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Homogeneity Pursuit
Zheng Tracy KE, Jianqing FAN, and Yichao WU

This article explores the homogeneity of coefficients in high-dimensional regression, which extends the sparsity concept and is more general
and suitable for many applications. Homogeneity arises when regression coefficients corresponding to neighboring geographical regions or
a similar cluster of covariates are expected to be approximately the same. Sparsity corresponds to a special case of homogeneity with a large
cluster of known atom zero. In this article, we propose a new method called clustering algorithm in regression via data-driven segmentation
(CARDS) to explore homogeneity. New mathematics are provided on the gain that can be achieved by exploring homogeneity. Statistical
properties of two versions of CARDS are analyzed. In particular, the asymptotic normality of our proposed CARDS estimator is established,
which reveals better estimation accuracy for homogeneous parameters than that without homogeneity exploration. When our methods are
combined with sparsity exploration, further efficiency can be achieved beyond the exploration of sparsity alone. This provides additional
insights into the power of exploring low-dimensional structures in high-dimensional regression: homogeneity and sparsity. Our results also
shed lights on the properties of the fused Lasso. The newly developed method is further illustrated by simulation studies and applications to
real data. Supplementary materials for this article are available online.

KEY WORDS: Clustering; Sparsity

1. INTRODUCTION

Driven by applications in genomics, image processing, etc.,
high dimensionality has become one of the major themes in
statistics. See Bühlmann and van de Geer (2011) and refer-
ences therein for an overview of recent developments in this
area. To overcome the difficulty of fitting high-dimensional
models, one usually assumes that the true parameters lie in a
low-dimensional subspace. For example, many papers focus on
sparsity, that is, only a small fraction of coefficients are nonzero
(Tibshirani 1996; Chen, Donoho, and Saunders 1998). In this
article, we consider a more general type of low-dimensional
structure: homogeneity, that is, the regression coefficients share
the same values in their unknown clusters. A motivating ex-
ample is the gene network analysis, where it is assumed that
genes cluster into groups which play similar roles in molecu-
lar processes (Kim and Xing 2009; Li and Li 2010). It can be
modeled as a linear regression problem with groups of homoge-
neous coefficients. Similarly, in diagnostic lab tests, one often
counts the number of positive results in a battery of medical
tests, which implicitly assumes that their regression coefficients
(impact) in the joint models are approximately the same. In
spatial-temporal studies, it is not unreasonable to assume that
the dynamics of neighboring geographical regions are similar,
namely, their regression coefficients are clustered (Huang et al.
2010; Fan, Lv, and Qi 2011). In the same vein, financial returns
of similar sectors of industry share similar loadings on risk
factors.
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Homogeneity is a more general assumption than sparsity,
where the latter can be viewed as a special case of the former
with a large group of 0-value coefficients. In addition, the atom
0 is known to data analysts. One advantage of assuming homo-
geneity rather than sparsity is that it enables us to possibly select
more than n variables (n is the sample size). It is well known
that the sparsity-based techniques, such as the Lasso, can select
at most n variables. Moreover, identifying the homogeneous
groups naturally provides a structure in the covariates, which
can be helpful in scientific discoveries.

Regression under the homogeneity setting has been previ-
ously studied in the literature. Park, Hastie, and Tibshirani
(2007) proposed a two-step method. Their method performs
hierarchical clustering on the predictors, cuts the obtained den-
drogram at an appropriate level, and treats the cluster averages as
new predictors. The fused Lasso (Tibshirani et al. 2005; Fried-
man et al. 2007) can also be regarded as an effort of exploring
homogeneity, with the assistance of neighborhoods defined ac-
cording to either time or location. In this sense, our newly pro-
posed methods are different since we do not know such a neigh-
borhood a priori. The clustering of homogeneous coefficients is
completely data-driven. For example, in the fused Lasso, where
a complete ordering of the covariates is given, Tibshirani et al.
(2005) used the L1 penalty to penalize the pairwise differences
of adjacent coordinates; in the case without a complete order-
ing, they suggest penalizing the pairs of “neighboring” nodes
in the sense of a general distance measure. Bondell and Reich
(2008) proposed the method OSCAR where a special octago-
nal shrinkage penalty is applied to each pair of coordinates to
promote equal-value solutions. Shen and Huang (2010) devel-
oped an algorithm called grouping pursuit, where they used the
truncated L1 penalty to penalize the pairwise differences for all
pairs of coordinates. In an extension, Zhu, Shen, and Pan (2013)
considered simultaneous grouping pursuit and feature selection
by including additional truncated L1 penalties on the individual
coefficients. Yang et al. (2012) explored simultaneous feature
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grouping and selection with the assistance of an undirected
graph by penalizing the pairwise difference for each pair of
coordinates that are connected by an edge in the graph. All the
aforementioned methods either depend on a known ordering or
graph of the covariates, which is sometimes not available, or use
exhaustive pairwise penalties, which increase the computational
complexity. Yang and He (2012) considered the homogeneity
across coefficients of different percentile levels in quantile re-
gression, and propose a Bayesian framework by using shrinkage
priors to promote homogeneity. Although similar ideas may be
applied to regression models, their settings are very different
from ours, and there are no existing results on feature grouping
for their method.

In this article, we propose a new method called clustering
algorithm in regression via data-driven segmentation (CARDS)
to explore homogeneity. The main idea of CARDS is to take
advantage of a preliminary estimate without homogeneity struc-
ture and to shrink those coefficients that are estimated “closely,”
further toward each other to achieve homogeneity. In the basic
version of CARDS, we first build an ordering of covariates from
the preliminary estimate and run a penalized least squares after-
ward with fused penalties in the new ordering. The number of
penalty terms is only (p − 1), compared to p(p − 1)/2 in the
exhaustive pairwise penalties. On the other hand, an advanced
version of CARDS builds an “ordered segmentation” on the co-
variates, which can be viewed as a generalized ordering, and
imposes “hybrid pairwise penalties,” which can be viewed as a
generalization of fused penalties. This version of CARDS toler-
ates possible misorderings in the preliminary estimate better and
is thus more robust. Compared with other existing methods for
homogeneity exploration, CARDS can successfully deal with
the case of unordered covariates. At the same time, it avoids
using exhaustive pairwise penalties and can be computationally
more efficient than the grouping pursuit and OSCAR.

We study CARDS in details by providing some theoretical
analysis. It reveals that the sum of squared errors of estimated
coefficients is Op(K/n), where K is the number of true ho-
mogeneous groups. Therefore, the smaller the number of true
groups is, the better precision it can achieve. In particular, when
K = p, there is no homogeneity to explore and the result re-
duces to the case without grouping. Moreover, to exactly re-
cover the true groups with high probability, the minimum signal
strength (the gaps between different groups) is of the order
maxk{

√
|Ak| log(p)/n}, where |Ak|’s are sizes of true groups.

In addition, the asymptotic normality of our proposed CARDS
estimator is established, which reveals better estimation accu-
racy than that without homogeneity exploration. Furthermore,
our results can be combined with the sparsity-based results to
provide additional insights into the power of exploring low-
dimensional structure in high-dimensional regression: homo-
geneity and sparsity. As a byproduct, our analysis on the basic
version of CARDS also establishes a framework for analyzing
the fused type of penalties, which is new to our knowledge.

Throughout this article, we consider the following linear re-
gression setting

y = Xβ0 + ε, (1)

where X = (x1, . . . , xp) is an n × p design matrix, y =
(y1, . . . , yn)T is an n × 1 vector of response, β0 =

(β0
1 , . . . ,β0

p)T denotes the true parameters of interest, and
ε = (ε1, . . . , εn)T contains independently and identically dis-
tributed noises with E(εi) = 0 and E(ε2

i ) = σ 2. We assume
further that there is a partition of {1, 2, . . . , p} denoted as
A = (A0, A1, . . . , AK ) such that

β0
j = β0

A,k for all j ∈ Ak, (2)

where β0
A,k is the common value shared by all regression

coefficients whose indices are in Ak . By default, β0
A,0 = 0,

so A0 is the group of 0-value coefficients. This allows us
to explore homogeneity and sparsity simultaneously. Write
β0

A = (β0
A,1, . . . ,β

0
A,K )T . Without loss of generality, we assume

β0
A,1 < β0

A,2 < · · · < β0
A,K .

Our theory and methods are stated for the standard least-
squares problem although they can be adapted to other more
sophisticated models. For example, when forecasting housing
appreciation in the United States (Fan, Lv, and Qi 2011), one
builds the spatial-temporal model

Yit = XT
itβ i + εit , (3)

in which i indicates a spatial location and t indicates time. It is
expected that the β i’s are approximately the same for neighbor-
ing zip codes i and this type of homogeneity can be explored
in a similar fashion. Similarly, when Yit represents the return
of a stock and Xit = Xt stands for common market risk factors,
one can assume a certain degree of homogeneity within each
sector of industry; namely, the factor loading vector β i is ap-
proximately the same for stocks belonging to the same sector of
industry.

