Technical Proofs for “Homogeneity Pursuit”

Abstract

This is the supplemental material for the article “Homogeneity Pursuit”, submit-

ted for publication in Journal of the American Statistical Association.

B Proofs

B.1 Proof of Theorem 3.5

Since 7 is consistent with groups in 3%, there exists 1 = j; < jo < -+ < jg41 = p+1 such
that Ay = {7(jr), 7(r + 1), - ,7(jg+1 — 1)} for all k. We shall write 7(j) = j without
loss of generality.

In the first part of the proof, we show that ,@ € M4, and it satisfies the sign restrictions
sen(Bajir — Bax) = sen(BY ppr — Bag) k=1,--- K — 1.

When p(t) = |t|, Qn(3) is strictly convex. So B is the unique global minimizer if and

only if it satisfies the first-order conditions:

—%X1T€ + %X{X(,@ -8 - /\nsgn(@ - 31)7
0=4q —5xje+ %X]TX(B — B°%) + Ansgn(B; — Bj—1) — Ansgn(Bjr1 — Bj), 2<j<p
—axp e+ xp X(B — B°) + Musgn(By — Bp-1),
where sgn(t) = 1 when ¢t > 0, —1 when ¢t < 0, and any value in [—1,1] when t = 0.
Therefore, it suffices to show that there exists B € M4 that satisfies the sign restrictions
and the first-order conditions simultaneously.
For B € My, we write it = T(B) and u° = T(8°), where the mapping T is the same
as that in the proof of Theorem 3.1. The sign restrictions now become sgn(fig+1 — fix) =

sgn(,ugJrl —p?) for all k = 1,--- , K — 1. Note that Ej = §j+1 when predictors j and



(j + 1) belong to the same group in A. The first-order conditions can be re-expressed as

—ixte+ +x Xa(m — p0) + Mosgn(le — fik—1) — AnT5,  J = Jjk
0=9 —ixle+ ixIXa(l— p°) + Anrj1 — Ansg(liggr — fix), J=Jepn—1 (1)
—les + XTXA( u0) + AnTj—1 — AnT, elsewhere,

where r;’s take any values on [—1, 1] and we set sgn(fi1 — fig) = sgn(iix+1 — fix) = 0 by
default. Denote by 62 = sgn(,ugJrl —ud) when 1 <k < K —1and §) = 0 when k =0, K;
similarly, Sk for 1 <k < K. In (1), we first remove r;’s by summing up the equations

corresponding to indices in each Aj. Using the fact that x4, = X, we obtain

JEAL
— 1y e+ Ak Xl — p°) + Andpor — Ml =0, k=1, K.

Under the sign restrictions gk = 52, k=1,---,K —1, it becomes a pure linear equation
of (i — p):

—1xXNe + 1XAX 4 (5 — p°) — Xpd® =0,
where d° is the K-dimensional vector with df = §) — 8 _,, as defined in Section 3.4. It

follows immediately that
i — 1 = A (X5X )71 + (XX ) X e, (2)

Second, given (@1 — p?), (1) can be viewed as equations of r;’s and we can solve them
directly. Denote & = %XTXA(ZZ—“O) - %XTE. For each j € Ay, define A,lgj ={jk, - ,J}
and Aij ={j+1,--+,jksr1 — 1}. The solutions of (1) are
rp=0a A D G=0 =AY &G, GEA JA Gk — L
€A i€AL;

Here the two expressions of r; are equivalent because A, ) ;¢ 4, &= Sk — k1 from (1). Tt
follows that any convex combination of the two expressions is also an equivalent expression
of r;. Taking the combination coefficients as ]Az]|/ |Ag| and | A} ;1/|Ak|, and plugging in

the sign restrictions Sk = (52, k=1,---,K — 1, we obtain

Do 1Al
<\Akr 25" o Zf’> (|A|5‘“ )

|‘12 | |Ak’|
— 1. 7' ¢0
—n)\n wj(£)+(| |6k 1 | k|(5k),



where the function w;(+) is defined as in (36). Here r;’s still depend on (f — pu°) through
&. Combining (2) to the definition of & gives

