 0) ≥ 1− ∥P(n)
0 − P̃(n)

1 ∥1,

where ∥P(n)
0 − P̃(n)

1 ∥1 is the L1-distance between two probability measures. Therefore, to show

the claim, it suffices to show that

∥P(n)
0 − P̃(n)

1 ∥1 = o(1). (B.10)

We now show (B.10). Recall that in Theorem A.1 we have seen that the χ2-divergence

between P(n)
0 and P(n)

1 tends to 0. Using the triangle inequality and the connection between

L1-distance and χ2-divergence (e.g., equation (2.27) of [5]), we have

∥P(n)
0 − P̃(n)

1 ∥1 ≤ ∥P(n)
0 − P(n)

1 ∥1 + ∥P(n)
1 − P̃(n)

1 ∥1

≤
√
χ2(P(n)

0 ,P(n)
1 ) + ∥P(n)

1 − P̃(n)
1 ∥1

≤ o(1) + ∥P(n)
1 − P̃(n)

1 ∥1. (B.11)

It suffices to show that ∥P(n)
1 − P̃(n)

1 ∥1 → 0. By (B.9), P̃(n)
1 is obtained from P(n)

1 by modifying

those realizations of Π where (θ,Π,P) /∈ Mn(K, c0, αn, βn). By some elementary calculations,

we have

∥P(n)
1 − P̃(n)

1 ∥1 ≤ 2P
(
(θ,Π,P) /∈ Mn(K, c0, αn, βn)

)
,

where P is with respect to the randomness of Π. In the definition of Mn(K, c0, αn, βn), the only

requirement involving Π is that max1≤k≤K{gk} ≤ c−1
0 min1≤k≤K{gk}. The following lemma is

proved below:

Lemma B.1. Fix a constant c0 ≥ 1. As n→ ∞, suppose ∥P∥ ≤ c0, θmax ≤ c0, and ∥θ∥1 → ∞.

Write h = E[D−1πi/∥D−1πi∥1]. If min1≤k≤K{hk} ≥ c1, for an appropriate constant c1 > 0,

then as n→ ∞, with probability 1− o(1), the following condition is satisfied,

max1≤k≤K{gk}
min1≤k≤K{gk}

≤ c−1
0 .

By Lemma B.1, the probability of (θ,Π,P) /∈ Mn(K, c0, αn, βn) tends to 0 as n→ ∞. It follows

that ∥P(n)
1 − P̃(n)

1 ∥1 → 0. We plug it into (B.11) to get (B.10). This completes the proof.

B.1 Proof of Lemma B.1

Recall that gk = (1/∥θ∥1)
∑n

i=1 θiπi(k), for 1 ≤ k ≤ K. Since maxk{
∑n

i=1 θiπi(k)} ≤ ∥θ∥1, it
suffices to show that

min
k

{
n∑

i=1

θiπi(k)} ≥ c0 ∥θ∥1. (B.12)
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Let c1 be a constant such that c1 > c0. Our assumptions say that min1≤k≤K{hk} ≥ c1, where

h = E[D−1πi/∥D−1πi∥1]. Let h∗ = E[πi]. We first show that min1≤k≤K{hk} ≥ c1 implies

min1≤k≤K{h∗k} ≥ c1 · [1 + o(1)]. By Lemma E.5 in section E, we have

max
1≤i≤K

{|di − 1|} ≤ Cµ2 with µ2 = o(1),

and so di = 1 + o(1), 1 ≤ i ≤ K. By definitions, it follows that

hk ≤ E[( min
1≤k≤K

{dk})−1πi(k)/( max
1≤k≤K

{dk})−1)] ≤ h∗k · [1 + o(1)].

Combining this with min1≤k≤K{hk} ≥ c1, we have min1≤k≤K{h∗k} ≥ c1 · [1 + o(1)].

Now we are going to show (B.12). Note that X =
∑n

i=1 θi(πi(k)−h∗k) is a sum of independent

mean-zero random variables, where θi(πi(k) − h∗k) ≤ Cθmax and
∑n

i=1 Var(θi(πi(k) − h∗k)) ≤
C∥θ∥2. By Bernstein’s inequality,

P(|X| > t) ≤ exp
(
− t2

C∥θ∥2 + Cθmaxt

)
, for any t > 0.

Taking t = C∥θ∥
√
log(∥θ∥1)+Cθmax log(∥θ∥1), it follows that, with probability at least 1−∥θ∥−1

1 ,

|
∑
i

θi(πi(k)− h∗k∥θ∥1| = |X| ≤ C∥θ∥
√

log(∥θ∥1) + Cθmax log(∥θ∥1),

where by ∥θ∥2 ≤ ∥θ∥1, the RHS is o(∥θ∥1). Combining this with mink{h∗k} ≥ c1 · [1 + o(1)],∑
i

θiπi(k) = h∗k∥θ∥1 · [1 + o(1)] ≥ c1∥θ∥1 · [1 + o(1)],

where c1 is a constant strictly larger than c0. This proves (B.12). The claim follows.

C Proof of Lemma 2.1

We prove a version of this lemma for m−uniform hypergraph below where the desired result is

by letting m = 3.

Lemma C.1 (Lemma 2.1 for m−uniform hypergraph). Fix K > 1 and m > 1. Let P be

a nonnegative m-uniform tensor of dimension K and h be a vector in RK , where we assume

Pi...i = 1, for i = 1, . . . ,K and min{h1, h2, . . . , hK} ≥ C. There exists an unique diagonal

matrix D = diag(d1, d2, . . . , dK) such that

K∑
i2,...,im=1

di1Pi1···im · (di2hi2) · · · (dimhim) = 1, for all i1 = 1, . . . ,K. (C.13)

To begin with, we transform the problem (C.13) into an equivalent form (C.14).

Multiplying hi1 on both sides of (C.13) and let d̃i = dihi for i = 1, . . . ,K. It is equivalent to

find an unique diagonal matrix D̃ = diag(d̃1, . . . , d̃K) with strictly positive entries such that

K∑
i2,...,im=1

d̃i1Pi1···im d̃i2 · · · d̃im = hi1 , for all i1 = 1, . . . ,K. (C.14)

Now, by the Theorem 6 in [1], for a nonnegative order-m tensor P of dimensionK (not necessarily

symmetric) such that Pi...i > 0, i = 1, . . . ,K, and K positive numbers h1, . . . , hK , there exist

positive numbers x1, . . . , xK such that

K∑
i2,...,im=1

xi1Pi1···imxi2 · · ·xim = hi1 , for all i1 = 1, . . . ,K. (C.15)
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which gives the existence of such D̃ satisfying (C.14).

The uniqueness of such D̃ is given by the Theorem 1.1 in [2] which states that there is an

unique tensor A that is defined by Ai1···im = d̃i1Pi1···im d̃i2 · · · d̃im for i1, . . . , im = 1, . . . ,K and

satisfies
K∑

i2,...,im=1

Ai1···im = hi1 , for all i1 = 1, . . . ,K. (C.16)

Therefore, D̃ is unique since A is unique and one-to-one correpondence with D̃. This completes

the proof.

D Proof of Theorem 2.1, Theorem 2.3 and Theorem A.1-

A.2

Theorem 2.1 and Theorem 2.3 are the special cases of Theorem 3.1, which do not need separate

proofs. Furthermore, in the proof of Theorem 3.1 below, we actually consider the more general

setting of non-uniform DCMM where θ∗i is constructed as θ∗i = θi/∥D−1πi∥1 (note that when πi
is degenerate, this reduces to the construction of θ∗i = θidk for DCBM). Therefore, the proof of

Theorem 3.1 (for non-uniform DCMM) already includes the proof of Theorem A.1 (for 3-uniform

DCMM) and Theorem A.2 (for non-uniform DCMM). It remains to prove Theorem 3.1, which

is contained in Section E.

E Proof of Theorem 3.1

We first state the preliminary lemmas, Lemmas E.1-E.5, needed for the proof of Theorem 3.1.

Next, we prove this theorem. Finally, we prove all the preliminary lemmas.

E.1 Preliminary lemmas

The following lemmas are used in the main proof and proved after the main proof.

Lemma E.1. Let P be a m−way symmetric K dimensional tensor, P0 be the tensor with the

same size as P where all entries are 1, and introduce a tensor M by M = P − P0. Let h,πi be

weight vectors in RK and yi = πi − h, for 1 ≤ i ≤ n. Then

[P;π1, . . . , πm] = 1 + x(m) + z(m), holds for any m > 1,

where

x(m) =[M;h, . . . , h] +

m∑
s=1

[M;h, . . . , h︸ ︷︷ ︸
s−1

, ys, h, . . . , h︸ ︷︷ ︸
m−s

],

z(m) =

m−1∑
s1=1

m∑
s2=s1+1

[M;h, . . . , h︸ ︷︷ ︸
s1−1

, ys1 , h, . . . , h︸ ︷︷ ︸
s2−s1−1

, ys2 , πs2+1 . . . , πm︸ ︷︷ ︸
m−s2

].

Lemma E.2. With the same notations as in Section E.2, let {w(j)
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m} be a

set of weight vectors in RK and {w̃(j)
i } be an independent copy of {w(j)

i }. Assume that for distinct

i1, . . . , im, vectors yi1 , yi2 , w
(3)
i3
, . . . , w

(m)
im

are mutually independent and that ∥M::k3···km∥ ≤ Cµ,

for 1 ≤ k3, . . . , km ≤ K. Denote

S =
∑

i1,...,im(dist)

(θi1 · · · θim)t

at
[M; yi1 , yi2 , w

(3)
i3
, . . . , w

(m)
im

][M; ỹi1 , ỹi2 , w̃
(3)
i3
, . . . , w̃

(m)
im

].
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Then, for any constant c independent of n,

E
[
exp(cS)

]
≤ E

[
exp

(
Cµ2∥θ∥t(m−2)

t |T |/at
)]

· exp(Cµ2∥θ∥t(m−2)
t ∥θ∥2t2t/at),

where T is a random variable satisfying P(|T | > x) ≤ 2 exp(−x/(2K2∥θ∥2t2t)), for x > 0.

Lemma E.3. With the same setting in Lemma E.2, denote

S =
∑

i1,...,im(dist)

(θi1 · · · θim)t

at
[M; yi1 , yi2 , w

(3)
i3
, . . . , w

(m)
im

][M; ỹi1 , h, ỹi3 , w̃
(4)
i4
, . . . , w̃

(m)
im

].

Then, for any constant c independent of n,

E
[
exp(cS)

]
≤ E

[
exp

(
Cµ2∥θ∥t(m−2)

t |T |/at
)]

· exp(Cµ2∥θ∥t(m−2)
t ∥θ∥2t2t/at),

where T is a random variable satisfying P(|T | > x) ≤ 4 exp(−x/(2K2∥θ∥2t2t)), for x > 0.

Lemma E.4. With the same setting in Lemma E.2, denote

S =
∑

i1,...,im(dist)

(θi1 · · · θim)t

at
[M; yi1 , yi2 , w

(3)
i3
, . . . , w

(m)
im

][M;h, h, ỹi3 , ỹi4 , w̃
(5)
i5
, . . . , w̃

(m)
im

].

Then, for any constant c independent of n,

E
[
exp(cS)

]
≤ E

[
exp

(
Cµ2∥θ∥t(m−2)

t |T |/at
)]

· exp(Cµ2∥θ∥t(m−2)
t ∥θ∥2t2t/at),

where T is a random variable satisfying P(|T | > x) ≤ 4 exp(−x/(2K∥θ∥2t2t)), for x > 0.

Lemma E.5. Under the conditions of Theorem 3.1, for m = 2, . . . ,M we have

max
1≤k3,...,km≤K

∥M(m)
::k3···km

∥ ≤ C|µ(m)
2 |, max

1≤i≤K
|d(m)

i − 1| ≤ C|µ(m)
2 |,

where M(m) is a m−way symmetric tensor defined by M(m)
k1···km

= (P(m)
k1···km

− 1)d
(m)
k1

· · · d(m)
km

,

1 ≤ k1, . . . , km ≤ K.

E.2 Proof of Theorem 3.1

Let P
(n)
0 and P

(n)
1 denote the probability measures associated with the null and alternative

hypotheses, respectively, and let χ2(P
(n)
0 , P

(n)
1 ) be the χ2 divergence between the two probability

measures. By definitions,

χ2(P
(n)
0 , P

(n)
1 ) =

∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A)− 1.

To show the claim, it suffices to show that when (µ
(m)
2 )2∥θ(m)∥m−2

1 ∥θ(m)∥22 → 0, m = 1, . . . ,M ,

we have ∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A) = 1 + o(1). (E.17)

By definitions,

dP
(n)
0 (A) =

M∏
m=2

∏
i1<···<im

dP
(n,m)
0 (A(m)

i1···im),

dP
(n)
1 (A) = EΠ

[ M∏
m=2

∏
i1<···<im

dP
(n,m)
1 (A(m)

i1···im |Π)
]
,
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Let Π̃ be an independent copy of Π. Putting the above two equations into (E.17) gives

∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A) =

∫
A

EΠ,Π̃

[∏M
m=2

∏
i1<···<im

dP
(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)
]

∏M
m=2

∏
i1<···<im

dP
(n,m)
0 (A(m)

i1···im)

=

∫
A
EΠ,Π̃

[ M∏
m=2

∏
i1<···<im

dP
(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)

dP
(n,m)
0 (A(m)

i1···im)

]
.

Exchanging the order of integral and expectation in the last equation and by elementary prob-

ability,∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A) =EΠ,Π̃

[∫
A

M∏
m=2

∏
i1<···<im

dP
(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)

dP
(n,m)
0 (A(m)

i1···im)

]

=EΠ,Π̃

[ M∏
m=2

∏
i1<···<im

∫
A(m)

i1···im

dP
(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)

dP
(n,m)
0 (A(m)

i1···im)

]
.

Let χ2
i1···im(Π, Π̃) denote

∫
A(m)

i1···im
dP

(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)/dP
(n,m)
0 (A(m)

i1···im) − 1.

Hence ∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A) = EΠ,Π̃

[ M∏
m=2

∏
i1<···<im

(χ2
i1···im(Π, Π̃) + 1)

]
. (E.18)

Note that by inequality
∏n

i=1(1 + xi) ≤ exp(
∑n

i=1 xi), for all xi such that 1 + xi ≥ 0, we have

M∏
m=2

∏
i1<···<im

(χ2
i1···im(Π, Π̃) + 1) ≤ exp

( M∑
m=2

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)
, (E.19)

Further, by Jensen’s inequality, exp(
∑M

i=2 xi) ≤
1

M−1

∑M
i=2 exp(xi). It follows that

exp

( M∑
m=2

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)
≤

M∑
m=2

1

M − 1
exp

(
(M − 1)

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)
. (E.20)

Combining (E.18)-(E.20) gives∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A) ≤

M∑
m=2

1

M − 1
EΠ,Π̃

[
exp

(
(M − 1)

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)]
.