Throughout this article, R denotes the set of real numbers
and Rp denotes the p-dimensional real Euclidean space. For
any a, b ∈ R, a ∨ b denotes the maximum between a and b.
For any positive sequences {an} and {bn}, we write an ≫ bn if
an/bn → ∞ as n → ∞. Given 1 ≤ q < ∞, for any vector x,
∥x∥q = (

∑
j |xj |q)1/q denotes the Lq-norm of x and ∥x∥∞ =

maxj {|xj |}. For any matrix M, ∥M∥q = maxx:∥x∥q=1 ∥Mx∥q de-
notes the matrix Lq-norm of M. In particular, ∥M∥∞ is the
maximum absolute row sum of M. We omit the subscript q
when q = 2. ∥M∥max = maxi,j {|Mij |} denotes the matrix max
norm. When M is symmetric, λmax(M) and λmin(M) denote the
maximum and minimum eigenvalues of M, respectively.

The rest of the article is organized as follows. Section 2 de-
scribes CARDS, including the basic, advanced, and shrinkage
versions. Section 3 studies theoretical properties of the basic
version of CARDS, and Section 4 analyzes the advanced and
shrinkage versions. Sections 5 and 6 present the results of sim-
ulation studies and real data analysis, respectively. Some con-
cluding remarks are given in Section 7. Proofs can be found in
the Appendix and online supplemental materials.

2. CARDS: A DATA-DRIVEN PAIRWISE SHRINKAGE
PROCEDURE

2.1 Basic Version of CARDS

Without considering the homogeneity assumption (2), there
are many methods available for fitting model (1). Let β̃ be such
a preliminary estimator. A simple idea to generate homogene-
ity is as follows: first, rearrange the coefficients in β̃ in the
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ascending order; second, group together those adjacent indices
whose coefficients in β̃ are close to each other; finally, force
indices in each estimated group to share a common coefficient
and refit model (1). A problem of this naive procedure is how
to group the indices. Alternatively, we can run a penalized least
squares to simultaneously extract the grouping structure and
estimate coefficients. To shrink coefficients of adjacent indices
(after reordering) toward homogeneity, we can add fused penal-
ties, that is, {|βi+1 − βi |, i = 1, . . . , p − 1} are penalized. This
leads to the following two-stage procedure:

• Preordering: Construct the rank statistics {τ (j ) : 1 ≤ j ≤
p} such that β̃τ (j ) is the jth smallest value in {β̃i , 1 ≤ i ≤
p}, that is,

β̃τ (1) ≤ β̃τ (2) ≤ · · · ≤ β̃τ (p). (4)

• Estimation: Given a folded concave penalty function pλ(·)
(Fan and Li 2001) with a regularization parameter λ, the
final estimate is given by

β̂ = arg min
β

{
1

2n
∥ y − Xβ∥2 +

p−1∑

j=1

pλ(|βτ (j+1) − βτ (j )|)
}
.

(5)

We call this two-stage procedure basic CARDS (bCARDS).
At the first stage, bCARDS establishes a data-driven rank

mapping τ (·) based on the preliminary estimator β̃. At the sec-
ond stage, only “adjacent” coefficient pairs in the order τ are
penalized, resulting in only (p − 1) penalty terms in total. In
addition, (5) does not require that βτ (j ) ≤ βτ (j+1). This allows
coordinates in β̂ to have a different order of increasing values
from that in β̃.

With an appropriately large tuning parameter λ, β̂ is a piece-
wise constant vector in the order τ and consequently its elements
have homogeneous groups. In Section 3, we shall show that, if
τ is consistent with the order of β0, that is,

β0
τ (1) ≤ β0

τ (2) ≤ · · · ≤ β0
τ (p), (6)

then under some regularity conditions, β̂ can consistently esti-
mate the true coefficient groups of β0 with high probability.

When pλ(·) is a folded-concave penalty function (e.g., SCAD,
Fan and Li 2001, MCP, Zhang 2010), (5) is a nonconvex opti-
mization problem. It is generally challenging to find the global
minimizer. The local linear approximation (LLA) algorithm can
be applied to find a local minimizer for any fixed initial solution;
see Zou and Li (2008), Fan, Xue, and Zou (2012) and references
therein for details. The coupling of the concave convex proce-
dure (CCCP) can also be applied to produce a local minimizer;
see Kim, Choi, and Oh (2008), Wang, Kim, and Li (2013) for a
detailed explanation of CCCP.

2.2 Advanced Version of CARDS

To guarantee the success of bCARDS, (6) is an essential
condition. It requires that whenever β0

i < β0
j , τ (i) < τ (j ) must

hold. This imposes fairly strong conditions on the preliminary
estimator β̃. For example, (6) can be violated if ∥β̃ − β0∥∞ is
larger than the minimum gap between groups. To relax such a
restrictive requirement, we now introduce an advanced version

of CARDS, where the main idea is to use less information from
β̃ and to add more penalty terms in (5).

We first introduce the ordered segmentation, which can be
viewed as a generalized ordering. Note that each rank mapping
τ in bCARDS actually defines a partition of {1, . . . , p} into
p disjoint sets B1, . . . , Bp with Bj = {τ (j )} being a singleton.
Similarly, we may divide {1, . . . , p} into L(≤ p) disjoint sets
B1, . . . , BL, where the Bl’s are not necessarily singletons. We
call such Bl’s segments. The segments B1, . . . , BL are ordered,
but the ordering of coordinates within each segment is not de-
fined. This is similar to letter grades assigned to a course. A
formal definition is as follows:

Definition 1. For an integer 1 ≤ L ≤ p, the mapping ϒ :
{1, . . . , p} → {1, . . . , L} is called an ordered segmentation if
the sets Bl ≡ {1 ≤ j ≤ p : ϒ(j ) = l}, 1 ≤ l ≤ L, form a parti-
tion of {1, . . . , p}.

When L = p, ϒ is a one-to-one mapping and it defines a
complete ordering.

Note that, in the basic version of CARDS, the preliminary
estimator β̃ produces a complete rank mapping τ . Now in the
advanced version of CARDS, instead of extracting a complete
ordering, we only extract an ordered segmentation ϒ from β̃.
The analogue is similar to grading an exam: overall score rank
(percentile rank) versus letter grade. Let δ > 0 be a predeter-
mined parameter. First, obtain the rank mapping τ as in (4) and
find all indices 1 < i2 < i3 < · · · < iL such that the gaps

β̃τ (j ) − β̃τ (j−1) > δ, j = i2, . . . , iL.

Then, construct the segments

Bl = {τ (il), τ (il + 1), . . . , τ (il+1 − 1)}, l = 1, . . . , L, (7)

where i1 = 1 and iL+1 = p + 1. This process is indeed similar
to the letter grades that we assign to a course. The intuition
behind this construction is that when β̃τ (j+1) ≤ β̃τ (j ) + δ, that
is, the estimated coefficients of two “adjacent coordinates” differ
by only a small amount, we do not trust the ordering between
them and group them into a same segment. Compared to the
complete ordering τ , the ordered segments {B1, . . . , BL} use
less information from β̃ and, hence, are less sensitive to the
estimation error in β̃.

Given an ordered segmentation ϒ , we wish to take advantage
of the order of segments B1, . . . , BL and at the same time allow
flexibility of order shuffling within each segment. Toward this
goal, we introduce the hybrid pairwise penalty.

Definition 2. Given a penalty function pλ(·) and tuning pa-
rameters λ1 and λ2, the hybrid pairwise penalty corresponding
to an ordered segmentation ϒ is

Pϒ,λ1,λ2 (β) =
L−1∑

l=1

∑

i∈Bl,j∈Bl+1

pλ1 (|βi − βj |)

+
L∑

l=1

∑

i,j∈Bl

pλ2 (|βi − βj |). (8)

In (8), we call the first part between-segment penalty and
the second part within-segment penalty. The within-segment
penalty penalizes all pairs of indices in each segment, hence, it
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does not rely on any ordering within the segment. The between-
segment penalty penalizes pairs of indices from two adjacent
segments, and it can be viewed as a “generalized” fused penalty
on segments.

When L = p, each Bl is a singleton and (8) reduces to the
fused penalty in (5). On the other hand, when L = 1, namely,
no prior information about β, there is only one segment B1 =
{1, . . . , p}, and (8) reduces to the exhaustive pairwise penalty

P TV
λ (β) =

∑

1≤i,j≤p

pλ(|βi − βj |). (9)

It is also called the total variation penalty (Harchaoui and Lévy-
Leduc 2010), and the case with pλ(·) being a truncated L1

penalty is studied in Shen and Huang (2010). Thus, the penalty
(8) is a generalization of both the fused penalty and the total
variation penalty, which explains the name “hybrid.”

The main motivation of introducing the hybrid pairwise
penalty is to provide a set of intermediate versions between the
fused penalty and the total variation penalty. When using pair-
wise penalties to promote homogeneity, we need to penalize
“enough” pairs to guarantee that all true groups can be exactly
recovered when the signal-to-noise ratio is sufficiently large.
Given a consistent ordering, the fused penalty contains “just
enough” pairs; but when the ordering is inconsistent, we have to
penalize more pairs to achieve the aforementioned exact-group-
recovery (see Section 2.3 for a numerical example). However, it
may not be a good choice to include all pairs, that is, using the
total variation penalty, as the large number of redundant pairs
can result in statistical and computational inefficiency. The hy-
brid penalty is designed aiming to include “just enough” pairs
that adapt to the available “partial” ordering information of an
ordered segmentation.

