
Technical Proofs for “Homogeneity Pursuit”

Abstract

This is the supplemental material for the article “Homogeneity Pursuit”, submit-

ted for publication in Journal of the American Statistical Association.

B Proofs

B.1 Proof of Theorem 3.5

Since τ is consistent with groups in β0, there exists 1 = j1 < j2 < · · · < jK+1 = p+1 such

that Ak = {τ(jk), τ(jk + 1), · · · , τ(jk+1 − 1)} for all k. We shall write τ(j) = j without

loss of generality.

In the first part of the proof, we show that β̂ ∈MA, and it satisfies the sign restrictions

sgn(β̂A,k+1 − β̂A,k) = sgn(β0
A,k+1 − β0

A,k), k = 1, · · · ,K − 1.

When ρ(t) = |t|, Qn(β) is strictly convex. So β̂ is the unique global minimizer if and

only if it satisfies the first-order conditions:

0 =


− 1
nx

T
1 ε+ 1

nx
T
1 X(β̂ − β0)− λnsgn(β̂2 − β̂1),

− 1
nx

T
j ε+ 1

nx
T
j X(β̂ − β0) + λnsgn(β̂j − β̂j−1)− λnsgn(β̂j+1 − β̂j), 2 ≤ j ≤ p

− 1
nx

T
p ε+ 1

nx
T
pX(β̂ − β0) + λnsgn(β̂p − β̂p−1),

where sgn(t) = 1 when t > 0, −1 when t < 0, and any value in [−1, 1] when t = 0.

Therefore, it suffices to show that there exists β̂ ∈MA that satisfies the sign restrictions

and the first-order conditions simultaneously.

For β̂ ∈ MA, we write µ̂ = T (β̂) and µ0 = T (β0), where the mapping T is the same

as that in the proof of Theorem 3.1. The sign restrictions now become sgn(µ̂k+1 − µ̂k) =

sgn(µ0
k+1 − µ0

k) for all k = 1, · · · ,K − 1. Note that β̂j = β̂j+1 when predictors j and
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(j + 1) belong to the same group in A. The first-order conditions can be re-expressed as

0 =


− 1
nx

T
j ε+ 1

nx
T
j XA(µ̂− µ0) + λnsgn(µ̂k − µ̂k−1)− λnrj , j = jk

− 1
nx

T
j ε+ 1

nx
T
j XA(µ̂− µ0) + λnrj−1 − λnsgn(µ̂k+1 − µ̂k), j = jk+1 − 1

− 1
nx

T
j ε+ 1

nx
T
j XA(µ̂− µ0) + λnrj−1 − λnrj , elsewhere,

(1)

where rj ’s take any values on [−1, 1] and we set sgn(µ̂1 − µ̂0) = sgn(µ̂K+1 − µ̂K) = 0 by

default. Denote by δ0
k = sgn(µ0

k+1 − µ0
k) when 1 ≤ k ≤ K − 1 and δ0

k = 0 when k = 0,K;

similarly, δ̂k for 1 ≤ k ≤ K. In (1), we first remove rj ’s by summing up the equations

corresponding to indices in each Ak. Using the fact that xA,k =
∑

j∈Ak
xj , we obtain

− 1
nx

T
A,kε+ 1

nx
T
A,kXA(µ̂− µ0) + λnδ̂k−1 − λnδ̂k = 0, k = 1, · · · ,K.

Under the sign restrictions δ̂k = δ0
k, k = 1, · · · ,K − 1, it becomes a pure linear equation

of (µ̂− µ0):

− 1
nX

T
Aε+ 1

nX
T
AXA(µ̂− µ0)− λnd0 = 0,

where d0 is the K-dimensional vector with d0
k = δ0

k − δ0
k−1, as defined in Section 3.4. It

follows immediately that

µ̂− µ0 = nλn(XT
AXA)−1d0 + (XT

AXA)−1XT
Aε. (2)

Second, given (µ̂ − µ0), (1) can be viewed as equations of rj ’s and we can solve them

directly. Denote ξ = 1
nX

TXA(µ̂−µ0)− 1
nX

Tε. For each j ∈ Ak, define A1
kj = {jk, · · · , j}

and A2
kj = {j + 1, · · · , jk+1 − 1}. The solutions of (1) are

rj = δ̂k−1 + λ−1
n

∑
i∈A1

kj

ξi = δ̂k − λ−1
n

∑
i∈A2

kj

ξi, j ∈ Ak, j 6= jk+1 − 1.