Therefore, to show (E.17), it is sufficient to show that when the conditions hold, for each m =

2, . . .M we have

EΠ,Π̃

[
exp

(
(M − 1)

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)]
= 1 + on(1). (E.21)

Fix m, recall that

χ2
i1···im(Π, Π̃) =

∫
A

dP
(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)

dP
(n,m)
0 (A(m)

i1···im)
− 1. (E.22)

By definitions,

dP
(n,m)
0 (A(m)

i1···im) = (Q(m)
i1···im)A

(m)
i1···im (1−Q(m)

i1···im)1−A(m)
i1···im ,

dP
(n,m)
1 (A(m)

i1···im |Π) = (Q∗(m)
i1···im(Π))A

(m)
i1···im (1−Q∗(m)

i1···im(Π))1−A(m)
i1···im .
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Putting the above two equations into (E.22) gives

χ2
i1···im(Π, Π̃) =

Q∗(m)
i1···im(Π)Q∗(m)

i1···im(Π̃)

Q(m)
i1···im

+
(1−Q∗(m)

i1···im(Π))(1−Q∗(m)
i1···im(Π̃))

1−Q(m)
i1···im

− 1

=

(
Q∗(m)

i1···im(Π)−Q(m)
i1···im

)(
Q∗(m)

i1···im(Π̃)−Q(m)
i1···im

)
Q(m)

i1···im(1−Q(m)
i1···im)

.

(E.23)

Based on the expression of χ2
i1···im(Π, Π̃), it is seen that the LHS of (E.21) only relates to the

variables in m−uniform tensor DCMM (e.g., A(m),Q(m),P(m), θ(m)), for ease of notations, we

remove the superscript (m) whenever it is clear from the context.

Next we continue to simplify χ2
i1···im(Π, Π̃). According to the constructions of our model,

Qi1···im = θi1 · · · θim and Q∗
i1···im = θi1 · · · θim [P∗;π∗

i1 , . . . , π
∗
im ],

where we recall that P∗ is the m-uniform tensor defined by P∗
k1···km

= dk1
· · · dkm

Pk1···km
, 1 ≤

k1, . . . , km ≤ K, π∗
i = D−1πi/∥D−1πi∥1, 1 ≤ i ≤ n and D = diag(d1, d2, . . . , dK) is the scaling

matrix given by degree matching.

Let P0 the tensor with the same size as P∗ and where all entries are 1, and introduce a tensor

M by M = P∗ −P0. Let h = EF [π
∗
i ], and yi = π∗

i − h, 1 ≤ i ≤ n. By Lemma E.1, we can write

the Bernoulli probability tensor for the alternative Q∗ by

Q∗
i1···im = θi1 · · · θim(1 + xi1···im + zi1···im), 1 ≤ i1, . . . , im ≤ n, (E.24)

where

xi1···im =[M;h, . . . , h] +

m∑
s=1

[M;h, . . . , h︸ ︷︷ ︸
s−1

, yis , h, . . . , h︸ ︷︷ ︸
m−s

],

zi1···im =

m−1∑
s1=1

m∑
s2=s1+1

[M;h, . . . , h︸ ︷︷ ︸
s1−1

, yis1 , h, . . . , h︸ ︷︷ ︸
s2−s1−1

, yis2 , π
∗
is2+1

. . . , π∗
im︸ ︷︷ ︸

m−s2

].

Let ei1 be the i1-th standard basis vector of the Euclidean space RK , 1 ≤ i1 ≤ K. Note that by

definitions and symmetry,

[M;h, . . . , h, ei1 , h, . . . , h] =

K∑
i2,...,im=1

(P∗
i1···im − 1) · hi2 · · ·him

=

K∑
i2,...,im=1

P∗
i1···im · hi2 · · ·him − 1

(By degree matching) =0

This indicates that any linear combination of elements in {[M;h, . . . , h, ei, h, . . . , h] :, 1 ≤ i ≤ K}
equals to 0. It follows that the term xi1···im in the RHS of (E.24) equals to 0.

Write for short zi1···im(s1, s2) = [M;h, . . . , h, yis1 , h, . . . , h, yis2 , π
∗
is2+1

. . . , π∗
im
], we get

Q∗
i1···im = θi1 · · · θim

(
1 +

m−1∑
s1=1

m∑
s2=s1+1

zi1···im(s1, s2)
)
, (E.25)

Let z̃i1···im(s1, s2) be zi1···im(s1, s2) evaluated at Π̃. Inserting (E.25) into (E.23) gives

χ2
i1···im(Π, Π̃) =

θi1 · · · θim
1− θi1 · · · θim

m−1∑
s1=1,
s̃1=1

m∑
s2=s1+1
s̃2=s̃1+1

zi1···im(s1, s2)z̃i1···im(s̃1, s̃2).
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Note that x
1−x =

∑∞
i=1 x

i for any x ∈ [0, 1), we have
θi1 ···θim

1−θi1 ···θim
=

∑∞
i=1(θi1 · · · θim)t and so

χ2
i1···im(Π, Π̃) =

∞∑
t=1

(θi1 · · · θim)t
m−1∑
s1=1,
s̃1=1

m∑
s2=s1+1
s̃2=s̃1+1

zi1···im(s1, s2)z̃i1···im(s̃1, s̃2).

Introduce

at =θ
m(t−1)
max (1− θmmax),

S(t, s1, s2, s̃1, s̃2) =(M − 1)4m
∑

i1<···<im

(θi1 · · · θim)t

at
zi1···im(s1, s2)z̃i1···im(s̃1, s̃2).

(E.26)

Exchanging the order of summation, we then can write

(M − 1)
∑

i1<···<im

χ2
i1···im(Π, Π̃) =

∞∑
t=1

m−1∑
s1=1,
s̃1=1

m∑
s2=s1+1
s̃2=s̃1+1

at
4m

S(t, s1, s2, s̃1, s̃2).

Note that
∑∞

t=1

∑m−1
s1,s̃1=1

∑m
s2=s1+1,s̃2=s̃1+1 at/4

m = 1 and exp(·) is convex, by Jensen’s inequal-

ity

exp
(
(M − 1)

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)
≤

∞∑
t=1

m−1∑
s1=1,
s̃1=1

m∑
s2=s1+1
s̃2=s̃1+1

at
4m

exp
(
S(t, s1, s2, s̃1, s̃2)

)
.

Therefore, to prove (E.21), it is sufficient to show that

max
t,s1,s2,s̃1,s̃2

{
E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]}
≤ 1 + on(1). (E.27)

Fix t, s1, s2, s̃1, s̃2, we are going to bound E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]
. Recall that by construc-

tion, s1 < s2 and s̃1 < s̃2. By symmetry, without loss of generality, assume s2 ≤ s̃2. Now, we can

separate the situations into three cases. Case 1: s1 = s̃1, s2 = s̃2; Case 2: Only one of {s1, s2}
matches any one of {s̃1, s̃2} (e.g., s̃1 = s1 < s2 < s̃2 or s1 < s2 = s̃1 < s̃2 or s1 ̸= s̃1, s2 = s̃2);

Case 3: None of {s1, s2} matches one of {s̃1, s̃2}.
Remark: Case 2 only exists for m ≥ 3 and Case 3 only exists for m ≥ 4. They require much

tricky and delicate analysis to resolve extra random effects induced by Π. This indicates one of

the differences on the calculations of the χ2-divergence between hypergraph and network.

By symmetry ofM, we summerized the derivation of the bounds on E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]
for Case 1,2,3 into Lemma E.2, E.3, E.4, respectively. Take Case 1 for example,

Case 1 (s1 = s̃1, s2 = s̃2): By definitions and symmetry of M, we can rewrite

S(t, s1, s2, s̃1, s̃2) :=4m(M − 1)
∑

i1<···<im

(θi1 · · · θim)t

at
[M;h, . . . , h, yis1 , h, . . . , h, yis2 , π

∗
is2+1

. . . , π∗
im ]

· [M;h, . . . , h, ỹis1 , h, . . . , h, ỹis2 , π̃
∗
is2+1

. . . , π̃∗
im ].

=
4m(M − 1)

m!

∑
i1,...,im(dist)

(θi1 · · · θim)t

at
[M; yi1 , yi2 , h . . . , h, π

∗
is2+1

. . . , π∗
im ]

· [M; ỹi1 , ỹi2 , h . . . , h, π̃
∗
is2+1

. . . , π̃∗
im ].

which is implied by the standard forms discussed in Lemma E.2. Similarly, Case 2 is implied by

Lemma E.3 and Case 3 is implied by Lemma E.4.
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Combining Lemmas E.2-E.4 with Lemma E.5, we have

E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]
≤ E

[
exp

(
C
µ2
2∥θ∥

t(m−2)
t

at
|T |

)]
· exp

(
C
µ2
2∥θ∥

t(m−2)
t ∥θ∥2t2t
at

)
, (E.28)

where µ2 is the second singular value of the matricization of the tensor P(m) and T is a random

variable satisfying P(|T | > x) ≤ 4 exp(−x/(2K2∥θ∥2t2t)), for any x > 0.

Now, we are ready to calculate a bound for E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]
. By direct calculations,

E
[
exp

(
C
∥θ∥t(m−2)

t

at
µ2
2|T |

)]
=

(
1 +

∫ ∞

0

ex · P(C ∥θ∥t(m−2)
t

at
µ2
2|T | > x)dx

)
≤

(
1 +

∫ ∞

0

ex · 4 exp(− atx

2CK2µ2
2∥θ∥

t(m−2)
t ∥θ∥2t2t

)dx
) (E.29)

By θmax ≤ c0, ∥θ∥tt ≤ ∥θ∥1θt−1
max and ∥θ∥2t2t ≤ ∥θ∥2θt−2

max, we have

at

µ2
2∥θ∥

t(m−2)
t ∥θ∥2t2t

=
θ
m(t−1)
max (1− θmmax)

µ2
2∥θ∥

t(m−2)
t ∥θ∥2t2t

≥ 1− cm0
µ2
2∥θ∥

m−2
1 ∥θ∥22

Combining this with (E.28)-(E.29), we get

E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]
≤
(
1 +

∫ ∞

0

ex · 4 exp(− (1− cm0 )x

2CK2µ2
2∥θ∥

(m−2)
1 ∥θ∥22

)dx
)
e

C
1−cm0

µ2
2∥θ∥

m−2
1 ∥θ∥2

=e
C

1−cm0
µ2
2∥θ∥

m−2
1 ∥θ∥2(

1 + 4
( (1− cm0 )

2CK2µ2
2∥θ∥

m−2
1 ∥θ∥22

− 1
)−1)

,

where the RHS on the last inequality goes 1 as µ2
2∥θ∥m−2

1 ∥θ∥22 → 0. This proves (E.27) and

finishes the proof.

E.3 Proof of Lemma E.1

Recall the definition of [P;π1, . . . , πm]

[P;π1, . . . , πm] :=

K∑
k1,...,km=1

Pk1...kmπ1(k1) · · ·πm(km).

Note that P = M+ P0 and
∑K

k=1 πi(k) = 1, for 1 ≤ i ≤ n. By direct calculations

[P;π1, . . . , πm] =

K∑
k1,...,km=1

Mk1...km
π1(k1) · · ·πm(km) +

K∑
k1,...,km=1

1 · π1(k1) · · ·πm(km)

=[M;π1, . . . , πm] + 1.

Therefore, we are left to show for m > 1

[M;π1, . . . , πm] = x(m) + z(m). (E.30)

We prove it by induction. When m = 2, M ∈ RK×K . By definitions and elementary algebra,

[M;π1, π2] =π
′
1Mπ2

=h′Mh+ y′1Mh+ h′My2 + y′1My2

= [M;h, h] + [M; y1, h] + [M;h, y2]︸ ︷︷ ︸
x(2)

+ [M; y1, y2]︸ ︷︷ ︸
z(2)

.
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Hence, the claim holds for m = 2.

Assume that form = r, the claim holds. Note that for each kr+1 ∈ {1, . . . ,K}, {Mk1...krkr+1
:

1 ≤ k1, . . . , kr ≤ K} forms a r-way symmetric tensor of K dimensions. It follows that

[M;π1, . . . , πr+1] =[M;h, . . . , h, πr+1] +

r∑
s=1

[M;h, . . . , h, ys, h, . . . , h, πr+1]

+

r−1∑
s1=1

r∑
s2=s1+1

[M;h, . . . , h, ys1 , h, . . . , h, ys2 , πs2+1 . . . , πr+1].

Further, decompose πr+1 into h+ yr+1. By direct calculations

[M;π1, . . . , πr, πr+1] =
(
[M;h, . . . , h, h] + [M;h, . . . , h, yr+1]

)
+
( r∑
s=1

[M;h, . . . , h, ys, h, . . . , h, h] +

r∑
s=1

[M;h, . . . , h, ys, h, . . . , h, yr+1]
)

+

m−1∑
s1=1

m∑
s2=s1+1

[M;h, . . . , h, ys1 , h, . . . , h, ys2 , πs2+1 . . . , πr+1]

=[M;h, . . . , h] +

r+1∑
s=1

[M;h, . . . , h, ys, h, . . . , h]

+

r∑
s1=1

r+1∑
s2=s1+1

[M;h, . . . , h, ys1 , h, . . . , h, ys2 , πs2+1 . . . , πr+1],

=xr+1 + zr+1,

which suggests that the claim also holds for m = r + 1. By induction, (E.30) is proved.

E.4 Proof of Lemma E.2

Introduce Nθ =
∑

i3,...,im(dist)(θi3 · · · θim)t and I(i) be the shorthand notation for set {1, . . . , n}\
{i3, . . . , im}. Here, for convenience, we misuse the superscript (i) to indicate that this element

depends on the choice of (i3, . . . , im) whenever it is clear from the context.