Now, we discuss how the requirement (6) can be relaxed.
If we let Bj = {τ (j )}, then (6) can be written equivalently as
maxi∈Bj

β0
i ≤ mini∈Bj+1 β0

i , for 1 ≤ j ≤ p − 1. This definition
can be generalized to the case Bj ’s are not singletons.

Definition 3. An ordered segmentation ϒ preserves the order
of β0 if maxj∈Bl

β0
j ≤ minj∈Bl+1 β0

j , for l = 1, . . . , L − 1.

In the construction (7), even if (6) does not hold, it is still
possible that the resulting ϒ preserves the order of β0. Consider
a toy example where p = 4, and β0

τ (1) = β0
τ (2) = β0

τ (4) < β0
τ (3)

so that {τ (1), τ (2), τ (4)} and {τ (3)} are two true homogeneous
groups in β0. Here τ ranks the coordinate τ (3) ahead of τ (4)
based on the preliminary estimator β̃, but β0

τ (3) > β0
τ (4). So, τ

fails to give a consistent ordering. However, as long as β̃τ (4) ≤
β̃τ (3) + δ, τ (3) and τ (4) are grouped into the same segment in
(7), say, B1 = {τ (1), τ (2)} and B2 = {τ (3), τ (4)}. Then ϒ still
preserves the order of β0 according to Definition 3.

Now we formally introduce the advanced version of clustering
algorithm in regression via data-driven segmentation. It consists
of three steps, where the first two steps are very similar to the
way that we assign letter grades based on scores of an exam.

• Preliminary Ranking: Given a preliminary estimate β̃,
generate the rank mapping {τ (j ) : 1 ≤ j ≤ p} such that
β̃τ (1) ≤ β̃τ (2) ≤ · · · ≤ β̃τ (p).

• Segmentation: For a tuning parameter δ > 0, construct an
ordered segmentation ϒ as described in (7).

• Estimation: For tuning parameters λ1 and λ2, compute the
solution β̂ that minimizes

Qn(β) = 1
2n

∥ y − Xβ∥2 + Pϒ,λ1,λ2 (β). (10)

We call this procedure advanced CARDS (aCARDS).
In Section 4, we shall show that if ϒ preserves the order

of β0, under certain conditions, β̂ recovers the true homoge-
neous groups of β0 with high probability. Therefore, to guaran-
tee the success of aCARDS, we need the existence of a δ > 0 for
the preliminary estimator β̃ such that the associated ϒ preserves
the order of β0. The above toy example shows that even when (6)
fails, this condition can still hold. So aCARDS requires weaker
conditions on β̃ than bCARDS. This is due to that the hybrid
penalty contains penalty terms corresponding to more pairs of
indices, hence, it is more robust to misordering in τ . In fact,
bCARDS is a special case of aCARDS with δ = 0.

2.3 Comparison of Two Versions of CARDS

In this section, we first use a numerical example to compare
bCARDS and aCARDS. It reveals how the ordered segmentation
and hybrid pairwise penalty (8) play a role in aCARDS. We then
discuss how to choose between two versions of CARDS in real
data analysis.

We generate a dataset with p = 40 predictors and n = 100
samples. The predictors are divided into two homogeneous
groups, each of size 20. Let β0

j = −0.2 for j in Group 1 and
β0

j = 0.2 for j in Group 2. X1, . . . , Xn are generated indepen-
dently and identically from Np(0, I), and Yi = XT

i β0 + ϵi for
1 ≤ i ≤ n, where ϵ1, . . . , ϵn are independent noises with a stan-
dard normal distribution. In aCARDS, we take the ordinary least
squares (OLS) estimator as the preliminary estimator. Figure 1
plots the sorted OLS coefficients for a realization. The esti-
mated rank is not exactly consistent with the order of β0 since
the predictors τ (17) and τ (18), which belong to Group 2, are
mistakenly ranked ahead of some predictors in Group 1. If we
use only the fused penalty, the terms that involve τ (17) and
τ (18) are

pλ

(
|βτ (16) − βτ (17)|

)
+ pλ

(
|βτ (17) − βτ (18)|

)

+pλ

(
|βτ (18) − βτ (19)|

)
.

There are no penalty terms to shrink the coefficients of τ (17) and
τ (18) toward being equal to the coefficients of other predictors in
Group 2. Now, suppose that we extract an ordered segmentation
from the OLS coefficients by taking δ = 0.3; see Figure 1. Since
it allows for arbitrary order reshuffling within the segment B4,
this ordered segmentation preserves the order of β0, that is,
Definition 3 is satisfied. The hybrid pairwise penalty associated
with this segmentation includes terms

pλ1

(
|βτ (17) − βτ (23)|

)
+ pλ1

(
|βτ (18) − βτ (23)|

)

between segments B4 and B5. So aCARDS will shrink the coef-
ficients of τ (17) and τ (18) toward being equal to the coefficient
of τ (23), a predictor in Group 2. Moreover, there are terms such
as

pλ1

(
|βτ (23) − βτ (24)|

)
+ pλ1

(
|βτ (23) − βτ (25)|

)

+ pλ1

(
|βτ (23) − βτ (26)|

)
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Figure 1. Illustration of the hybrid pairwise penalty and the aCARDS algorithm. Top panel: OLS coefficients and the associated ordered
segmentation. Red dots and blue crosses represent predictors from Group 1 and Group 2, respectively. Bottom panel: Solution paths of bCARDS
(left) and aCARDS (right) under misranking. The ranking and ordered segmentation are the same as in the top panel. For bCARDS, the horizontal
axis represents the parameter λ. For aCARDS, the horizontal axis represents the between-segment parameter λ1, where we fix the within-segment
parameter λ2 = 0.02. The vertical axis represents the estimated 40 regression coefficients, which are shrunk toward homogeneity (as the figures
do not start from the smallest λ, we do not see initial 40 regression coefficients).

between segments B5 and B6. So aCARDS will also shrink the
coefficient of τ (23) toward being equal to the coefficients of
other predictors in Group 2. Eventually, aCARDS will shrink
the coefficients of τ (17) and τ (18) toward being equal to the
coefficients of many other predictors in Group 2. This exam-
ple explains how the ordered segmentation and hybrid penalty
help overcome issues caused by misranking in the preliminary
estimator.

To better illustrate the effects of fused penalty and hybrid
penalty under misranking, we fix the estimated rank and or-
dered segmentation from above, and compute the solution paths
of both bCARDS and aCARDS. Note that the penalty terms
in both (5) and (8) are now fixed (hence we do not need the
parameter δ in aCARDS). For bCARDS, we let λ vary. For aC-
ARDS, we set the within-segment parameter λ2 = 0.02 and let
the between-segment parameter λ1 vary. Figure 1 displays the
solution paths. We see that although bCARDS does not include
the true grouping in the solution path owing to misranking, aC-

ARDS still achieves the true grouping, which is a benefit of the
hybrid penalty.

In practical data analysis, we need not differentiate between
two versions of CARDS, but the tuning parameter selection
process automatically tells us which version to use. This is
because bCARDS is a special case of aCARDS with δ = 0. We
only need to include 0 in the candidates of the parameter δ and
select δ in a data-driven manner (e.g., AIC, BIC, and GCV). We
call the resulting method CARDS, which involves a data-driven
selection between bCARDS and aCARDS.

2.4 CARDS Under Sparsity

In applications, we may need to explore homogeneity and
sparsity simultaneously. Often the preliminary estimator β̃ takes
into account the sparsity, namely it is obtained with a penalized
least-squares method (Fan and Li 2001; Tibshirani et al. 2005) or
sure independence screening (Fan and Lv 2008). Suppose β̃ has
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the sure screening property, that is, S0 ⊂ S̃ with high probability,
where S̃ and S0 denote the support of β̃ and β0, respectively.
We modify CARDS as follows: in the first two steps, using the
nonzero elements of β̃, we can similarly construct a data-driven
hybrid penalty only on coefficients of variables in S̃; in the third
step, we fix β̂ S̃c = 0 and obtain β̂ S̃ by minimizing the following
penalized least squares

Qsparse
n (β)

= 1
2n

∥ y − XS̃β S̃∥2 + Pϒ,λ1,λ2 (β S̃) +
∑

j∈S̃

pλ(|βj |), (11)

where XS̃ is the submatrix of X restricted to columns in S̃.
In (11), the second term is the hybrid penalty to encourage
homogeneity among coefficients of variables already selected
in β̃, and the third term is the element-wise penalty to help
further filter out falsely selected variables. We call this modified
version shrinkage CARDS (sCARDS).

3. ANALYSIS OF THE BASIC CARDS

In this section, we analyze theoretical properties of bCARDS.
Due to the limited space, we state the results here and only prove
Theorems 1–3 in the Appendix, leaving the rest of the proofs to
the online supplemental materials of this article.

3.1 Heuristics

We first provide some heuristics on why taking advantage of
the homogeneity helps reduce the estimation error ∥β̂ − β0∥.
Consider an ideal case of orthogonal design XT X = nIp (nec-

essarily p ≤ n). The ordinary least-squares estimator β̂
ols =

(XT X)−1XT y has the decomposition

β̂ols
j = β0

j + zj , zj
iid∼ N (0, n−1), j = 1, . . . , p.

