Supplement of “Sharp Impossibility Results for
Hyper-graph Global Testing”

In this supplement file, we first present the impossibility results for RMM-DCMM, which is
omitted from the main text due to space limit. Then, we prove all the theorems and lemmas.
Note that in this paper, C is a generic constant that may vary from occurrence to occurrence.

A The region of impossibility for RMM-DCMM

For RMM-DCMM models, we allow mixed-memberships. The discussion is quite similar, and
the impossibility result in Section 2.2 continues to hold under a mild condition.

Similarly, consider a model pair, where we have a null DCMM model and an RMM-DCMM
model with K communities as the alternative. Denote the Bernoulli probability tensors by O
and Q*, respectively. Similarly, for 1 < iy,1i9,i3 < n, we assume

Qivigiz = 0i,6i,05,, (A1)
:1i2i3 = 9; 9:2 9:; ' 71-;1 (,Pﬂ-ig)ﬂ-izv (AQ)

where the community structure tensor P is as in (1.2), and 7; and h = Ep[m;] are as in (1.5). Sim-
ilarly, for any matrix D = diag(d;,ds, . ..,dx) with d, > 0,1 < k < K, let PP be the tensor with
the same size of P satisfying Plﬁkgks = di, di, iy Prykoks- Also, let hP = E[D71m; /|| D~ m|4]
and aP = (PPhP)hP. We assume that there is a matrix D such that

aP =1y, @?;«{h’?} > C. (A.3)
Recall that in Lemma 2.1, we have shown that such a matrix D always exists for DCBM. To see
the point, note that if we do not allow mixed-memberships, then each realized 7; is degenerate
(i.e., only one entry is 1, all other entries are 0). In this case, h” = Er[m;] = h, and a” = aP.
Therefore, (A.3) always holds, by Lemma 2.1. For this reason, (A.3) is only a mild condition.
Suppose now (A.3) holds for a matrix D = Dy. Let P* and a* be PP and a” evaluated at

D = Dy, respectively. By definitions, a* = 1x. For 1 <1i < n, let

07 = 0:/|Dg ' mills, w = Dy mi/||Dg il (A.4)
Combining them with (A.2), for all 1 <y, 42,43 < n, we have Q; , .. = 07 07,05, -7, (Pmy,)mi, =
0;,05,0;,7; (P, )m; . By similar calculations, for 1 <i; < n, the leading term of the expected

degree of node i; under the alternative is 6;, [|0]|3 (" )'a* = 6;,[|0]|3, where the right hand side
is the leading term of the expected degree of node i; under the null. Therefore, we have the

desired degree matching as before. The following theorem is proved in Section D.

Theorem A.1 (Impossibility for DCMM). Fiz K > 1. Given (8,P,h,F), consider a pair of
models, an alternative with K communities and a null, as in (A.2) and (A.1) respectively, where
(A.3) holds and 0* is given by (A.4). Suppose (2.6) hold and ||0]|1]|0]*13 = o(1). As n — oo,



the x2-divergence between the pair tends to 0. Therefore, the two models are asymptotically
indistinguishable in the sense that the sum of Type I and Type II errors of any test is no smaller
than 14 o(1).

Similarly, in the parameter space (6, P,h, F)) for DCMM, we call the region prescribed by
1011110]|? 13 — 0 the Region of Impossibility. For any model in this region, we can pair it with a
null so they are asymptotically inseparable.

We next generalize the result to non-uniform DCMM. Consider a DCMM null model with
probability tensors Q[M] = {Q®, ..., Q®)} and an RMM-DCMM model with probability

tensors Q*[M] = {Q*®) ..., Q* M)} where for every 2 <m < M and 1 < iy, i, ...,0m < n,
(m) _ plm)y(m) (m)
Qil,i2 ..... [ 92'1 91'2 e aim ) (A5)
o) o=em g  Pim), m YR (A.6)

For any matrix D("™) = diag(dgm), dgm), .. ,d(fgn)) with d,(cm) >0,1<k < K, let P™ be the ten-
sor with the same size of P(™) satisfying ﬁ,g?;c)Q___km = d;f)dgj) S déﬁ)”f),gﬁ)zmkm. Also, let h(™) =
E[DU) ™ /D [y and @ = g, e di PR (ARG - (d0REY), for

every 1 < i; < K. We assume that there are matrices D®, ..., D™ such that form =2,..., M

~(m) _ 3 7(m) >
a 1k, 1;1}1%1]({}% > C. (A.7)

Note that (A.7) always holds for non-uniform DCBM, by Lemma C.1 in Section C below. For
this reason, (A.7) is only a mild condition.

Suppose now (A.7) holds for a matrix D(™) = D(()m)7 for m=2,..., M. Let P*(") and g*(")
be P and a(™ evaluated at D™ = Dém), respectively. By definitions, @*(") = 1. For
1<i<n,2<m< M, let
0;" = 6™ /ID{ iy, 7™ = DI i/ IDE (A8)

i 0 i||1y 0 4 0 i|[1- .

7 7

This is analogous to the degree matching strategy in (A.4), and it is conducted for each m sepa-
rately. Let ,ugm) be the second singular value of P(™). For short, let £,,, = ||0(™)||7*~2||6(™) ||2(ugm))2.
The following Theorem is for non-uniform DCMM.

Theorem A.2 (Impossibility for non-uniform RMM-DCMM). Fiz K > 1 and M > 2. For
any given (h, F) and {(0"™), P ) Yoc<ns, consider a pair of models, a null as in (A.6) and
an alternative with K communities as in (A.5), where (A.7) hold and {Gf(m)}lgiSmQSmSM are
as in (A.8). Suppose |P(™|| < C and maxj<i<n 9§m) < C. If maxo<m<m{lm} = o(1), then as
n — oo, the x2-divergence between the pair tends to 0.

B Proof of Theorem 2.2

Fix an arbitrary (6, P, h, F') that satisfies the requirement of Theorem A.1. We consider a pair
of models: a null model where Q;, i, = 6;,0;,0;, and a K-community uniform RMM-DCMM
model as in Theorem A.1. Let 73(5”) and ’Pln) denote the probability measures associated with
these two models, respectively. We further modify an) as follows. In this RMM-DCMM, the
membership matrix IT is randomly generated. Let IIy be a non-random membership matrix such
that (0,11, P) € M, (K, co, tn, Br). We define

where m; % F. (B.9)

)
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We construct a similar RMM-DCMM by replacing II with II and denote 151(") the probability
measure associated with this new RMM-DCMM.

Consider a pair of hypotheses, where A is generated from Pén) under the null hypothesis and
it is generated from ]31(") under the alternative hypothesis. Given any test v, its sum of type I

and type II errors is equal to

Pé’”(w >+7>1< =0)

= Po(¢p = Eg [P (v O|H)]
< sup P(w 1)+ sup P(¢ = 0).
OEM; (Bn) (011, P)eMp (K ,co,0n,Bn)

In the last inequality, we have used the fact that (6, I, P) € M, (K, co, aun, By) for any realization
of II (this is guaranteed by the construction in (B.9)). At the same time, by Neyman-Pearson
lemma,

P =1+ PP w=0) > 1- [P P,
where [|P{™ — P™ |y is the L;-distance between two probability measures. Therefore, to show
the claim, it suffices to show that

IPSY — Py = o(1). (B.10)

We now show (B.10). Recall that in Theorem A.1 we have seen that the y2-divergence
between 73(()") and 7)1(”) tends to 0. Using the triangle inequality and the connection between
L-distance and y?-divergence (e.g., equation (2.27) of [7]), we have

IPS™ =P | < IPSY — P+ [P — P

<P, P) + P — P
< o(1) +|[P{™ = P{™|)1. (B.11)

It suffices to show that ||771(n) - 751(n) Il = 0. By (B.9), ”ﬁl(n) is obtained from 771(”) by modifying
those realizations of II where (6,11, P) ¢ M, (K, co, an, Br). By some elementary calculations,
we have

IPS™ — Py < 2P((0,1LP) ¢ Mo (K, o, o, Ba)),

where P is with respect to the randomness of II. In the definition of M,, (K, co, s, Br), the only
requirement involving II is that maxi<g<gx{gr} < cal miny<x<kx{gx}. The following lemma is
proved below:

Lemma B.1. Fiz a constant co > 1. Asn — oo, suppose || P|| < ¢, Omax < co, and [|0]|1 — 0.
Write h = E[D™'m;/||D7 mi|l1]. If mini<g<rx{hi} > c1, for an appropriate constant c¢; > 0,
then as n — oo, with probability 1 — o(1), the following condition is satisfied,

maxi<k<ri {9k}
mini<p<x{gr}

By Lemma B.1, the probability of (6,11, P) ¢ M, (K, cy, tn, Brn) tends to 0 as n — oco. It follows
that ||’P£n) — Pln)||1 — 0. We plug it into (B.11) to get (B.10). This completes the proof.

-1
<0

B.1 Proof of Lemma B.1

Recall that gx = (1/|0]]1) -1 0imi(k), for 1 < k < K. Since maxg{d>_ ., 6;mi(k)} < ||0]1, it
suffices to show that

mln{ZH mi(k)} > co ||6]):. (B.12)



Let ¢1 be a constant such that ¢; > ¢g. Our assumptions say that minj<p<x{hir} > c1, where
h = E[D7'm/||D7'm;1]. Let h* = E[m;]. We first show that minj<g<x{hr} > c; implies
miny<x<rx{hj} > c1 - [1 + o(1)]. By Lemma E.5 in section E, we have

1) < ith 119 = o(1
max {ld — 11} < Cpz with pp = o(1),

and so d; = 1+0(1),1 <i < K. By definitions, it follows that

i < EI( min{de})"mi(k)/( max {de}) ™)) < B [1+ o(1)

Combining this with miny<g<x{hr} > ¢1, we have mini<x<x {h;} > c1 - [1 + o(1)].

Now we are going to show (B.12). Note that X = >, 6;(m;(k) —h}) is a sum of independent
mean-zero random variables, where 0;(m;(k) — hi) < COmax and Y ;| Var(6;(m;(k) — h})) <
C||6]|>. By Bernstein’s inequality,

t2
P(|X| > t) S exp(_m)7 for any t> 0.

Taking t = C||6]|r/10g(][0]]1) +COmax log([|0]|1), it follows that, with probability at least 1—||6]|;*,
1> bimi(k) — hil16]11] = 1X| < Cl6]|\/1og([6]]1) + Crmax log([16]1),

where by [|0]|? < |0||1, the RHS is o(]|f]|1). Combining this with ming{h}} > ¢1 - [1 + o(1)],

Zem(k) =hi0)l1-[1+0(1)] = ca]0]1 - [1+ o(1)],

where ¢ is a constant strictly larger than ¢o. This proves (B.12). The claim follows.

C Proof of Lemma 2.1

We prove a version of this lemma for m—uniform hypergraph below where the desired result is
by letting m = 3.

Lemma C.1 (Lemma 2.1 for m—uniform hypergraph). Fiz K > 1 and m > 1. Let P be
a nonnegative m-uniform tensor of dimension K and h be a vector in R¥, where we assume
Pi.i =1, fori =1,...,K and min{hy, ha,...,hx} > C. There exists an unique diagonal
matric D = diag(dy, da, . ..,dk) such that

K
Z diIPil...im : (dzzhzz) ce (dimhim) = 1, fO’F all il = 1, cee ,K. (013)

i9yeeyim=1

To begin with, we transform the problem (C.13)~int0 an equivalent form (C.14).
Multiplying h;, on both sides of (C.13)~and let d; = d;h; for i =1,..., K. It is equivalent to

find an unique diagonal matrix D = diag(dy,...,dx) with strictly positive entries such that
K ~ ~ ~
Z dilpil...imdiz "'dim = hil, for all il = 1,...,K. (014)

i2yemim=1
Now, by the Theorem 6 in [1], for a nonnegative order-m tensor P of dimension K (not necessarily
symmetric) such that P, ;, > 0,4 =1,..., K, and K positive numbers hq,...,hx, there exist
positive numbers x1, ...,z g such that

K
Z xil’Pil.‘.ima:b s Ty, = hil, for all il = 1,...,K. (015)

12,y tm =1



which gives the existence of such D satisfying (C.14).