€=—LIXT[1-X4(X4X) ' XY] e + XXX (XX 4) 1

= —1XTP e + A, b,

where P4 = I—X4(X4X 4)71X7 and b? is defined as in Section 3.4. By plugging in the

expression of &, we can remove the dependence on (zi — u°) of the solutions rj’s:

_ 1A% |A \
e YT T (1.0
T A, wi (X P ge) + nw;(bY) + ( Ay 5k 1+ A ‘5k> (3)

Now, to show the existence of ,@ € M, that satisfies both the sign restrictions and
-1

Y

first-order conditions, it suffices to show with probability at least 1—eg—n"1K —(nVp)
(a) the r;’s in (3) take values on [—1,1];
(b) the p in (2) satisfy the sign restrictions, i.e., sgn(fig+1 — i) = sgn(lug_H — uf) for
allk=1,--- K —1.

Consider (a) first. In (3), by Condition 3.4, the sum of the last two terms is bounded
by (1 — wy) in magnitude. To deal with the first term, recall that in deriving (38), we
write w;(XTe) = a;rs. It follows immediately that w;(XTP4¢e) = a?PAs = (Paj)Te.

Since ||P4a;|| < |laj||, similarly to (38), we obtain

max\w] (XTP 4e)| < C\/op|Ag|log(n V p)/n, 1<k<K,
jeA

except for a probability at most (n V p)~1. Therefore, by the choice of A\, in (main-18),
the absolute value of the first term is much smaller than w,. So max; |r;| < 1 except for
a probability at most (n V p)~1, i.e., (a) holds.

Next, consider (b). Since |u,; — py| > 2by, it suffices to show that || — p||sc < bn.

Note that (2) can be rewritten as
p-p’=D'iD'XIX,D ' (N, D 'd" + n ' D' Xe).

It follows from Condition 3.1 that || — u°|| < ¢ ' (A D2d°|| 4+ n~ D7D~ X%e]]).
First, |[D2d°|2 <431, ﬁ. Second, from (26), |[D~!X%e| < C'y/nK log(n), except
a probability of at most n~'K. Moreover, |[D~!|| = (miny, [Ax|)~"/? < 1. These together

imply

K
_ 1 1/2 K log(n)
_ 0 < - =~ 7
I =l < CA”(; |Ak|2> n



From (main-18), the right hand side is much smaller than b,,. It follows that ||z — ]| <
by,. This proves (b).
In the second part of the proof, we derive the convergence rate of HB — 3°%||. Note that

18 = 8° = ID(B — p%)|, and from (2),

D —p°) = D' XIX4D ) (A, D'’ + n ' D' Xe).
Therefore, H,@—,BOH < ' D71+ YD 1X e|), where D712 < 42sz1 ﬁ
and |[D~'X%e| = O,(VnK) by (24). Combining these gives

-1 -0V (S k),

k

B.2 A useful proposition and its proof

The requirement that Y preserves the order of 8° implies restrictions on how much the or-
dering (in terms of increasing values) of coordinates in B deviates from that of 8°. This is
reflected on how the segments {By, - -- , By} intersect with the true groups {A1,--- , Ax }.
Recall that Vi; = A N B;. We have the following proposition:

Proposition B.1. When Y preserves the order of 3°, for each k, there exist dj, and uy,
such that Ay, = Ug, <i<u, Vil, and Vig = By for di <1 < uy. For each l, there exist a; and

by such that B; = UfllSkalelf and Vi = Ag for ap < k < by.

Proposition B.1 indicates that there are two cases for each Ay: either Ay is contained
in a single B; or it is contained in some consecutive B;’s where except the first and last
ones, all the other B;’s are fully occupied by Aj. Similarly, there are two cases for each
B;: either it is contained in a single Ay or it is contained in some consecutive Ay’s where

except the first and last ones, all the other Ag’s are fully occupied by B;.

Proof. Consider the first claim. Given k, let d = min{l : Vj; # 0} and ux = max{l :
Vi # 0}. Then Ay = U*, Viy. Moreover, for any dj, <1 < ug,

0 0 : 0 0
B < max 5 < min 87 < max 8) <

: 0 0
in 3 < B
dy, JjEB Bu, " 7

jGBl 1€
where the first and last inequalities are because Ay N By, # () and Ay N By, # 0, and the
inequalities in between come from Definition 2.3. It follows that ﬁ? = ,6’91 i forall j € B;.