It is clear by the square-root law that ∥β̂ols − β0∥ = OP (
√

p/n).
Now, if there are K homogeneous groups in β0 and that we know
the true groups, the original model (1) can be rewritten as

y = XAβ0
A + ε,

where β0
A = (β0

A,1, . . . ,β
0
A,K )T contains distinct values in

β0, and XA = (xA,1, . . . , xA,K ) is such that xA,k =
∑

j∈Ak
xj .

The corresponding ordinary least-squares estimator β̂
ols
A =

(XT
AXA)−1XT

A y has the decomposition

β̂ols
A,k = β0

A,k + z̄k, z̄k’s are independent,

z̄k ∼ N (0, n−1|Ak|−1). (12)

Here z̄k = 1
|Ak |

∑
j∈Ak

zj is the noise averaged over group k. The

oracle estimator β̂
oracle

is defined such that β̂oracle
j = β̂ols

A,k for all
j ∈ Ak . Then, by the square-root law,

∥β̂oracle − β0∥2 =
K∑

k=1

|Ak||β̂ols
A,k − β0

A,k|2

= Op

( K∑

k=1

|Ak| · n−1|Ak|−1
)

= Op

(
K/n),

which immediately implies that ∥β̂oracle − β0∥ = Op(
√

K/n).

The surprises of the results are two-fold. First, ∥β̂oracle − β0∥
has the convergence rate

√
K/n instead of

√
p/n. The point

is that in (12) the noises are averaged, thanks to exploiting ho-
mogeneity, and consequently β0

A,k is estimated more accurately.
The second surprise is that the rate has nothing to do with the
sizes of true homogeneous groups. No matter whether we have
K groups of equal size, or one dominating group with other
(K − 1) small groups, the rate is always the same for the oracle
estimator.

3.2 Notations and Regularity Conditions

Let MA be the subspace of Rp defined by

MA = {β ∈ Rp : βi = βj , for any i, j ∈ Ak, 1 ≤ k ≤ K}.

For each β ∈ MA, we can always write Xβ = XAβA, where
XA = (xA,1, . . . , xA,K ) is an n × K matrix such that its kth col-
umn xA,k =

∑
j∈Ak

xj , and βA is a K-dimensional vector with
its kth component βA,k being the common coefficient in group
Ak . Define the matrix D = diag(|A1|1/2, . . . , |AK |1/2). We in-
troduce the following conditions on the design matrix X:

Condition 1. ∥xj∥ =
√

n, for 1 ≤ j ≤ p. The eigenvalues
of the K × K matrix 1

n
D−1XT

AXAD−1 are bounded below by
c1 > 0 and bounded above by c2 > 0.

In the case of orthogonal designs, that is, XT X = nIp, the
matrix 1

n
D−1XT

AXAD−1 simplifies to IK , and c1 = c2 = 1.
Let ρ(t) = λ−1pλ(t) and ρ̄(t) = ρ ′(|t |)sgn(t). We assume that

the penalty function pλ(·) satisfies the following condition.

Condition 2. pλ(·) is a symmetric function and it is nonde-
creasing and concave on [0,∞). ρ ′(t) exists and is continuous
except for a finite number of t, and ρ ′(0+) = 1. There exists a
constant a > 0 such that ρ(t) is a constant for all |t | ≥ aλ.

We also assume that the noise vector ε = (ϵ1, . . . , ϵn)T has
sub-Gaussian tails.

Condition 3. For any vector a ∈ Rn and x > 0, P (|aT ε| >

∥a∥x) ≤ 2e−c3x
2
, where c3 is a positive constant.

Given the design matrix X, let Xk be its submatrix formed by
including only columns in Ak , for 1 ≤ k ≤ K . For any vector
v ∈ Rq , let DC(v) = max1≤i≤q |vi − q−1 ∑q

j=1 vj | be the “de-
viation from centrality.” Define

σk = λmax( 1
n

XT
k Xk) and νk = max

µ∈MA:∥µ∥=1
DC

( 1
n

XT
k Xµ

)
,

(13)
where λmax(·) denotes the largest eigenvalue operator. In the
case of orthogonal design, σk = 1 and νk = 0. Let

bn = 1
2

min
1≤k<l≤K

|β0
A,k − β0

A,l|

be half of the minimum gap between groups in β0, and λ = λn

the tuning parameter in the penalty function.

3.3 Properties of bCARDS

When the true groups A1, . . . , AK are known, the oracle es-
timator is

β̂
oracle = arg min

β∈MA

{ 1
2n

∥ y − Xβ∥2
}
.
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Theorem 1. Suppose Conditions 1–3 hold, K = o(n), and
the preliminary estimator β̃ generates a rank mapping τ that is
consistent with the order of β0, that is, (6) holds, with probability
at least 1 − ϵ0. If the half minimum gap between groups, bn,
satisfies that bn > aλn, where a is the same as that in Condition
2, and

λn ≫ max
k

{√
σk|Ak| log(n ∨ p)/n + (1 + νk|Ak|1/2)

×
√

K log(n)/n
}
, (14)

then with probability at least 1 − ϵ0 − n−1K − (n ∨ p)−1, the
bCARDS objective function (5) has a strictly local minimizer β̂
such that

• β̂ = β̂
oracle

,
• ∥β̂ − β0∥ = Op(

√
K/n).

Theorem 1 shows that bCARDS includes the oracle estimator
as a strictly local minimizer, with overwhelming probability.
This strong oracle property is a stronger result than the oracle
property in Fan and Li (2001).

The objective function (5) in bCARDS is nonconvex and may
have multiple local minimizers. In practice, we apply the local
linear approximation (LLA) algorithm (Zou and Li 2008) to
solve it: start from an initial solution β̂

(0) = β̂
initial

; at step m,
update the solution by

β̂
(m) = arg min

β

{
1

2n
∥ y − Xβ∥2 +

p−1∑

j=1

p′
λ

(
|β̂(m−1)

τ (j+1) − β̂
(m−1)
τ (j ) |

)

·|βτ (j+1) − βτ (j )|
}
.

Given β̂
initial

, this algorithm produces a unique sequence of
estimators which converge to a certain local minimizer. Next,
Theorem 2 shows that under certain conditions, the sequence
of estimators produced by the LLA algorithm converge to the
oracle estimator.

Theorem 2. Under conditions of Theorem 1, suppose
ρ ′(λn) ≥ a0 for some constant a0 > 0, and that there exists an
initial solution β̂

initial
of (5) satisfying ∥β̂ initial − β0∥∞ ≤ λn/2.

Then with probability at least 1 − ϵ0 − n−1K − (n ∨ p)−1, the
LLA algorithm yields β̂

oracle
after one iteration, and it converges

to β̂
oracle

after two iterations.

From Theorems 1 and 2, we conclude that bCARDS com-
bined with the LLA algorithm yields the oracle estimator with
overwhelming probability, provided that we have a good pre-
liminary estimator β̃. Next, we discuss the choice of β̃.

Since we focus on dense problems in this section, the usual
sparsity is not explicitly explored and the ordinary least squares
estimator

β̂
ols = arg min

β∈Rp

{
1

2n
∥ y − Xβ∥2

}

can be used as the preliminary estimator. The following theo-
rem shows that it induces a rank-consistent mapping with high
probability.

Theorem 3. Suppose Condition 3 holds, p = O(nα) and
λmin( 1

n
XT X) ≥ c4, where 0 < α < 1 and c4 > 0 are constants.

If bn >
√

(2αc4/c3) log(n)/n, where bn is the half of the min-
imum gap between groups in β0, then with probability at least
1 − O(n−α), the rank mapping τ generated from β̂

ols
is consis-

tent with the order of β0.

When the rank mapping τ extracted from β̃ does not give a
consistent order, that is, (6) does not hold, the penalty in (5) is
no longer a “correct” penalty for promoting the true grouping
structure. There is no hope that local minimizers of (5) exactly
recover the true groups. However, if there is not too much mis-
ranking in τ , it is still possible to control ∥β̂ − β0∥. Given a
rank mapping τ , define

K∗(τ ) =
p−1∑

j=1

1
{
β0

τ (j ) ̸= β0
τ (j+1)

}
.

It is the number of coefficient “jumps” in β0 under the order
given by τ . These “jumps” define subgroups A′

1, A
′
2, . . . , A

′
K∗ ,

each being a subset of one true group. Although different sub-
groups may share the same true coefficient, any two consecutive
subgroups A′

k and A′
k+1 have a gap in coefficient values. As a

result, the above results apply to this subgrouping structure. The
following theorem is a generalization and a direct application
of the proof of Theorem 1 and its details are omitted.

Theorem 4. Suppose Conditions 1–3 hold, K∗(τ ) = o(n),
the half minimum gap bn > aλn, and λn satisfies (14)
with K replaced by K∗(τ ). Then with probability at least
1 − ϵ0 − n−1K − (n ∨ p)−1, the bCARDS objective function
(5) has a strictly local minimizer β̂ such that ∥β̂ − β0∥ =
Op(

√
K∗(τ )/n).

3.4 bCARDS With the L 1 Penalty

In the bCARDS formulation (5), ρ(t) can also be the L1

penalty function ρ(t) = |t |. It can be useful to get the initial
solution β̂

initial
for the LLA algorithm. However, ρ(t) = |t | does

not satisfy Condition 2. Hence, Theorem 1 does not apply and
its associated properties requires additional studies.