The uniqueness of such D is given by the Theorem 1.1 in [2] which states that there is an
unique tensor A that is defined by A;,..; = cElPil.. (Lz "'Jim for iy,...,im =1,..., K and
satisfies

“tm

K
Air“im = hi17 for all il = 1,...,K. (016)
i25eeim=1
Therefore, Dis unique since A4 is unique and one-to-one correpondence with D. This completes
the proof.

D Proof of Theorem 2.1, Theorem 2.3 and Theorem A.1-
A.2

Theorem 2.1 and Theorem 2.3 are the special cases of Theorem 3.1, which do not need separate
proofs. Furthermore, in the proof of Theorem 3.1 below, we actually consider the more general
setting of non-uniform DCMM where 6} is constructed as 67 = 60,/ D~ 'm;||1 (note that when m;
is degenerate, this reduces to the construction of 8} = 6;d;, for DCBM). Therefore, the proof of
Theorem 3.1 (for non-uniform DCMM) already includes the proof of Theorem A.1 (for 3-uniform
DCMM) and Theorem A.2 (for non-uniform DCMM). It remains to prove Theorem 3.1, which
is contained in Section E.

E Proof of Theorem 3.1

We first state the preliminary lemmas, Lemmas E.1-E.5, needed for the proof of Theorem 3.1.
Next, we prove this theorem. Finally, we prove all the preliminary lemmas.

E.1 Preliminary lemmas
The following lemmas are used in the main proof and proved after the main proof.

Lemma E.1. Let P be a m—way symmetric K dimensional tensor, Py be the tensor with the
same size as P where all entries are 1, and introduce a tensor M by M =P —Py. Let h,m; be
weight vectors in RX and y; = m; — h, for 1 <i<n. Then

[P;myy ..y Ttm] = 1+ 20 4 20m) holds for any m > 1,

where

m

e =[Mih, . B+ M by hys by R,
S— S—

s=1 s—1 m—s

m—1 m
Z(m) = Z Z [M;h7"'7hay517ha"'7hays2aﬂ—52+1H’»”Tm]'

s1=1s2=s1+1
1 2=s1+ s1—1 so—s1—1 m—Sso

Lemma E.2. With the same notations as in Section E.2, let {ng) :1<i<n,1<j<m} bea
set of weight vectors in RX and {@Ej)} be an independent copy of {ng)}. Assume that for distinct

U1y -y lm, VECLOTS Yii s Yiy, ng), e ,wz(:) are mutually independent and that || M..jy..k, || < Cp,
for 1 <ks,... k, < K. Denote
(05, -+ 0;,,)" 3 ~ 3 _
S = Z Zlaitﬁ[/\/l;yimyi27w§3)7"'7wz(::)HM;yi17yi27w7§3)7'"7wz(::)}'



Then, for any constant c independent of n,
E[exp(c5)] < Elexp (Ch 8117 T1/ar) ] - exp(ColO1 ™ 161t a0

where T is a random variable satisfying P(|T| > z) < 2exp(—xz/(2K?(|0||3})), for z > 0.

Lemma E.3. With the same setting in Lemma E.2, denote

0, -0, ) .
5= ) e MG b B, @)

. - . Q¢ 87 Wi m
D1 yeenytom (dist)

Then, for any constant c independent of n,
E[exp(cS)] < E|exp (i |01 ITV/ar) ] - exp(CuO1 1015 o),

where T is a random variable satisfying P(|T| > z) < dexp(—xz/(2K?(|0||3})), for z > 0.

Lemma E.4. With the same setting in Lemma E.2, denote

(05, ---05,,)" 3 5 -
S: Z %[M;yil,yiwwgs)a“' (m)][M h hyzg.ayma 1(5)771”1(::/)]
i1 (dist) t

Then, for any constant c independent of n,

E[exp(cS)| < E[exp(Cp 0], [T /a) | - exp(Cr?lolli™ 2 10113 /a),
where T is a random variable satisfying P(|T| > z) < 4exp(—z/(2K||0]3})), for x > 0.
Lemma E.5. Under the conditions of Theorem 3.1, for m = 2,..., M we have

Lo max Mok, < Clis )], 1r<na<>§<ld 1 < Cluy™|,
where M) is a m—way symmetric tensor defined by ./\/lgln)km = (P,gjl.).km — 1)d,(;1n) . ~-d](€:),
1<k, kb <K.

E.2 Proof of Theorem 3.1

Let Pén) and Pl(n) denote the probability measures associated with the null and alternative
hypotheses, respectively, and let )CQ(Pé")7 Pl(")) be the x? divergence between the two probability
measures. By definitions,

) nn aP™(A)7°
e p) = [ |

] dP™(A) - 1.

apy" (A)
To show the claim, it suffices to show that when (ugm))2||0(m)||§"72H9(m)H% -0,m=1,...,M,
we have ) )
dpP" n
/ {171)(“4)] dP{™ (A) =1+ o(1). (E.17)
dFy ™ (A)

By definitions,

P(”) H H dp(n m) (‘Azl 17”)

m=2141 < <ipm

dP™ (A EH{H I1 ap™™ A, jm,

(ERER 2
m=21i; < <im



Let II be an independent copy of II. Putting the above two equations into (E.17) gives

/i

ﬁ)]

dPl(n)(A)rdp(n)(A) / By i (e Ty, @PF AL AP (AT,
APy (A) A T Tl e, dPS ™ (A,

/ HH[H 0 dP("m(A(m mapr™m™ A |ﬁ)}

11 ’L 11 Z
m=21i;<-<ipm

dP(n m) (A(m) )

i1 Tm

Exchanging the order of integral and expectation in the last equation and by elementary prob-

ability,
/ [dpl(n)(A)] dP(n) / H H dP nm)(.AE1 )Z |H)dP(" m)(.AEI )Zm ﬁ)}
dPén)(A) m=214 < <ipm dP(n m)(AXn)z )
[H II dP{"™ ™ (AR maP™ ™ (AFY, ﬁ>}
H I n,m m '
=2y i PAT L, dPy™ ™ (AR )

Let x2..; (ILTI) denote Jaim AP (A Idpm ™ (AT, ) /P (AU, ) 1.

11 l 11 l 11 1771
i1 rim

de")(A)] o
@ YW ap [ II G (Li)+1 £.18
/ALJPO(”)(A) 0 ““[m et (LI )} (E.18)

Note that by inequality [T, (1 + 2;) < exp(>_i_, #;), for all ; such that 1 + 2; > 0, we have

H H Xn zm (I H) ) < exp ( Z Z XZl lm (I H)) (E.19)

m=2i;<--<im m=2i;<--<im

Hence

Further, by Jensen’s inequality, exp(zjij\i2 z;) < 57 va; exp(x;). It follows that

exp(z S Xia HH)gi

m=211<-<im

Cexp (M —1) X2 (ILI) ). (E.20)
(-0 Z i)

Combining (E.18)-(E.20) gives
APV Moo
/,4 1} dpy(A) < Y MlEHH[exp ((M—

dPy" (A)
Therefore, to show (E.17), it is sufficient to show that when the conditions hold, for each m =

By | e (01 -

Fix m, recall that

> X (H,ﬁ))]'

m=2 11 < <l

2,... M we have

> x?l...m(ﬂ,ﬁ)ﬂ =1+ 0,(1). (E.21)

11 <<l

~ aP™™ (A myap ™ (A
Gy = [ PO D )
A dP, m,m) (AZ:” i)

By definitions,

nm m m (m) m (m)
dP )(A( ) ) = (Q( ) )All...lm( Q( ) )1 A i

[ARER 2 Q1 i1 im

n,m m «(m (m) . (m)
dPl( )( ( ) ) = (< z('1~)~im(H))A” im(1—Q i1~-)~im(H))1 A,

11 7,



Putting the above two equations into (E.22) gives

% (m) #( T _ x(m) _ x(m) T
¢ -2 e, (0D (- 9, () — 9, ()
v QET.).,»M 1-om.

(e, -l (et -l )
- o, (1-a™, ) '

1

-1

(E.23)

Based on the expression of x7 . (IL,T0), it is seen that the LHS of (E.21) only relates to the
variables in m—uniform tensor DCMM (e.g., A™) Q™) P(m) g(m)) for ease of notations, we
remove the superscript (m) whenever it is clear from the context.

Next we continue to simplify Xfl.__im (11, ﬁ) According to the constructions of our model,

Qi iy, =0;, - 0;, and Qi =00

im

(P*smi .., m ]

s M b

where we recall that P* is the m-uniform tensor defined by Pryok,, = Ay o diey, Pry ooy 1 <
ki,oo.ykm < K, mf = D7 m /| D7 m]l1, 1 <4 <nand D = diag(dy, da, . ..,dk) is the scaling
matrix given by degree matching.

Let Py the tensor with the same size as P* and where all entries are 1, and introduce a tensor
Mby M =P*—Py. Let h =Ep[r}], and y; =7 —h, 1 <i < n. By Lemma E.1, we can write
the Bernoulli probability tensor for the alternative Q* by

er"'im = 91'1 tee azm(l + Ly eeiy, + Zilu.im)7 1< il, ces ,im < n, (E24)
where
Tiyoiyy =IMihy o R+ [Mihy by By R
s=1 1
Z Z hyyi, By hyy, il o]
s1 52 sg+1 m
s1=1s2=s1+1 v —_—————

s1—1 so—s1—1 m—ss

Let e;, be the i1-th standard basis vector of the Euclidean space R¥, 1 <i; < K. Note that by
definitions and symmetry,

K
[(Mih,.. hoe by b= Y (P

K
- Z chiy-ehg, —1
(By degree matching) =0

This indicates that any linear combination of elements in {[M;h, ... h,e;, h,... h] :;1 <i < K}
equals to 0. It follows that the term x;,...;, in the RHS of (E.24) equals to 0.
Write for short 2;,...4,, (s1,52) = [M;h,.... by, by o By 7T2;2+1 Ty ], we get

Q; i i lm( Z Z i 51,52)), (E25)

s1=1s2=s1+1

Let Zi,...;, (s1,52) be zi,...i, (s1,52) evaluated at IL. Inserting (E.25) into (E.23) gives

m—1

m
Xlzl"'inL(H’H) zm Z Ziyorviy (515 52)Ziy i, (81, 52).

1
81:1,32 s1+1
51=1 S2=51+1

Tm



Note that £ = >, ' for any z € [0,1), we have % =32, -6;,)" and so
1

im

m—1

oo m

Xor i, (ILTD) =Y (03, -+ 6;,,)" >z (51,52)Z 0, (31, 52).
t=1 s1=1, so=s1+1

51=1 S2=381+1

Introduce
ag :eméf(_l)(l - egllax%
~ - 0;, -0, ~ -~ E.26
S(t, s1, 82,81, 82) =(M — 1)4™ Z (“aitzM)Ziy--im(sla32)2i1~~-im(31752)' (E.26)
i1< <
Exchanging the order of summation, we then can write
oo m-—1 m a
~ . o
(M —1) Z X, (ILID) = Z Z 4715(@51,82781,82)-
11 < o <t t=1s1=1, so=s1+1
51=1 S2=51+1
Note that Y,2, Z:;L_Ei:l s+ 1.5,—5, 41 0t/4™ = 1 and exp(-) is convex, by Jensen’s inequal-
ity
co m—1 m a
- . o
exp((M— 1) Z X121~~~im(H’ H)) < Z Z Z 4—mexp(S(t,51,52,51,52)>.
11 < <l t=1s1=1, spa=s1+1
51=1 s2=51+1
Therefore, to prove (E.21), it is sufficient to show that
max _ {E[exp@(t,sl, 82739“1,’52))}} <1+ o0,(1). (E.27)
t,51,52,51,52

Fix t, s1, $2, 81, S2, we are going to bound E{exp (S(t, 51, 82,§1,§2))}. Recall that by construc-
tion, s1 < s9 and 51 < So. By symmetry, without loss of generality, assume so < s5. Now, we can
separate the situations into three cases. Case 1: s = 31,82 = S2; Case 2: Only one of {s1,s2}
matches any one of {51,352} (e.g., §1 =81 < $2 < Sp 0r 81 < S2 = §1 < S Or 81 # 1,82 = S2);
Case 3: None of {s1, s2} matches one of {51, 52}.