By definitions and elementary algebra,

S =
∑

i3,...,im(dist)

(θi1 · · · θim)t

Nθ

K∑
k3,...,km=1
k′
3,...,k

′
m=1

m∏
s=3

w
(s)
is

(ks)w̃
(s)
is

(ks)
Nθ

at

·
[ ∑
i1,i2(dist)∈I(i)

(θi1θi2)
t(y′i1M::k3···km

yi2)(ỹ
′
i1M::k′

3···k′
m
ỹi2)

]
,

(E.31)

LetM::k3···km =
∑K

j=1 b
(k)
j b

(k)
j

′
δ
(k)
j , andM::k′

3···k′
m
=

∑K
j′=1 b

(k′)
j′ b

(k′)
j′

′
δ
(k′)
j be the eigen-decomposition

of the matrices M::k3···km and M::k′
3···k′

m
, respectively. Introduce

X(i, j, j′, k, k′) =
∑

i1,i2(dist)∈I(i)

(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i1b

(k′)
j′ )(ỹ′i2b

(k′)
j′ ).

Then we can write

∑
i1,i2(dist)∈I(i)

(θi1θi2)
t(y′i1M::k3···kmyi2)(ỹ

′
i1M::k′

3···k′
m
ỹi2) =

K∑
j,j′=1

X(i, j, j′, k, k′).
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Inserting this into (E.31) gives

S =
∑

i3,...,im(dist)

(θi1 · · · θim)t

Nθ

K∑
k3,...,km=1
k′
3,...,k

′
m=1

m∏
s=3

w
(s)
is

(ks)w̃
(s)
is

(ks)

K∑
j,j′=1

1

K2

(K2Nθ

at
X(i, j, j′, k, k′)

)
.

Note that
∑

i3,...,im(dist)
(θi1 ···θim )t

Nθ

∑K
k3,k

′
3,...,km,k′

m=1

∏m
s=3 w

(s)
is

(ks)w̃
(s)
is

(ks)
∑K

j,j′=1
1

K2 = 1 and

that exp(·) is convex. By Jensen’s inequality,

exp(cS) ≤
∑

i3,...,im
(dist)

(θi3 · · · θim)t

Nθ

K∑
k3,...,km=1
k′
3,...,k

′
m=1

m∏
s=3

w
(s)
is

(ks)w̃
(s)
is

(ks)

K∑
j,j′=1

1

K2
exp

(cK2Nθ

at
X(i, j, j′, k, k′)

)

By assumptions w
(s)
is
, w̃

(s)
is

are independent of yi1 , yi2 , ỹi1 , ỹi2 , 3 ≤ s ≤ m. Taking expectation on

both sides gives

E[exp(cS)] ≤
∑

i3,...,im
(dist)

(θi3 · · · θim)t

Nθ

K∑
k3,...,km=1
k′
3,...,k

′
m=1

m∏
s=3

E[w(s)
is

(ks)]E[w̃(s)
is

(ks)]

K∑
j,j′=1

1

K2

· E
[
exp

(cK2Nθ

at
X(i, j, j′, k, k′)

)]
≤ max

i,j,j′,k,k′
E
[
exp

(cK2Nθ

at
X(i, j, j′, k, k′)

)]
.

Now, to show the claim, note that Nθ :=
∑

i3,...,im(dist)(θi3 · · · θim)t ≤ ∥θ∥t(m−2)
t , we are sufficient

to show that

X(i, j, j′, k, k′) ≤ Cµ2|T |+ Cµ2∥θ∥2t2t, (E.32)

where T is a random variable satisfying P(|T | > x) ≤ 2 exp(−x/(2K2∥θ∥2t2t)), for x > 0.

To see this, we rewrite

X(i, j, j′, k, k′) :=
∑

i1,i2∈I(i)

(1− I{i1=i2})(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i1b

(k′)
j′ )(ỹ′i2b

(k′)
j′ )

=δ
(k)
j δ

(k′)
j′ (T1 − T2),

where

T1 =
( ∑
i1∈I(i)

θti1(y
′
i1b

(k)
j )(ỹ′i1b

(k′)
j′ )

)2

, T2 =
∑

i1∈I(i)

(
θti1(y

′
i1b

(k)
j )(ỹ′i1b

(k′)
j′ )

)2

.

Consider T2 first. Note that maxi1{∥yi1∥, ∥ỹi1∥} ≤
√
K and that ∥b(k)j ∥ = ∥b(k

′)
j′ ∥ = 1, ∀

j, j′, k, k′. By direct calculations

|T2| ≤ (K)2
∑
i1

θ2ti1 ≤ C∥θ∥2t2t.

Next, consider T1. Let Z =
∑

i1∈I(i) θti1(y
′
i1
b
(k)
j )(ỹ′i1b

(k′)
j′ ). Note that Z is a sum of n − (m − 2)

independent random variables with |θti1(y
′
i1
b
(k)
j )(ỹ′i1b

(k′)
j′ | ≤

√
K

2
θti1 . By Hoeffding’s inequality

P(|Z| > x) ≤ 2 exp
(
−2x2/(

∑
i1∈I(i)

(2
√
K

2
θti1)

2)
)
, for x > 0.

12



Combining this with
∑

i1∈I(i)(2
√
K

2
θti1)

2 ≤ 4K2∥θ∥2t2t and T1 = Z2, it follows that

P(|T1| > x) ≤ 2 exp(−x/(2K2∥θ∥2t2t)), for x > 0. (E.33)

At the same time, recall that δ
(k)
j ,δ

(k′)
j′ are the eigenvalues of the matrices M::k3···km and

M::k′
3···k′

m
. By the assumption ∥M::k3···km∥ ≤ Cµ, for 1 ≤ k3, . . . , km ≤ K, maxj,k{|δ(k)j |} ≤ Cµ.

It is seen that

X(i, j, j′, k, k′) := δ
(k)
j δ

(k′)
j′ (T1 − T2) ≤ Cµ2|T1|+ Cµ2∥θ∥2t2t, with T1 satisfying (E.33).

This shows (E.32) and finishes the proof.

E.5 Proof of Lemma E.3

Similarly, letNθ =
∑

i3,...,im(dist)(θi3 · · · θim)t and I(i) be the shorthand notation for set {1, . . . , n}\
{i3, . . . , im}. Here, for convenience, we misuse the superscript (i) to indicate that this element

depends on the choice of (i3, . . . , im) whenever it is clear from the context. Let M::k3···km
=∑K

j=1 b
(k)
j b

(k)
j

′
δ
(k)
j , andM:k′

2:k
′
4...k

′
m
=

∑K
j′=1 b

(k′)
j′ b

(k′)
j′

′
δ
(k′)
j be the eigen-decomposition of the ma-

trices M::k3···km
and M:k′

2:k
′
4...k

′
m
, respectively. Following the procedures in the proof of Lemma

E.2, we can obtain

exp(cS) ≤
∑

i3,...,im
(dist)

(θi3 · · · θim)t

Nθ

K∑
k3,...,km=1

k′
2,k

′
4,...,k

′
m=1

h(k′2)w̃
(3)
i3

(k3)

m∏
s=4

w
(s)
is

(ks)w̃
(s)
is

(ks)

K∑
j,j′=1

1

K2

· exp
(cK2Nθ

at
X(i, j, j′, k, k′)

)
,

(E.34)

where

X(i, j, j′, k, k′) =
∑

i1,i2(dist)∈I(i)

(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i1b

(k′)
j′ )(ỹ′i3b

(k′)
j′ ).

Note that w̃
(3)
i3

may not be independent of ỹi3 which exists in X(i, j, j′, k, k′). Consequently,

we can not directly take expectation on both sides of (E.34) like that in Lemma E.2 to elimi-

nate weight vectors {w(j)
ij

} by a maximum bound. To resolve this, we first derive a bound on

X(i, j, j′, k, k′) to eliminate ỹi3 .We rewrite

X(i, j, j′, k, k′) :=
∑

i1,i2∈I(i)

(1− I{i1=i2})(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i1b

(k′)
j′ )(ỹ′i3b

(k′)
j′ )

=δ
(k)
j δ

(k′)
j′ (T1 − T2)(ỹ

′
i3b

(k′)
j′ ),

where

T1 =
( ∑
i1∈I(i)

θti1(y
′
i1b

(k)
j )(ỹ′i1b

(k′)
j′ )

)( ∑
i2∈I(i)

θti2(y
′
i2b

(k)
j )

)
, T2 =

∑
i1∈I(i)

(
θti1(y

′
i1b

(k)
j )

)2

(ỹ′i1b
(k′)
j′ ).

Recall that δ
(k)
j ,δ

(k′)
j′ are the eigenvalues of the matrices M::k3···km

and M:k′
2:k

′
4...k

′
m
. By the

assumption ∥M::k3···km
∥ ≤ Cµ, for 1 ≤ k3, . . . , km ≤ K, maxj,k{|δ(k)j |} ≤ Cµ. Combining this

with ∥b(k
′)

j′ ∥ = 1 and ∥yi3∥ ≤
√
K, we have

X(i, j, j′, k, k′) := δ
(k)
j δ

(k′)
j′ (T1 − T2)(ỹ

′
i3b

(k′)
j′ ) ≤ Cµ2(|T1|+ |T2|).
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Note that T1, T2 (and so the bound) are independent of w
(s)
is
, w̃

(s)
is

, 3 ≤ s ≤ m. Applying this

inequality to the RHS of (E.34) and taking expectation on both sides give

E[exp(cS)] ≤
∑

i3,...,im
(dist)

(θi3 · · · θim)t

Nθ

K∑
k3,...,km=1

k′
2,k

′
4,...,k

′
m=1

h(k′2)E[w̃
(3)
i3

(k3)]

m∏
j=4

E[w(s)
is

(ks)]E[w̃(s)
is

(ks)]

K∑
j,j′=1

1

K2

· E
[
exp

(CNθ

at
µ2(|T1|+ |T2|)

)]
≤ max

i,j,j′,k,k′
E
[
exp

(CNθ

at
µ2(|T1|+ |T2|)

)]
.

Now, to show the claim, note that Nθ :=
∑

i3,...,im(dist)(θi3 · · · θim)t ≤ ∥θ∥t(m−2)
t , it is then

sufficient to show that

(I) : P(|T1| > x) ≤ 4 exp(−x/(2K2∥θ∥2t2t)), ∀x > 0, (II) : |T2| ≤ C∥θ∥2t2t. (E.35)

Consider (I) first. Let Z1 =
∑

i1∈I(i) θti1(y
′
i1
b
(k)
j )(ỹ′i1b

(k′)
j′ ), Z2 =

∑
i2∈I(i) θti2(y

′
i2
b
(k)
j ) and so

T1 = Z1 · Z2. Note that Z1 and Z2 are the sum of n − (m − 2) independent random variables.

Similarly, by Hoeffding’s inequality, for any x > 0

P(|Z1| > x) ≤ 2 exp(−2x/((2K)2∥θ∥2t2t)), P(|Z2| > x) ≤ 2 exp(−2x/((2
√
K)2∥θ∥2t2t)).

Combining this with |T1| = |Z1| · |Z2| and union bound P(|Z1||Z2| > x) ≤ P(|Z1| >
√
x) +

P(|Z1||Z2| >
√
x),

P(|T1| > x) ≤ 2 exp(−x/(2K2∥θ∥2t2t)) + 2 exp(−x/(2K∥θ∥2t2t)) ≤ 4 exp(−x/(2K2∥θ∥2t2t)),

which proves the first claim in (E.35).

Next, consider (II) in (E.35). By maxi1{∥yi1∥, ∥ỹi1∥} ≤
√
K, ∥b(k)j ∥ = ∥b(k

′)
j′ ∥ = 1, ∀ j, j′, k, k′

|T2| :=
∑

i1∈I(i)

(
θti1(y

′
i1b

(k)
j )

)2

(ỹ′i1b
(k′)
j′ ) ≤

∑
i1

θ2ti1 (
√
K)2

√
K ≤ C∥θ∥2t2t,

which proves (II) and finishes the whole proof.

E.6 Proof of Lemma E.4

The proof is similar to that in Lemma E.3. Similarly, let Nθ =
∑

i3,...,im(dist)(θi3 · · · θim)t and

I(i) be the shorthand notation for set {1, . . . , n} \ {i3, . . . , im}. Here, for convenience, we misuse

the superscript (i) to indicate that this element depends on the choice of (i3, . . . , im) when-

ever it is clear from the context. Let M::k3···km
=

∑K
j=1 b

(k)
j b

(k)
j

′
δ
(k)
j , and Mk′

1k
′
2::k

′
5...k

′
m

=∑K
j′=1 b

(k′)
j′ b

(k′)
j′

′
δ
(k′)
j be the eigen-decomposition of the matrices M::k3···km

and Mk′
1k

′
2::k

′
5...k

′
m
,

respectively. Following the procedures in the proof of Lemma E.2, we can obtain

exp(cS) ≤
∑

i3,...,im
(dist)

(θi3 · · · θim)t

Nθ

K∑
k3,...,km=1

k′
1k

′
2,k

′
5,...,k

′
m=1

h(k′1)h(k
′
2)

m∏
s=5

w
(s)
is

(ks)w̃
(s)
is

(ks)

· w̃(3)
i3

(k3)w̃
(4)
i4

(k4)

K∑
j,j′=1

1

K2
· exp

(cK2Nθ

at
X(i, j, j′, k, k′)

)
,

(E.36)
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where

X(i, j, j′, k, k′) =
∑

i1,i2(dist)∈I(i)

(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i3b

(k′)
j′ )(ỹ′i4b

(k′)
j′ ).

Note that w̃
(3)
i3

and w̃
(4)
i4

may not be independent of ỹi3 and ỹi4 which exist in X(i, j, j′, k, k′).

Similar to the proof of Lemma E.3, we rewrite

X(i, j, j′, k, k′) :=
∑

i1,i2∈I(i)

(1− I{i1=i2})(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i3b

(k′)
j′ )(ỹ′i4b

(k′)
j′ )

=δ
(k)
j δ

(k′)
j′ (T1 − T2)(ỹ

′
i3b

(k′)
j′ )(ỹ′i4b

(k′)
j′ ),

where

T1 =
( ∑
i1∈I(i)

θti1(y
′
i1b

(k)
j )

)2

, T2 =
∑

i1∈I(i)

(
θti1(y

′
i1b

(k)
j )

)2

.

Recall that δ
(k)
j ,δ

(k′)
j′ are the eigenvalues of the matrices M::k3···km

and M:k′
2:k

′
4...k

′
m
. By the

assumption ∥M::k3···km
∥ ≤ Cµ, for 1 ≤ k3, . . . , km ≤ K, maxj,k{|δ(k)j |} ≤ Cµ. Combining this

with ∥b(k
′)

j′ ∥ = 1 and ∥yi3∥ ≤
√
K, we have

X(i, j, j′, k, k′) := δ
(k)
j δ

(k′)
j′ (T1 − T2)(ỹ

′
i3b

(k′)
j′ )(ỹ′i4b

(k′)
j′ ) ≤ Cµ2(|T1|+ |T2|).