Here the two expressions of rj are equivalent because λn
∑

i∈Ak
ξi = δ̂k− δ̂k−1 from (1). It

follows that any convex combination of the two expressions is also an equivalent expression

of rj . Taking the combination coefficients as |A2
kj |/|Ak| and |A1

kj |/|Ak|, and plugging in

the sign restrictions δ̂k = δ0
k, k = 1, · · · ,K − 1, we obtain

rj = λ−1
n

( |A2
kj |
|Ak|

∑
i∈A1

kj

ξi −
|A1

kj |
|Ak|

∑
i∈A2

kj

ξi

)
+
( |A2

kj |
|Ak|

δ0
k−1 +

|A1
kj |
|Ak|

δ0
k

)

= nλ−1
n wj(ξ) +

( |A2
kj |
|Ak|

δ0
k−1 +

|A1
kj |
|Ak|

δ0
k

)
,

2



where the function wj(·) is defined as in (36). Here rj ’s still depend on (µ̂−µ0) through

ξ. Combining (2) to the definition of ξ gives

ξ = − 1
nX

T
[
I−XA(XT

AXA)−1XT
A

]
ε+ λnX

TXA(XT
AXA)−1d0

≡ − 1
nX

T P̄Aε+ λnb
0,

where P̄A = I−XA(XT
AXA)−1XT

A and b0 is defined as in Section 3.4. By plugging in the

expression of ξ, we can remove the dependence on (µ̂− µ0) of the solutions rj ’s:

rj = −λ−1
n wj(X

T P̄Aε) + nwj(b
0) +

( |A2
kj |
|Ak|

δ0
k−1 +

|A1
kj |
|Ak|

δ0
k

)
. (3)

Now, to show the existence of β̂ ∈ MA that satisfies both the sign restrictions and

first-order conditions, it suffices to show with probability at least 1−ε0−n−1K−(n∨p)−1,

(a) the rj ’s in (3) take values on [−1, 1];

(b) the µ̂ in (2) satisfy the sign restrictions, i.e., sgn(µ̂k+1 − µ̂k) = sgn(µ0
k+1 − µ0

k) for

all k = 1, · · · ,K − 1.

Consider (a) first. In (3), by Condition 3.4, the sum of the last two terms is bounded

by (1 − ωn) in magnitude. To deal with the first term, recall that in deriving (38), we

write wj(X
Tε) = aTj ε. It follows immediately that wj(X

T P̄Aε) = aTj P̄Aε = (P̄Aaj)
Tε.

Since ‖P̄Aaj‖ ≤ ‖aj‖, similarly to (38), we obtain

max
j∈Ak

|wj(XT P̄Aε)| ≤ C
√
σk|Ak| log(n ∨ p)/n, 1 ≤ k ≤ K,

except for a probability at most (n ∨ p)−1. Therefore, by the choice of λn in (main-18),

the absolute value of the first term is much smaller than ωn. So maxj |rj | ≤ 1 except for

a probability at most (n ∨ p)−1, i.e., (a) holds.

Next, consider (b). Since |µ0
k+1 − µ0

k| ≥ 2bn, it suffices to show that ‖µ̂−µ0‖∞ < bn.

Note that (2) can be rewritten as

µ̂− µ0 = D−1( 1
nD
−1XT

AXAD
−1)−1(λnD

−1d0 + n−1D−1XT
Aε).

It follows from Condition 3.1 that ‖µ−µ0‖ ≤ c−1
1 (λn‖D−2d0‖+ n−1‖D−1‖‖D−1XT

Aε‖).

First, ‖D−2d0‖2 ≤ 4
∑K

k=1
1
|Ak|2

. Second, from (26), ‖D−1XT
Aε‖ ≤ C

√
nK log(n), except

a probability of at most n−1K. Moreover, ‖D−1‖ = (mink |Ak|)−1/2 ≤ 1. These together

imply

‖µ̂− µ0‖ ≤ Cλn
( K∑
k=1

1

|Ak|2
)1/2

+ C

√
K log(n)

n
.
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From (main-18), the right hand side is much smaller than bn. It follows that ‖µ̂−µ0‖∞ �

bn. This proves (b).

In the second part of the proof, we derive the convergence rate of ‖β̂−β0‖. Note that

‖β̂ − β0‖ = ‖D(µ̂− µ0)‖, and from (2),

D(µ̂− µ0) = ( 1
nD
−1XT

AXAD
−1)−1

(
λnD

−1d0 + n−1D−1XT
Aε
)
.

Therefore, ‖β̂−β0‖ ≤ c−1
1 (λn‖D−1d0‖+n−1‖D−1XT

Aε‖), where ‖D−1d0‖2 ≤ 4
∑K

k=1
1
|Ak|

and ‖D−1XT
Aε‖ = Op(

√
nK) by (24). Combining these gives

‖β̂ − β0‖ = Op

(√
K/n+ λn

(∑
k

1
|Ak|
)1/2)

.

B.2 A useful proposition and its proof

The requirement that Υ preserves the order of β0 implies restrictions on how much the or-

dering (in terms of increasing values) of coordinates in β̃ deviates from that of β0. This is

reflected on how the segments {B1, · · · , BL} intersect with the true groups {A1, · · · , AK}.