Remark: Case 2 only exists for m > 3 and Case 3 only exists for m > 4. They require much
tricky and delicate analysis to resolve extra random effects induced by II. This indicates one of
the differences on the calculations of the x2-divergence between hypergraph and network.

By symmetry of M, we summerized the derivation of the bounds on E [exp (S(t7 $1, 59,51, §2)>}
for Case 1,2,3 into Lemma E.2, E.3, E.4, respectively. Take Case 1 for example,

Case 1 (s1 = 81,82 = S2): By definitions and symmetry of M, we can rewrite

~ < (03, -~ 0:,.)"
S(t,s1,82,51,52) :=4™(M — 1) Z %[M; hyooshyig hyeo s by, T LT

11 <<y

MRy BT By BT T T
Am(M - 1) (03, - 0,,)" . .
= — | Z %[M;yiwyi%h'"’hﬁﬂi52+1"'aﬂ-im]

D1,y eym (dist)

Mo Gy b R T T

which is implied by the standard forms discussed in Lemma E.2. Similarly, Case 2 is implied by
Lemma E.3 and Case 3 is implied by Lemma E.4.



Combining Lemmas E.2-E.4 with Lemma E.5, we have

t(m—

E[exp(s(t,81,82,§1,§2)>:| < E{exp(Cu%”mg(m_mﬁo} ~exp(C'u§H0”t 2)”0”%), (E.28)
t

a

where f15 is the second singular value of the matricization of the tensor P(™) and T is a random
variable satisfying P(|T| > x) < 4exp(—=z/(2K2|0||3L)), for any x > 0.

Now, we are ready to calculate a bound for E |exp ( S(t, s1, s2, 51, 52))] . By direct calculations,

E[exp(CHe”:z(mQ)uaTD} = (1 + /000 e’ ~P(C”9|§(an),u§|T| > x)dx)

Qg
o0
atx
< 1+/ e® - dexp(— p—; Jdz
( 0 20 K213)0]|1™ 2 |16)3t )

(E.29)

BY Omax < co, 0] < (10116, and [|0]13; < [|6]]26,72%, we have

— max max?’

as gt —gm ) 1—cp

max

tH(m—2 = tH(m—2 Z =2\(p112
02 2 A 17 1 1 et 171 - A1 it ([

Combining this with (E.28)-(E.29), we get

E[exp(S(t, 51, 32,’51,’52)” g(l + /Oo e’ - 4exp(— (1—cg)x ) ) =gz lolT e
0 2CK2316]" 1013
_ rSgrmsleny el (1+4( (1 - ') _ 1)‘1)
20K2u3]16]|7" 216113 ’

where the RHS on the last inequality goes 1 as 3|07 2(|0]|3 — 0. This proves (E.27) and
finishes the proof.
E.3 Proof of Lemma E.1

Recall the definition of [P; 1, ..., Tmy]

K
Z ’Pkl...km’]rl(kl)"'Wm(km)~

ki, km=1

[P;Wla"'aﬂm]:

Note that P = M + Py and Zle mi(k) =1, for 1 <i < n. By direct calculations

K K
Pimasomml = Y My gmi(kr) - mm(bm) + Y Lomi(k) - (ki)
Kt yeeoskim=1 Eiyoeorkim=1
=M;my, .. T + 1
Therefore, we are left to show for m > 1
M7, ] = 20 4 20, (E.30)

We prove it by induction. When m = 2, M € REXE_ By definitions and elementary algebra,
[M; 1, 7T2] :7T/1M7T2
=h' Mh + yi Mh + W' Mys + yy Mys
= [M;h, h] + [Msy1, h] + [M; b, yo] + My, ya] -

x(z) 2(2)

10



Hence, the claim holds for m = 2.
Assume that for m = r, the claim holds. Note that for each k.1 € {1,..., K}, {Mp, x.k, 4,

1<ky,....k < K} forms a r-way symmetric tensor of K dimensions. It follows that

[M;Trlw N 77T7"+1} :[Mvh’a s '7h’a 7TT’+1] + Z[M;hv . '7h7y37h7' . '7h’77TT‘+1]
s=1

r—1 T
+Z Z [M;h7"'7h7ysl7h7"'7h5ys27ﬂ'5‘2+1"'77T7"+1]'

s1=1s2=s51+1

Further, decompose 7,1 into h 4 y,41. By direct calculations
[Ma Ty e ey Ty 7TT+1] :([Mv hv ey hv h] + [M7 ha AR ha yr+1]>

+(Z[M;h,---,h,ys, - +Z ,ys,h,...,h,yr+1]>

m— m
Z Z [M;h7""h7ys17h7'-'7hays277r52+1~~-a7r1"+1]
1=1s9=s1+1

r+1

=[M;h,... B+ [(Mih, . by by R

r r+1
+ E § [M;h7~'~7h7ys17ha'--7hay8277782+1'"a7TT+1]a
s1=1s9=s1+1
:l,r+1 _’_27‘+1,

which suggests that the claim also holds for m = r 4+ 1. By induction, (E.30) is proved.

E.4 Proof of Lemma E.2

Introduce Ng =3, lm(dzst)(G ---0;, )t and I be the shorthand notation for set {1,...,n}\
{i3y...,im}. Here, for convenience, we misuse the superscript (i) to indicate that this element
depends on the choice of (i3, ...,4,) whenever it is clear from the context.

By definitions and elementary algebra,

_ (03, -~ 03,,)" ) (k)@ No
S= > T Z ] ut (k)"
©3,...,0m (dist) k3,....,km=1s=3
Kokl =1 (E.31)

Z (91‘191‘2)t(yglM::kg---kmyiz)(:U;lezkgmk;ngig)} ,

11,52 (dist)e](‘i)

’ "/ ’
Let M..py..,, = ZJK 1 bgk)b(k) 6l(k) and /\/l;:ké,..k.;n = Zle bg’f )byf ) 5§k ) be the eigen-decomposition

of the matrices M..x;..k,,, and M4 ..ps , respectively. Introduce
iy 7y 7 k) (k' k B) e T
X gk k)= Y (0085 w0 @) @),
i1,i2(dist)el (@

Then we can write
K

Z (011eiz)t(yz{lMZ:ka"'kmyiz)(Zj'le::k&nk;ngiz) = Z X(i7jaj/7ka k/)

i1,i2(dist)€T( Jy'=1

11



Inserting this into (E.31) gives

K m K

_ (05, - 0,,)" D 1 /KNy ., ., . ,
S_. Z ) Ng Z HU) u S) Z ﬁ( a X(Za.ja]7kak))-
i3,..., im (dist) k3,...,km=1s=3 J,j'=1
k%,....kl, =1

0;y-0;,,)" K s ~(s K
Note that >, (aist) % Zk3,k3 ok k=1 IT- 3“’( )( ks) z(&)(ks) > =1 zz = 1and

mm

that exp(-) is convex. By Jensen’s inequahty,

0, -0, ' S o _ Ko cK?Ny ., . .
EXP(CS) S Z % Z w s ( S) Z ﬁexp( a X(Zvjajlvka k/))
i3, 0 kg ook =1 5=3 =1 ¢
(dist) KLk =1

By assumptions ng), @

;. are independent of yi,, Yi,, Ui, , Ui, 3 < s < m. Taking expectation on
both sides gives

(0;,---0;,) K m Ko
Blewp(es)] < 3 =g 3 [IERDRIEG] (k)] 3 7
i35-00tm 0 ks,....,km=15=3 j,g'=1
(dist) kG, =1
K2N,
']E|:exp(c 0X(Z',j7j/,k,]€/)>j|

K2N,
< max E[exp(c QX(i,j,j/7k»kl))}-
i,5,3" kK’ at

Now, to show the claim, note that Np := 37, (o) (0 - 0;,,)" < ||9H , we are sufficient
to show that
X (i, 4,5 k. k') < Cp?|T| + Cu?||6]I3;, (E.32)

where T is a random variable satisfying P(|T| > z) < 2exp(—z/(2K2||0]|3L)), for z > 0.
To see this, we rewrite

X044 koK) = 30 (1= Tymiy (0,01, 8% (57 08 (2, 08 (31, 657 (31,05

i1,i2€1()

=M (1 — ),

where
k)~ 1 (k B\~ 1 (k
r=( Y oL@ ) L = Y (0 w6 E )
iel® i€l
Consider Ty first. Note that max;, {||yi, |, [|7i, ]|} < VK and that ||b§k)|| = ||b§lf/)|| =1,V

j,5', kK. By direct calculations

To| < ( 29% < C0I13;.

11 —

Next, consider T1. Let Z = Y7, ;e 07, (yi,b b'* ))@ilb( )) Note that Z is a sum of n — (m — 2)

j J
independent random variables with |0} (y; 1b(k))(NQ 1b§k | < VK 295»1. By Hoeffding’s inequality

P(|Z] > z) < Qexp(f2x2/( Z (2\/7(2951)2)), for x > 0.

i1 €19

12



Combining this with 3, ¢ (2VE 6!,)? < 4K2|6]|3; and Ty = 22, it follows that
P(|Ty| > z) < 2exp(—z/(2K2||0]13))), for > 0. (E.33)

At the same time, recall that §§k),§§{€/) are the eigenvalues of the matrices M..,...r,, and
M.y, - By the assumption [| Mg,k [| < Cp, for 1 < ks, ... by < K, maxj7k{\5j(-k)\} < Cu.
It is seen that

X(i,7,7  k, k') := 5(k)(5(k (Ty — Tp) < Cu|Ty| + Cp?|0)3E, with T satisfying (E.33).

This shows (E.32) and finishes the proof.

E.5 Proof of Lemma E.3

Similarly, let Ng = ;. i (dist) (05, -~ 05, )t and I be the shorthand notation for set {1,...,n}\
{i3,...,4m}. Here, for convemence we misuse the superscript (i) to indicate that this element
depends on the choice of (is,...,i,) whenever it is clear from the context. Let M..j,...k,, =

(k) 1 (k) ¢(k) K (KD (kD (k) — s )
Z] 105707 60 and Mgy gk = Z =1 by "bj ;" 7 be the eigen-decomposition of the ma
trices M..k3 e and Mgy ks respectlvely Following the procedures in the proof of Lemma
E.2, we can obtain

K K

exp(cS) < Z W Z h(ky)w ~3 ) (ks) Hw ks) ~(? (ks) Z %
S el PN (B34)
.exp(CKQNeX(i,j,j’,k,k’)),
Qg
where
X(i g gk k)= 0 (04,05,) 85607 (i, 08 (b @, ) (31, 057).

i1,i2(dist)el(®

Note that ﬁ(:” may not be independent of y;; which exists in X (4,7, ', k, k’). Consequently,
we can not dlrectly take expectatlon on both sides of (E.34) like that in Lemma E.2 to elimi-
nate welght vectors {w () } by a maximum bound. To resolve this, we first derive a bound on
X(i,7,7,k, k) to eliminate 7, Viy- We rewrite

.. k k k k K’ K’
X (i g, j' koK) = (1 =Ty i 1) (05,03, 657 (3 08 (0, 08 5,087 7, 087)

i1,i0€1(®)

=00 (1 — 1) (37,608),

where

( POATIRA )( > 0Lt ) =), (91‘ (i, b ))) (@, b)),

i €1 i€ () ireI(®)

Recall that 5;]6),5;5/) are the eigenvalues of the matrices M..p,...k,, and M.y .x1 x . By the
W< O, for 1< ks, ..k < K, max; o {|687]} < Op. Combining this
with 5 = 1 and [ly,, || < VE, we have

assumption ||M..,...k

X(i, 4.5, koK) = 88T — o) (5, 01F)) < CuP( T + |Tal).