Note that T1, T2 (and so the bound) are independent of w
(s)
is
, w̃

(s)
is

, 3 ≤ s ≤ m. Applying this

inequality to the RHS of (E.36) and taking expectation on both sides give

E[exp(cS)] ≤ max
i,j,j′,k,k′

E
[
exp

(CNθ

at
µ2(|T1|+ |T2|)

)]
.

Now, to show the claim, note that Nθ :=
∑

i3,...,im(dist)(θi3 · · · θim)t ≤ ∥θ∥t(m−2)
t , it is then

sufficient to show that

(I) : P(|T1| > x) ≤ 2 exp(−x/(2K∥θ∥2t2t)), ∀x > 0, (II) : |T2| ≤ C∥θ∥2t2t.

The procedures to show them are the same as that in the proof of Lemma E.2. So we omit them.

E.7 Proof of Lemma E.5

The following lemma is used in this proof and we prove it below.

Lemma E.6 (Each element of community structure tensor is close to one). Using the same

notations of Theorem 3.1, for each m ∈ {2, . . . ,M},

max
1≤i1,...,im≤K

{|P(m)
i1···im − 1|} ≍ |µ(m)

2 |. (E.37)

Fix m, for simplicity of notation, we remove the superscript (m) whenever it is clear from

the context. Recall that D = diag(d1, · · · , dK) and h = E[D−1πi/∥D−1πi∥1]. Write for short

s =
∑K

k=1 dkhk and v = (d1, . . . , dK)′. With these notations and direct calculations, for 1 ≤
k3, . . . , km ≤ K

M::k3···km
= D(P::k3···km

− 1K1′
K)D

m∏
j=3

dkj
+ (

m∏
j=3

dkj
− sm−2)vv′ + (sm−2vv′ − 1K1′

K).

15



Therefore, to prove the first claim of this lemma, by elementary algebra, it is sufficient to show

that

(a) : max
1≤k1,...,km≤K

{|Pk1···km
− 1|} ≤ C|µ2|,

(b) : max
1≤k≤K

{dk} ≤ C,

(c) : max
1≤i,j≤K

{|(sm−2vv′ − 1K1′
K)ij |} ≤ C|µ2|,

(d) : max
1≤k≤K

{|dk − s|} ≤ C|µ2|,

where we note that (a) is implied by Lemma E.6.

Consider (b). Recall that by degree matching

K∑
k2,...,km=1

DP:k2···km

m∏
j=2

(dkj
hkj

) = 1K . (E.38)

Note that each element of P is non-negative and Pk1···k1
= 1 for 1 ≤ k1 ≤ K. It follows that

dk1
(dk1

hk1
)m−1 ≤

K∑
k2,...,km=1

dk1
Pk1···km

m∏
j=2

(dkj
hkj

) = 1, 1 ≤ k1 ≤ K.

Combining this with our assumption min1≤k≤K{hk} ≥ C,

dk ≤ h
−(m−1)/m
k ≤ C, 1 ≤ k ≤ K, (E.39)

which proves (b).

Next consider (c). Let H be a tensor defined by Hk1···km
= Pk1···km

− 1, for all 1 ≤
k1, . . . , km ≤ K and introduce w as the vector

∑K
k2···km=1DH:k2···km

∏m
j=2(dkj

hkj
). Recall that

s =
∑K

k=1 dkhk. By definitions and calculations, (E.38) can be written as

w + sm−1v = 1K . (E.40)

Note that h′v = s. Left multiplying h′ on both sides gives

h′w + sm = 1. (E.41)

At the same time, inserting (E.40) into sm−2vv′ − 1K1′
K through 1K gives

sm−2vv′ − 1K1′
K =sm−2vv′ − (w + sm−1v)(w + sm−1v)′

=sm−2(1− sm)vv′ − sm−1wv′ − sm−1vw′ − ww′.

Note that by (E.41), 1− sm = h′w. It follows that

sm−2vv′ − 1K1′
K =sm−2h′wvv′ − sm−1wv′ − sm−1vw′ − ww′.

By (E.39), max1≤k≤K{hk} ≤ 1 and elementary algebra

max
1≤i,j≤K

{|(sm−2vv′ − 1K1′
K)ij |} ≤ C∥h∥max · ∥v∥max · ∥w∥max ≤ C∥H∥max,

where ∥ ·∥max is the element-wise maximum norm and ∥H∥max := maxk1,...,km{|Pk1,...,km −1|} ≤
C|µ2|. This proves (c).

On the other hand, by elementary algebra, |(sm−2vv′ − 1K1′
K)ii| ≤ ∥sm−2vv′ − 1K1′

K∥, for
all 1 ≤ i ≤ K and so

|sm−2didi − 1| ≤ C|µ2|.
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Transforming the above formula gives,

di = s−(m−2)/2 +O(|µ2|). (E.42)

Summing up with weight hi in terms of i on two sides and noting that
∑

i hi = 1, it gives

s = s−(m−2)/2 +O(|µ2|). (E.43)

Combining this with (E.42) gives (d).

Next we consider the second claim of this lemma i.e. max1≤i≤K{|di − 1|} ≤ C|µ2|. By

elementary algebra, (E.43) can be rewritten as

s = 1 +

√
s
m−1

+
√
s
m−2∑m−1

j=0

√
s
j

·O(|µ2|),

where we note that
√
sm−1+

√
sm−2∑m−1

j=0

√
sj

≤ 1. Combining this with (E.42) proves the second claim.

E.8 Proof of Lemma E.6

Since the claim is argued for each m-uniform tensor P(m) separately, fixing m, we remove the

superscript (m) whenever it is clear from the context.

Let the K ×Km−1 matrix P denote the matricization of P(m). Let UΣV ′ be the SVD of P ,

where U = (u1, . . . , uK), V = (v1, . . . , vKm−1) and Σ = (diag(µ1, . . . , µK),0K×(Km−1−K)).

To show that claim, it is sufficient to show that

(I) : |µ2| ≤ C max
1≤i1,...,im≤K

{|Pi1···im − 1|}, (II) : max
1≤i1,...,im≤K

{|Pi1···im − 1|} ≤ C|µ2|.

Consider (I) first. Let P0 be the K × Km−1 matrix of ones. Recall that µ2 is the second

singular value of P , and note that the second singular value of P0 is 0. By [4, Corollary 7.3.5,

Page 451],

|µ2| ≤ ∥P − P0∥.

At the same time, by elementary algebra, ∥P − P0∥ ≤ Cmax1≤i1,...,im≤K{|Pi1···im − 1|}. Com-

bining these proves (I).

Next we consider (II).

By our assumption ∥P∥ ≤ C and elemantary algebra,

max
1≤i1,...,im≤K

{|Pi1···im |} = ∥P∥max ≤ ∥P∥ ≤ C,

where ∥ · ∥max is the element-wise maximum norm. Therefore, (II) directly holds for the case

that |µ2| ≥ ϵ for some positive constants ϵ < 1. It is then sufficient to consider the case when

|µ2| < ϵ.

By definitions,

(PP ′)ii ≥ P2
i···i = 1, (PP ′)ij ≥ 0, 1 ≤ i, j ≤ K.

Therefore, by Perron’s theorem [4], the first eigenvalue (in magnitude) and each entry of the first

eigenvector of PP ′ are positive. Note that PP ′ = UΣ2U ′, it follows that

µ1 > 0, u1(i) > 0, 1 ≤ i ≤ K.

Let a = u1µ
1
m
1 and b = v1µ

m−1
m

1 be the scaled version of u1 and v1, where ai > 0 since

u1(i) > 0, 1 ≤ i ≤ K. Introduce P̃ = ab′. For simplicity, we misuse the notation bi2···im
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for bi2+
∑m

s=3 Ks−2(is−1). To show (II), by triangle inequality, it is sufficient to show that for

1 ≤ i1, . . . , im ≤ K,

(IIa) : |Pi1···im − ai1bi2···im | ≤ C|µ2|, (IIb) : |ai1bi2···im − 1| ≤ C|µ2|.

Note that by elementary algebra

|Pi1···im − ai1bi2···im | ≤ ∥P − P̃∥max ≤ ∥P − P̃∥ = |µ2|, (E.44)

This proves (IIa).

It is left to show (IIb). We start by showing that a is a vector with elements are almost the

same. By equality xm − ym = (x− y)
∑m−1

j=0 xm−1−jyj , we have,

|ai1 − ai2 | =
|ami1 − ami2 |∑m−1

j=0 am−j−1
i1

aji2
=

|ai1/ai2 − (ai2/ai1)
m−1|∑m−1

j=0 a−j
i1
aj−1
i2

, 1 ≤ i1, i2 ≤ K.

Combining this with triangle’s inequality |ai1/ai2 − (ai2/ai1)
m−1| ≤ |ai1bi2···i2 − ai1/ai2 | +

|ai1bi2···i2 − (ai2/ai1)
m−1|,

|ai1 − ai2 | ≤
|ai1bi2···i2 − ai1/ai2 |+ |ai1bi2···i2 − (ai2/ai1)

m−1|∑m−1
j=0 a−j

i1
aj−1
i2

, 1 ≤ i1, i2 ≤ K. (E.45)

We claim that for 1 ≤ k ≤ m the following holds and prove it later.∣∣∣ai1bi2···iki1···i1 − ∏k
j=1 aij

aki1

∣∣∣ ≤ (
2

k∑
s=2

∏k
j=s+1 aij

ak−s
i1

+

∏k
j=1 aij

aki1

)
|µ2|, 1 ≤ i1, . . . , im ≤ K. (E.46)

By setting k = m; i3, . . . , im = i2 and k = 1, i1 = i2 separately in the above inequality, we obtain∣∣∣ai1bi2···i2 − am−1
i2

am−1
i1

∣∣∣ ≤ (
2

m∑
s=2

am−s
i2

am−s
i1

+
am−1
i2

am−1
i1

)
|µ2|,

∣∣∣ai1bi2···i2 − ai1
ai2

∣∣∣ ≤ ai1
ai2

|µ2|.

Inserting the above into the RHS of (E.45) and by direct calculations

|ai1 − ai2 | ≤
1∑m−1

j=0 a−j
i1
aj−1
i2

(
2

m∑
s=2

am−s
i2

am−s
i1

|µ2|+
am−1
i2

am−1
i1

|µ2|+
ai1
ai2

|µ2|
)
= (ai1 + ai2)|µ2|.

Combining this inequality with
∑K

j=1(ai − |ai − aj |) ≤
∑K

j=1 aj ≤
∑K

j=1(ai + |ai − aj |) give

K∑
i2=1

(
ai1 − (ai1 + ai2)|µ2|

)
≤

K∑
i2=1

ai2 ≤
K∑

i2=1

(
ai1 + (ai1 + ai2)|µ2|

)
.

By
∑K

i2=1 ai2 = ∥a∥1, we can rewrite it as

∥a∥1
K

1− |µ2|
1 + |µ2|

≤ ai1 ≤ ∥a∥1
K

1 + |µ2|
1− |µ2|

.

Note that |µ2| < ϵ < 1, it is seen that

ai1 =
∥a∥1
K

(1 +O(|µ2|)), 1 ≤ i1 ≤ K. (E.47)

Now we are ready to show (IIb). By triangle inequality

|ai1bi2···im − 1| ≤ |ai1bi2···im −
∏m

j=1 aij

ami1
|+ |

∏m
j=1 aij

ami1
− 1|. (E.48)
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Note that setting k = m in (E.46) gives∣∣∣ai1bi2···im −
∏m

j=1 aij

ami1

∣∣∣ ≤ (
2

m∑
s=2

∏m
j=s+1 aij

am−s
i1

+

∏m
j=1 aij

ami1

)
|µ2|.

Inserting this into (E.48). By direct calculations and (E.47)

|ai1bi2···im − 1| ≤
(
2

m∑
s=2

∏m
j=s+1 aij

am−s
i1

+

∏m
j=1 aij

ami1

)
|µ2|+ |

∏m
j=1 aij

ami1
− 1| = O(|µ2|).

which holds proves (IIb) and finishes the main proof of this lemma.

Lastly, we prove the claim (E.46), which is done by induction. Consider k = 1, the goal is to

show

|ai1bi1···i1 − 1| ≤ |µ2|, 1 ≤ i1 ≤ K (E.49)

Since Pi1···i1 = 1, for 1 ≤ i1 ≤ K. By (E.44), we have

|ai1bi1···i1 − 1| ≤ |µ2|,

which is exactly (E.49) and so the claim (E.46) holds for k = 1.

Now, assume that the claim holds for k = k0 and the goal is to show that this implies that

the claim holds for k = k0 + 1. By triangle’s inequality,∣∣∣ai1bi2···ik0+1i1···i1 −
∏k0+1

j=1 aij

ak0+1
i1

∣∣∣
≤
∣∣∣ai1bi2···ik0+1i1···i1 − Pi1···ikik0+1i1···i1

∣∣∣+ ∣∣∣Pi1···ikik0+1i1···i1 − Pik0+1i1···ik0
i1···i1

∣∣∣
+
∣∣∣Pik0+1i1···ik0

i1···i1 − aik0+1
bi2···ik0

i1···i1

∣∣∣+ ∣∣∣aik0+1
bi2···ik0

i1···i1 −
∏k0+1

j=1 aij

ak0+1
i1

∣∣∣
By (E.44), the first term and the third is bounded by |µ2|. Also, by symmetry of P, the second

term is 0. Moving a factor aik0+1
/ai1 from the last term, it follows that

∣∣∣ai1bi2···ik0+1i1···i1 −
∏k0+1

j=1 aij

ak0+1
i1

∣∣∣ ≤2|µ2|+
aik0+1

ai1

∣∣∣ai1bi2···ik0
i1···i1 −

∏k0

j=1 aij

ak0
i1

∣∣∣
(By the assumption for k = k0) ≤2|µ2|+

aik0+1

ai1

(
2

k0∑
s=2

∏k
j=s+1 aij

ak0−s
i1

+

∏k
j=1 aij

ak0
i1

)
|µ2|

=
(
2

k0+1∑
s=2

∏k0+1
j=s+1 aij

ak0+1−s
i1

+

∏k0+1
j=1 aij

ak0+1
i1

)
|µ2|,

which shows (E.46) also holds for k = k0 + 1. Hence, by induction, (E.46) holds for 1 ≤ k ≤ m.