We first relax the requirement that τ is consistent with the
order of β0. Instead, we consider the case that “τ is consistent
with groups in β0”: there exists a permutation µ on {1, . . . , K}
and 1 = i1 < i2 < · · · < iK < iK+1 = p + 1 such that for k =
1, . . . , K ,

β0
τ (i) = β0

A,µ(k), ik ≤ i ≤ ik+1 − 1. (15)

When µ is the identical permutation, that is, µ(k) = k, (15) is
equivalent to (6) and τ is consistent with the order of β0. Under
the condition (15), recovering the true groups is equivalent to
locating coefficient jumps in β0 under the order given by τ , and
these jumps can have positive or negative values.

To guarantee the exact recovery of jumps, we need a joint
condition on X and β0, it is in the same spirit of the “irrepre-
sentability” condition in Zhao and Yu (2006) but is specifically
designed for the homogeneity setting. For notation simplicity,
we change the indices of groups to let µ(k) = k for all k. Note
that β0

1 < β0
2 < · · · < β0

K does not hold with these new group
indices.

For k = 1, . . . , K − 1, write dβ0
A,k = β0

A,k+1 − β0
A,k . De-

fine the K-dimensional vector d0 by d0
1 = sgn(dβ0

A,1), d0
K =
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−sgn(dβ0
A,K−1) and

d0
k = sgn(dβ0

A,k) − sgn(dβ0
A,k−1), 2 ≤ k ≤ K − 1.

Here d0 is the adjacent difference of the sign vector of jumps
in β0. For example, suppose K = 4 and the common coeffi-
cients in four groups satisfy β0

A,2 − β0
A,1 > 0, β0

A,3 − β0
A,2 < 0

and β0
A,4 − β0

A,3 > 0. Then d0 = (1,−2, 2,−1). Also, define
the p-dimensional vector

b0 = XT XA(XT
AXA)−1d0.

In the case of orthogonal design XT X = nIp, b0 ∈ MA and it
has the form b0

j = d0
k /|Ak| for j ∈ Ak . For each j ∈ Ak , let

A1
kj = {τ (i) ∈ Ak : i ≤ j}, A2

kj = {τ (i) ∈ Ak : i > j}.

Namely, A1
kj and A2

kj contain indices in group k that are ranked
above and below τ (j ), respectively. Let θkj = |A1

kj |/|Ak| be the
proportion of indices in group k that are ranked above τ (j ).
Denote by bkj = 1

|A1
kj |
∑

τ (i)∈A1
kj

b0
τ (i) the average of elements in

b0 over the indices in A1
kj , and bkj = 1

|A2
kj |
∑

τ (i)∈A2
kj

b0
τ (i) the

average over the indices in A2
kj .

Condition 4. There exists a positive sequence {ωn}, which
can go to 0, such that for 1 ≤ k ≤ K , j ∈ Ak and j ̸= jk+1 − 1,

1 − ωn ≥⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣∣θ1j sgn(dβ0
A,1) + |A1|2θ1j (1 − θ1j )

(
b1j − b1j

)∣∣,∣∣(1 − θkj )sgn(dβ0
A,k−1) + θkj sgn(dβ0

A,k)
+|Ak|2θkj (1 − θkj )

(
bkj − bkj

)∣∣, 2 ≤ k ≤ K − 1,∣∣(1 − θKj )sgn(dβ0
A,K−1) + |AK |2θKj

(1 − θKj )
(
bKj − bKj

)∣∣.
(16)

In the case of orthogonal design XT X = nIp, b0 ∈ MA and
bkj − bkj = 0 holds for all k and j ∈ Ak . Condition 4 reduces
to

1 − ωn ≥⎧
⎪⎨

⎪⎩

∣∣θ1j sgn(dβ0
A,1)

∣∣,∣∣(1 − θkj )sgn(dβ0
A,k−1) + θkj sgn(dβ0

A,k)
∣∣, 2 ≤ k ≤ K − 1,∣∣(1 − θKj )sgn(dβ0

A,K−1)
∣∣.

This is possible only when

sgn(dβ0
A,k−1) ̸= sgn(dβ0

A,k), 2 ≤ k ≤ K − 1. (17)

Noting that 1/|Ak| ≤ θkj ≤ 1 − 1/|Ak|, the associated ωn can
be chosen as mink{1/|Ak|} when (17) holds.

Theorem 5. Suppose Conditions 1, 3, and 4 hold, K = o(n),
and the preliminary estimator β̃ generates an order τ that is
consistent with groups in β0, that is, (15) holds, with probability
at least 1 − ϵ0. If the half minimum gap bn and the tuning
parameter λn satisfy

bn ≫
√

K log(n)/n + λn

( K∑

k=1

1
|Ak |2

)1/2

and
λn ≫ ω−1

n max
k

{√
σk|Ak| log(n ∨ p)/n

}
, (18)

then with probability at least 1 − ϵ0 − n−1K − (n ∨ p)−1, the
bCARDS objective function (5) with ρ(t) = |t | has a unique
global minimizer β̂ such that

• β̂ ∈ MA;
• sgn(β̂A,k+1 − β̂A,k) = sgn(β0

A,k+1 − β0
A,k), k = 1, . . . ,

K − 1;
• ∥β̂ − β0∥ = Op(

√
K/n + γn), where γn = λn(

∑K
k=1

1
|Ak | )

1/2.

Compared to Theorem 1, there is an extra bias term in the
estimation error ∥β̂ − β0∥, which is of order

√
K log(n ∨ p)/n.

Moreover, to achieve the exact recovery, it requires Condition
4, which is restrictive. For example, in the case of orthogonal
designs, it is required that all consecutive jumps (under the order
given by τ ) have oppositive signs.

4. ANALYSIS OF THE ADVANCED CARDS

In this section, we analyze aCARDS and its variant sCARDS.
The proofs can be found in the online supplemental materials.

4.1 Properties of aCARDS

To guarantee the success of aCARDS, a key condition is
that the ordered segmentation ϒ = {B1, . . . , BL} defined in (7)
preserves the order of β0 in the sense of Definition 3. This allows
the ranking of coefficients in β̃ to deviate from that in β0, but
not too much: for some δ > 0, whenever β0

i < β0
j , β̃i ≤ β̃j + δ

must hold.
For given A1, . . . , AK and a segmentation ϒ =

{B1, . . . , BL}, define

φk = |Ak|/ min
{
|Ak|3, min

l:Bl∩Ak ̸=∅
{|Bl|2}

}
.

Here 1/|Ak|2 ≤ φk ≤ |Ak| for 1 ≤ k ≤ K .

Theorem 6. Suppose Conditions 1–3 hold, K = o(n), and the
preliminary estimator β̃ and the tuning parameter δn together
generate an ordered segmentation ϒ that preserves the order
of β0, with probability at least 1 − ϵ0. If the half minimum
gap bn and the tuning parameters (λ1n, λ2n) in (10) satisfy that
bn > a max{λ1n, λ2n}, where a is the same as that in Condition
2, and

λ1n ≫ max
k

{√
σkφk log(n ∨ p)/n + (1 + νkφ

1/2
k )

×
√

K log(n)/n
}
, (19)

and

λ2n ≫ max
k

{
|Ak|−1

√
log(n ∨ p)/n + (1 + νk|Ak|−1)

×
√

K log(n)/n
}
, (20)

then with probability at least 1 − ϵ0 − n−1K − 2(n ∨ p)−1, the
aCARDS objective function (10) has a strictly local minimizer
β̂ such that

• β̂ = β̂
oracle

,
• ∥β̂ − β0∥ = Op(

√
K/n).
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Compared to Theorem 1, aCARDS not only imposes less
restrictive conditions on β̃, but also requires a smaller minimum
gap between true coefficients.

Next, we establish the asymptotic normality of the CARDS
estimator. By Theorem 6, with overwhelming probability, aC-
ARDS performs just like the oracle. In the oracle situation, for
example, if p = 5 and there are three true groups {β1,β4}, {β2},
and {β3,β5}, the accuracy of estimating β is the same as if we
know the model:

Y = β1(X1 + X4) + β2X2 + β3(X3 + X5) + ε.

Theorem 7. Given a positive integer q, let {Bn}
be a sequence of matrices such that Bn ∈ Rq×K ,
maxv∈Rq :∥v∥=1 ∥XT

A(XT
AXA)−1BT

n v∥4 = o(1), and BnBT
n → H,

where H is a fixed q × q positive definite matrix. Suppose con-
ditions of Theorem 6 hold and let β̂ be the local minimizer of
the aCARDS objective function (10) given in Theorem 6. Then

Bn(XT
AXA)1/2(β̂A − β0

A)
d→ N (0, H),

where β̂A is the K-dimensional vector of distinct values in β̂.

Theorem 7 states the asymptotic normality of β̂A. Note that β̂
duplicates elements in β̂A. We introduce the following corollary
to compare the asymptotic covariance of β̂ to that of β̂

ols
.

Corollary 1 Suppose conditions of Theorems 6 and 7 hold.
Let β̂

ols
and β̂ be the ordinary least-squares estimator and

CARDS estimator, respectively. Let Mn be the p × K matrix
with Mn(j, k) = (1/|Ak|1/2)1{j ∈ Ak}. For any sequence of p-
dimensional vectors {an},

• v
−1/2
1n aT

n (β̂
ols − β0)

d→ N (0, 1) with v1n = aT
n (XT X)−1an;

• v
−1/2
2n aT

n (β̂ − β0)
d→ N (0, 1) with v2n = aT

n Mn(MT
n XT

XMn)−1MT
n an.