13



Note that 77,75 (and so the bound) are independent of w( ), o) , 3 < s < m. Applying this
inequality to the RHS of (E.34) and taking expectation on both bldeb give

(0;, -+ 0; )t K m K

Elexp(cS)] < Z “Nizm Z h(ky ~(3) (ks3)] H Z Ki

13,--050m 4 k3,...,km=1 j=4 r—1

(dist) Ky Ky ey kl =1

CNy
Elexp(=, (T3] +1T2)) |
CNy
< max E{exp(—u (\T1|—|-|T2\))]

,5,3" kK’
Now, to show the claim, note that Ny := >, . ) (0i s )< H0||t(m ) it is then
sufficient to show that

(1) P(|T1| > o) < dexp(—a/(2K?|0]I3;), Vo >0,  (II): [T < C|9]13;. (E.35)

Consider (I) first. Let Z1 = Y0, ey 0% (Wb @ 007), Zs = S cro 601, (4, b17) and so
Ty = Zy - Z5. Note that Z; and Z, are the sum of n — (m — 2) independent random variables.
Similarly, by Hoeffding’s inequality, for any « > 0

P(|Z1] > z) < 2exp(=2/((2K)?[013)),  P(IZ2| > @) < 2exp(—22/((2VEK)?||6][3))).-

Combining this with |T1| = |Z1] - |Z2| and union bound P(|Z1]|Z2| > z) < P(|Z1| > Vz) +
P(|Z1]|1Z2| > V),

P(IT1] > x) < 2exp(—a/(2K?[0]31) + 2exp(—z/(2K[10]13)) < 4exp(—a/(2K?|10]31)),

which proves the first claim in (E.35).
Next, consider (I1) in (E.35). By max;, {|lys, ||, |7, I} < VE, [0V = 1657 = 1, ¥ 4, 7', k. &

= 3 (0, ) @) Ze% KK < C|6)3,

i €10

which proves (IT) and finishes the whole proof.

E.6 Proof of Lemma E.4

The proof is similar to that in Lemma E.3. Similarly, let Ng = 37, (035 -+ 6;,,) and

I be the shorthand notation for set {1,...,n}\ {is,...,im}. Here, for convenience, we misuse
the superscript (#) to indicate that this element depends on the choice of (is,...,%,,) when-
ever it is clear from the context. Let M..pg..k, = Z] 1b§k)b§k) §(k), and My s g =

Z 1 bgk )b(k) 5 *) he the eigen-decomposition of the matrices M..x;..k,, and Mg .pe  xr
respectlvely Following the procedures in the proof of Lemma E.2, we can obtain

K m

0. ...0. )t n
exp(eS) < Z % Z h(kb) Hw ks) Z( (ks)
i3, rim g kg, fom=1
(dist) KL kD Kk, =1 (E.36)
K
O (k)@ (k KENo NG d ik K
w ( 3) ( 4) Z K2 €x (1733‘77 ) ) )
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where

X(i>jajla ka k/) = Z (011012) 6(k)5(k )(yzlb(k))(yigb(k))(yz:;b(k ))(yub(k ))
il,ig(dist)el( i)

Note that {51(3) and w;, (4) may not be independent of y;, and y;, which exist in X (4,7,5, k, k).
Similar to the proof of Lemma E.3, we rewrite

X(i, 4.4k k) = S0 (1= Tym, 1) (6,05,)'8F 8 (57 08 () (31,65 (31,00

il,izel(”
=580 (1 — 1) (7,0 (7,057,
where

r=( Y o). m= Y (0 wb)

i1€I® i €I(®

Recall that 5 6 fc) are the eigenvalues of the matrices M..x,..k,, and M.y .4 x . By the
< Cu, for 1 <ks,....k, < K, maxj’k{|5j(-k)|} < Cu. Combining this
Vi, || < VK, we have

assumption ||/\/l;;k3...;C
with [ =1 and |

X(i, 5,5 k. K) = 808 (1 — 1) (5,608)(@,0%7) < CuP (1T + | T2)).

(AT
Note that T1,T» (and so the bound) are independent of ng), 7% 3<s<m. Applying this
inequality to the RHS of (E.36) and taking expectation on both bldeS give

Blexp(cS)] < max E[exp(C—Nu (T3l + 1))

Now, to show the claim, note that Ny := >, . ;5 (0is - 0; )t H9||t(m )it is then
sufficient to show that

(1) : P(ITy| > @) < 2exp(—a/(2K[0]13), Vo >0,  (II):|Tz| < C|0|I3;

The procedures to show them are the same as that in the proof of Lemma E.2. So we omit them.

E.7 Proof of Lemma E.5

The following lemma is used in this proof and we prove it below.

Lemma E.6 (Each element of community structure tensor is close to one). Using the same
notations of Theorem 3.1, for each m € {2,..., M},

(P, 1y = ™). (E-37)

1<11, 7zm<K i1im

Fix m, for simplicity of notation, we remove the superscript (m) whenever it is clear from
the context. Recall that D = diag(dy,--- ,dk) and h = E[D~'m;/||[D~ m;||1]. Write for short
s = 22{21 dphy and v = (dy,...,dk)". With these notations and direct calculations, for 1 <
k3y.okm < K

M;;k3...km = D(,Plikg-“k‘,,n — ]-K]-,K)D H dkj =+ (H dkj —s™ )UU + ( ’UU — ].K].K)
j=3 j=3
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Therefore, to prove the first claim of this lemma, by elementary algebra, it is sufficient to show
that

(a): _ max _ {|Pg.p, =1} < Clual,

() : | nax {dk} <C,

(¢) | amaux, {I(s™ 200’ ~ LcTie)ys|} < Clal,

(@) : max {ldi— 51} < Clua,

where we note that (a) is implied by Lemma E.6.
Consider (b). Recall that by degree matching

K m
> DPye Hdk hi,) : (E.38)

k27~~7k7n:1

Note that each element of P is non-negative and Py,...,, =1 for 1 < ky < K. It follows that

K m
iy (diy b)) <0 Y Ak Pk, [ [(diyhe,) =1, 1<k < K.
k2,...,]€m,—1 _] =2

Combining this with our assumption mini<x<x{hx} > C,
dp <h, UM<0 1<k<K, (E.39)

which proves (b).
Next consider (¢). Let H be a tensor defined by Hy,..k,, = Pikyok,, — 1, for all 1 <
ki,...,k, < K and introduce w as the vector ngmkmzl DH.py.. k), H;.n:2(dkj hi;). Recall that

s = Zszl dihi. By definitions and calculations, (E.38) can be written as
w+s™ = 1g. (E.40)
Note that h'v = s. Left multiplying ' on both sides gives

h'w+ s™ = 1. (E.41)

2

At the same time, inserting (E.40) into s *vv’ — 11/ through 1x gives

s 20" — 11l =s" 200 — (w+ s o) (w + s 1)’

=s""2(1 — s™)ov’ — " wr’ — s low — ww'.

Note that by (E.41), 1 — s™ = h'w. It follows that

m—2

s ’UU _1K1K gm— 2h/ l m—1 ! m—1

wov’ — 8" hwr” — 8" how” — ww'.
By (E.39), maxj<p<x{hr} <1 and elementary algebra

 Jnax {](s™ “20v’ = 1 1)ij 1} < Cllhllmax - [0lmax - [w]lmax < ClHmax,
where || ||max is the element-wise maximum norm and ||H||max = maxg, . k., {/ Pk, ke — 1|} <
Cp2|. This proves (c).
On the other hand, by elementary algebra, |(s™ 200’ — 115 )| < [[s™ 200" — 1 1% ||, for
all 1 <4< K and so
|Sm72didi - 1| S C\u2|.
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Transforming the above formula gives,
di = s~ Mm=2/2 L O(|pal). (E.42)
Summing up with weight h; in terms of i on two sides and noting that >, h; = 1, it gives
s=s5"m"2/2 L O(|ug)). (E.43)

Combining this with (E.42) gives (d).
Next we consider the second claim of this lemma i.e. maxi<i<ix{|d; — 1|} < Clus|. By
elementary algebra, (E.43) can be rewritten as

\/§m71+\/§m72 o
S

s=1+

(lp2),

m—1 m—2
where we note that % < 1. Combining this with (E.42) proves the second claim.
j=0 V¥

E.8 Proof of Lemma E.6

Since the claim is argued for each m-uniform tensor P("™) separately, fixing m, we remove the
superscript (m) whenever it is clear from the context.

Let the K x K™ ! matrix P denote the matricization of P("™). Let ULV’ be the SVD of P,
where U = (uy,...,uk), V = (v1,...,vgm-1) and ¥ = (diag(p1, ..., K ), O x (km-1-K))-

To show that claim, it is sufficient to show that

()il <€ max  {[Piy, =1 (L) max ([P, — L} < Clugl.

Consider (I) first. Let Py be the K x K™™' matrix of ones. Recall that us is the second
singular value of P, and note that the second singular value of P, is 0. By [4, Corollary 7.3.5,
Page 451],

k2| < [|P = Foll.

At the same time, by elementary algebra, ||P — Pyl < Cmaxi<y, .. i, <k {|Pi.i,, — 1|}. Com-
bining these proves (I).

Next we consider (I7).

By our assumption ||P|| < C and elemantary algebra,

max _ {|Pi,.i,, |} = [|Pllmax <[Pl < C,

1<t yim <K

where || - ||max is the element-wise maximum norm. Therefore, (II) directly holds for the case
that |pa| > € for some positive constants € < 1. It is then sufficient to consider the case when
2| <e.

By definitions,
(PP >P?,=1, (PP);>0, 1<ij<K.

Therefore, by Perron’s theorem [4], the first eigenvalue (in magnitude) and each entry of the first
eigenvector of PP’ are positive. Note that PP’ = UX2U’, it follows that

>0,  w(i)>0, 1<i<K.

1 m—1
Let a = uipuy® and b = vipuy™ be the scaled version of u; and vy, where a; > 0 since

ui(i) > 0, 1 < i < K. Introduce P = al/. For simplicity, we misuse the notation b,...;,,
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for bi,4s>m . Ke-2(i,—1). To show (II), by triangle inequality, it is sufficient to show that for
1 Silw"vim SK7

(II(I) : |Pi1»--i"L - ailbiz...im S C‘u2|, (Ifb) : \ailbiz...im — 1| S C|u2|.
Note that by elementary algebra
| Pisvin = @ibizin | < 1P = Pllmax < |P = P|| = |pal, (E.44)

This proves (Ia).
It is left to show (IIb). We start by showing that a is a vector with elements are almost the

m—1

same. By equality 2™ —y™ = (z —y) 377, 2™~ Iyd  we have,

mo__ qm . (- ym—1
lai, —a,| = o Bl [ /i (a”,/a?l) |, 1 <iy,ip < K.

1 _m—j-1 T _—j -1
Z;'nzo GZL ! agz ZTZO a; 1J agQ
Combining this with triangle’s inequality |a;, /ai, — (ai,/a;))™ Y < |aibiy.in — @i, /ai,| +

|ai1bi2“-i2 - (aiz/ai1)m71 |7

|ai1bi2"'i2 - ail/aiz‘ + |a’l1 ‘12 g T (aiz/a’il)m_l‘

|a7;1 — aiz\ S s 1 S il,ig S K. (E45)

We claim that for 1 < k < m the following holds and prove it later.

k
Hj:l Qi

ailbi2...ikil...il —

k k k
D ;. a;
(221_[]_5“ o L= >| oy 1<y, im < K. (E.46)

k = k—s k
ail s=2 ail ail
By setting k = m;is, ..., 4, =i and k = 1,71 = iy separately in the above inequality, we obtain
m—1 m m-—s m—1
a-: as a-: a; a;
12 2 12 11 11
ailbiz"'lé - m—l‘ < (2 § m—s m_1)|ﬂ2|a ailbiz"'i‘z - < f|u2|'
g, s=2 %iy a;, iz 12

Inserting the above into the RHS of (E.45) and by direct calculations

m m—s 1

1 a; ag
jai, — %LW@ZQ gl + =yl + 5 |u2\)=<ail+ai2>mz|.