F Proof of Lemma 2.2

We have the following lemma which is used in the proof of Lemma 2.2 and prove it below.

Lemma F.1. Under the conditions of Lemma 2.2, as n→ ∞, with probability at least 1−O(1/n),

• (a) Under both the null and under the alternative, |α̂n − α̃n| ≤ C log(n)(α̃n/n
3)1/2.

• (b) Under the alternative, α̃n ≤ max1≤k1,k2,k3≤K{Pk1k2k3} ≤ Cα̃n and α̃n = h′(Ph)h +

O( α̃n

n ).
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To show the claims of Lemma 2.2, it is sufficient to show as n→ ∞, for any positive constant

M ,

ψn → N(0, 1) under the null, and P(|ψn| ≤M) → 0 under the alternative. (F.50)

Recall that

α̃n = E[α̂n],

Let A∗ and Ã be two tensors with the same size as A, where A∗
i1i2i3

= Ai1i2i3 − α̂n and

Ãi1i2i3 = Ai1i2i3 − α̃n if i1, i2, i3 are distinct, and A∗
i1i2i3

= Ãi1i2i3 = 0 otherwise. By definitions,

√
2nψn =

∑
1≤i≤n

(∑
j<k A∗

ijk

)2

− n
(
n−1
2

)
α̂n(1− α̂n)(

n−1
2

)
α̂n(1− α̂n)

. (F.51)

Let S0 = {(i1, i2, i3, i4, i5) : 1 ≤ i1, i2, i3, i4, i5 ≤ n; i1 < i2; i4 < i5; i1, i2, i4, i5 ̸= i3}, and write

for short x = (i1, i2, i3, i4, i5). Introduce a subset of S0 by S = {x ∈ S0 : (i1, i2) ̸= (i4, i5)}. Note

that for any x ∈ S0 \ S, (i1, i2) = (i4, i5). It is seen that the numerator on the RHS of (F.51) is∑
x∈S0

A∗
i1i2i3A

∗
i3i4i5 − n

(
n−1
2

)
α̂n(1− α̂n)

=
∑
x∈S

A∗
i1i2i3A

∗
i3i4i5 +

∑
x∈S0\S

A∗
i1i2i3A

∗
i3i4i5 − n

(
n−1
2

)
α̂n(1− α̂n)

=(I) + (II), (F.52)

where

(I) =
∑
x∈S

A∗
i1i2i3A

∗
i3i4i5 , (II) =

∑
x∈S0\S

A∗
i1i2i3A

∗
i3i4i5 − n

(
n−1
2

)
α̂n(1− α̂n).

Consider (I) first. Write

(I) = (Ia) + (Ib), (F.53)

where

(Ia) =
∑
x∈S

Ãi1i2i3Ãi3i4i5 , (Ib) =
∑
x∈S

(A∗
i1i2i3A

∗
i3i4i5 − Ãi1i2i3Ãi3i4i5).

Now, by direct calculations,

(Ib) = (α̃n − α̂n)
∑
x∈S

(Ai1i2i3 +Ai3i4i5 − α̂n − α̃n). (F.54)

Note that for each tuple (i1, i2, i3), there are
(
n−1
2

)
− 1 different x = (i1, i2, i3, i4, i5) in S with

the same (i1, i2, i3). It follows∑
x∈S

Ai1i2i3 =

((
n−1
2

)
− 1

) ∑
i1,i2,i3(dist)

i1<i2

Ai1i2i3 =
n2(n− 1)(n− 2)(n− 3)

4
α̂n. (F.55)

Similarly, we have ∑
x∈S

Ai3i4i5 =
n2(n− 1)(n− 2)(n− 3)

4
α̂n. (F.56)

Inserting (F.55)-(F.56) into (F.54) gives

(Ib) = −n
2(n− 1)(n− 2)(n− 3)

4
(α̃n − α̂n)

2.
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Combining this with (F.53) gives

(I) = (Ia)− n2(n− 1)(n− 2)(n− 3)

4
(α̃n − α̂n)

2. (F.57)

Next consider (II). Note that for any x ∈ S0 \ S, i1 < i2 and (i1, i2) = (i4, i5). By direct

calculations∑
x∈S0\S

A∗
i1i2i3A

∗
i3i4i5 =

1

2

∑
i1,i2,i3(dist)

(A∗
i1i2i3)

2 =
1

2

∑
i1,i2,i3(dist)

(A2
i1i2i3−2α̂nAi1i2i3+α̂

2
n). (F.58)

Since Ai1i2i3 ∈ {0, 1}, we have A2
i1i2i3

= Ai1i2i3 . Combining this with definitions, the RHS of

(F.58) reduces to
n(n− 1)(n− 2)

2
α̂n(1− α̂n).

It follows that

(II) = 0. (F.59)

Combining (F.52), (F.57), and (F.59), it follows from (F.51) that

ψn =
(Ia)− (1/4)n2(n− 1)(n− 2)(n− 3)(α̃n − α̂n)

2

√
2n

(
n−1
2

)
α̂n(1− α̂n)

.

Now, by Lemma F.1, |α̂n − α̃n| ≤ C log(n)(α̃n/n
3)1/2 except for a probability of 1−O(1/n). It

is seen that except for a probability of 1−O(1/n)∣∣∣∣ α̂n

α̃n
− 1

∣∣∣∣ ≤ C
log(n)√
n3α̃n

,

∣∣∣∣ (1/4)n2(n− 1)(n− 2)(n− 3)(α̃n − α̂n)
2

√
2n

(
n−1
2

)
α̂n(1− α̂n)

∣∣∣∣ ≤ C
log2(n)

n1/2
.

By n2α̃n → ∞, we have that in probability,

α̂n

α̃n
→ 1,

(1/4)n2(n− 1)(n− 2)(n− 3)(α̃n − α̂n)
2

√
2n

(
n−1
2

)
α̂n(1− α̂n)

→ 0.

Let

Zn =
(Ia)√

2n
(
n−1
2

)
α̃n(1− α̃n)

.

To show (F.50), it is sufficient to show that as n→ ∞,

Zn → N(0, 1), under the null, (F.60)

and

P(|Zn| > M) → 1 for any M > 0, under the alternative. (F.61)

We now show (F.60)-(F.61). We consider (F.61) first since the proof is shorter. The following

lemma is proved below.

Lemma F.2. Under the conditions of Lemma 2.2, if the alternative hypothesis is true, then as

n→ ∞
E[Zn] ≥ Cn2.5α̃nδ

2
n, Var(Zn) ≤ Cn2α̃n.

Now, suppose the alternative hypothesis is true. Note that by triangle inequality

P(|Zn| ≤M) ≤ P
(∣∣E[Zn]

∣∣− ∣∣Zn − E[Zn]
∣∣ ≤M

)
= P(

∣∣Zn − E[Zn]
∣∣ ≥ ∣∣E[Zn]

∣∣−M),

21



where by Chebyshev’s inequality,

P(
∣∣Zn − E[Zn]

∣∣ ≥ ∣∣E[Zn]
∣∣−M) ≤ Var(Zn)

(E[Zn]−M)2
.

At the same time, by Lemma F.2 and our assumptions of n2α̃n → ∞ and n3/2α̃
1/2
n δ2n → ∞,

Var(Zn)

(E[Zn]−M)2
≤ Cn2α̃n

(Cn2.5α̃nδ2n −M)2
≤ 1

C(n3/2α̃
1/2
n δ2n)

2
→ 0.

Combining these proves (F.61).

We now consider (F.60). For 1 ≤ m ≤ n, introduce a subset of S by

S(m) = {x = (i1, i2, i3, i4, i5) ∈ S : max{i1, i2, i3, i4, i5} ≤ m}.

Introduce

T̃n,m =
∑

x∈S(m)

Ãi1i2i3Ãi3i4i5 , Zn,m =
T̃n,m√

2n
(
n−1
2

)
α̃n(1− α̃n)

, (T̃n,0 = Zn,0 = 0),

and

Xn,m = Zn,m − Zn,m−1.

It is seen that

(Ia) = T̃n,n, and Zn = Zn,n =

n∑
m=1

Xn,m. (F.62)

Consider the filtration {Fn,m}1≤m≤n with Fn,m = σ
(
{Ãi1i2i3 : 1 ≤ i1, i2, i3 ≤ m}

)
. It is seen

that for all 1 ≤ m ≤ n,

E[Xn,m|Fn,m−1] = E[Zn,m|Fn,m−1]− Zn,m−1 = 0,

so {Xn,m}nm=1 is a martingale difference sequence with respect to {Fn,m}1≤m≤n. We have the

following lemma which is proved below.

Lemma F.3. Under the conditions of Lemma 2.2, if the null hypothesis is true, then as n→ ∞,

(a)

n∑
m=1

E[X2
n,m|Fn,m−1] → 1, in probability ,

(b)∀ϵ > 0,

n∑
m=1

E[X2
n,mI{|Xn,m| > ϵ}|Fn,m−1] → 0, in probability .

By Lemma F.3 and [3, Corollary 3.1], it follows from (F.62) that under the null,

Zn = Zn,n → N(0, 1).

This proves (F.60).

F.1 Proof of Lemma F.1

We first prove the claim (b). By definitions

α̃n = E[α̂n] =

∑
i1,i2,i3(dist)

Qi1i2i3

n(n− 1)(n− 2)
.
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Recall that under alternative

Qi1i2i3 =
∑

1≤k1,k2,k3≤K

πi1(k1)πi2(k2)πi3(k3)Pk1k2k3 , 1 ≤ i1, i2, i3 ≤ n.

It is seen that Qi1i2i3 ≤ max1≤k1,k2,k3≤K{Pk1k2k3}, 1 ≤ i1, i2, i3 ≤ n and so

α̃n ≤ max
1≤k1,k2,k3≤K

{Pk1k2k3}, α̃n = h′(Ph)h+O(
max1≤k1,k2,k3≤K{Pk1k2k3}

n
).

At the same time, by our assumption minKk=1{hk} ≥ c0 and elementary calculations

max
1≤k1,k2,k3≤K

{Pk1k2k3} ≤ C
∑

1≤k1,k2,k3≤K

hk1hk2hk3Pk1k2k3 ≤ Cα̃n.

These prove the claims in (b). Now we show the claim (a).

Note that, α̂n is the average of
(
n
3

)
independent Bernoulli random variables with parameter

bounded by Cα̃n under both null and alternative hypothesis. By Bernstein’s inequality,

P((
(
n
3

)
)|α̂n − α̃n| ≥ t

)
≤ 2 exp(− t2(

n
3

)
Cα̃n(1− Cα̃n) +

t
3

).

Let t = C
(
n
3

) log(n)α̃1/2
n

n3/2 , by elementary calculations, we get

P
(
|α̂n − α̃n| ≥ C

log(n)α̃
1/2
n

n3/2

)
≤ O(1/n). (F.63)

This is equivalent to the claim in (a).

F.2 Proof of Lemma F.2

Recall that

Zn = (2n)−1/2 (Ia)(
n−1
2

)
α̃n(1− α̃n)

, with (Ia) =
∑

x∈S(Ai1i2i3 − α̃n)(Ai3i4i5 − α̃n).

Therefore, to show the claims, it is sufficient to show that as n→ ∞

E[(Ia)] ≥ Cn5α̃2
nδ

2
n, (F.64)

and

Var((Ia)) ≤ Cn7α̃3
n. (F.65)

Consider (F.64) first. Since for each x = (i1, i2, i3, i4, i5) ∈ S, Ai1i2i3 is independent of

Ai3i4i5 , by direct calculations,

E[(Ia)] =
∑
x∈S

(Qi1i2i3 − α̃n)(Qi3i4i5 − α̃n).

Let Q̃i1i2i3 = Qi1i2i3 − α̃n, by definitions,

E[(Ia)] =
1

4
(
∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5 −
∑

x∈(S′
0\S′

1)

Q̃i1i2i3Q̃i3i4i5),

where

S′
0 ={x : 1 ≤ i1, i2, i3, i4, i5 ≤ n}
S′
1 ={x ∈ S′

0 : i1, i2, i3(dist); i3, i4, i5(dist); (i1, i2) ̸= (i4, i5)}.
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To show (F.64), it is sufficient to show that∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5 ≥ Cn5α̃2
nδ

2
n, and

∑
x∈(S′

0\S′
1)

Q̃i1i2i3Q̃i3i4i5 = o(
∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5).

(F.66)

Consider the first claim in (F.66). Recall that

Q̃i1i2i3 = Qi1i2i3 − α̃n =
∑

k1,k2,k3

πi1(k1)πi2(k2)πi3(k3)Pk1k2k3 − α̃n, and h =

n∑
i=1

πi/n.

By direct calculations and elementary algebra,∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5 = n4∥Π(Ph)h− α̃n1n∥2.

By triangle inequality, we have ∥Π(Ph)h − α̃n1n∥ ≥
∣∣∥Π(Ph)h − h′(Ph)h1n∥ − ∥(h′(Ph)h −

α̃n)1n∥
∣∣. It follows that∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5 ≥ n4(∥Π(Ph)h− h′(Ph)h1n∥ − ∥(h′(Ph)h− α̃n)1n∥)2. (F.67)

Recall that Σ = Π′Π/n − hh′ and note that Σ1K = 0. Also, recall that HK = K−11K1′
K and

note that IK −HK is a projection matrix. By elementary algebra,

Σ = (IK −HK)Σ(IK −HK).

First, by elementary algebra,

∥Π(Ph)h− h′(Ph)h1n∥2 = n
(
h′(Ph)Π

′Π

n
(Ph)h− h′(Ph)hh′(Ph)h

)
= n((Ph)h)′Σ((Ph)h),

(F.68)

where the RHS equals to

n((Ph)h)′(IK −HK)Σ(IK −HK)(Ph)h. (F.69)

By our assumption λK−1(Σ) = min∥v∥=1,v⊥1K
v′Σv ≥ c0, it is seen that

n((Ph)h)′(IK −HK)Σ(IK −HK)(Ph)h ≥ c0nα̃
2
n∥α̃−1

n (IK −HK)(Ph)h∥2. (F.70)

Recall that δn = ∥α̃−1
n (IK −HK)(Ph)h∥, combining with (F.68)-(F.70), we get

∥Π(Ph)h− h′(Ph)h1n∥2 ≥ c0nα̃
2
nδ

2
n. (F.71)

At the same time, by Lemma F.1,

α̃n = h′(Ph)h+O(
α̃n

n
). (F.72)

By direct calculations,

∥(h′(Ph)h− α̃n)1n∥2 = n(h′(Ph)h− α̃n)
2 = O(

α̃2
n

n
), (F.73)

where by α̃n ≤ max1≤i1,i2,i3≤n{Pi1i2i3} ≤ c0 and our condition n3/2α̃
1/2
n δ2n → ∞,

α̃2
n

n
= o(1) · (nα̃2

nδ
2
n). (F.74)
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Combining (F.72)-(F.74),

∥(h′(Ph)h− α̃n)1n∥2 = o(nα̃2
nδ

2
n). (F.75)

Inserting (F.71) and (F.75) into (F.67) proves the first claim in (F.66).