Moreover, v1n ≥ v2n.

4.2 Properties of sCARDS

In Section 2.4, we introduced sCARDS to explore both ho-
mogeneity and sparsity. In sCARDS, given a preliminary es-
timator β̃ and a parameter δ, we extract segments B1, . . . , BL

such that ∪L
l=1Bl = S̃, where S̃ is the support of β̃. Denote

B0 = {j : β̃j = 0}. In this case, we say ϒ = {B0, B1, . . . , BL}
preserves the order of β0 if

max
j∈B0

|β0
j | = 0 and max

j∈Bl

β0
j ≤ min

j∈Bl+1

β0
j , l = 1, . . . , L − 1.

(21)
This implies that β̃ has the sure screening property, and on
those preliminarily selected variables, the data-driven segments
preserve the order of true coefficients.

Suppose there is a group of zero coefficients in β0, namely,
A = (A0, A1, . . . , AK ). Let M∗

A be the subspace of Rp defined
by

M∗
A = {β ∈ Rp : βi = 0, for any i ∈ A0; βi = βj ,

for any i, j ∈ Ak, 1 ≤ k ≤ K}.

The oracle estimator is

β̂
oracle = arg min

β∈M∗
A

{
1

2n
∥ y − Xβ∥2

}
.

Denote by S the support of β0, and write s = |S| and s̃ = |S̃|.
Define

b′
n = 1

2
min{|β0

j | : β0
j ̸= 0}

to be the half minimum signal strength. For any matrix
M, ||M||2,∞ = max||∨||=1 ||Mv||∞.

Theorem 8. Suppose Conditions 1–3 hold, s = o(n),
log(p) = o(n), and the preliminary estimator β̃ and the tuning
parameter δn together generate an ordered segmentation ϒ that
preserves the order of β0, that is, (21) holds, with probability at
least 1 − ϵ0. If b′

n, bn and the tuning parameters (λ1n, λ2n, λn)
satisfy that b′

n = aλn, bn > a max{λ1n, λ2n} and

λn ≫
√

log(n ∨ s̃)/n + ∥XT
S̃

XS∥2,∞
√

K log(n)/n,

λ1n ≫ max
k

{√
σkφk log(n ∨ s)/n+(1+νkφ

1/2
k )

√
K log(n)/n

}
,

λ2n ≫ max
k

{
|Ak|−1

√
log(n ∨ s)/n + (1 + νk|Ak|−1)

×
√

K log(n)/n
}
.

Then with probability at least 1 − ϵ0 − n−1K − (n ∨ s)−1 −
(n ∨ s̃)−1, the sCARDS objective function (11) has a strictly
local minimizer β̂ such that

• β̂ = β̂
oracle

,
• ∥β̂ − β0∥ = Op(

√
K/n).

The preliminary estimator β̃ can be chosen, for example, as
the SCAD estimator

β̂
scad = arg min

{
1

2n
∥ y − Xβ∥2 +

p∑

j=1

pλ′(|βj |)
}
, (22)

where pλ′(·) is the SCAD penalty function (Fan and Li 2001).
The following theorem is a direct result of Theorem 2 in Fan
and Lv (2011), and the proof is omitted.

Theorem 9. Under Conditions 1 and 3, if s = o(n),
λ′

n ≫ n−1/2[log(n)]2 and b′
n ≫ n−1/2 max{

√
log p,

∥ 1
n

XT
Sc XS∥∞

√
log n}, then with probability at least

1 − o(1), there exists a strictly local minimizer β̂
scad

and
δn = O(log(n)/n) which together generate a segmentation
preserving the order of β0.

5. SIMULATION STUDIES

We conduct numerical experiments to study the performance
of two versions of CARDS, bCARDS, and aCARDS, and their
variant sCARDS. The goal is to investigate the performance of
CARDS under different situations. Experiments 1–4 are based
on the linear regression model Yi = XT

i β0 + ϵi , with Experi-
ments 1–3 exploring the homogeneity only and Experiment 4
exploring the homogeneity and sparsity simultaneously. Experi-
ment 5 is based on the spatial-temporal model Yit = XT

t β0
i + ϵit .

In all experiments, {Xi : 1 ≤ i ≤ n} or {Xt : 1 ≤ t ≤ T } are
generated independently and identically from the multivariate
standard Gaussian distributions, and {ϵi : 1 ≤ i ≤ n} or {ϵit :
1 ≤ i ≤ p, 1 ≤ t ≤ T } are IID samples of N (0, 1). All results
are based on 100 repetitions.
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Experiment 1: Consider the linear regression model with p =
60 and n = 100. Predictors are divided into four groups, each
of size 15. The true regression coefficients shared within each
group are −2r , −r , r, and 2r , respectively. Different values of
r > 0 lead to various signal-to-noise ratios. Here we let r take
values in {1, 0.8, 0.5}, corresponding to high, moderate, and low
signal-to-noise ratio, respectively.

We compare the performance of six different methods: Or-
acle, ordinary least squares (OLS), bCARDS, aCARDS, total
variation (TV), fused Lasso (fLasso). Oracle is the least-squares
estimator knowing the true groups. aCARDS and bCARDS are
described in Section 2; here we let the penalty function pλ(·)
be the SCAD penalty with a = 3.7, and take the OLS estimator
as the preliminary estimator. TV uses the exhaustive pairwise
penalty (9), where pλ(·) is also the SCAD penalty with a = 3.7.
The fused Lasso is based on an order generated from ranking
the OLS coefficients. In this sense, the fused Lasso is essentially
bCARDS with the Lasso penalty pλ(t) = λ|t |. Tuning parame-
ters of all these methods are selected via Bayesian information
criteria (BIC).

Prediction performance of different methods is evaluated in
terms of the average model error over an independent test set of
size 10,000. The model error is the prediction error subtracted
by the variance of ϵit , and it better reflects the performance
of statistical methods. In addition, to measure how close the
estimated grouping structure approaches the true one, we in-
troduce the normalized mutual information (NMI), which is a
common measure for similarity between clusterings (Fred and
Jain 2003). Suppose C = {C1, C2, . . .} and D = {D1,D2, . . . , }
are two sets of disjoint clusters of {1, . . . , p}, define

NMI(C, D) = I (C; D)
[H (C) + H (D)]/2

,

where I (C; D) =
∑

k,j (|Ck ∩ Dj |/p) log(p|Ck ∩
Dj |/|Ck||Dj |) is the mutual information between C and
D, and H (C) = −

∑
k(|Ck|/p) log(|Ck|/p) is the entropy of

C. NMI(C, D) takes values on [0, 1], and larger NMI implies
the two groupings are closer. In particular, NMI = 1 means that
the two groupings are exactly the same.

Figure 2 shows boxplots of the average model error and NMI
for six different methods. We observe that except for the case
of weak signals (r = 0.5), two versions of CARDS outperform
other methods since they lead to smaller average model error and
larger NMI. bCARDS is performing especially well in achieving
low model errors, even in the case r = 0.5. aCARDS has a better
performance in terms of NMI, which indicates that it is better in
recovering the true grouping structure. The possible reason that
aCARDS does not perform as well as bCARDS in model errors
is that aCARDS has more tuning parameters and selection of
these tuning parameters in simulations may be nonoptimal.

Experiment 2: The setting of this experiment is the same
as in Experiment 1, except that the homogeneous groups have
nonequal sizes. In Experiment 2a, the predictors are divided into
four groups of size 1, 15, 15, and 29. The four distinct regression
coefficients are −4r , −r , r, and 2r , respectively. Here, the first
group is a singleton. In Experiment 2b, there is one dominating
group of size 50 with a common regression coefficient −2r .
The other 10 predictors have the regression coefficients 0, 2

9 ,
4
9 , 6

9 , . . . , 2, respectively. In both subexperiments, we take r = 1

and 0.7 to represent two levels of signal-to-noise ratio. Besides
the six methods compared in Experiment 1, we also implement
a data-driven selection between bCARDS and aCARDS, as de-
scribed in Section 2.3. In detail, we select the parameter δ via
BIC (for each value of δ, the other parameters are also selected
via BIC). The resulting method is called CARDS.

Figure 3 displays results for Experiment 2a. It suggests that
both bCARDS and aCARDS outperform other methods, so does
CARDS. Figure 4 displays results for Experiment 2b. We see
that the total variation and fused Lasso cannot improve the
OLS estimator in terms of the average model error. bCARDS
also performs unsatisfactorily, possibly due to misranking in
the preliminary estimate. But aCARDS performs much better
than OLS and other methods. After a data-driven selection be-
tween bCARDS and aCARDS, the resulting method CARDS
also outperforms other methods.