@1 s=2 @i,

Combining this inequality with Z]K:l(ai —la; —aj]) < Zjil a; < Zle(ai + |a; — aj]) give

K

Z (a‘ll (a‘h + a’lz |M2|) Z @i, < Z (all all + ai2)|lu’2|>'
isg=1 i2=1 ig=1
By 25:1 ai, = ||al|1, we can rewrite it as

ol 1=l _, _ llall 1+l
K 1+ |pel K 1 —|pel

Note that |ug| < € < 1, it is seen that

el
i, = K

(1+0(|p2])), 1<i <K. (E.47)

Now we are ready to show (I1b). By triangle inequality

H;'n:1 &z n H;n 1 @iy

T R
CL,L-l ail

—1]. (E.48)

|ai1bi2...im — ].| S |ai1bi2..4‘m —
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Note that setting £k = m in (E.46) gives

H;‘n=1 @iy - H;'rb:s+1 @i; Hgm=1 @i
m 2 Z m—s + m |/.t2|
21 s=2 ai gy

Ay bigmim —

Inserting this into (E.48). By direct calculations and (E.47)

m m m
| +1 @i [T52, as, 1%, a
@i, bigeei,, — 1 < (27 T 4 S0 o] + [ — 1) = O(Jual)-
s=2 i1 i1 i1

which holds proves (IIb) and finishes the main proof of this lemma.
Lastly, we prove the claim (E.46), which is done by induction. Consider k& = 1, the goal is to
show
|ai, biyiy — 1] < |pal, 1<y <K (E.49)

Since P;,...;; = 1, for 1 <i; < K. By (E.44), we have
‘ailbil“'il - 1| < |H2|’

which is exactly (E.49) and so the claim (E.46) holds for k& = 1.
Now, assume that the claim holds for k = kg and the goal is to show that this implies that
the claim holds for k = kg + 1. By triangle’s inequality,

ko+1
H] 1 G’ZJ

ailbiz"'ik0+1i1"'i1 T kot+l
a;
1
< a'ilbiz'“iko+1i1~~i1 - Pil"‘ikik0+1i1"'i1 + ‘Pil--~ikik0+1i1mi1 - Pik0+1i1“'ik0i1‘~i1
ko+1
P b b e o
+ ihgt11ihgi1ein — Qiggyq Vigeeiggin-ia + Qi1 Vig-ipgin-in = ak0+1

i1
By (E.44), the first term and the third is bounded by |uz|. Also, by symmetry of P, the second
term is 0. Moving a factor a;, ,,/a;, from the last term, it follows that

ko+1 ko
;. .1 Q5
Him oy <Opn] + T g by iy Al

(PR I SR A ko

ai1bi2'“iko+1i1“'i1 - k0+1

21 i1

. Giggya o Hl?:s+1 ai; 1Ty i
(By the assumption for k = ko) <2|us| + —2— (2 Z / + —Z )W2|

ko—s ko
@iy s=2 N Ay,
k0+1 ko+1 ko+1
H] =s+1 %ij Hj 1 @ ]
= Grot1—s R0+l K2l
s=2 4 i1

which shows (E.46) also holds for k = kg + 1. Hence, by induction, (E.46) holds for 1 < k < m.

F Proof of Lemma 2.2

We have the following lemma which is used in the proof of Lemma 2.2 and prove it below.
Lemma F.1. Under the conditions of Lemma 2.2, asn — oo, with probability at least 1—O0(1/n),
e (a) Under both the null and under the alternative, |G, — ap| < Clog(n)(an/n3)1/2.
o (b) Under the alternative, &, < MaX1<ky ky ks<K{ Phkikaks ) < Cay and &, = W' (Ph)h +

O(&x).

n
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To show the claims of Lemma 2.2, it is sufficient to show as n — oo, for any positive constant
M

)

n, — N(0,1) under the null, and P(|¢n| < M) — 0 under the alternative.  (F.50)

Recall that

ay, = Eldy,],
Let A* and A be two tensors with the same size as A, where A iyis = Aiyinis — G and
Aiyigis = Aiyigis — Qo if 1,12, 3 are distinet, and A7, ;= Azm“ = 0 otherwise. By definitions,

219@ (Zj<k A?jk)Q - ”(nz 1)an(1 — Gn)
("3 ") én(1 = ) '

Let SO = {(i17i2,i3,i4,i5) . 1 S il,i27i3,i4,i5 S n;i1 < ig;i4 < i5;i17i2,i4,i5 # 7;3}, and WI‘ite
for short @ = (i1, 42, 43,94, 15). Introduce a subset of Sp by S = {x € Sp : (i1,42) # (i4,75)}. Note
that for any = € So \ S, (i1,i2) = (i4,%5). It is seen that the numerator on the RHS of (F.51) is

Z ‘Alllzﬂa 131415 n(n21) (1 - a")

\/%1/% =

(F.51)

z€So
= Z Ahtzta 131475 + Z A111213 13945 n(n2 1) (1 - O‘n)
zeS z€Sp\S
=(I) + (I1), (F.52)

where

1
ZAzlzgz; 139495 Z A11127,3 039495 n(nQ ) (]' - aﬂ)

€S x€Sp\S

Consider (1) first. Write
(I) = (Ia) + (1)), (F.53)

where

a) = Z Ai1i2i3Ai3i4i5ﬂ (Ib) = Z(‘A:174213A’}Lk3147,5 - Ai1i2i3‘Ai3i4i5)‘
zeS zeS
Now, by direct calculations,
(Ib) = (an - OA‘TL) Z(AZIZ213 + Ai3i4i5 — Gy — an) (F54)
€S
Note that for each tuple (iy,2,i3), there are (";1) — 1 different & = (i1, i2, 43,14, 15) in S with
the same (i1, 42,13). It follows

Z .Ai1i2i3 = ((n21) - 1) Z Ai1i2i3 = n2(n — 1)(”4_ 2)(” — 3) (Sén (F55)

zeS il,ig,ig(dist)
11 <12
Similarly, we have
n-1)(n—-2)(n—-3

> Aigigiy = n(n )(n4 ) )dn- (F.56)

zes
Inserting (F.55)-(F.56) into (F.54) gives

n?n-1)(n-2)(n-3) ~ .

(Ib) = —

4
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Combining this with (F.53) gives
(F.57)

n—-1)(n-2)(n—3),.

(1) = (Ia) - )(”4 =) &, a2

Next consider (II). Note that for any x € Sp \ S, i1 < iz and (i1,92) = (i4,75). By direct

calculations
1 R 1 . .
Z "4111213 igiais 5 Z ("4111223) “ 9 Z (Afltzij 20‘""41'11'213 +o‘%)' (F'58)
$€SQ\S i17i2,i3(dist) i1,i2,i3(di8t)

= Aj;,iri,- Combining this with definitions, the RHS of

Since Aj i, € {0,1}, we have A7, . =

(F.58) reduces to
w@n(l — Gp).

It follows that
(IT) = 0. (F.59)
Combining (F.52), (F.57), and (F.59), it follows from (F.51) that
b, = (Ia) — (1/4)n%*(n — 1)(n — 2)(n — 3)(ap — n)?
" V("3 ") én (1 — én,) '
Now, by Lemma F.1, |&, — &y,| < Clog(n)(a,/n*)'/? except for a probability of 1 — O(1/n). Tt
is seen that except for a probability of 1 — O(1/n)
200 _ _ (A A2
P (A el ]
an Vnday, Von (") an (1 — an) nl/?
By n*a,, — oo, we have that in probability,
~ 2 _ o o ~ A \2
Gn 1, (1/49)n*(n 1)5?1 2)(n —3)(an, — ) o
ap V2n (", )én (1 — ay,)
Let
Z, = a) .
" Van(" N an(l - an)
To show (F.50), it is sufficient to show that as n — co
Zn, — N(0,1), under the null, (F.60)
and
(|1Zn| > M) — 1 for any M > 0, under the alternative. (F.61)

P(|Z,
We now show (F.60)-(F.61). We consider (F.61) first since the proof is shorter. The following
lemma is proved below.
Lemma F.2. Under the conditions of Lemma 2.2, if the alternative hypothesis is true, then as

n — oo
]E[Zn] Z C'TLQ Sa 52 Var( ) < Cﬂ Q.

Now, suppose the alternative hypothesis is true. Note that by triangle inequality
P(|Z,| < M) < ]P’<|IE[Z | = |20 — E[Z,)| < M) = P(|Z, — B[Z,]| > |E[Z,]| - M)
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where by Chebyshev’s inequality,

Var(Z,)
P(|Z, —E|Z,]| > [E[Z,]| - M) < ——F——.
At the same time, by Lemma F.2 and our assumptions of n?a,, — oc and n3/2&}/2(52 — 00,

Var(Z,) Cn’a, B 1 .
(E[Z,] — M)?2 = (Cn?%a,02 — M)?2 — C’(n3/2&711/25%)2

Combining these proves (F.61).
We now consider (F.60). For 1 < m < n, introduce a subset of S by

S(m) = {.13 = (il,ig,i3,i4,i5) IS max{il,i2,i3,i4,i5} < m}
Introduce
- ~ T -

Tn,m - E Ail’ig’igAi3i4’i57 Zn,m - 1 . (Tn,O = Zn,O = 0)7
zeSim)

and

It is seen that

(Ia) = Tpon, and Zy = Zpm = Z Xom- (F.62)
Consider the filtration {F,, mt<m<n With Fp p, = U({./Zmﬂ-3 01 <dq,i9,i3 < m}) It is seen
that for all 1 <m < n,

E[Xn,mLFn,m—l} = E[Zn,murn,m—l} - Zn,m—l = 07

so {Xp,m =1 is a martingale difference sequence with respect to {F, m }1<m<n. We have the
following lemma which is proved below.

Lemma F.3. Under the conditions of Lemma 2.2, if the null hypothesis is true, then as n — oo,

(a) Z E[Xz,m\fn,mq] —1, in probability ,
m=1
(b)Ve > 0, Z E(X7 o J{| Xnm| > €} Fpnm-1] = 0, in probability .
m=1

By Lemma F.3 and [3, Corollary 3.1], it follows from (F.62) that under the null,
Zy = Zpn — N(0,1).
This proves (F.60).
F.1 Proof of Lemma F.1
We first prove the claim (b). By definitions

G — E[& ] . Zil,ig,i3(dist) Qm’zis
T ntn—1)(n—2)
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Recall that under alternative

Qirigis = > mi (k)i (k)i (k3) Prokoks 1 <y, iz, i3 < n.
1<k k2, k3<K

It is seen that Q; iyis < MAX1I<ky ko k<K { Phikoks}s 1 < i1,12,i3 < n and so

_ ~ MAX1 <k ki ks <K Phykoks ©
< ) — / SR1,R2,R3 > 1R2R3 .
Oy < 1§k1%i)l§3§K{Pklk2k3}’ apn = h'(Ph)h + O( n )

At the same time, by our assumption mint_, {hs} > ¢y and elementary calculations

{Prrkaka} SC > iy, Py, < Cain.

max
1<k k2, k3<K
1<k1,k2,ks<K

These prove the claims in (b). Now we show the claim (a).
Note that, &, is the average of (g) independent Bernoulli random variables with parameter
bounded by Ca,, under both null and alternative hypothesis. By Bernstein’s inequality,
t2
(M) Can(1—Cay) + £

P(((3))ldn — @nl > t) < 2exp(- )

~1/2
Lett=C (g) %, by elementary calculations, we get

log(n)&1/2

P(mn — | > B ) <0(1/n). (F.63)

This is equivalent to the claim in (a).