This means B; C Ay, and hence Vi; = B;.



Consider the second claim. Given [, let a; = min{k : Vj; # 0} and b, = max{k : V}; #
0}, and hence, B; = u%:alvkl. For any a; < k < by and I’ < I,
max 5 < min 5 < B, < Bhp

where the first inequality comes from Definition 2.3, the second inequality is because

A, N By # 0 and the last inequality is from 691’1 < 59‘72 < e < BELK and a; < k. It

follows that By N Ay = (0. Similarly, for any " > I, By N A, = (. As a result, 4, C B,

and Vi = A;. O

B.3 Proof of Theorem 4.1

Recall the mappings T, T~! and T* defined in the proof of Theorem 3.1. Write Q,,(3) =
Ln(B) + Pu(B), where Ly, (8) = 5 |y — X8> and Pu(B) = Pr z, 2,(8). For any p € R,
let

Li(p) = Lo(T™ Y (w),  Pi(w) = Pu(T" ' (),

and define Q) (1) = Ly (1) + PN ().

We only need to show that BOMCZE is a strictly local minimizer of @),, with probability
at least 1 —eg—n 'K —2(nVp)~!. Let E} be the event that the segmentation Y preserves
the order of B8°, and define the event Ey and B, a neighborhood of 8%, the same as in the
proof of Theorem 3.1. Recall the statements (a) and (b) in the proof of Theorem 3.1. For
an event Ej to be defined such that P((E%)¢) < 2(nV p)~!, we shall show that (a) and
(b) hold on the event Ef N Ey N EY. The conclusion then follows immediately.

Consider (a) first. Same as before, it suffices to show (29). Recall that Vi = Ax N B.
Define my = Y05 ([Vial Vi gy | + Vil Vi) and mo e = S5 [Vial Vi, for
1 <k <k < K. Write for short p1(-) = px,(-) and pa(-) = px,(+). It follows that

PA(p) =X\ Z ma g p1([p — pwr]) + X2 Z ma g P2 (| — i ])-
1<k<k/'<K 1<k<k/'<K

Therefore, it suffices to check

i&l’? |k — paer| > amax{Ain, Aan}, for any B8 € B,u =T"(3).

The left hand side is lower bounded by 2b, — |8 — 8°||ee > 2b, — C\/K log(n)/n > b, >
amax{A1p, \an }, which proves (29).



Next, we consider (b). Same as before, it suffices to show (33). For 8 € B, denote by

B* = T~! oT*(u) its orthogonal projection onto M 4. By Taylor expansion,

"L 0P,
Qu(B) - QuB) = —lw-X8"X(a-p")+ Y ) (6 5)
j=1
= Kl + K27

where 8™ is in the line between 8 and B*. Let p;(t) = p(|t|)sgn(t), i = 1, 2. Rearranging
the sums in K5, we can write

L—1
Ky = MY Y a6 - 8) - (8- 5))]

=1 i€eB; ,jEBH_l

L
23 ST mBr - BB - 8) — (B - B)).

=1 1i,j€B,

2bp, — 2[18* — B%0c = 2b, — 2[8* — B°|| > 2b, — 2|8 — B°|| > 2b, — C\/Klog(n)/n.
From the conditions on (bn, A1n, A2n), it is easy to see that p(|8" — B7"]) = 0, 1 = 1,2.

For those (4, j) not belonging to the same true group, |3;" — 7| > 2b, —2/|8™ — Bl >

On the other hand, for those (7, ) belonging to the same true group, 8} = B}‘ and hence
sgn(By" — B7") = sgn(pB; — B;). Together, we find that

L—-1 L
Ky = MY > a8 =BrDIB—Bil+ x> D> sh(18" = BDIB — Bl
=1

=l ieB, jeBs1 i =1 jeB it
-1 L

> M) D ACWIBI =B+ Ad D ph(2t)|Bi - B, (4)
=1 ieB, jeBi,id =1, jeB,i%j

where i 2 j means ¢ and j are in the same true group, and the last inequality comes from

the concavity of p and the fact that [3]" — 87| < 2[[8™ — 8[| < 2(B — B ||ec < 2t5.
Now, we simplify K. Let z = z(8™) = XT (y — X3™) and write K; = —%ZT(B—B*).