Experiment 3: We use this experiment to investigate how the
performance of two versions of CARDS is affected by mis-
ranking in the preliminary estimate. The setting is the same as
Experiment 1 and we fix r = 1 (so n = 100, p = 60, and there
are four equal-size groups with true regression coefficients equal
to −2, −1, 1, and 2, respectively). For each dataset (X, y), we
generate 11 different preliminary ranks as follows: for each σ

in {1, 1.2, 1.4, . . . , 3}, we generate z ∼ N (Xβ0, σ 2In) indepen-
dently of y conditional on X, and then use the OLS estimator
associated with z to get a preliminary rank. A larger value of σ

tends to yield a “worse” preliminary rank. We use K∗ defined in
Section 3.3 to quantify the level of misranking. Recall that K∗ is
the total number of jumps in true regression coefficients under
the preliminary rank, and K∗ > 3 means there exists misorder-
ing in the preliminary rank. We generated 100 datasets and 11
preliminary ranks for each dataset so that the results are based on
1100 repetitions. We compare the performance of bCARDS and
aCARDS with that of the total variation (TV), where TV does
not use any information from the preliminary rank. Figure 5
contains boxplots of the average model error as K∗ changes.
First, we see that two versions of CARDS are quite robust to
the increase of K∗ and always outperform the total variation.
Second, the model error of bCARDS increases as K∗ increases,
which provides empirical evidence for the claim in Theorem 4
about the effect of misranking to bCARDS. Third, when K∗ is
large, aCARDS has a better performance than bCARDS, be-
cause the hybrid pairwise penalty can tolerate a higher level of
misranking than the fused penalty.

Experiment 4: This experiment explores the homogeneity and
sparsity simultaneously. Consider the linear regression model
with p = 100 and n = 150. Among the 100 predictors, 60 are
important ones and their coefficients are the same as those in Ex-
periment 1. Besides, there are 40 unimportant predictors whose
coefficients are all equal to 0.

We implemented sCARDS and compared its performance
with different oracle estimators, Oracle, Oracle0, and OracleG,
as well as ordinary least squares (OLS), SCAD, shrinkage total
variation (sTV), and fused Lasso (fLasso). The three oracles are
defined with different levels of prior information: the Oracle
knows both the important predictors and the true groups, the
Oracle0 only knows which are important predictors; and the
OracleG only knows the true groups (it treats all unimportant
predictors as one group with unknown coefficients). sCARDS
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(c) r=0.5

Figure 2. The average model error and normalized mutual information in Experiment 1, where p = 60, n = 100, and there are four equal-size
coefficient groups.

is as described in Section 2; while implementing it, we take the
SCAD estimator as the preliminary estimator. The shrinkage
total variation is an extension of TV by adding both the elemen-
twise SCAD penalty and exhaustive pairwise SCAD penalty.
The fused Lasso used here has both the elementwise L1 penalty
and fused pairwise L1 penalty.

Figure 6 displays the boxplots of average model errors for
r = 1 and r = 0.7. First, by comparing model errors of the
three oracles, we see a significant advantage of taking into ac-
count both homogeneity and sparsity over pure sparsity. More-
over, the results of Oracle0 and OracleG show that exploring
the group structure is more important than sparsity. Second,

sCARDS achieves a smaller model error than OLS, SCAD, and
fused Lasso. The performance of sCARDS and sTV in terms
of model error are comparable. However, they are different in
feature selection. Figure 7 contains frequency histograms of the
number of falsely selected features for two methods. In about
17% of the repetitions, sTV fails to shrink coefficients of the 40
unimportant predictors to 0.

Experiment 5: We consider a special case of the spatial-
temporal model (3), Yit = XT

t β i + ϵit , i = 1, . . . , p, that is,
the predictors are the same for all spatial locations. There
are p = 100 different locations and k = 5 common predictors
(so each β i has a dimension 5). We assume only the spatial
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(b) r=0.7

Figure 3. The average model error and normalized mutual information in Experiment 2a, where p = 60, n = 100, and there are four coefficient
groups of size 1, 15, 15, and 29.
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Figure 4. The average model error and normalized mutual information in Experiment 2b, where p = 60, n = 100, and there is one dominating
group of size 50.
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Figure 5. The average model error in Experiment 3. The horizontal axis represents K∗, and “b,” “a,” and “TV” are short for bCARDS,
aCARDS, and total variation.

homogeneity in the regression coefficients, that is, for each pre-
dictor j (j = 1, . . . , 5), the coefficients, {βi,j , 1 ≤ i ≤ 100}, are
divided into four groups of equal size 25, where coefficients in
the same group share a similar value. In simulations, we let

βi,j = ωj + (−2)I1≤i≤25 + (−1)I26≤i≤50 + I51≤i≤75

+ 2I76≤i≤100, 1 ≤ j ≤ 5,

where {ωj = 0.1 × (j − 1), 1 ≤ j ≤ 5} are location-
independent constants. In this experiment, instead of varying
the signal-to-noise ratio directly, we equivalently change T , the
total number of time points.

We extend aCARDS to this model by adding the hybrid pair-
wise penalty on coefficients of the same predictor at different
locations, and still call the method aCARDS. The total variation
(TV) and fused Lasso (fLasso) can be extended to this model in
a similar way. The Oracle is the maximum likelihood estimator
which knows the true groups for each predictor. We aim to com-
pare the performance of Oracle, OLS, aCARDS, total variation,
and fused Lasso.

Figure 8 displays the results. We see that aCARDS achieves
significantly lower model errors than OLS, due to exploring
homogeneity. Moreover, it has a better performance than the
total variation and fused Lasso, particularly when T = 50, 80.

aCARDS also estimates well the true grouping structure; when
T = 50, 80, the normalized mutual information is larger than
0.95 in most repetitions.

6. REAL DATA ANALYSIS

6.1 S&P500 Returns

In this study, we fit a homogeneous Fama-French model for
stock returns: Yit = αi + XT

t β0
i + ϵit , where Xt contains three

Fama-French factors at time t, Yit is the excess return of stocks
and ϵit are idiosyncratic noises. We collected daily returns of
410 stocks, which were always included in the components
of the S&P500 index in the period December 1, 2010 to De-
cember 1, 2011 (T = 254). We applied CARDS as in Experi-
ment 5, except that the intercepts αj ’s were also penalized for
sparsity. The sparsity of αj ’s is supported by the capital asset
pricing model (CAPM) and its extension, multifactor pricing
model, in financial econometric theories. The tuning parame-
ters were chosen via generalized cross-validation (GCV). Table
1 shows the number of fitted coefficient groups on three fac-
tors and the number of nonzero intercepts. We then used daily
returns of the same stocks in the period December 1, 2011 to
July 1, 2012 (T = 146) to evaluate the prediction error. Let
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Figure 6. The average model error and normalized mutual information in Experiment 4, where p = 100, n = 100, and there are 60 important
predictors divided into four equal-size groups.
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Figure 7. Feature selection of sCARDS and shrinkage total variation (sTV) in Experiment 4 (left: r = 1; right: r = 0.7), where there are 40
unimportant predictors.

ŷit and yit be the fitted and observed excess returns of stock i
at time t = 1, . . . , 146, respectively. Define the discounted cu-
mulative sum of squared estimation errors (cRSS) at time t as
cRSSt =

∑t
s=1 ρ⌊s/10⌋∑

i (̂yit − yit )2, where we take ρ = 0.95.
Figure 9 shows the percentage improvement in cRSSt of the
CARDS estimator over the OLS estimator. We see that CARDS
achieves a smaller discounted cRSS compared to OLS at most
time points, especially in the “very-close” and “far-away” future.
The North American Industry Classification System (NAICS)
classifies these 410 companies into 18 different industry sectors.
Figure 10(a) shows the OLS coefficients on the factor “book-
to-market ratio.” We can see that stocks belonging to Sector
3 “Utilities” (29 stocks in total) have very close OLS coef-
ficients, and 17 stocks in this sector were clustered into one
group in CARDS estimator. Figure 10(b) shows the percentage
improvement in cRSSt only for stocks in this sector, where the
improvement is more significant.

6.2 Polyadenylation Signals

CARDS can be easily extended to more general set-
tings such as generalized linear models (McCullagh and
Nelder 1989) although we have focused on the linear re-

Table 1. Number of groups in fitting the S&P500 data

Fama-French factors No. of coef. groups

“Market return” 41
“Market capitalization” 32
“Book-to-market ratio” 56
Intercept 60

gression model so far. In this section, we apply CARDS
to a logistic regression example. This study tried to predict
polyadenylation signals (PASes) in human DNA and mRNA
sequences by analyzing features around them. The dataset
was first used in Legendre and Gautheret (2003) and later
analyzed by Liu et al. (2003), and it is available at http://
datam.i2r.a-star.edu.sg/datasets/krbd/SequenceData/Polya.html.
There is one training dataset and five testing datasets. To avoid
any platform bias, we use the training dataset only. It has 4418
observations each with 170 predictors and a binary response.
The binary response indicates whether a terminal sequence is
classified as a “strong” or “weak” polyA site, and the predictors
are features from the upstream (USE) and downstream (DSE)
sequence elements. We randomly select 2000 observations
to perform model estimation and use the rest to evaluate
performance. Our numerical analysis consists of the following
steps. Step 1 is to apply the L1-penalized logistic regression to
these 2000 observations with all 170 predictors and use AIC
to select an appropriate regularization parameter. In Step 2,
we use the logistic regression coefficients obtained in Step 1
as our preliminary estimate and apply sCARDS accordingly.
Average prediction error (and standard error in parentheses)
over 40 random splitting are reported in Table 2. We also