F.2 Proof of Lemma F.2

Recall that
({a)
(") an(1 = an)’

Therefore, to show the claims, it is sufficient to show that as n — oo

Z, = (2n)71/?

with (Ia) = erS(Aiﬂéis - an)(Aisius - an)

E[(Ia)] > Cn°a2s2, (F.64)

and
Var((Ia)) < Cn"a3. (F.65)

Consider (F.64) first. Since for each & = (i1,142,73,%4,75) € S, Aj iy is independent of
Aisizis, by direct calculations,

E[(Ia)] = Z(Qi1i2i3 - an)(gi3i4i5 - &n)

z€S
Let @ilizig = Qj,inis — Qn, by definitions,
1 ~ ~ ~ ~
E[(Ia)] = Z( Z Qilizngi3i4i5 - Z QiliQisQi3i4i5)7
xeS; z€(SH\SY)
where

S ={z : 1 < i1, in, 03,44, 85 < n}
Si :{x € S(/) : ’il,ig,ig(dist);ig,i4,i5(di8t); (il,’ig) 7é (14725)}

23



To show (F.64), it is sufficient to show that

Z Qi1i2i3Qi3i4i5 2 CnSagz‘;rQw and Z QiliQisQi3i4i5 = O( Z Qi1i2i3Qi3i4i5)'
zeS) z€(SH\ST) zeS)
(F.66)
Consider the first claim in (F.66). Recall that

n
Qivigis = Qirigis — On = Z Ty (k1) iy (ko) iy (K3) Prykaks — Qins and h = Zm/n
k1,k2,ks i=1

By direct calculations and elementary algebra,

Z @ilizigéiguis = n*|IL(Ph)h — &, L,

z€S])

By triangle inequality, we have |[Il(Ph)h — an1,|| > [[|IL(Ph)h — h/(Ph)h1,| — ||(R'(Ph)h —
&)1, || It follows that

Y QiriaisQigisis = n* (IT(PR)h — B (PR)IL,|| — [|(W (PR)h — @) 1), (F.67)

z€S

Recall that ¥ = II'Il/n — hh' and note that X1, = 0. Also, recall that Hx = K !'1x1% and
note that Iy — Hg is a projection matrix. By elementary algebra,

S = (Ix — Hg)S(Ix — Hg).

First, by elementary algebra,

't
IT(PR)A = B (PR)RL,|* = n(h (Ph)——(Ph)h — h’(Ph)hh’(Ph)h) = n((Ph)h)'S((Ph)h),
(F.68)
where the RHS equals to
n((Ph)h)' (Ix — Hg)X(Ix — Hg )(Ph)h. (F.69)
By our assumption Mg —1(X) = minjj, =1,y 11, v'Xv > co, it is seen that
n((Ph)h) (Ix — H)X(Ix — Hg)(Ph)h > cond?||a,* (Ix — Hr ) (Ph)h|*. (F.70)
Recall that 6, = ||&, ' (Ix — Hg)(Ph)h||, combining with (F.68)-(F.70), we get
ITL(PR)h — B (Ph)h1, | > cond? 2. (F.71)
At the same time, by Lemma F.1,
& = W (PR)h + O(22). (F.72)
n
By direct calculations,
~2
|(W (Ph)h = &) La> = (K (Ph)h = @) = O(=2), (£.73)
where by &, < maxi<i, ig,is<n{Pirisis} < o and our condition 713/2&11/25,21 — 00,
aZ
7” =o(1) - (na?s?). (F.74)



Combining (F.72)-(F.74),
[(W (PR)h — &)1 |* = o(nd7). (F.75)
Inserting (F.71) and (F.75) into (F.67) proves the first claim in (F.66).
Next, we consider the second claim in (F.66). Notice that by symmetry, the two leading
terms of Zme(s()\sg) Qiyinis Qigigis are the following:

O( Z éi1i2i3@i3i4i5)’ and O( Z éi1i2i3©i3i4i5)' (F76)

1<i1,13,13,i4,i5<n 1<i1,13,13,i4,i5<n
13=14 14=15
The other terms are O(n®a2) = o(n°a262) and thus are negligible. It is therefore adequate to
consider the two terms in (F.76).
Consider the first term in (F.76). By Cauchy-Schwarz inequality,
| Z Qiyiis Qigisis

,,,,, = ( Z Qms%)z Z ( Z @mﬂs)Q. (F.77)

1<41,i2,13,14,i5<n 1<iz<n 1<i5<n 1<iz<n 1<iy,i2<n
13=14

Note that by definitions and Lemma F.1, ‘@1313%| < Cay,. It is seen that

Z ( Z Qiizis)? < On*a2. (F.78)

1<is<n 1<is<n

By our condition n3/2ay/ 62 — oo, we have n262 — co. Comparing the RHS of (F.78) with the
first claim of (F.66), the RHS is at a smaller order of er% Qiyinis Qigisis- At the same time,

Z ( Z @ilizia)z = Z ©i1i2i3©i3i4i5' (F79)

1<iz<n 1<ij,ia<n :veS(’)

Inserting (F.78)-(F.79) into (F.77), we have

| > Qiyiis Qisinis| = 00D QiyinisQisiis)-

1<y ,i3,i3,14,i5<n z€S)
13=14
For the second term in (F.76), the analysis is similar, so we omit the details. These prove the
second claim of (F.66), and so complete the proof of (F.64).
Next we consider (F.65). Let W be the tensor with the same size as A, where W;,;,i, =
Aivigis — Qiyigis if 91,92, 43 are distinct, and W, i,:, = 0 otherwise. By symmetry and definitions,

(Ia) = Z(Wi1i2i3_Qi1i2i3)(Wisius_Qisius) = Z(Wi1i2i3Wi3i4i5_2Qi1i2i3Wi3i4i5+Qi1i2i3Qi3i4i5)'
zeS zeS
(F.80)

Since for any random variables X and Y, Var(X +Y) < 2Var(X) + 2Var(Y'), we have

Var((Ia)) < 2Var(Y - Wiyipis Wisisis) + 2Var(Y  2Qi,inis Wisiais )-
€S z€S

Here, we note that @ is non-random, so the variance of the last term in (F.80) is 0. By direct
calculations,

VaI‘(Z Wiizia Wi3i4i5) = Z Var(Wi1i2i3Wi3i4i5) = O(?’L5&i),

zeS zesS
~ 1 _
Var(Y ~ 2Qi,iyis Wigisis) =1 S D Qiii)Var(Wigii,) = O(n"a).
z€S iniais(dist)  ivin(dist)
{i1,42}#{ia,i5}
i1,i27143
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By our assumptions, n?a,, — oo, and so n’a, = o(1) - n7a>. Combining these gives that
Var((Ia)) < Cn"a3

This proves (F.65).

F.3 Proof of Lemma F.3

We first show claim (a). By Chebyshev’s inequality, it is sufficient to show that
n
[Z E[X2, | Fom_ 1]} <1, Var(Y E[X2, | Frm-i]) = 0. (F.81)
m=1

Introduce

T =E[( > AiiigAigiais) 2 Fnmo1).

zES(M)\ S(m=1)

By definitions,

E m m—1 AviliQigAv’i3i4i5 2 ‘7:7’7, m— (m)
E[Xi,m\]:n,mq] _ [(ZzGS( N\ S( n—)l i | , 1] _ n—lT .
(\/Qn( 5 )an(l —ap)) (\/Qn( 5 )an(l —ap))

To show (F.81), it is sufficient to show that

E[i T = M(l +0o(1)), (F.82)

m=1
and that
Var( ZT(’" =o(n'%?). (F.83)
m=1

Consider (F.82) first. Recall that S = {x = (i1, 12, 13,44,15) € S : max{iy, io, i3, 14,15} <
m} and © = (i1, 42, 3,14, 5) for short. Similarly, for short, we write 2’ = (4,5, 5,4}, ;) and let
(SN Sm=IN2 — ((g 2/} : e SN\ o/ e §m)\ glm=1)y,

Let
SSy™ ={(2,2') € (S"NSTIN siy = iy {in g,y is} = {ih, 65, 1,15,
SS(m) (S(m)\S(m 1)) \Ss(m)

It is seen that the LHS of (F.82) equals to

(1) + (1),
where .
[Z E Z AZ212223 131425|]:’nm 1]:|
m=1 (I ZI?/)GSSY'L)
and

n
= E{ E E[ AilizlsA151410A1’11’21é~’4751£11%|-/—-.’n,,m—1]:|'
m=1 (z w/)ess(m)

Notice that for any (x,2’) € SST*, each AmmAZSMHA 1t

il i+ 1S a mean-zero random vari-
able. It follows that

A
137415

(II) = 0.
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At the same time, note that for any (x,2’) € SS£m) (where © = (i1,12,43,14,15) and ' =
(#),145,1%,1),45)), there are two possibilities: (i1,12,%4,15) = (#),45,%},15) and (i1,142,%4,75) =
AN A ) -/

(147 15,11, 7’2)' By Symmeter

(I) =2 i Z ]E|:"2(221i2i3"2(123i4i5:| =2 Z ai(l - an)Q =12n <Z> 04721(]_ - ai)

m=1 z€8(m)\ S(m—1) zeS

Combining these gives (F.82).
Next, consider (F.83). In S\ S(m=1) we have i3 = m or iy = m or i5 = m. Let
ng) :{x € S(m)\S(m_l) s either io = m,i5 < m or is =m, iz < m},
S5 =(STI\STI)\ ™.
Write
T = 7™ 4 215™ + ™,
where
Tl(m) =E| Z Aiyigis Aigigis Aig iy iy, Aiginir | Frm—1]s
x,£’€S§m)
TQ(m) :]E[ Z A111213A7,3’L4’L5Azll’LIQ’LéA’LgZQ’Lg|~7:’n,m71]7
2eS{™ gresi™
T?Em) :E[ Z AiligigAi3i4i5Ai,1i,2i3Ai,3i:Li,5|‘7:T71,m*1]'
a:,:v’GS;"L)
Notice that for x € S£m),x’ € ng), AvilizigAvigiz;is,ji/liéigjiéiéié is mean-zero conditional on
Frn.m—1. It follows directly that
™ =0,

Also, by definitions, for each z € Sém), we must have i3 = m or io = i5 = m. Let F,, =
z,1') € s{m w glm) 11,19,13,14, 15} = {17, 15,175,144, 1%} b, by direct calculations
2 2 102,13, 24,25

™ = Bl (1= an)?.

It is seen that Tg(m) is non-random. Therefore,

n n

Tm = Tl(m) + | Epla? (1 — an)?, and Var(z Tm)y = Var(z Tl(m))7
m=1 m=1
and to show (F.83), it is sufficient to show that
Var(>" 1™ = o(n'%ad). (F.84)
m=1
By definitions and symmetry
™ = El4 3 Aivizis Aigiam A i A i | Froon—1]-

i1 <iojiy <il
i1,02,i4 0330, 15,1, 1
If {iz,ia} # {i5, 4}, then A; iyig Aigigm Airiyiy, Aigim has a conditional mean of zero. Therefore,
we have
(m) _ p(m) (m)
T =Ty + T

3
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where

Tﬂn) :]E[4 Z A111213A12314m"4i'1i'2i3|‘Fn,m*1]a

1<in,i2,i3,i4,i] 05 <m—1
‘ i1<§2;f;<¢;
11774.271-1,12’247&1-3
(m) _ } : 12
T12 _]E[4 A111213A1314mAi’1i’2i4|]:n,mfl]~
1<y in,ig,i4,1],i5<m—1
i1 <io;i} <i
i1,i2,i4F1338] 15 F 4
Since for any random variables X and Y, Var(X +Y) < 2Var(X) + 2Var(Y'), to show (F.84), it
is sufficient to show that

Var Z T11 =o(n'%a?), and Var Z T1 =o(n'%a?). (F.85)

Counsider the first claim in (F.85). Recall that
Tom= Y AiigisAigivis = D AiinisAigisis-

resS(m) 1<iy, - ,i5<m
11 <2314 <15
i1,12,14,i5 713

(i1,32)#(i4,15)

By elementary calculations

TV = 4(m - 2)an(l — )Ty +4(m - Qan(l —an) > A

111223
1<11712,13<m 1
i1 <i2
11,1213

By inequality Var(X +Y) < 2Var(X)+2Var(Y'), to show the first claim in (F.85), it is sufficient
to show that .
Var( )~ 4(m — 2)an (1 — an) T m-1) = o(n'aj), (F.86)
m=1
and

var(zn: 4(m = 2)an (1l — an) > A2 ) = o(n'0ad). (F.87)

m=1 1<41,i2,i3<m—1
11 <2
i1,ia713

Consider the LHS of (F.86), by definitions,

Var( Z 4(m—2)a, (1— an)fmm_l) = Z 16(m—2)(m' —2)a2 (1—ay,)*Cov(T, e 1,Tn,m1_1).
m=1 m,m’=1