Recall that Vkl = Ak ∩Bl. We have the following proposition:

Proposition B.1. When Υ preserves the order of β0, for each k, there exist dk and uk

such that Ak = ∪dk≤l≤ukVkl, and Vkl = Bl for dk < l < uk. For each l, there exist al and

bl such that Bl = ∪al≤k≤blVkl, and Vkl = Ak for al < k < bl.

Proposition B.1 indicates that there are two cases for each Ak: either Ak is contained

in a single Bl or it is contained in some consecutive Bl’s where except the first and last

ones, all the other Bl’s are fully occupied by Ak. Similarly, there are two cases for each

Bl: either it is contained in a single Ak or it is contained in some consecutive Ak’s where

except the first and last ones, all the other Ak’s are fully occupied by Bl.

Proof. Consider the first claim. Given k, let dk = min{l : Vkl 6= ∅} and uk = max{l :

Vkl 6= ∅}. Then Ak = ∪ukl=dkVkl. Moreover, for any dk < l < uk,

β0
A,k ≤ max

i∈Bdk

β0
i ≤ min

j∈Bl

β0
j ≤ max

j∈Bl

β0
j ≤ min

i∈Buk

β0
i ≤ β0

A,k,

where the first and last inequalities are because Ak ∩Bdk 6= ∅ and Ak ∩Buk 6= ∅, and the

inequalities in between come from Definition 2.3. It follows that β0
j = β0

A,k for all j ∈ Bl.

This means Bl ⊂ Ak, and hence Vkl = Bl.
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Consider the second claim. Given l, let al = min{k : Vkl 6= ∅} and bl = max{k : Vkl 6=

∅}, and hence, Bl = ∪blk=al
Vkl. For any al < k < bl and l′ < l,

max
i∈Bl′

β0
i ≤ min

i∈Bl

β0
i ≤ β0

A,al
< β0

A,k,

where the first inequality comes from Definition 2.3, the second inequality is because

Aal ∩ Bl 6= ∅ and the last inequality is from β0
A,1 < β0

A,2 < · · · < β0
A,K and al < k. It

follows that Bl′ ∩ Ak = ∅. Similarly, for any l′ > l, Bl′ ∩ Ak = ∅. As a result, Ak ⊂ Bl

and Vkl = Ak.

B.3 Proof of Theorem 4.1

Recall the mappings T , T−1 and T ∗ defined in the proof of Theorem 3.1. Write Qn(β) =

Ln(β) +Pn(β), where Ln(β) = 1
2n‖y−Xβ‖2 and Pn(β) = PΥ,λ1,λ2(β). For any µ ∈ RK ,

let

LAn (µ) = Ln(T−1(µ)), PAn (µ) = Pn(T−1(µ)),

and define QAn (µ) = LAn (µ) + PAn (µ).

We only need to show that β̂
oracle

is a strictly local minimizer of Qn with probability

at least 1−ε0−n−1K−2(n∨p)−1. Let E′1 be the event that the segmentation Υ preserves

the order of β0, and define the event E2 and B, a neighborhood of β0, the same as in the

proof of Theorem 3.1. Recall the statements (a) and (b) in the proof of Theorem 3.1. For

an event E′3 to be defined such that P ((E′3)c) ≤ 2(n ∨ p)−1, we shall show that (a) and

(b) hold on the event E′1 ∩ E2 ∩ E′3. The conclusion then follows immediately.

Consider (a) first. Same as before, it suffices to show (29). Recall that Vkl = Ak ∩Bl.

Define m1,kk′ =
∑L−1

l=1 (|Vkl||Vk′(l+1)| + |Vk′l||Vk(l+1)|) and m2,kk′ =
∑L

l=1 |Vkl||Vk′l|, for

1 ≤ k < k′ ≤ K. Write for short ρ1(·) = ρλ1(·) and ρ2(·) = ρλ2(·). It follows that

PAn (µ) = λ1

∑
1≤k<k′≤K

m1,kk′ρ1(|µk − µk′ |) + λ2

∑
1≤k<k′≤K

m2,kk′ρ2(|µk − µk′ |).

Therefore, it suffices to check

min
k 6=k′
|µk − µk′ | > amax{λ1n, λ2n}, for any β ∈ B,µ = T ∗(β).