Note that for each j € A, 8} = ﬁ diea, Bi= ﬁ Z;L:kdk > icv,, Bis where Vi, di and

uy, are as in Proposition B.1.

K ug
K= =233 3 55— )

k=1l=dy jEVi,
K ug U
1 1
= —=> > E:ij > > Bi—B8y)
" =1 i=dy, j Akl =5
=1l=dk €V U'=dy j'eVip

K U Uk
3D DD ID M) DECEEHIUETY
k=1

l=dy l'=dy}, j€Vj j’GVkl/

6



Uk

Ko
= kzzdz Z (Bj — Bjr)

< | Akl

S
2’7 Y. (z—z)B - By)
k=

di <I<lU'<up j€EVi ,j/EVkl/

K1+ Kyo.

Using notations in Proposition B.1, Zk Lok L= Zlel EZ’: o, Therefore,

L

Ku = —%ZZ > a2 )

=1 k= alJ]erl
L

= —%Z > @)y — ), (5)

v jjreBid
where 0;;/(z) = ﬁ@j — zjr) for j,j' € Aj. To simplify K12, note that given any (j, j')
such that j € Vi, and j’ € Vi, for some k and [ < I’, we have

-1

ﬁj - B]/ 7 11 Z Z(/B'Lh - Bih-}—l)'

=1 [Vin| { iy i) =g, ip=j'; } h=l
ih€Vin,h=l+1,- I'—1

Plugging this into the expression K2, we obtain

-1

1 1 (zi, — zi,))
K = =00 5 2 > e 2B = B
dp <I<l'<uyg {(il:il+l7"' ,il/): ’ihGth} Hh=l+1 ‘Vk‘h| h=l
-1

_ %Z |1k| >y > wyjr wn(2)(B; — Bjr),

dp <I<U'<uy h=l j€Vip,j'€Vi(ht1)

where for (j,5',1,1', h) such that j € Vi, j' € Vyppry and I <h <1 -1,

zj — zj1, b=h=1-1
\VWM/' (zj — Zkr), l=h<l'~1
- - k(i+1)
UJJ]/,ll’h(Z) - Wil Virl (5 > Il<h<l -1 ,
Wi lVequ ] (b1 — 2)y L <h <=
|Viet| T — o =1 -
Waopl Gt = 2i0),  L<h=U—1

. . ,—
and Zzj is the average of {z; : j € Vi;}. By rearranging terms, Zszl de<l<l/<uk iz:ll =

L—1
Yot k an Z(l 1Y:dg <I<h<l<uy" Therefore,

Kio = -;zzmlﬂ 3 [z S iz )] 8 - 87)

JE€EVin,J’ evk(h+1) l=dy I'=h+1



= —= Z > 755:(2)(85 — Bjr), (6)

o JEBh,J EBh+1,J~J

where
1 h U
Tjj/ (Z) = 7| Z Z w]]/ ll’h
=dj, I'=h+
h—1 g h—1
1 WVillVirl  — _ 1 Vil _
= — kl— 2k) + 2kl — %
| Ak Zd Zh; Vi [Vi(n+1) ’( ) | Al l; |th|< )
—dg
1 & Vi 1
AT D T 5 0 =)
KLy S Wk(ht1) k

1 V r— V’ ]_ ’%}i V’
_ Z\ k| (i Vi \)Z N Do | kl\z

Akl ; Vir![Vins1)| Akl Vi
1 (Zz:dk Vit )| Viwr| 1 Zl d |Vl
—m Z Kl —

Zil.
Vin! | Vi(ha )| Arl Vil

l'=h+2

Let Allch = Ulgthl and Aih = UjspVig. Then, for any (],],) such that j € By, j/ € Bpi1

and 7,7 € Ay, we have the following expression

1 A7, K
T (z) = zi — zi
H Vier|[Viat)| ( |Ak| Alz: | A eA; )
k(h—1) €A% (ht1)
| A7 | AL
zir ). 7
<|Ak||Vk(h+1)| 7 AL Vi J) @)

Combining (5) and (6) gives

L—-1
Ko< S Y Im@si- B+ Z > @Il ©®)