Next, we consider the second claim in (F.66). Notice that by symmetry, the two leading

terms of
∑

x∈(S′
0\S′

1)
Q̃i1i2i3Q̃i3i4i5 are the following:

O(
∑

1≤i1,i2,i3,i4,i5≤n
i3=i4

Q̃i1i2i3Q̃i3i4i5), and O(
∑

1≤i1,i2,i3,i4,i5≤n
i4=i5

Q̃i1i2i3Q̃i3i4i5). (F.76)

The other terms are O(n3α̃2
n) = o(n5α̃2

nδ
2
n) and thus are negligible. It is therefore adequate to

consider the two terms in (F.76).

Consider the first term in (F.76). By Cauchy-Schwarz inequality,∣∣ ∑
1≤i1,i2,i3,i4,i5≤n

i3=i4

Q̃i1i2i3Q̃i3i4i5

∣∣ ≤ √ ∑
1≤i3≤n

(
∑

1≤i5≤n

Q̃i3i3i5)
2

√ ∑
1≤i3≤n

(
∑

1≤i1,i2≤n

Q̃i1i2i3)
2. (F.77)

Note that by definitions and Lemma F.1, |Q̃i3i3i5 | ≤ Cα̃n. It is seen that∑
1≤i3≤n

(
∑

1≤i5≤n

Q̃i3i3i5)
2 ≤ Cn3α̃2

n. (F.78)

By our condition n3/2α̃
1/2
n δ2n → ∞, we have n2δ2n → ∞. Comparing the RHS of (F.78) with the

first claim of (F.66), the RHS is at a smaller order of
∑

x∈S′
0
Q̃i1i2i3Q̃i3i4i5 . At the same time,∑

1≤i3≤n

(
∑

1≤i1,i2≤n

Q̃i1i2i3)
2 =

∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5 . (F.79)

Inserting (F.78)-(F.79) into (F.77), we have∣∣ ∑
1≤i1,i2,i3,i4,i5≤n

i3=i4

Q̃i1i2i3Q̃i3i4i5

∣∣ = o(
∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5).

For the second term in (F.76), the analysis is similar, so we omit the details. These prove the

second claim of (F.66), and so complete the proof of (F.64).

Next we consider (F.65). Let W be the tensor with the same size as A, where Wi1i2i3 =

Ai1i2i3 −Qi1i2i3 if i1, i2, i3 are distinct, and Wi1i2i3 = 0 otherwise. By symmetry and definitions,

(Ia) =
∑
x∈S

(Wi1i2i3−Q̃i1i2i3)(Wi3i4i5−Q̃i3i4i5) =
∑
x∈S

(Wi1i2i3Wi3i4i5−2Q̃i1i2i3Wi3i4i5+Q̃i1i2i3Q̃i3i4i5).

(F.80)

Since for any random variables X and Y , Var(X + Y ) ≤ 2Var(X) + 2Var(Y ), we have

Var((Ia)) ≤ 2Var(
∑
x∈S

Wi1i2i3Wi3i4i5) + 2Var(
∑
x∈S

2Q̃i1i2i3Wi3i4i5).

Here, we note that Q̃ is non-random, so the variance of the last term in (F.80) is 0. By direct

calculations,

Var(
∑
x∈S

Wi1i2i3Wi3i4i5) =
∑
x∈S

Var(Wi1i2i3Wi3i4i5) = O(n5α̃2
n),

Var(
∑
x∈S

2Q̃i1i2i3Wi3i4i5) =
1

4

∑
i3i4i5(dist)

(
∑

i1i2(dist)
{i1,i2}̸={i4,i5}

i1,i2 ̸=i3

Qi1i2i3)
2Var(Wi3i4i5) = O(n7α̃3

n).
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By our assumptions, n2α̃n → ∞, and so n5α̃n = o(1) · n7α̃3
n. Combining these gives that

Var((Ia)) ≤ Cn7α̃3
n.

This proves (F.65).

F.3 Proof of Lemma F.3

We first show claim (a). By Chebyshev’s inequality, it is sufficient to show that

E
[ n∑
m=1

E[X2
n,m|Fn,m−1]

]
→ 1, Var(

n∑
m=1

E[X2
n,m|Fn,m−1]) → 0. (F.81)

Introduce

T (m) = E[(
∑

x∈S(m)\S(m−1)

Ãi1i2i3Ãi3i4i5)
2|Fn,m−1].

By definitions,

E[X2
n,m|Fn,m−1] =

E[(
∑

x∈S(m)\S(m−1) Ãi1i2i3Ãi3i4i5)
2|Fn,m−1]

(
√
2n

(
n−1
2

)
αn(1− αn))2

=
T (m)

(
√
2n

(
n−1
2

)
αn(1− αn))2

.

To show (F.81), it is sufficient to show that

E[
n∑

m=1

T (m)] =
n5α2

n(1− αn)
2

2
(1 + o(1)), (F.82)

and that

Var(

n∑
m=1

T (m)) = o(n10α4
n). (F.83)

Consider (F.82) first. Recall that S(m) = {x = (i1, i2, i3, i4, i5) ∈ S : max{i1, i2, i3, i4, i5} ≤
m} and x = (i1, i2, i3, i4, i5) for short. Similarly, for short, we write x′ = (i′1, i

′
2, i

′
3, i

′
4, i

′
5) and let

(S(m)\S(m−1))2 = {(x, x′) : x ∈ S(m)\S(m−1), x′ ∈ S(m)\S(m−1)}.

Let

SS
(m)
1 =

{
(x, x′) ∈ (S(m)\S(m−1))2 : i3 = i′3, {i1, i2, i4, i5} = {i′1, i′2, i′4, i′5}

}
,

SS
(m)
2 =(S(m)\S(m−1))2\SS(m)

1 .

It is seen that the LHS of (F.82) equals to

(I) + (II),

where

(I) = E
[ n∑
m=1

E[
∑

(x,x′)∈SS
(m)
1

Ã2
i1i2i3Ã

2
i3i4i5 |Fn,m−1]

]
,

and

(II) = E
[ n∑
m=1

E[
∑

(x,x′)∈SS
(m)
2

Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
|Fn,m−1]

]
.

Notice that for any (x, x′) ∈ SSm
2 , each Ãi1i2i3Ãi3i4i5Ãi′1i

′
2i

′
3
Ãi′3i

′
4i

′
5
is a mean-zero random vari-

able. It follows that

(II) = 0.
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At the same time, note that for any (x, x′) ∈ SS
(m)
1 (where x = (i1, i2, i3, i4, i5) and x′ =

(i′1, i
′
2, i

′
3, i

′
4, i

′
5)), there are two possibilities: (i1, i2, i4, i5) = (i′1, i

′
2, i

′
4, i

′
5) and (i1, i2, i4, i5) =

(i′4, i
′
5, i

′
1, i

′
2). By symmetry,

(I) = 2

n∑
m=1

∑
x∈S(m)\S(m−1)

E
[
Ã2

i1i2i3Ã
2
i3i4i5

]
= 2

∑
x∈S

α2
n(1− αn)

2 = 12n

(
n

4

)
α2
n(1− α2

n).

Combining these gives (F.82).

Next, consider (F.83). In S(m)\S(m−1), we have i3 = m or i2 = m or i5 = m. Let

S
(m)
1 =

{
x ∈ S(m)\S(m−1) : either i2 = m, i5 < m or i5 = m, i2 < m

}
,

S
(m)
2 =(S(m)\S(m−1))\S(m)

1 .

Write

T (m) = T
(m)
1 + 2T

(m)
2 + T

(m)
3 ,

where

T
(m)
1 =E[

∑
x,x′∈S

(m)
1

Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
|Fn,m−1],

T
(m)
2 =E[

∑
x∈S

(m)
1 ,x′∈S

(m)
2

Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
|Fn,m−1],

T
(m)
3 =E[

∑
x,x′∈S

(m)
2

Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
|Fn,m−1].

Notice that for x ∈ S
(m)
1 , x′ ∈ S

(m)
2 , Ãi1i2i3Ãi3i4i5Ãi′1i

′
2i

′
3
Ãi′3i

′
4i

′
5
is mean-zero conditional on

Fn,m−1. It follows directly that

T
(m)
2 = 0.

Also, by definitions, for each x ∈ S
(m)
2 , we must have i3 = m or i2 = i5 = m. Let Em ={

(x, x′) ∈ S
(m)
2 × S

(m)
2 : {i1, i2, i3, i4, i5} = {i′1, i′2, i′3, i′4, i′5}

}
, by direct calculations

T
(m)
3 = |Em|α2

n(1− αn)
2.

It is seen that T
(m)
3 is non-random. Therefore,

T (m) = T
(m)
1 + |Em|α2

n(1− αn)
2, and Var(

n∑
m=1

T (m)) = Var(

n∑
m=1

T
(m)
1 ),

and to show (F.83), it is sufficient to show that

Var(

n∑
m=1

T
(m)
1 ) = o(n10α4

n). (F.84)

By definitions and symmetry

T
(m)
1 = E[4

∑
1≤i1,i2,i3,i4,i

′
1,i

′
2,i

′
3,i

′
4≤m−1

i1<i2;i
′
1<i′2

i1,i2,i4 ̸=i3;i
′
1,i

′
2,i

′
4 ̸=i′3

Ãi1i2i3Ãi3i4mÃi′1i
′
2i

′
3
Ãi′3i

′
4m

|Fn,m−1].

If {i3, i4} ≠ {i′3, i′4}, then Ãi1i2i3Ãi3i4mÃi′1i
′
2i

′
3
Ãi′3i

′
4m

has a conditional mean of zero. Therefore,

we have

T
(m)
1 = T

(m)
11 + T

(m)
12 ,
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where

T
(m)
11 =E[4

∑
1≤i1,i2,i3,i4,i

′
1,i

′
2≤m−1

i1<i2;i
′
1<i′2

i1,i2,i
′
1,i

′
2,i4 ̸=i3

Ãi1i2i3Ã2
i3i4mÃi′1i

′
2i3

|Fn,m−1],

T
(m)
12 =E[4

∑
1≤i1,i2,i3,i4,i

′
1,i

′
2≤m−1

i1<i2;i
′
1<i′2

i1,i2,i4 ̸=i3;i
′
1i

′
2 ̸=i4

Ãi1i2i3Ã2
i3i4mÃi′1i

′
2i4

|Fn,m−1].

Since for any random variables X and Y , Var(X + Y ) ≤ 2Var(X) + 2Var(Y ), to show (F.84), it

is sufficient to show that

Var(

n∑
m=1

T
(m)
11 ) = o(n10α4

n), and Var(

n∑
m=1

T
(m)
12 ) = o(n10α4

n). (F.85)

Consider the first claim in (F.85). Recall that

T̃n,m =
∑

x∈S(m)

Ãi1i2i3Ãi3i4i5 =
∑

1≤i1,··· ,i5≤m
i1<i2;i4<i5
i1,i2,i4,i5 ̸=i3
(i1,i2) ̸=(i4,i5)

Ãi1i2i3Ãi3i4i5 .

By elementary calculations

T
(m)
11 = 4(m− 2)αn(1− αn)T̃n,m−1 + 4(m− 2)αn(1− αn)

∑
1≤i1,i2,i3≤m−1

i1<i2
i1,i2 ̸=i3

Ã2
i1i2i3 .

By inequality Var(X+Y ) ≤ 2Var(X)+2Var(Y ), to show the first claim in (F.85), it is sufficient

to show that

Var(

n∑
m=1

4(m− 2)αn(1− αn)T̃n,m−1) = o(n10α4
n), (F.86)

and

Var(

n∑
m=1

4(m− 2)αn(1− αn)
∑

1≤i1,i2,i3≤m−1
i1<i2

i1,i2 ̸=i3

Ã2
i1i2i3) = o(n10α4

n). (F.87)

Consider the LHS of (F.86), by definitions,

Var(

n∑
m=1

4(m−2)αn(1−αn)T̃n,m−1) =

n∑
m,m′=1

16(m−2)(m′−2)α2
n(1−αn)

2Cov(T̃n,m−1, T̃n,m′−1).

(F.88)

Notice that

Cov(T̃n,m−1, T̃n,m′−1) =
∑

1≤i1,··· ,i5≤m
i1<i2;i4<i5
i1,i2,i4,i5 ̸=i3
(i1,i2) ̸=(i4,i5)

∑
1≤i′1,··· ,i

′
5≤m

i′1<i′2;i
′
4<i′5

i′1,i
′
2,i

′
4,i

′
5 ̸=i′3

(i′1,i
′
2) ̸=(i′4,i

′
5)

E[Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
].

Only if {i1, i2, i3, i4, i5} = {i′1, i′2, i′3, i′4, i′5}, E[Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
] will be non-zero. Since

there are only a bounded number of ways to pair the indexes, by direct calculations

Cov(T̃n,m−1, T̃n,m′−1) = O(
∑

1≤i1,··· ,i5≤m
i1<i2;i4<i5
i1,i2,i4,i5 ̸=i3
(i1,i2 )̸=(i4,i5)

E[(Ã2
i1i2i3Ã

2
i3i4i5 ]) = O(n5α2

n).
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Combining this with (F.88), it is seen that

Var(

n∑
m=1

4(m− 2)αn(1− αn)T̃n,m−1) = O(n4n5α4
n) = o(n10α4

n).

This proves (F.86).

Next consider the LHS of (F.87), by direct calculations,

Var(

n∑
m=1

4(m− 2)αn(1− αn)
∑

1≤i1,i2,i3≤m−1
i1<i2

i1,i2 ̸=i3

Ã2
i1i2i3) ≤16n4α2

n(1− αn)
2Var(

∑
1≤i1,i2,i3≤n

i1<i2
i1,i2 ̸=i3

Ã2
i1i2i3)

=16n4α2
n(1− αn)

2 ·
∑

1≤i1,i2,i3≤n
i1<i2

i1,i2 ̸=i3

3 ·Var(Ã2
i1i2i3)

=O(n7α3
n).