The left hand side is lower bounded by 2bn−‖β−β0‖∞ ≥ 2bn−C
√
K log(n)/n� bn >

amax{λ1n, λ2n}, which proves (29).
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Next, we consider (b). Same as before, it suffices to show (33). For β ∈ B, denote by

β∗ = T−1 ◦ T ∗(µ) its orthogonal projection onto MA. By Taylor expansion,

Qn(β)−Qn(β∗) = − 1

n
(y −Xβm)TX(β − β∗) +

p∑
j=1

∂Pn(βm)

∂βj
(βj − β∗j )

≡ K1 +K2,

where βm is in the line between β and β∗. Let ρ̄i(t) = ρ′i(|t|)sgn(t), i = 1, 2. Rearranging

the sums in K2, we can write

K2 = λ1

L−1∑
l=1

∑
i∈Bl,j∈Bl+1

ρ̄1(βmi − βmj )
[
(βi − βj)− (β∗i − β∗j )

]
+λ2

L∑
l=1

∑
i,j∈Bl

ρ̄2(βmi − βmj )
[
(βi − βj)− (β∗i − β∗j )

]
.

For those (i, j) not belonging to the same true group, |βmi −βmj | ≥ 2bn− 2‖βm−β0‖∞ ≥

2bn − 2‖β∗ − β0‖∞ ≥ 2bn − 2‖β∗ − β0‖ ≥ 2bn − 2‖β − β0‖ > 2bn − C
√
K log(n)/n.

From the conditions on (bn, λ1n, λ2n), it is easy to see that ρl(|βmi − βmj |) = 0, l = 1, 2.

On the other hand, for those (i, j) belonging to the same true group, β∗i = β∗j and hence

sgn(βmi − βmj ) = sgn(βi − βj). Together, we find that

K2 = λ1

L−1∑
l=1

∑
i∈Bl,j∈Bl+1,i

A∼j

ρ′1(|βmi − βmj |)|βi − βj |+ λ2

L∑
l=1

∑
i,j∈Bl,i

A∼j

ρ′2(|βmi − βmj |)|βi − βj |

≥ λ1

L−1∑
l=1

∑
i∈Bl,j∈Bl+1,i

A∼j

ρ′1(2tn)|βi − βj |+ λ2

L∑
l=1

∑
i,j∈Bl,i

A∼j

ρ′2(2tn)|βi − βj |, (4)

where i
A∼ j means i and j are in the same true group, and the last inequality comes from

the concavity of ρ and the fact that |βmi − βmj | ≤ 2‖βm − β∗‖∞ ≤ 2‖β − β∗‖∞ ≤ 2tn.

Now, we simplify K1. Let z = z(βm) = XT (y−Xβm) and write K1 = − 1
nz

T (β−β∗).

Note that for each j ∈ Ak, β∗j = 1
|Ak|

∑
i∈Ak

βi = 1
|Ak|

∑uk
l=dk

∑
i∈Vkl βi, where Vkl, dk and

uk are as in Proposition B.1.

K1 = − 1

n

K∑
k=1

uk∑
l=dk

∑
j∈Vkl

zj(βj − β∗j )

= − 1

n

K∑
k=1

uk∑
l=dk

∑
j∈Vkl

zj
1

|Ak|

uk∑
l′=dk

∑
j′∈Vkl′

(βj − βj′)

= − 1

2n

K∑
k=1

1

|Ak|

uk∑
l=dk

uk∑
l′=dk

∑
j∈Vkl

∑
j′∈Vkl′

(zj − zj′)(βj − βj′)
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= − 1

n

K∑
k=1

1

|Ak|

uk∑
l=dk

∑
j,j′∈Vkl

(zj − zj′)(βj − βj′)

− 1

n

K∑
k=1

1

|Ak|
∑

dk≤l<l′≤uk

∑
j∈Vkl,j′∈Vkl′

(zj − zj′)(βj − βj′)

≡ K11 +K12.

Using notations in Proposition B.1,
∑K

k=1

∑uk
l=dk

=
∑L

l=1

∑bl
k=al

. Therefore,

K11 = − 1

n

L∑
l=1

bl∑
k=al

∑
j,j′∈Vkl

1

|Ak|
(zj − zj′)(µj − µj′)

= − 1

n

L∑
l=1

∑
j,j′∈Bl,j

A∼j′

θjj′(z)(µj − µj′), (5)

where θjj′(z) ≡ 1
|Ak|(zj − zj′) for j, j′ ∈ Ak. To simplify K12, note that given any (j, j′)

such that j ∈ Vkl and j′ ∈ Vkl′ , for some k and l < l′, we have

βj − βj′ =
1∏l′−1

h=l+1 |Vkh|

∑{
(il,il+1,··· ,il′ ): il=j, il′=j′;
ih∈Vkh,h=l+1,··· ,l′−1

}
l′−1∑
h=l

(βih − βih+1
).