(F.88)
Notice that

COV( n,m— 1aTn,m’—1) = g E E[Ai1i2i3Ai3i4loA7, 1,21,3-’4131211']-
1<iy, -+ ,is<m 1<7,1, .- ,iggm
11 <t23;14<i5 il
11,12,%4,i5 713 -31<12’l4<l5
(i14i2)#(1a,i5) ‘170270 i 7

(1,3 2)75(%:25)

Only if {i1,42,43,%4,95} = {11, 05, 35, 44,5}, E[A 111213./4131415./41/ iyl .A,r #] will be non-zero. Since
there are only a bounded number of ways to pair the indexes, by direct calculations

Cov(Tpm—1, Tnm—1) =0( Y E[(A,,A%,:,]) = O(na).
1<y, ,i5<m
11 <t2;14<i5
i1,42,14,i5713

(i1,32)#(i4,15)
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Combining this with (F.88), it is seen that

Var(i 4(m — 2)a, (1 — an)fmm_l) = 0(n*n’at) = o(n'%al).

m=1

This proves (F.86).
Next consider the LHS of (F.87), by direct calculations,

n
Var( Z 4(m — 2)an (1 — ay) Z Afﬂm) <16n*a? (1 — oy, )*Var( Z Azuzzs)
m=1

1<i1,i0,i3<m—1 1<i,i9,i3<n
i1 <i2 i1 <i2
11,92 713 11,5213

:16n4a721(1 - an)2 : Z 3 Va'r(A’Lgllzlg)

1<21,7,2,zd<n

11 <ig
i1,i2#£13
=0(n"a3).
By our assumption n’a,, — oo (i.e., na, — 00), the RHS of the above inequality is o(n%a?).
This proves (F.87) and completes the first claim of (F.85).
Next consider the second claim in (F.85), by definitions,
n ) n
2 2 i T T T
Var(Y " T5") = > 1602 (1-an) > > E[Aiy ipis Aigisic Aigii Aigigig -
m=1 m,m’=1 Liy, o Sm 1<, ig<m
11 <12;14<15 i) <ibyih <ig
21712;1/51133;;;67%57616 7"177'27£7'377’4:Z'376"6
igFig
Similarly, it is sufficient to consider terms that satisfy {iy,--- ,ig} = {i}, - ,ig}, hence
n n
2 2 2 a2 8 4
Var(3OTiY) =0( 37 16an(1—an)® 37 B AL)) = O(a)).
m=1 m,m’=1 1<117 716<'m

11 <iz; 14 <l5
i1,i2713314,i5 Fl6
i3#ie

Note that the RHS above is o(n'®a?). This proves the second claim in (F.85) and completes the
proof of claim (a) of (F.81).
Now we consider the claim (b), where the goal is to show that

Ve> 0, E[X2 ,{|Xnm| > e} Fnm-] =0, in probability. (F.89)

By Cauchy-Schwarz inequality

’ Z ]E[sz,m]l{|Xn,m| > 6}|]:n,mfl” < Z \/E[Xfi,m|fn,mfl]\/P(‘Xn,m| > 6|-7:n,mfl)~ (F.90)
m=1 m=1

At the same time, by Markov’s inequality,

VP Xom| > € Fnm 1) < \JEIXE | Foma] /e (F.91)

Combining (F.90) and (F.91) gives

n n
| Y B Xl > HFumoi]| < D EIX; o Fam—1]/€
m=1 m=1
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To show (F.89), by Markov’s inequality, it is sufficient to show that

E[zn: E[Xf;’m|}"n7m_1]} - 0. (F.92)

m=1
Recall that _ ~
> zestmn som-1) Aiyizis Aigiais
V2n (" an (1 — ay,)
Write for short Yy = (ila 7:27 7;37 i4a 7:57j17j27 j3a j4a j5)7 Simila‘YIY7 y/ = (7’,17 1/25 Zg% 7’217 2/55 ji?]é?]é?]é’l? ]é)
To show (F.92), it is sufficient to show that

Xn,’m =

n
e e T T T T T T _ 10 .4
E[) ) Aivigig Aigiis Aju ajs Ajsjags Ay i Aiganir Ay g s Agg e ) = o(n o).

m=1y y'c(S(m)\S(m—1))2

Similarly, to have non-zero expected value, .Amm_Am“oAJUZJSAJMUOAWW A“U 'AJiJzJé‘AJéJUO
must be in quadratic form. Since there are only a bounded number of ways to pair them into
quadratic forms, it is sufficient to show that

n

§ : § : 12 12 12 12 _ 10 .4
[A111223“’4131410“4]1]2j3“4]3]4j } O(TL @ )

m:lye(s(‘m)\s(m,—l))Q

Recall that for each x € S\ S(™=1 there are at least one index of (iy, 4z, 3,14, i5) is m. It is
seen that

n n
4
} : } : 12 12 12 } : 10-2 _ 10 .4
[Ah?aldA?/sM%A]l]’z]d Jj3Jajs n (a" 1 B a”)) - o(n O‘n)'
m=1 ye(s(m)\s(m—l))2 m=1

This finishes the proof.

G Proof of Theorem 3.2

Recall that ¢,, = maxo<y,< M{¢${”)}. To prove this theorem, it is sufficient to show that if there
isam € {2,..., M} such that ||9<’n>||;"—2\|9<m>u2(u§m))2 > log(n), we will have

™ — 0 under Hy, and ¢{™ — oo under Hj.

Fix m. For simplicity, we remove the superscript (m) whenever it is clear from the context.
Let

K
an =Elan],  B= Y. Pagoknhe G/ ([Pige-. . g™
k2,....,km=1

where g € R¥ is defined by g, = (1/|0]1) i, 0imi(k), 1 <k < K.
Introduce ideal counterparts of V,, and n by

V, = (MY (1 —an) and n* = OIg, respectively. (G.93)
The following lemma is used in this proof and we prove it after the main proof.

Lemma G.1. With the conditions of Theorem 3.2, as n — oo,

e (a) Under both the null and alternative, V,,/V,, — 1 in probability.
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o (b) Under the null, with a probability at least 1 — O(1/n), maxi<;<{|n:/nf — 1|} <
C(n™ O/ log(n)) /2.
o (c) Under the alternative, with a probability at least 1 — O(1/n), maxi<i<n{|n:/nF — 1|}

IIA

C(n™ 05/ log(n))~ 1/2+Cvn/n and 0G5 yn /(WO Jog(n)) 2 = oo, where v,
MaX1 <k .. kg <K U Phy by — Bhy = Bl |}

G.1 Main Proof of Theorem 3.2
Recall that ¢\™ = Qn/+/nlog(n)t1V,,. The goal is to show that with probability 1 — o(1)

Qn < (nlog(n)**V;,)Y? under Hén), Qn > (nlog(n)*1V;,)Y? under Hf"), (G.94)

By (a) in Lemma G.1, V,,/V,, — 1 in probability. Hence to show (G.94), it is sufficient to show
that with probability 1 — o(1)

Qn < 0.5(nlog(n)"*V,,)"/? under H(()n), Qn > 1.5(nlog(n)"*V;,)*/? under Hl(n). (G.95)

Recall that

= max max Xg ki ...
@n S=(S1,..;8m+1)EB 1<k1,....km <m+1{| Sk bl b

where

Xsky ki = > (A iy = My i)

11€Sky sernsim €Sk
81 yeenytm (dist)

Also, recall that n* is the ideal counterparts of 7, defined in (G.93). Introduce a counterpart of
XS ky--kn, Dy replacing n with n*

XS kiokm — Z ('Ail"'im - 77;1 T 77;,”)'

11E€8ky yeees Im €Sk,
11, yim (dist)

Let N N
@n = S (St Bms1)EB 1§k1,..r?l?icngrl{'XS’kl“'k’"|}'
Note that for any number x1, 2, ..., 2, and y1,Y2, .- -, Yn,
| max{x1, za,...,z,} — max{y1, yo, ..., yn}| < max{|zy — w1, |x2 — 2!, .-, |Zn — ynl},
It is seen that
1Qn — Qn| < max omax_ A Xs- — Xkt |- (G.96)

At the same time, by definitions and direct calculations, for all S = (S1,...,Sm+1) € B and
lgkl,,km§m+1
| X5 k1o = X | < [Ska |+ Sk

l <llmax My - i, — nyemy l (G.97)

.....

where by (b) and (c¢) in Lemma G.1, except for a probability O(1/n)

o log(n) \1/2
11;1%{ - |} ( — 19&1&)() under H, (G.98)
and
i log(n) \1/2 Cv,
_ < et = SV . .
1rgz‘agxn{|n;‘ 1|} - C(nm 19;}}%) * n under Hy (G.99)
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Here ~, denotes maxi<p, .. k., <k{|Pks km — Bky - Bk, |} under Hy. Note that by our reg-
m=lgm ) = o(1) and v,/n = O(1/n).

ular conditions and elementary calculations, log(n)/(n o

Therefore, maxlgign{|g—; — 1|} = 0(1) under both hypotheses. By Taylor’s expansion, for
1<it,.. im<n '
e gt <O - 2o q b .
iy i =15y o0, | < O, gﬁgﬂ{lﬁ 1] (G.100)

Combining (G.96)-(G.100) and observe that 7; < Clpax and [Sg;| < n, 1 < j < m, with
probability 1 — o(1)

~ 1/2
|Qrn — Qn] < C(log(n)nmﬂer’ﬁax) under Hy, (G.101)

and
~ 1/2
|Qrn — Qn] < C(log(n)nm+19$ax> + Cypn™ o under H; (G.102)

Note that by direct calculations, we have V,, = nmem Therefore, to show (G.95), it is sufficient

max-*
to show that with probability 1 — o(1)
(I) : Qn < 0.5(nlog(n)"'V,)/? under Hén),
(I1) : Qy, > 2(nlog(n)" V)2 + Cyn™ 100, under Hf").

Consider (I) first. Recall that

Q. = max max XS ky ke,
" S:(Sl,...,Sm+1)eB1§k1,..4,km§m+1{| R

b

where the RHS is the maximum of

random variables. By union bound, it is sufficient to show that for every S = (S1,...,Sm+1) € B
and 1 < ky,...,k, < m+ 1, except for a probability of O(m~("+m)n~1)

| Ko s | < 0.5(nlog(n) 17,12, (G.103)
Now we are going to prove (G.103). Note that under null hypothesis, n* = 6. By definitions

X6yt = > (Aiy iy, — 03, 0;,),

i1 Eskl 7~--,im,€Sk-,,,L
i1yeeeyim (dist)

where by symmetry the RHS is a sum of no more than (:Z) unique independent random vari-
ables, each of which has mean 0 and variance < (m!)26;, ---0; (1 —6;, ---0;, ). By Bernstein’s
inequality, for any t > 0,

t2
D 1€k, voonrim €Sy, (MN)20;5, -+ 0; (1 —0;, -0, ) + t/3>.

i1,.yim (Unique)

P(|A)?S,k1~~'k

m

>t) < 2exp (—

max’

Since Zileskl,m,imeskm (mN20;, ---0; (1 —6;,---6; )< Cn™mO™,_, it follows that

i1,..yim (Unique)

~ t2

max
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Taking ¢ = (nlog(n)V,)"/2 and noting that (1/C) v log(n)om, <t < \/nm+log(n)0m, .,

2

2 (/)T Tog(n) iy
e - ) <e — .
Xp( Cnmom +t/3)_ Xp( Cnmog'gax+\/nm+1log(n)9$ax/3)

max

Combining this with our assumption ||0(|7"~2||6]|?/ log(n) — 0o and Omax < COmin, by elementary
calculations, the RHS of (G.104) is O(exp(—Cnlog(n))). This proves (G.103).