By our assumption n2α̃n → ∞ (i.e., n2αn → ∞), the RHS of the above inequality is o(n10α4
n).

This proves (F.87) and completes the first claim of (F.85).

Next consider the second claim in (F.85), by definitions,

Var(

n∑
m=1

T
(m)
12 ) =

n∑
m,m′=1

16α2
n(1−αn)

2
∑

1≤i1,··· ,i6≤m
i1<i2;i4<i5

i1,i2 ̸=i3;i4,i5 ̸=i6
i3 ̸=i6

∑
1≤i′1,··· ,i

′
6≤m

i′1<i′2;i
′
4<i′5

i′1,i
′
2 ̸=i′3;i

′
4,i

′
5 ̸=i′6

i′3 ̸=i′6

E[Ãi1i2i3Ãi4i5i6Ãi′1i
′
2i

′
3
Ãi′4i

′
5i

′
6
].

Similarly, it is sufficient to consider terms that satisfy {i1, · · · , i6} = {i′1, · · · , i′6}, hence

Var(

n∑
m=1

T
(m)
12 ) = O(

n∑
m,m′=1

16α2
n(1− αn)

2
∑

1≤i1,··· ,i6≤m
i1<i2;i4<i5

i1,i2 ̸=i3;i4,i5 ̸=i6
i3 ̸=i6

E[Ã2
i1i2i3Ã

2
i4i5i6 ]) = O(n8α4

n).

Note that the RHS above is o(n10α4
n). This proves the second claim in (F.85) and completes the

proof of claim (a) of (F.81).

Now we consider the claim (b), where the goal is to show that

∀ϵ > 0,

n∑
m=1

E[X2
n,mI{|Xn,m| > ϵ}|Fn,m−1] → 0, in probability. (F.89)

By Cauchy-Schwarz inequality

∣∣ n∑
m=1

E[X2
n,mI{|Xn,m| > ϵ}|Fn,m−1]

∣∣ ≤ n∑
m=1

√
E[X4

n,m|Fn,m−1]
√
P(|Xn,m| > ϵ|Fn,m−1). (F.90)

At the same time, by Markov’s inequality,√
P(|Xn,m| > ϵ|Fn,m−1) ≤

√
E[X4

n,m|Fn,m−1]/ϵ4. (F.91)

Combining (F.90) and (F.91) gives

∣∣ n∑
m=1

E[X2
n,mI{|Xn,m| > ϵ}|Fn,m−1]

∣∣ ≤ n∑
m=1

E[X4
n,m|Fn,m−1]/ϵ

2.
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To show (F.89), by Markov’s inequality, it is sufficient to show that

E
[ n∑
m=1

E[X4
n,m|Fn,m−1]

]
→ 0. (F.92)

Recall that

Xn,m =

∑
x∈S(m)\S(m−1) Ãi1i2i3Ãi3i4i5√

2n
(
n−1
2

)
α̃n(1− α̃n)

.

Write for short y = (i1, i2, i3, i4, i5, j1, j2, j3, j4, j5), similarly, y′ = (i′1, i
′
2, i

′
3, i

′
4, i

′
5, j

′
1, j

′
2, j

′
3, j

′
4, j

′
5).

To show (F.92), it is sufficient to show that

E[
n∑

m=1

∑
y,y′∈(S(m)\S(m−1))2

Ãi1i2i3Ãi3i4i5Ãj1j2j3Ãj3j4j5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
Ãj′1j

′
2j

′
3
Ãj′3j

′
4j

′
5
] = o(n10α4

n).

Similarly, to have non-zero expected value, Ãi1i2i3Ãi3i4i5Ãj1j2j3Ãj3j4j5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
Ãj′1j

′
2j

′
3
Ãj′3j

′
4j

′
5

must be in quadratic form. Since there are only a bounded number of ways to pair them into

quadratic forms, it is sufficient to show that

n∑
m=1

∑
y∈(S(m)\S(m−1))2

E[Ã2
i1i2i3Ã

2
i3i4i5Ã

2
j1j2j3Ã

2
j3j4j5 ] = o(n10α4

n).

Recall that for each x ∈ S(m)\S(m−1), there are at least one index of (i1, i2, i3, i4, i5) is m. It is

seen that

n∑
m=1

∑
y∈(S(m)\S(m−1))2

E[Ã2
i1i2i3Ã

2
i3i4i5Ã

2
j1j2j3Ã

2
j3j4j5 ] ≤

n∑
m=1

n10−2
(
αn(1− αn)

)4

= o(n10α4
n).

This finishes the proof.

G Proof of Theorem 3.2

Recall that ϕn = max2≤m≤M{ϕ(m)
n }. To prove this theorem, it is sufficient to show that if there

is a m ∈ {2, . . . ,M} such that ∥θ(m)∥m−2
1 ∥θ(m)∥2(µ(m)

2 )2 ≫ log(n), we will have

ϕ(m)
n → 0 under H0, and ϕ(m)

n → ∞ under H1.

Fix m. For simplicity, we remove the superscript (m) whenever it is clear from the context.

Let

α̃n = E[α̂n], β =

K∑
k2,...,km=1

P:k2···km
gk2

· · · gkm
/([P; g, . . . , g])(m−1)/m.,

where g ∈ RK is defined by gk = (1/∥θ∥1)
∑n

i=1 θiπi(k), 1 ≤ k ≤ K.

Introduce ideal counterparts of Vn and η by

Ṽn =
(
n
m

)
α̃n(1− α̃n) and η∗ = ΘΠβ, respectively. (G.93)

The following lemma is used in this proof and we prove it after the main proof.

Lemma G.1. With the conditions of Theorem 3.2, as n→ ∞,

• (a) Under both the null and alternative, Ṽn/Vn → 1 in probability.
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• (b) Under the null, with a probability at least 1 − O(1/n), max1≤i≤n{|ηi/η∗i − 1|} ≤
C(nm−1θmmax/ log(n))

−1/2.

• (c) Under the alternative, with a probability at least 1−O(1/n), max1≤i≤n{|ηi/η∗i − 1|} ≤
C(nm−1θmmax/ log(n))

−1/2+Cγn/n and nmθmmaxγn/(n
m+1θmmax log(n))

1/2 → ∞, where γn =

max1≤k1,...,km≤K{|Pk1···km − βk1 · · ·βkm |}.

G.1 Main Proof of Theorem 3.2

Recall that ϕ
(m)
n = Qn/

√
n log(n)1.1Vn. The goal is to show that with probability 1− o(1)

Qn ≤ (n log(n)1.1Vn)
1/2 under H

(n)
0 , Qn ≥ (n log(n)1.1Vn)

1/2 under H
(n)
1 , (G.94)

By (a) in Lemma G.1, Ṽn/Vn → 1 in probability. Hence to show (G.94), it is sufficient to show

that with probability 1− o(1)

Qn ≤ 0.5(n log(n)1.1Ṽn)
1/2 under H

(n)
0 , Qn ≥ 1.5(n log(n)1.1Ṽn)

1/2 under H
(n)
1 . (G.95)

Recall that

Qn = max
S=(S1,...,Sm+1)∈B

max
1≤k1,...,km≤m+1

{|XS,k1···km |},

where

XS,k1···km
=

∑
i1∈Sk1

,...,im∈Skm

i1,...,im(dist)

(Ai1···im − ηi1 · · · ηim).

Also, recall that η∗ is the ideal counterparts of η, defined in (G.93). Introduce a counterpart of

XS,k1···km by replacing η with η∗

X̃S,k1···km =
∑

i1∈Sk1
,...,im∈Skm

i1,...,im(dist)

(Ai1···im − η∗i1 · · · η
∗
im).

Let

Q̃n = max
S=(S1,...,Sm+1)∈B

max
1≤k1,...,km≤m+1

{|X̃S,k1···km
|}.

Note that for any number x1, x2, . . . , xn and y1, y2, . . . , yn,

|max{x1, x2, . . . , xn} −max{y1, y2, . . . , yn}| ≤ max{|x1 − y1|, |x2 − y2|, . . . , |xn − yn|},

It is seen that

|Qn − Q̃n| ≤ max
S

max
1≤k1,...,km≤m+1

{|XS,k1···km
− X̃S,k1···km

|}. (G.96)

At the same time, by definitions and direct calculations, for all S = (S1, . . . , Sm+1) ∈ B and

1 ≤ k1, . . . , km ≤ m+ 1

|XS,k1···km − X̃S,k1···km | ≤ |Sk1 | · · · |Skm | max
1≤i1,...,im≤n

|ηi1 · · · ηim − η∗i1 · · · η
∗
im |, (G.97)

where by (b) and (c) in Lemma G.1, except for a probability O(1/n)

max
1≤i≤n

{
| ηi
η∗i

− 1|
}
≤ C

( log(n)

nm−1θmmax

)1/2

under H0, (G.98)

and

max
1≤i≤n

{
| ηi
η∗i

− 1|
}
≤ C

( log(n)

nm−1θmmax

)1/2

+
Cγn
n

under H1. (G.99)

31



Here γn denotes max1≤k1,...,km≤K{|Pk1···km
− βk1

· · ·βkm
|} under H1. Note that by our reg-

ular conditions and elementary calculations, log(n)/(nm−1θmmax) = o(1) and γn/n = O(1/n).

Therefore, max1≤i≤n

{
| ηi

η∗
i
− 1|

}
= o(1) under both hypotheses. By Taylor’s expansion, for

1 ≤ i1, . . . , im ≤ n

|ηi1 · · · ηim − η∗i1 · · · η
∗
im | ≤ Cη∗i1 · · · η

∗
im max

1≤i≤n

{
| ηi
η∗i

− 1|
}
. (G.100)

Combining (G.96)-(G.100) and observe that η∗i ≤ Cθmax and |Skj | ≤ n, 1 ≤ j ≤ m, with

probability 1− o(1)

|Qn − Q̃n| ≤ C
(
log(n)nm+1θmmax

)1/2

under H0, (G.101)

and

|Qn − Q̃n| ≤ C
(
log(n)nm+1θmmax

)1/2

+ Cγnn
m−1θmmax under H1 (G.102)

Note that by direct calculations, we have Ṽn ≍ nmθmmax. Therefore, to show (G.95), it is sufficient

to show that with probability 1− o(1)

(I) : Q̃n ≤ 0.5(n log(n)1.1Ṽn)
1/2 under H

(n)
0 ,

(II) : Q̃n ≥ 2(n log(n)1.1Ṽn)
1/2 + Cγnn

m−1θmmax under H
(n)
1 .

Consider (I) first. Recall that

Q̃n = max
S=(S1,...,Sm+1)∈B

max
1≤k1,...,km≤m+1

{|X̃S,k1···km
|},

where the RHS is the maximum of

≤ mnmm = mn+m

random variables. By union bound, it is sufficient to show that for every S = (S1, . . . , Sm+1) ∈ B

and 1 ≤ k1, . . . , km ≤ m+ 1, except for a probability of O(m−(n+m)n−1)∣∣X̃S,k1···km

∣∣ ≤ 0.5(n log(n)1.1Ṽn)
1/2. (G.103)

Now we are going to prove (G.103). Note that under null hypothesis, η∗ = θ. By definitions

X̃S,k1···km =
∑

i1∈Sk1
,...,im∈Skm

i1,...,im(dist)

(Ai1···im − θi1 · · · θim),

where by symmetry the RHS is a sum of no more than
(
n
m

)
unique independent random vari-

ables, each of which has mean 0 and variance ≤ (m!)2θi1 · · · θim(1− θi1 · · · θim). By Bernstein’s

inequality, for any t > 0,

P
(∣∣X̃S,k1···km

∣∣ ≥ t
)
≤ 2exp

(
− t2∑

i1∈Sk1
,...,im∈Skm

i1,...,im(unique)

(m!)2θi1 · · · θim(1− θi1 · · · θim) + t/3

)
.

Since
∑

i1∈Sk1
,...,im∈Skm

i1,...,im(unique)

(m!)2θi1 · · · θim(1− θi1 · · · θim) ≤ Cnmθmmax, it follows that

P
(∣∣X̃S,k1···km

∣∣ ≥ t
)
≤ 2exp

(
− t2

Cnmθmmax + t/3

)
. (G.104)
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Taking t = (n log(n)Ṽn)
1/2 and noting that (1/C)

√
nm+1 log(n)θmmax ≤ t ≤

√
nm+1 log(n)θmmax,

exp

(
− t2

Cnmθmmax + t/3

)
≤ exp

(
−

(
(1/C)

√
nm+1 log(n)θmmax

)2

Cnmθmmax +
√
nm+1 log(n)θmmax/3

)
.

Combining this with our assumption ∥θ∥m−2
1 ∥θ∥2/ log(n) → ∞ and θmax ≤ Cθmin, by elementary

calculations, the RHS of (G.104) is O(exp(−Cn log(n))). This proves (G.103).

Next, consider (II) for the alternative case. Let S∗
k denote the true partition set {1 ≤ i ≤

n : node i is in community k}, 1 ≤ k ≤ K. Also, recall that

γn = max
1≤k1,...,km≤K

{|Pk1···km
− βk1

· · ·βkm
|}.

Suppose the maximum on the right hand side is assumed at (k1, . . . , km) = (k∗1 , . . . , k
∗
m) and so

γn = |Pk∗
1 ···k∗

m
− βk∗

1
· · ·βk∗

m
|.

Without loss of generality, assume k∗1 , . . . , k
∗
m are distinct. The proofs for the cases that k∗1 , . . . , k

∗
m

are not distinct are similar, so we omit them.

Now let S∗ =
(
Sk∗

1
, . . . , Sk∗

m
, {1, · · · , n}\(Sk∗

1
∪ · · · ∪ Sk∗

m
)
)
. It follows that S∗ ∈ B. By

definitions,

Q̃n ≥ |X̃S∗,k∗
1 ···k∗

m
|.

Therefore, to show (II), it is sufficient to show that except for a probability of 1−O(1/n),

|X̃S∗,k∗
1 ···k∗

m
| ≥ C(n log(n)1.1Ṽn)

1/2 + Cγnn
m−1θmmax. (G.105)

Write

X̃S∗,k∗
1 ···k∗

m
:=

∑
i1∈Sk∗

1
,...,im∈Sk∗

m

(Ai1···im − η∗i1 · · · η
∗
im) = (I) + (II), (G.106)

where

(I) =
∑

i1∈Sk∗
1
,...,im∈Sk∗

m

(θi1 · · · θimPk∗
1 ...k

∗
m
− η∗i1 · · · η

∗
im),

and

(II) =
∑

i1∈Sk∗
1
,...,im∈Sk∗

m

(Ai1···im − θi1 · · · θimPk∗
1 ···k∗

m
).