Plugging this into the expression K12, we obtain

K12 = − 1

n

K∑
k=1

1

|Ak|
∑

dk≤l<l′≤uk

∑
{(il,il+1,··· ,il′ ): ih∈Vkh}

(zil − zil′ )∏l′−1
h=l+1 |Vkh|

l′−1∑
h=l

(βih − βih+1
)

= − 1

n

K∑
k=1

1

|Ak|
∑

dk≤l<l′≤uk

l′−1∑
h=l

∑
j∈Vkh,j′∈Vk(h+1)

ωjj′,ll′h(z)(βj − βj′),

where for (j, j′, l, l′, h) such that j ∈ Vkh, j′ ∈ Vk(h+1) and l ≤ h ≤ l′ − 1,

ωjj′,ll′h(z) =



zj − zj′ , l = h = l′ − 1

|Vkl′ |
|Vk(l+1)|

(zj − z̄kl′), l = h < l′ − 1

|Vkl||Vkl′ |
|Vkh||Vk(h+1)|

(z̄kl − z̄kl′), l < h < l′ − 1

|Vkl|
|Vk(l′−1)|

(z̄kl − zj′), l < h = l′ − 1

,

and z̄kl is the average of {zj : j ∈ Vkl}. By rearranging terms,
∑K

k=1

∑
dk≤l<l′≤uk

∑l′−1
h=l =∑L−1

h=1

∑bh
k=ah

∑
(l,l′):dk≤l≤h<l′≤uk . Therefore,

K12 = − 1

n

L−1∑
h=1

bh∑
k=ah

1

|Ak|
∑

j∈Vkh,j′∈Vk(h+1)

[ h∑
l=dk

uk∑
l′=h+1

ωjj′,ll′h(z)
]
(βj − βj′)
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= − 1

n

L−1∑
h=1

∑
j∈Bh,j′∈Bh+1,j

A∼j′

τjj′(z)(βj − βj′), (6)

where

τjj′(z) =
1

|Ak|

h∑
l=dk

uk∑
l′=h+1

ωjj′,ll′h(z)

=
1

|Ak|

h−1∑
l=dk

uk∑
l′=h+2

|Vkl||Vkl′ |
|Vkh||Vk(h+1)|

(z̄kl − z̄kl′) +
1

|Ak|

h−1∑
l=dk

|Vkl|
|Vkh|

(z̄kl − zj′)

+
1

|Ak|

uk∑
l′=h+2

|Vkl′ |
|Vk(h+1)|

(zj − z̄kl′) +
1

|Ak|
(zj − zj′)

=
1

|Ak|

h−1∑
l=dk

|Vkl|(
∑uk

l′=h+1 |Vkl′ |)
|Vkh||Vk(h+1)|

z̄kl +
1

|Ak|

∑uk
l′=h+1 |Vkl′ |
|Vk(h+1)|

zj

− 1

|Ak|

uk∑
l′=h+2

(
∑h

l=dk
|Vkl|)|Vkl′ |

|Vkh||Vk(h+1)|
z̄kl′ −

1

|Ak|

∑h
l=dk
|Vkl|

|Vkh|
zj′ .

Let A1
kh = ∪l≤hVkl and A2

kh = ∪l>hVkl. Then, for any (j, j′) such that j ∈ Bh, j′ ∈ Bh+1

and j, j′ ∈ Ak, we have the following expression

τjj′(z) =
1

|Vkh||Vk(h+1)|

( |A2
kh|
|Ak|

∑
i∈A1

k(h−1)

zi −
|A1

kh|
|Ak|

∑
i∈A2

k(h+1)

zi

)

+
( |A2

kh|
|Ak||Vk(h+1)|

zj −
|A1

kh|
|Ak||Vkh|

zj′
)
. (7)

Combining (5) and (6) gives

|K1| ≤
1

n

L−1∑
l=1

∑
i∈Bl,j∈Bl+1,

i
A∼j

|τij(z)||βi − βj |+
1

n

L∑
l=1

∑
i,j∈Bl,i

A∼j

|θij(z)||βi − βj |. (8)

Using the inequalities on K1 and K2, i.e., (4) and (8), we have

Qn(β)−Qn(β∗) ≥
L−1∑
l=1

∑
i∈Bl,j∈Bl+1,i

A∼j

[
λ1ρ
′
1(2tn)− n−1τij(z)

]
|βi − βj |

+

L∑
l=1

∑
i,j∈Bl,i

A∼j

[
λ2ρ
′
2(2tn)− n−1θij(z)

]
|βi − βj |.

Therefore, showing (33) reduces to showing that, over the event E′1 ∩ E2, for sufficiently

small tn,

n−1 max
ij
|τij(z)| < λ1ρ

′
1(2tn) and n−1 max

ij
|θij(z)| < λ2ρ

′
2(2tn), (9)
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except for a probability of at most 2(n ∨ p)−1.