=1 1i€B;,jEB11,
iréj JGBM J

Using the inequalities on K; and Ko, i.e., (4) and (8), we have

L-1

Qn(B) — Qu(B*) = Z [/\lpll(%n) n- sz( )] 1Bi — ’

=1

i€By,j€B41,iRj
L
YD [Meph(2tn) —nt05(2)] 18 — B)l-
=hijeBid;
Therefore, showing (33) reduces to showing that, over the event E] N Es, for sufficiently

small ,,,

n”~ max |7i(2)] < Aip(2t.) and 1T max|[0;(2)] < A2ph(2tn), (9)
ij iJ



except for a probability of at most 2(n V p)~L.

Note that z = XTe—n—n™, where n = XTX(8*—3°) and n™ = XX (8™ —B%). It is
seen that [|7™|| < Amax(XTX) |18 =8| < Amax(XTX)tyn. So 7i5(z) = 7i;(XTe+n) +rem,
where the remainder term is uniformly bounded by gy, (t,), for some function g,(-) such
that ¢,(0+) = 0. Similar situations are observed for 6;;(z). As a result, to show (9), it

suffices to show that over the event E] N Ey,
n™! max |0;;(X"e + )] < Aaph(0+), (10)
ij

and
nt max |Tij(XT€ +n)| < Aip}(0+), (11)
ij

except for a probability of at most 2(n V p)~1.

First, consider (10). Let Ej%; be the event

n~t max |0;;(X%e)| < |Ax|” 1\/GCgllog(2(n\/p))/n, for all k.
1,JEAL

Note that 0;;(XTe) = ﬁ(xi —x;)Te, where ||x; — x;|| < v2n. Applying Condition 3.3

and the union bound,

P((E5)°) < Z Z ( Te > ||Ix; — x]||\/3c3 log(2(n \/p))> <(nvp) L

k=1 Z,]GAk

Moreover, |6;;(n)| < ﬁ max; |1 — 7|, where 7 is the average of {n; : i € Ax}. Note
that maxjea, |7 — x| < ng)B* — B° and ||B* — B°|| < |18 — B°|| because B* is the

orthogonal projection of 3 onto M 4. Noticing that 8 € B, we obtain
ntmax |05 (m)] < Cul Ay v/ K log(n) /n.

Combing the above results to the choice of Ao gives n~!max; ;[0;;(z)| < A2, and (10)

follows.
Next, consider (11). First, we bound 7j;(XTe). From (7), 75 (X'e) = éfj,s, where
é."’ - 1 ‘A | 1 1 |A | 1 2
27 |thHVk ht1) || 1Az Apth—1) Akh-1y | Ag| A iy AR
| Azl | Al

+7 PR A2 L
| Akl Vihs)l T \AkHth|
Recall that noy is the maximum eigenvalue of ng X4, - It follows that

1 2
13> < 4noy A% 1Ak )| + 14 A | | ARl Al
s \th\zlvk 1) 2| Ax |2 A2 Vi)l AR Vin|?




| Ak | 1 1
BBl T BnP T > de bt l<w
|Ag| 1 1 _
< 4noy, [BRI2Vi(ht1)? + [A]? T |Bp|2? h>de, h+1=u
o |Ak| 1 1 -
|th|2\gh+1\2 + |Bh41]? + [Ag]?? h=dg, h+1<uy
| h=dy, h+1=u
12|A
noy, [ 4] = 12n0y 0y (12)

min{|A[?, ming, <p<u, {|Bnl*}}
Here in the second inequality, we have used the following facts: (1)From Proposition B.1,
for dj, < h < ug, [Vin| = |Bp| and [Vipin)| = |Brail. (2) When h = dy, [Ap,| = [Vinl;
ey < 1420 < |4,

and |A},| 4+ |A?,| = |Ax|. In the third inequality, we have used the fact that |Vgs| > 1

when h+1 = uy, ’A%h| = |Vk(h+1)’~ (3) |Ai(h71)| < |A11€h‘ < |Axl, ’A%(

when Vi, # (0. Let Ej, be the event that

n~t max |7, (X e)| < C\/oreylog(n V p)/n, for all k. (13)
53’

Applying Condition 3.3, (12) and the union bound, it is easy to see that P((E%,)¢) <
(nV p)~! for some large enough constant C' > 0.