By definitions, η∗i1 · · · η
∗
im

= θi1 · · · θimβk∗
1
· · ·βk∗

m
, for i1 ∈ Sk∗

1
, . . . , im ∈ Sk∗

m
. It is seen that

|(I)| = ∥θ∥m1 gk∗
1
· · · gk∗

m
γn.

By our assumption maxKk=1{hk} ≤ CminKk=1{hk} and θmax ≤ Cθmin,

∥θ∥m1 gk∗
1
· · · gk∗

m
≥ Cnmθmmax,

and so

|(I)| ≥ Cnmθmmaxγn. (G.107)

Write for short

N = |S∗
k∗
1
| · · · |S∗

k∗
m
|.

Note that (II) is a sum of no more than N independent random variables, each with a mean of

0 and a variance less than Cθmmax. By Bernstein’s Lemma, for any t > 0,

P(|(II)| ≥ t) ≤ exp(− t2

NCθmmax + t/3
). (G.108)
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Taking t = (log(n)Ṽn)
1/2. Note that t ≍ (log(n)nmθmmax)

1/2 and N ≤ nm, by direct calculations

exp(− t2

NCθmmax + t/3
) = O(1/n).

Putting this into (G.108), gives except for a probability of O(1/n),

|(II)| ≤ (log(n)Ṽn)
1/2. (G.109)

Inserting (G.107)-(G.109) into (G.106) gives that except for a probability of O(1/n),

|X̃S∗,k∗
1 ···k∗

m
| ≥ Cnmθmmaxγn − (log(n)Ṽn)

1/2, (G.110)

where we note that by Lemma G.1, nmθmmaxγn/(n log(n)
1.1Ṽn)

1/2 → ∞. This proves (G.105)

and finishes the proof.

G.2 Proof of Lemma G.1

Consider the claim (a). By definitions

Vn

Ṽn
− 1 =

(α̂n − α̃n)(1− α̂n − α̃n)

α̃n(1− α̃n)
. (G.111)

Note that α̂n is the average of
(
n
m

)
independent Bernoulli random variables with parameters

bounded by Cθmmax under both null and alternative hypothesis. By Bernstein’s inequality,

P((
(
n
m

)
)|α̂n − α̃n| ≥ t

)
≤ 2 exp(− t2

C
(
n
m

)
θmmax +

t
3

).

Let t = C log(n)(
(
n
m

)
θmmax)

1/2, by elementary calculations, we get

P
(
|α̂n − α̃n| ≥ C log(n)(θmmax/

(
n
m

)
)1/2

)
≤ o(1/n).

Combining this with (G.111) and α̃n ≤ Cθmmax ≤ Ccm0 < 1, by elementary calculations,∣∣∣∣Vn
Ṽn

− 1

∣∣∣∣ ≤ C log(n)(
(
n
m

)
θmmax)

−1/2, except for a probability of O(1/n),

where by our conditions nm−1θmmax/ log(n) → ∞ (implied by ∥θ∥m−2
1 ∥θ∥2µ2

2/ log(n) → ∞), the

RHS is o(1). Therefore Vn/Ṽn → 1 in probability.

Combining this with Slutsky’s Lemma, we get Ṽn/Vn → 1 in probability and finish the proof

of (a).

Next we consider the claim (b) and the first claim in (c). Our goal is to show that except for

a probability O(1/n)

max
1≤i≤n

{
| ηi
η∗i

− 1|
}
≤ C

( log(n)

nm−1θmmax

)1/2

, under H0 (G.112)

and

max
1≤i≤n

{
| ηi
η∗i

− 1|
}
≤ C

( log(n)

nm−1θmmax

)1/2

+
Cγn
n

, under H1. (G.113)

Recall that

η = u(⌈
m−1

2 ⌉) and u(k) = g(u(k−1)), 1 ≤ k ≤ m,
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where for 1 ≤ i ≤ n

Li1(u) =

∑
i2,...,im(distinct) Ai1···im +

∑
i2,...,im(non-distinct) ui1 · · ·uim(∑

i1,...,im(distinct) Ai1···im +
∑

i1,...,im(non-distinct) ui1 · · ·uim
)(m−1)/m

.

Let I(i1) denote {1, . . . , n} \ {i1}. We claim that if the following events

E1 : max
1≤i1≤n

{∣∣∣ ∑
i2,...,im∈I(i1)

(dist)

(Ai1···im −Qi1···im)
∣∣∣} ≤(nm−1θmmax log(n))

1/2,

E2 :
∣∣∣ ∑
i1,...,im
(dist)

(Ai1···im −Qi1···im)
∣∣∣ ≤(nmθmmax)

1/2
(G.114)

hold then for 1 ≤ k ≤ m

max
1≤i≤n

{|Li(u
(k))

η∗i
− 1|} ≤ C

( log(n)

nm−1θmmax

)1/2

+
C

n
max
1≤i≤n

{|u
(k)
i

η∗i
− 1|}+ C

γn
n
, (G.115)

where by definitions γn is 0 under H0.

Note that inequality (G.115) implies the claims (G.112)-(G.113). To see this, recall that

u(k) = g(u(k−1)). If inequality (G.115) holds, then

max
1≤i≤n

{|u
(k)
i

η∗i
− 1|} = max

1≤i≤n
{|Li(u

(k−1))

η∗i
− 1|}

≤C
( log(n)

nm−1θmmax

)1/2

+
C

n
max
1≤i≤n

{|u
(k−1)
i

η∗i
− 1|}+ Cγn

n

···
≤C

( log(n)

nm−1θmmax

)1/2

(1 + o(1)) +
C

nk
max
1≤i≤n

{|u
(0)
i

η∗i
− 1|}+ Cγn

n
(1 + o(1))

(Note that u(0) = 0) ≤C
( log(n)

nm−1θmmax

)1/2

+
C

nk
+
Cγn
n

.

Combining this with η = u(⌈
m−1

2 ⌉), it follows that n−k (k = ⌈m−1
2 ⌉) is a minor term and so

max1≤i≤n{|ηi/η∗i − 1|} ≤ C(log(n)/nm−1θmmax)
1/2 + Cγn/n (i.e., the claims (G.112)-(G.113)).

Therefore, it is sufficient to show that events (G.114) hold except for a probability O(1/n)

and that inequality (G.115) holds for 1 ≤ k ≤ m given these events.

First, we show that the events E1 and E2 hold with a probability of 1−O(1/n).

Consider event E1 first. For 1 ≤ i1 ≤ n, note that by symmetry,∑
i2,...,im∈I(i1)

(dist)

(Ai1···im −Qi1···im) =
∑

i2<···<im∈I(i1)

(m− 1)!(Ai1···im −Qi1···im),

where the RHS is a sum of
(
n−1
m−1

)
independent centered Bernoulli random variables with param-

eters bounded by Cθmmax. By Bernstein’s inequality, for any t1 > 0

P
( ∑
i2,...,im∈I(i1)

(dist)

(Ai1···im −Qi1···im) > t1

)
≤ exp(− t21

Cnm−1θmmax + t1/3
).

Similarly, for event E2, we have for any t2 > 0

P
( ∑
i1,...,im
(dist)

(Ai1···im −Qi1···im) > t2

)
≤ exp(− t22

Cnmθmmax + t2/3
).
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Letting t1 =
√
2C(nm−1θmmax log(n))

1/2 and t2 = (nmθmmax)
1/2 and by direct calculations

P
( ∑
i2,...,im∈I(i1)

(dist)

(Ai1···im −Qi1···im) >
√
2C(nm−1θmmax log(n))

1/2
)
≤ exp(−2 log(n)) = O(1/n2).

and

P
( ∑
i1,...,im

(Ai1···im −Qi1···im) > (nmθmmax)
1/2

)
≤ exp(−n/C) = o(1/n2).

Combining these with union bound over 1 ≤ i1 ≤ n, we see that events E1 and E2 hold except

for a probability O(1/n).

Next, we show inequality (G.115) when (G.114) is given.

By definitions (G.93) and elementary algebra, η∗ can be written as

η∗ =

∑n
i2,...,im=1 Qi1···im

(
∑n

i1,...,im=1 Qi1···im)
m−1
m

.

For 1 ≤ i1 ≤ n and 0 ≤ k ≤ m, we can then write

Li1(u
(k))

η∗i1
= (I(k))i1(II

(k))
−m−1

m
i1

,

where

(I(k))i1 =

∑
i2,...,im(distinct) Ai1···im +

∑
i2,...,im(non-distinct) u

(k)
i1

· · ·u(k)im∑n
i2,...,im=1 Qi1···im

and

(II(k))i1 =

∑
i1,...,im(distinct) Ai1···im +

∑
i1,...,im(non-distinct) u

(k)
i1

· · ·u(k)im∑n
i1,...,im=1 Qi1···im

.

Therefore to show (G.115), by Taylor’s expansion, it is sufficient to show that

max
1≤i≤n

{|(I(k))i − 1|} = o(1), max
1≤i≤n

{|(II(k))i − 1|} = o(1), (G.116)

max
1≤i≤n

{|(I(k))i − 1|} ≤ C
( log(n)

nm−1θmmax

)1/2

+
C

n
max
1≤i≤n

{|u
(k)
i

η∗i
− 1|}+ C

γn
n

(G.117)

and that

max
1≤i≤n

{|(II(k))i − 1|} ≤ C
( log(n)

nm−1θmmax

)1/2

+
C

n
max
1≤i≤n

{|u
(k)
i

η∗i
− 1|}+ C

γn
n
. (G.118)

Note that by triangle’s inequality,

|(I(k))i1 − 1| ≤
∣∣∣
∑

i2,...,im∈I(i1)

(distinct)

(Ai1···im −Qi1···im)∑n
i2,...,im=1 Qi1···im

∣∣∣
+
∣∣∣
∑

i2,...,im
(non-distinct)

(u
(k)
i1

· · ·u(k)im
− η∗i1 · · · η

∗
im
)∑n

i2,...,im=1 Qi1···im

∣∣∣
+
∣∣∣
∑

i2,...,im
(non-distinct)

(η∗i1 · · · η
∗
im

−Qi1···im)∑n
i2,...,im=1 Qi1···im

∣∣∣.
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By event E1 and Qi1···im ≍ θmmax, the first term on the RHS is ≤ C(nm−1θmmax/ log(n))
−1/2. At

the same time, by definitions and elementary algebra, |η∗i1 · · · η
∗
im

− Qi1···im | ≤ θi1 · · · θimγn. It

follows that

|(I(k))i1 − 1| ≤ C
( log(n)

nm−1θmmax

)1/2

+
C

n
max

1≤i1,...,im≤n

{∣∣∣u(k)i1
· · ·u(k)im

η∗i1 · · · η
∗
im

− 1
∣∣∣}+ C

γn
n
. (G.119)

Similarly, by event E2 and elementary calculations, we have

|(II(k))i1 − 1| ≤C
( 1

nmθmmax

)1/2

+
C

n
max

1≤i1,...,im≤n

{∣∣∣u(k)i1
· · ·u(k)im

η∗i1 · · · η
∗
im

− 1
∣∣∣}+ C

γn
n

≤C
( log(n)

nm−1θmmax

)1/2

+
C

n
max

1≤i1,...,im≤n

{∣∣∣u(k)i1
· · ·u(k)im

η∗i1 · · · η
∗
im

− 1
∣∣∣}+ C

γn
n
.

(G.120)

Therefore, using Taylor’s expansion on u
(k)
i1

· · ·u(k)im
/(η∗i1 · · · η

∗
im
), to show (G.116)-(G.118), it is

sufficient to show that

max
1≤i≤n

{|u
(k)
i

η∗i
− 1|} = o(1), 1 ≤ k ≤ K,

where we recall that our original goal is to show

max
1≤i≤n

{|Li(u
(k))

η∗i
− 1|} ≤ C

( log(n)

nm−1θmmax

)1/2

+
C

n
max
1≤i≤n

{|u
(k)
i

η∗i
− 1|}+ C

γn
n
,

Noting that u(k) = g(u(k−1)). Using induction, we only need to verify that max1≤i≤n{|Li(u
(0))/η∗i −

1|} = o(1). To see this, by u(0) = 0, we have

max
1≤i1,...,im≤n

∣∣∣u(0)i1
· · ·u(0)im

η∗i1 · · · η
∗
im

− 1
∣∣∣ = 1 = max

1≤i≤n

{∣∣∣u(0)i

η∗i
− 1

∣∣∣}.
Combining this with (G.119)-(G.120), we get (G.116)-(G.118) hold for k = 0. It follows that

max
1≤i≤n

{|Li(u
(0))

η∗i
− 1|} ≤ C max

1≤i≤n
{|(I(0))i − 1|}+ C max

1≤i≤n
{|(II(0))i − 1|} = o(1).

This finishes the proof of the claim (b) and the first claim in (c).

Lastly, consider the second claim of (c). Let G be a m−way symmetric tensor of dimension

K defined by

Gk1···km
= βk1

· · ·βkm
, 1 ≤ k1, . . . , km ≤ K,

and G be the matricization of G. By [4, Corollary 7.3.5, Page 451],

|σ2(P )− σ2(G)| ≤ ∥P −G∥, (G.121)

where σ2(B) denotes the second largest singular value of matrix B. Note that by definitions,

the k2 +
∑m

j=3K
kj−1(kj − 1)-th column of the matrix G can be written as the following form

G:,k2+
∑m

j=3 Kkj−1(kj−1) = β · (βk2
· · ·βkm

), 1 ≤ k2, . . . , km ≤ K.

It is seen that G is a rank-one matrix and so σ2(G) = 0. Also, by the definition σ2(P ) =

|µ2|. Combining these with (G.121) and noting that ∥P −G∥ ≤ Cmax1≤k1,...,km≤K{|Pk1···km
−

βk1
· · ·βkm

|} = Cγn, we obtain

|µ2| ≤ ∥P −G∥ ≤ Cγn.

By our assumption ∥θ∥m−2
1 ∥θ∥2µ2

2/ log(n)
1.1 → ∞ and θmax ≤ Cθmin, the above inequality

implies nm−1θmmaxγ
2
n/ log(n)

1.1 → ∞. It follows that

nmθmmaxγn/(n
m+1θmmax log(n)

1.1)1/2 = C(nm−1θmmaxγ
2
n/ log(n)

1.1)1/2 → ∞.

This proves the last claim in (c).
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