Note that z = XTε−η−ηm, where η = XTX(β∗−β0) and ηm = XTX(βm−β∗). It is

seen that ‖ηm‖ ≤ λmax(XTX)‖β−β∗‖ ≤ λmax(XTX)tn. So τij(z) = τij(X
Tε+η)+rem,

where the remainder term is uniformly bounded by gn(tn), for some function gn(·) such

that gn(0+) = 0. Similar situations are observed for θij(z). As a result, to show (9), it

suffices to show that over the event E′1 ∩ E2,

n−1 max
ij
|θij(XTε+ η)| < λ2ρ

′
2(0+), (10)

and

n−1 max
ij
|τij(XTε+ η)| < λ1ρ

′
1(0+), (11)

except for a probability of at most 2(n ∨ p)−1.

First, consider (10). Let E′31 be the event

n−1 max
i,j∈Ak

|θij(XTε)| ≤ |Ak|−1
√

6c−1
3 log(2(n ∨ p))/n, for all k.

Note that θij(X
Tε) = 1

|Ak|(xi − xj)
Tε, where ‖xi − xj‖ ≤

√
2n. Applying Condition 3.3

and the union bound,

P ((E′31)c) ≤
K∑
k=1

∑
i,j∈Ak

P

(
(xi − xj)

Tε > ‖xi − xj‖
√

3c−1
3 log(2(n ∨ p))

)
< (n ∨ p)−1.

Moreover, |θij(η)| ≤ 2
|Ak| maxi′ |ηi′ − η̄k|, where η̄k is the average of {ηi : i ∈ Ak}. Note

that maxi∈Ak
|ηi − η̄k| ≤ nνk‖β∗ − β0‖ and ‖β∗ − β0‖ ≤ ‖β − β0‖ because β∗ is the

orthogonal projection of β onto MA. Noticing that β ∈ B, we obtain

n−1 max
i,j
|θij(η)| ≤ Cνk|Ak|−1

√
K log(n)/n.

Combing the above results to the choice of λ2 gives n−1 maxi,j |θij(z)| � λ2, and (10)

follows.

Next, consider (11). First, we bound τjj′(X
Tε). From (7), τjj′(X

Tε) = ãTjj′ε, where

ãjj′ =
1

|Vkh||Vk(h+1)|

[
|A2

kh|
|Ak|

XA1
k(h−1)

1A1
k(h−1)

−
|A1

kh|
|Ak|

XA2
k(h+1)

1A2
k(h+1)

]
+

|A2
kh|

|Ak||Vk(h+1)|
xj −

|A1
kh|

|Ak||Vkh|
xj′ .

Recall that nσk is the maximum eigenvalue of XT
Ak

XAk
. It follows that

‖ãjj′‖2 ≤ 4nσk

(
|A2

kh|2|A1
k(h−1)|+ |A

1
kh|2|A2

k(h+1)|
|Vkh|2|Vk(h+1)|2|Ak|2

+
|A2

kh|2

|Ak|2|Vk(h+1)|2
+

|A1
kh|2

|Ak|2|Vkh|2

)

9



≤ 4nσk



|Ak|
|Bh|2|Bh+1|2

+ 1
|Bh+1|2

+ 1
|Bh|2

, h > dk, h+ 1 < uk
|Ak|

|Bh|2|Vk(h+1)|2
+ 1
|Ak|2

+ 1
|Bh|2

, h > dk, h+ 1 = uk

|Ak|
|Vkh|2|Bh+1|2

+ 1
|Bh+1|2

+ 1
|Ak|2

, h = dk, h+ 1 < uk

2
|Ak|2

, h = dk, h+ 1 = uk

≤ nσk
12|Ak|

min{|Ak|3, mindk≤h≤uk{|Bh|2}}
= 12nσkφk. (12)

Here in the second inequality, we have used the following facts: (1)From Proposition B.1,

for dk < h < uk, |Vkh| = |Bh| and |Vk(h+1)| = |Bh+1|. (2) When h = dk, |A1
kh| = |Vkh|;

when h+1 = uk, |A2
kh| = |Vk(h+1)|. (3) |A1

k(h−1)| < |A
1
kh| ≤ |Ak|, |A2

k(h+1)| < |A
2
kh| ≤ |Ak|,

and |A1
kh| + |A2

kh| = |Ak|. In the third inequality, we have used the fact that |Vkh| ≥ 1

when Vkh 6= ∅. Let E′32 be the event that

n−1 max
j,j′
|τjj′(XTε)| ≤ C

√
σkφk log(n ∨ p)/n, for all k. (13)

Applying Condition 3.3, (12) and the union bound, it is easy to see that P ((E′32)c) <

(n ∨ p)−1 for some large enough constant C > 0.

Second, we bound τjj′(η). We observe from (7) that τjj′(v) = 0, for any v with equal

elements in Ak. Thus, τjj′(η) = τjj′(η − η̄k1), where η̄k is the average over the elements

of η in Ak. By similarly analysis to that in (12), we find that

|τjj′(η)|2 = |τjj′(η − η̄k1)|2 ≤ 12φk
(

max
i∈Ak

{|ηi − η̄k|}
)2
.