Second, we bound 7;;/(n). We observe from (7) that 7;;(v) = 0, for any v with equal
elements in Ay. Thus, 7;;(n) = 7j;7(n — k1), where 7, is the average over the elements

of n in Ay. By similarly analysis to that in (12), we find that
i (I = Iy (0 — A DI* < 1265 (max{ln: — 7))
By definition, max;ec 4, {|7: — 7|} < nwg||B* — BY|| < Crvp/nK log(n). It follows that
n” ! max |7y ()] < Cois/up K log(n) /n. (14)

Combining (13) and(14), we then obtain (11) from the condition on A;. O

B.4 Proof of Theorem 4.2

~oracle

Since B, — B° = (X4X4)"!(X%e), to show the claim, it suffices to show
B, (X5X 1) Y2X%e % N(0, H).
Equivalently, for any a € RY,

a’B,(X4X 1) /2X%e % N(0,a”Ha). (15)

10



Let v = X4 (XX 4) /2Bl a, and write the left hand side of (15) as vi'e = 321" | vie;.
The v;e;’s are independently distributed with E[v;e;] = 0 and E[jv;e;|?] = v2. Let s2 =

S | E[|viei|?]. By Lindeberg’s central limit theorem, if for any € > 0,
lim s, 2E[|vig;|*1{|viei| > €sp}] =0, (16)
n—o0

then s, >°% | vie; LN N(0,1). Since s2 = a’B,Bla — a’Ha, (15) follows immediately

from the Slutsky’s lemma.
It remains to show (16). Using the formula E[X1{X > €}] = eP(X > ¢)+ [* P(X >

u)du for X = |vig;|?, we have

00
E[\viei\21{|viei| > GSH}] = €2S%P(|U7;Ei| > ESn) —l-/ P(‘UZEZ‘ > \/ﬁ)du

€Sn

From Condition 3.3,

o252 [l |2 2|v; |4
P(’Uigi’ > ESn) S 26 c3e Sn/lvzl S 62‘6il47
3 n

where the last inequality is due to that exp(—z) < 2~* for any 2 > 0 and positive integer

k. Similarly,

[e.e]

/ P(|vigi| > Vu)du < 2/ o—cat/|v;

Sn

‘2 — 2|Li|2670368n/‘v1"2 < M

du

Cc3 T C3€Sy

Note that s;1 = O(1) since s, — al Ha. We have
n
2N Bl {jviei] > esn}]
n i
n
< Y lul' = CIXAXEXA) B
i=1

_ 4
< C(IXa(X5X) "By 124 - [lall) "

The right hand side is o(1) by assumption. This proves (16). O

B.5 Proof of Corollary 4.1

~ol
It is easy to see that the asymptotic variance of ag(ﬁo - B°) is al'(XTX)a, = vi,.

Consider a?;(,@ — Y. Noting that B-p° = MnD(BA —3Y%), we can write
a, (B - 8") = al M, D(X4X) " 2(XhX4)' (B4 - BY).

where D = diag(|A;|"/2,--- ,|Akg|"/?). Take B,, = alM, D(X%4X 4)~/? and apply The-

orem 4.2. It implies that the asymptotic variance of ag(,@ — 3% is
B,B! =al’M,D(X X 4)"'DM’a,.

11



Observing that X 4 = XM, D, the above quantity is equal to
al M, (MIXTXM,) "ML a, = v,

Next, we show vy, > v9,. Since MZMn = I, there exists an orthogonal matrix Q
such that M, is equal to the first K columns of Q. Write b = Q”a,, and G = QTXTXQ.
Direct calculations yield vi, = b" G™'b and va, = blTGﬁlbl, where b is the subvector
of v formed by its first K elements and Gy is the upper left K x K block of G. From

basic algebra, vi, > vay,. O

B.6 Proof of Theorem 4.3

~oracle

The proof of ||3 — B°|| = O,(v/K/n) is the same as that in Theorem 3.1. We only

~oracl
need to show that 8°  is a strictly local minimizer of Q3P%"*

, with probability at least
l—eg—n"'K—(nVs)"'—(nVv35)~t. Without loss of generality, we assume S = {1,--- ,p}
and 5§ = p.