Next, consider (II) for the alternative case. Let S} denote the true partition set {1 < i <
n : node i is in community k}, 1 < k < K. Also, recall that

Yn = 1§kl{_l}fb;<m§K{|7’k1~-km = Bry  Br |}

Suppose the maximum on the right hand side is assumed at (ki,...,kn) = (k,..., k%) and so

Yo = Pryoks, — Bry =+ Bk,

Without loss of generality, assume k7, ..., &k, are distinct. The proofs for the cases that k7, ..., k;,
are not distinct are similar, so we omit them.
Now let §* = (Sk;,‘ Sk {1, P\(Sks U+ U Sk;n)) It follows that S* € B. By
definitions,
Qn > |XS*,k{~~k;*n|-

Therefore, to show (I1), it is sufficient to show that except for a probability of 1 — O(1/n),

|5(:S*,kf~~kjn > C(nlog(n)“ V)2 + Cypn™ 0™ . (G.105)

Write
Koo ik, 1= Yoo (A = mn,) = (D) + (D), (G-106)
ileSkT,...,imeSk%

where

() = Z (O 0 Py kz, — M5y M5 )

i1E€S )y yerrsim €Sy,

and

(II) = Z (Alllm - eil e elePkfk:n)

i1E€Spp sernsim ESr,
By definitions, n; ---n; =6;, ---0;, Bk - Prx,, for i1 € Sky, ..., im € Sk . It is seen that
(D= 11001 gr; * - Gz, Y-
By our assumption maxle{hk} < Cminszl{hk} and Onax < COmin,
N7 g - -~ grz, > Cn™ O,

and so
|(1)] > Cn™0™, An. (G.107)

Write for short

N = (85|87, |

Note that (/1) is a sum of no more than N independent random variables, each with a mean of

0 and a variance less than C0" . By Bernstein’s Lemma, for any ¢ > 0,

max"*
t2

P((I1)] = t) < GXP(—m

). (G.108)
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Taking ¢ = (log(n)V,,)/2. Note that ¢ =< (log(n)n™0™.

max)l/ 2 and N < n™, by direct calculations

2
m) =0(1/n).

max

exp(—
Putting this into (G.108), gives except for a probability of O(1/n),
(ID)] < (log(n)T7) /2. (C.109)
Inserting (G.107)-(G.109) into (G.106) gives that except for a probability of O(1/n),

> Cn™0", n — (log(n)V,)/2, (G.110)

|XS*7kT"'k’>:n

where we note that by Lemma G.1, n™0™, v, /(nlog(n)*1V,,)}/2 — oco. This proves (G.105)
and finishes the proof.

G.2 Proof of Lemma G.1

Consider the claim (a). By definitions

Vi o (= @) (1 — G — )

Note that d, is the average of (') independent Bernoulli random variables with parameters

n
m
bounded by C0],. under both null and alternative hypothesis. By Bernstein’s inequality,

t2

PG = 8nl 2 t) < 2exp(—Grman—T
m max 3

).

Let t = C'log(n)((")6m

" m )1/2 by elementary calculations, we get

P(Jn — Gn| > Clog(n) 0/ (12))1/2) < o(1/n).

Combining this with (G.111) and &, < CO,. < Cc* < 1, by elementary calculations,

Va s
= — 1‘ < Clog(n)((&)@ﬂax)_l/z, except for a probability of O(1/n),
where by our conditions n™~107, /log(n) — oo (implied by [|0]|7*2||0||?13/ log(n) — o), the

RHS is o(1). Therefore V,,/V,, — 1 in probability.

Combining this with Slutsky’s Lemma, we get Vi /V. — 1 in probability and finish the proof
of (a).

Next we consider the claim (b) and the first claim in (¢). Our goal is to show that except for
a probability O(1/n)

; 1 1/2
max {|n— - 1\} < C(#(n)) , under Hy (G.112)
1<i<n 771* nm- emax
and | 12 o
max {| 2 1)) SC(#@)) + 9 nder H,. (G.113)
1<i<n U pf nm-lgm n
Recall that
n= w0 and u®) = g(u*=D), 1<k<m,
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where for 1 <i¢<n

Zig, .,im (distinct) ll i T 27,2, ,im (non-distinct) Wiy === Uiy,
)(m—l)/m :

Lil (u) =
(221, Jim (distinct) "421 “Im + Z“ ..... im (non-distinct) Ugy = - Uiy,

Let 101) denote {1,...,n}\ {i1}. We claim that if the following events

. . L X . —1pm 1/2
Ey - 12?2%{ Z (Aiy i, Q'Ll"'l'm)‘} <(n™7 Oitax log(n)) /7,
o @,...,imeﬂiﬁ
G (G.114)
Ey D7 (Airrins = Quyoi)| 702
i
hold then for 1 <k <m
Li(u®) log(n) \/2  C u o
— < oV - v .
o (175 1|}_c( 0t 1%X) o (e 1+ 072 (G.115)

where by definitions 7, is 0 under Hy.
Note that inequality (G.115) implies the claims (G.112)-(G.113). To see this, recall that
u® = g(u*=1). If inequality (G.115) holds, then

(’C) Li(u (k— 1))
oo {15 =1} = max | =5 — — 11}
<c(71°g( n) )1/2+ ¢ {IU(H) 1y 4 S
— \npm-lgm N 1%ien n; n
log(n) \1/2 C u(o)
< _— _ -
<C(omtige—) " (1o + g max {175 2 (1+0(1))
1 1/2
ote that u'"”/ = < LU +£+C%l
Note that u(® =0 C—igm -
n m o n n

Combining this with 7 = u([™2 D it follows that n~ ¥ (k = [™1]) is a minor term and so
maxi<;<n{|n:/nf — 1|} < C(log(n)/n™107, )2 + Cv,/n (i-e., the claims (G.112)-(G.113)).

Therefore, it is sufficient to show that events (G.114) hold except for a probability O(1/n)
and that inequality (G.115) holds for 1 < k < m given these events.

First, we show that the events E; and F5 hold with a probability of 1 — O(1/n).

Consider event E; first. For 1 <141 < n, note that by symmetry,

Z (Aiy iy — Qiyei) = Z (m— DAy i, — Qiyein),

i2,0enyim €101 Gy <Ly €11
(dist)

where the RHS is a sum of ( _ ) independent centered Bernoulli random variables with param-
eters bounded by C0]". . By Bernstein’s inequality, for any ¢t; > 0

t2
P(X i = Quoin) > 1) Sep(— g T+ 11/3

i2,eeyimel (1)
(dist)

).

Similarly, for event Fs, we have for any to > 0

tz
P2 (i = Qun) > 1) < bl 7).
(st}
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Letting t; = v2C(n™~ 1™

max

log(n))/? and ty = (R0

max)l/ 2 and by direct calculations

]P’( Z (Aiyoi,, — iy, ) > V20 (0™ 0™ 10g(n))1/2) < exp(—2log(n)) = O(1/n?).
i2yeeyigm €I(1)

(dist)

and
IP( 3 (Ani = Qi) > (nmegax)m) < exp(—n/C) = o(1/n?).
i1;<--77;7n
Combining these with union bound over 1 < i; < n, we see that events E; and Fs hold except
for a probability O(1/n).
Next, we show inequality (G.115) when (G.114) is given.
By definitions (G.93) and elementary algebra, n* can be written as

n
* Ziz =1 Qi1~~im

—_ yoebm
n = n m—1 -

(i im=1 Qirein) ™

For 1 <i; <nand 0 <k <m, we can then write

k m—
n; @l a
where . i
(I®);, = D i, i (distinet) Airim T 2 oiy i (non-distinet) Uiy " Ui,
’ Z?zw,im:l Qi vy,
and

o (k) (k)
Zil ..... im (distinct) A’Ll"'lm + Zil,...,im(non—distinct) uil T uim

ZZ,...,imzl Qil'”im
Therefore to show (G.115), by Taylor’s expansion, it is sufficient to show that

(Il(k))il =

k)Y, 1 = R, 1]V =
max (0O, 1) =o(1),  max ([(119), ~ 1} = o(1), (G.116)
max {|(I®); — 1]} < C(M)W + 9 max {|“5k) 1} +cn (G.117)
1<i<n ! - npm-lgm n 1<i<n n} n '
and that
log(n) \12 C uk) .
(F)y. _ < = i in
1I£ia§Xn{|<II Ji =1k < C(nmflefgax) T 1I£za§Xn{| 0¥ h+c n’ (G.118)

Note that by triangle’s inequality,

Zi27,,,,i,,,L€](il)(Ail“'im - Qulm)
(distinct)
(I®);, — 1] <| : |
' Z@ im=1 Qi1~~~im

.....

k k * *
12,..050m (ugl) T ugm) - nil T nlm)

(non-distinct)
+| )
Zz@ ..... ime1 Lt
. . * . e e * J— . .
2, esim, (77i1 N, Qiy i)
+ ‘ (non-distinct)

n
Lt wim=1 Qi
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By event E; and Q;,...;,, =< 07,

max?

the first term on the RHS is < C(n™~10™  /log(n))~/2. At

< 91‘1 "'eim'}’n- It

the same time, by definitions and elementary algebra, |} ---n; — Qi ..i,,
follows that
W), k)
1 1/2 . .
(10, —1] < C(L(”)) + 9 max { Y T, 1’} +c%. (G.119)

nm—lgm N 1<iz,im<n U pFo-ony
Similarly, by event Fs and elementary calculations, we have
u'®) (k)
1 1/2 C : n
(1), =1 <c( )4 max {7m 1|} +c2
nmom N A<iz,im<n U nf -oont n
® . (G.120)
1 /2 C T n
SC(M) R | = S EeRy
nm-lgm N A<y, im<n UL nE - n

Therefore, using Taylor’s expansion on ugf) - zm /(7711 “n;. ), to show (G.116)-(G.118), it is

sufficient to show that (k)

=o(1), 1<k<K,
1<i<n 'I]l

where we recall that our original goal is to show

(k) 1 /2 u'®
max {|(n“*) —1} < C(L(”)) + < max {|— —1y+ 0,
i

1<i<n nm*19g}ax n 1<i<n

Noting that u®) = g(u*=1)). Using induction, we only need to verify that max; <;<,{|L;(u(?)) /n} —
1|} = o(1). To see this, by u(®) =0, we have

©) ... ,0 (0)

’U/,L Ul u:
max lif—l—lzmax{ - —1‘}.
1<it,..oim<n 771 nzm 1<i<n m;
Combining this with (G.119)-(G.120), we get (G.116)-(G.118) hold for k£ = 0. It follows that
Li(u”) (0
—1n< AT Oy, 1y =
Jnax | p 1} Clrgag{l( Ji = U} + € max {{(I177); — 1]} = o(1).

This finishes the proof of the claim (b) and the first claim in (c).
Lastly, consider the second claim of (¢). Let G be a m—way symmetric tensor of dimension
K defined by
Gk ko = Bry " Bl » 1<k, ...km <K,

and G be the matricization of G. By [4, Corollary 7.3.5, Page 451],
|02(P) — 2(G)| < ||P = G, (G.121)

where o2(B) denotes the second largest singular value of matrix B. Note that by definitions,
the ko + 27;3 KF*i=1(k; — 1)-th column of the matrix G' can be written as the following form

G:,k2+z;n:3 K%k —1) = - (Bk)z "'6km)7 1<ko,... kyp < K.

It is seen that G is a rank-one matrix and so 02(G) = 0. Also, by the definition o2(P) =
|tt2|. Combining these with (G.121) and noting that |P — G| < Cmaxi<g,, . k., <k 1| Pki-km
Bk, -+ Br,, |} = Cyn, we obtain

|| < ||P = G| < Cm.

By our assumption |01 2||9||2/A /log(n)tt — oo and Opax < COmin, the above inequality
implies n™~10™, ~2 /log(n)!'! — oo. It follows that

nmﬁf:axfyn/( m+10$ax log(n)l.l)l/Q = O( me 101113,)(771/ log( )1.1)1/2 — OQ.

This proves the last claim in (¢).
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