By definition, maxi∈Ak
{|ηi − η̄k|} ≤ nνk‖β∗ − β0‖ ≤ Cνk

√
nK log(n). It follows that

n−1 max
j,j′
|τjj′(η)| ≤ Cνk

√
ukK log(n)/n. (14)

Combining (13) and(14), we then obtain (11) from the condition on λ1.

B.4 Proof of Theorem 4.2

Since β̂
oracle

A − β0 = (XT
AXA)−1(XT

Aε), to show the claim, it suffices to show

Bn(XT
AXA)−1/2XT

Aε
d→ N(0,H).

Equivalently, for any a ∈ Rq,

aTBn(XT
AXA)−1/2XT

Aε
d→ N(0,aTHa). (15)

10



Let v = XA(XT
AXA)−1/2BT

na, and write the left hand side of (15) as vTε =
∑n

i=1 viεi.

The viεi’s are independently distributed with E[viεi] = 0 and E[|viεi|2] = v2
i . Let s2

n =∑n
i=1E[|viεi|2]. By Lindeberg’s central limit theorem, if for any ε > 0,

lim
n→∞

s−2
n E

[
|viεi|21{|viεi| > εsn}

]
= 0, (16)

then s−1
n

∑n
i=1 viεi

d→ N(0, 1). Since s2
n = aTBnB

T
na → aTHa, (15) follows immediately

from the Slutsky’s lemma.

It remains to show (16). Using the formula E[X1{X > ε}] = εP (X > ε) +
∫∞
ε P (X >

u)du for X = |viεi|2, we have

E
[
|viεi|21{|viεi| > εsn}

]
= ε2s2

nP (|viεi| > εsn) +

∫ ∞
εsn

P (|viεi| >
√
u)du.

From Condition 3.3,

P (|viεi| > εsn) ≤ 2e−c3ε
2s2n/|vi|2 ≤ 2|vi|4

c2
3ε

4s4
n

,

where the last inequality is due to that exp(−x) ≤ x−k for any x > 0 and positive integer

k. Similarly,∫ ∞
εsn

P (|viεi| >
√
u)du ≤ 2

∫ ∞
εsn

e−c3u/|vi|
2
du =

2|vi|2

c3
e−c3εsn/|vi|

2 ≤ 2|v2|4

c3εsn
.

Note that s−1
n = O(1) since sn → aTHa. We have

1

s2
n

n∑
i=1

E
[
|viεi|21{|viεi| > εsn}

]
≤ C

n∑
i=1

|vi|4 = C‖XA(XT
AXA)−1/2BT

n‖44

≤ C
(
‖XA(XT

AXA)−1/2BT
n‖2,4 · ‖a‖

)4
.

The right hand side is o(1) by assumption. This proves (16).

B.5 Proof of Corollary 4.1

It is easy to see that the asymptotic variance of aTn (β̂
ols
− β0) is aTn (XTX)−1an = v1n.

Consider aTn (β̂ − β0). Noting that β̂ − β0 = MnD(β̂A − β0
A), we can write

aTn (β̂ − β0) = aTnMnD(XT
AXA)−1/2(XT

AXA)1/2(β̂A − β0
A),

where D = diag(|A1|1/2, · · · , |AK |1/2). Take Bn = aTnMnD(XT
AXA)−1/2 and apply The-

orem 4.2. It implies that the asymptotic variance of aTn (β̂ − β0) is

BnB
T
n = aTnMnD(XT

AXA)−1DMT
nan.

11



Observing that XA = XMnD, the above quantity is equal to

aTnMn(MT
nX

TXMn)−1MT
nan = v2n.

Next, we show v1n > v2n. Since MT
nMn = IK , there exists an orthogonal matrix Q

such that Mn is equal to the first K columns of Q. Write b = QTan and G = QTXTXQ.

Direct calculations yield v1n = bTG−1b and v2n = bT1 G
−1
11 b1, where b1 is the subvector

of v formed by its first K elements and G11 is the upper left K ×K block of G. From

basic algebra, v1n ≥ v2n.

B.6 Proof of Theorem 4.3

The proof of ‖β̂
oracle

− β0‖ = Op(
√
K/n) is the same as that in Theorem 3.1. We only

need to show that β̂
oracle

is a strictly local minimizer of Qsparsen , with probability at least

1−ε0−n−1K−(n∨s)−1−(n∨ s̃)−1. Without loss of generality, we assume S̃ = {1, · · · , p}

and s̃ = p.