Let B={A:|8-B°|| < C\/Klog(n)/n}, for a sufficiently large constant C' > 0. By
assumption and (25), BOMCZ@ € B except for a probability of at most (eg+n~!K). For any
B € B, let Bg be the vector such that Bs; = 8;1{j € S}, where S is the support of %
and let 35 be the orthogonal projection of 3¢ onto M7, namely, 5§,j = ﬁ ZieAk Bj for
any j € A, and BE} ;=0 for any j ¢ S. We aim to show that except for a probability of

at most (nVs)~!+ (nVp)L

(a) For any B € B,

~oracle

Qpr(ZTSG (,6?;‘) 2 QZP[IT‘SG(ﬁ )’ (17)

~oracle

and the inequality is strict whenever 85 # 8 .

~oracle

(b) There exists a positive sequence {t,,} such that, for any 8 € B, |35 — 3 | < tn,
Q" (Bs) = Q" (Bs), (18)

and the inequality is strict whenever 8¢ # B%.

~oracle

(c) There exists a positive sequence {t),} such that, for any 8 € B, |8 — 3 | <t,
QP(B) > Qi (Bg), (19)

and the inequality is strict whenever 3 # 3.
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~oracle

Suppose (a)-(c) hold. Consider the neighborhood of 8 defined as B, = {3 € B:

~oracle ~oracle ~oracle

IB—18 | < min{t,,,}}. It is easy to see that ||[3—3 | <t and ||Bg—0B | <
~ 1 ~ !
18— B8"""|| <ty for any B € B,. As a result, QF""*¢(8) > Q" **(8” ") for B € B,,
~ 1 ~ 1
and the inequality is strict except that 8 = B¢ = B¢ = Bomc . Tt follows that ,Bomc ‘is

a strictly local minimizer of Q;7*"*°.

Now, we show (a)-(c). We claim that (a) and (b) hold except for a probability of at

1

most (n V s)~. The proofs are exactly the same as those for (27) and (28), by noting

that Q;F*"*“(B) = Qn(B) for any B € B whose support is contained in S. To show (c),
note that |3 — Bg|| < ||Bs — ,@OMCZGH, since B¢ is the projection of 3 onto the coordinate
space of S and ,@orade belongs to this space. So it suffices to show that (19) holds for all
B € B such that |3 — B4 < t),.

By Taylor expansion,

sparse(3) _ Qsparse(3 ) L (y —XB™TX(B - Bs) + Mn Z p(B")Bj,

" j#5
where 8" lies in the line between 3 and Bg. Let z = z(,@m) = XT(y — X3™). First,
note that sgn(3j") = sgn(p;) for j ¢ S. Second, [|B™ — Bsll < [|B — Bgl| < t;,- Hence, for
J &5, 185" < t,. By the concavity of p, p'(|5]"]) > p/(t;,). Combining the above, we get
Q(B) — QP (Bs) = D[l () — 17! |2[11851-
j¢s
Write z = XTe +n +n™, where n = XTX(8° — B¢) and n™ = X7X(8g5 — B™). Since
1Bs = B < [1Bs = BIl < th, 1™ loc < Amax(XTX)t7,. Consequently,
PU(B) = QF(Bs) = Y [Map (04) = n [ X e + mlloe — ga(t1,)] 1551,
i¢s
where g, () = M\ [0/ (04) — o' (t)] + 77 Anax (XTI X)#!, satisfying g,,(0) = 0. Therefore, if

nHIX e + mllos < Anp/(04), (20)

then there always exits sufficiently small ¢/, such that (19) holds.
It remains to show (20). First, by Condition 3.3 and applying the probability union

bound, || X%e|ls < 1/(2n/c3)log(2(n V p)), except for a probability of at most (n V p)~!.
Second, [|7]loo < X7 Xs]|2.00[185 — B < IXTX5l2,00 - C+/K log(n)/n. where we have
used the fact that |3° — Bg|| < ||8 — B8°|| < C+/K log(n)/n. Combining the two parts,

n_1||XT€ + Moo < C( log(n V p)/n + HXTXSHZOO\/Klog(n)/n) < A\,

which proves (20). O
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