Let B = {β : ‖β−β0‖ ≤ C
√
K log(n)/n}, for a sufficiently large constant C > 0. By

assumption and (25), β̂
oracle

∈ B except for a probability of at most (ε0 +n−1K). For any

β ∈ B, let βS be the vector such that βS,j = βj1{j ∈ S}, where S is the support of β0;

and let β∗S be the orthogonal projection of βS ontoM∗A, namely, β∗S,j = 1
|Ak|

∑
i∈Ak

βj for

any j ∈ Ak, and β∗S,j = 0 for any j /∈ S. We aim to show that except for a probability of

at most (n ∨ s)−1 + (n ∨ p)−1,

(a) For any β ∈ B,

Qsparsen (β∗S) ≥ Qsparsen (β̂
oracle

), (17)

and the inequality is strict whenever β∗S 6= β̂
oracle

.

(b) There exists a positive sequence {tn} such that, for any β ∈ B, ‖βS − β̂
oracle

‖ ≤ tn,

Qsparsen (βS) ≥ Qsparsen (β∗S), (18)

and the inequality is strict whenever βS 6= β∗S .

(c) There exists a positive sequence {t′n} such that, for any β ∈ B, ‖β − β̂
oracle

‖ ≤ t′n,

Qsparsen (β) ≥ Qsparsen (βS), (19)

and the inequality is strict whenever β 6= βS .
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Suppose (a)-(c) hold. Consider the neighborhood of β̂
oracle

defined as Bn = {β ∈ B :

‖β−β̂
oracle

‖ ≤ min{tn, t′n}}. It is easy to see that ‖β−β̂
oracle

‖ ≤ t′n and ‖βS−β̂
oracle

‖ ≤

‖β − β̂
oracle

‖ ≤ tn for any β ∈ Bn. As a result, Qsparsen (β) ≥ Qsparsen (β̂
oracle

) for β ∈ Bn,

and the inequality is strict except that β = βS = β∗S = β̂
oracle

. It follows that β̂
oracle

is

a strictly local minimizer of Qsparsen .

Now, we show (a)-(c). We claim that (a) and (b) hold except for a probability of at

most (n ∨ s)−1. The proofs are exactly the same as those for (27) and (28), by noting

that Qsparsen (β) = Qn(β) for any β ∈ B whose support is contained in S. To show (c),

note that ‖β−βS‖ ≤ ‖βS − β̂
oracle

‖, since βS is the projection of β onto the coordinate

space of S and β̂
oracle

belongs to this space. So it suffices to show that (19) holds for all

β ∈ B such that ‖β − βS‖ ≤ t′n.

By Taylor expansion,

Qsparsen (β)−Qsparsen (βS) = − 1

n
(y −Xβm)TX(β − βS) + λn

∑
j /∈S

ρ̄(βmj )βj ,

where βm lies in the line between β and βS . Let z = z(β̂
m

) = XT (y − Xβm). First,

note that sgn(βmj ) = sgn(βj) for j /∈ S. Second, ‖βm − βS‖ ≤ ‖β− βS‖ ≤ t′n. Hence, for

j /∈ S, |βmj | ≤ t′n. By the concavity of ρ, ρ′(|βmj |) ≥ ρ′(t′n). Combining the above, we get

Qsparsen (β)−Qsparsen (βS) ≥
∑
j /∈S

[λnρ
′(t′n)− n−1|zj |]|βj |.

Write z = XTε + η + ηm, where η = XTX(β0 − βS) and ηm = XTX(βS − βm). Since

‖βS − βm‖ ≤ ‖βS − β‖ ≤ t′n, ‖ηm‖∞ ≤ λmax(XTX)t′n. Consequently,

Qsparsen (β)−Qsparsen (βS) ≥
∑
j /∈S

[
λnρ

′(0+)− n−1‖XTε+ η‖∞ − gn(t′n)
]
|βj |,

where gn(t′n) = λn[ρ′(0+)− ρ′(tn)] + n−1λmax(XTX)t′n satisfying gn(0) = 0. Therefore, if

n−1‖XTε+ η‖∞ < λnρ
′(0+), (20)

then there always exits sufficiently small t′n such that (19) holds.

It remains to show (20). First, by Condition 3.3 and applying the probability union

bound, ‖XTε‖∞ ≤
√

(2n/c3) log(2(n ∨ p)), except for a probability of at most (n ∨ p)−1.

Second, ‖η‖∞ ≤ ‖XTXS‖2,∞‖βS − β0‖ ≤ ‖XTXS‖2,∞ · C
√
K log(n)/n. where we have

used the fact that ‖β0 − βS‖ ≤ ‖β − β0‖ ≤ C
√
K log(n)/n. Combining the two parts,

n−1‖XTε+ η‖∞ ≤ C
(√

log(n ∨ p)/n+ ‖XTXS‖2,∞
√
K log(n)/n

)
� λn,

which proves (20).
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