Table 2. Results of the PASes data

sCARDS SCAD sTV fLasso

Prediction error
0.2449
(.0015)

0.2458
(.0014)

0.2757
(.0026)

0.2445
(0.0010)

No. of nonzero coef. groups 5.5000 21.6250 5.7500 5.5000
No. of selected features 73.2750 21.6250 40.3500 86.8750
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Figure 8. The average model error and normalized mutual information in Experiment 5, where the model is a spatial-temporal regression
model with p = 100 locations and k = 5 common predictors.
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Figure 9. Comparison of the cumulative sum of squared prediction errors of the S&P500 data from December 1, 2011 to July 1, 2012. The
vertical axis is the percent improvement on the prediction error relative to OLS, defined by 100(cRSSols

t − cRSS)/cRSSols
t . The right panel is a

zoom-in of the results for CARDS.
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Figure 10. (a) OLS coefficients on the “book-to-market ratio” factor. The x-axis represents different sectors. (b) percent improvement of the
prediction error relative to OLS for stocks in the sector “Utilities” (Sector 2).

report the average number of nonzero coefficient groups and
the average number of selected features. It shows that sCARDS
lead to a smaller prediction error when compared with the
shrinkage total variation (sTV). In addition, the sCARDS has
fewer groups of nonzero coefficients but more selected features,
which implies that we can include more predictors while fixing
the degrees of freedom at a small value. Note that in this
example, the fused Lasso (fLasso) has a similar performance as
the sCARDS. In Section 5, we remarked that the fused Lasso is
essentially bCARDS with the Lasso penalty pλ(t) = λ|t |.

7. CONCLUSION

In this article, we explored homogeneity of coefficients in
high-dimensional regression. We proposed a new method called
clustering algorithm in regression via data-driven segmentation
(CARDS) to estimate regression coefficients and to detect ho-
mogeneous groups. The implementation of CARDS does not
need any geographical information (neighborhoods, distance,
graphs, etc.) a priori, which distinguishes it from other methods
in similar settings and makes it more general for applications.
A modification of CARDS, sCARDS, can be used to explore
homogeneity and sparsity simultaneously. Our theoretical re-
sults show that better estimation accuracy can be achieved by
exploring homogeneity. In particular, when the number of ho-
mogeneous groups is small, the power of exploring homogeneity
and sparsity simultaneously is much larger than that of exploring
sparsity only, which is also confirmed in our simulation studies.

Methodologically, CARDS has two main innovations. First,
it takes advantage of a preliminary estimate by extracting from
which either an estimated ranking or an estimated ordered seg-
mentation. Second, it introduces the so-called “hybrid pairwise
penalty” to adapt to available partial ordering information. The
hybrid pairwise penalty not only is robust to misordering, but
also avoids statistical and computational inefficiency due to pe-
nalizing too many pairs. These ideas about handling homo-
geneity can be applied to much broader situations than linear
regression, if we combine the hybrid pairwise penalty with ap-
propriate loss functions. For example, CARDS can be extended
to generalized linear models (GLM) when homogeneity appears.

To promote homogeneity, CARDS takes advantage of a pre-
liminary estimate. Such idea can be generalized. Instead of ex-
tracting a complete raking or an ordered segmentation, we may
also apply clustering methods to coefficients of the preliminary
estimate, such as k-mean algorithm or hierarchical clustering
algorithm, to help construct data-driven penalties and further
promote homogeneity.

This article only considers the case where predictors in each
homogeneous group have equal coefficients. In a more general
situation, coefficients of predictors in the same group are close
but not exactly equal. The idea of data-driven pairwise penalties
still applies, but instead of using the class of folded concave
penalty functions, we may need to use penalty functions which
are smooth at the origin, for example, the L2 penalty function.
Another possible approach is to use posterior-type estimators
combined with, say, a Gaussian prior on the coefficients. These
are beyond the scope of this article and we leave them as future
work.

PROOFS

A.1 Proof of Theorem 1

Introduce the mapping T : MA → RK , where T (β) is the K-
dimensional vector whose kth coordinate equals to the common value
of βj for j ∈ Ak . Note that T is a bijection and T −1 is well-defined
for any µ ∈ RK . Also, introduce the mapping T ∗ : Rp → RK , where
T ∗(β)k = 1

|Ak |
∑

j∈Ak
βj . We see that T ∗ = T on MA, and T −1 ◦ T ∗

is the orthogonal projection from Rp to MA. Denote µ0 = T (β0) and
µ̂oracle = T (β̂

oracle
).

Denote Ln(β) = 1
2n

∥ y − Xβ∥2 and Pn(β) = λn

∑p−1
j=1 ρ(βτ (j+1) −

βτ (j )), so that we can write Qn(β) = Ln(β) + Pn(β). For any µ ∈ RK ,
let

LA
n (µ) = 1

2n
∥ y − XAµ∥2, P A

n (µ) = λn

K−1∑

k=1

ρ(µk+1 − µk),

and define QA
n (µ) = LA

n (µ) + P A
n (µ). Note that when τ is consistent

with the order of β0, there exist 1 = j1 < j2 < · · · < jK < jK+1 =
p + 1 such that Ak = {τ (jk), τ (jk + 1), . . . , τ (jk+1 − 1)} for 1 ≤ k ≤
K . Then Qn(β) = QA

n (T (β)) and QA
n (µ) = Qn(T −1(µ)) for any β ∈

MA and µ ∈ RK .
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In the first part of the proof, we show ∥β̂oracle − β0∥ = Op(
√

K/n).
By definition and direct calculations,

∥β̂oracle − β0∥=∥D(µ̂oracle − µ0)∥, µ̂oracle − µ0 = (XT
AXA)−1XT

Aε.

Therefore, we can write

∥β̂oracle − β0∥ = ∥(D−1XT
AXAD−1)−1D−1XT

Aε∥. (A.1)

From Condition 3.1, ∥(D−1XT
AXAD−1)−1∥ ≤ (c1n)−1 and

tr(D−1XT
AXAD−1) ≤ c2nK . By the Markov inequality, for any

δ > 0,

P

(

∥D−1XT
Aε∥ >

√
c2nK

δ

)

≤ E∥D−1XT
Aε∥2

c2nK/δ
= tr(D−1XT

AXAD−1)
c2nK/δ

≤δ. (A.2)

Combining the above, we have shown that with probability at
least 1 − δ, ∥β̂oracle − β0∥ ≤ Cδ−1/2√K/n. This proves ∥β̂ − β0∥ =
Op(

√
K/n).

Furthermore, we show a result that will be frequently used in later
proofs:

∥β̂oracle − β0∥ ≤ C
√

K log(n)/n, with probability ≥ 1 − n−1K.

(A.3)

Write D−1XT
Aε = (vT

1 ε, . . . , vT
k ε)T , where vk = XAD−1ek and ek is the

unit vector with 1 on the kth coordinate and 0 elsewhere. Observing
that ∥vk∥2 is the kth diagonal of the matrix D−1XT

AXAD−1, we have
∥vk∥ ≤ √

c2n. It follows from Condition 3.3 and the union bound that

P

(
∥D−1XT

Aε∥∞ >

√
c2c

−1
3 n log(2n)

)

≤
K∑

k=1

P

(
∥vT

k ε∥ > ∥vk∥
√

c−1
3 log(2n)

)
≤ n−1K.

Since ∥D−1XT
Aε∥ ≤ K1/2∥D−1XT

Aε∥∞,

∥D−1XT
Aε∥ ≤

√
c2c

−1
3 Kn log(2n), with probability ≥ 1 − n−1K.

(A.4)

Then (A.3) follows by combining (A.1) and (A.4).
In the second part of the proof, we show that β̂

oracle
is a strictly local

minimizer of Qn(β) with probability at least 1 − ϵ0 − n−1K − (n ∨
p)−1. By assumption, there is an event E1 such that P (Ec

1) ≤ ϵ0 and
over the event E1, τ is consistent with the order of β0. Consider the
neighborhood of β0:

B =
{
β ∈ Rp : ∥β − β0∥ < 2C

√
K log(n)/n

}
.

By (A.3), there is an event E2 such that P (Ec
2) ≤ n−1K and over the

event E2, ∥β̂oracle − β0∥ ≤ C
√

K log(n)/n. Hence, β̂
oracle ∈ B over the

event E2.
For any β ∈ B, write β∗ as its orthogonal projection to MA. We aim

to show

(a) Over the event E1 ∩ E2,

Qn(β∗) ≥ Qn(β̂
oracle

), for any β ∈ B, (A.5)

and the inequality is strict whenever β∗ ̸= β̂
oracle

.
(b) There is an event E3 such that P (Ec

3) ≤ (n ∨ p)−1. Over the
event E1 ∩ E2 ∩ E3, there exists Bn (Bn ⊂ B), a neighborhood
of β̂

oracle
, such that

Qn(β) ≥ Qn(β∗), for any β ∈ Bn, (A.6)

and the inequality is strict whenever β ̸= β∗.

Combining (a) and (b), Qn(β) ≥ Qn(β̂
oracle

) for any β ∈ Bn, a neigh-
borhood of β̂

oracle
, and the inequality is strict whenever β ̸= β̂

oracle
.

This proves that β̂
oracle

is a strictly local minimizer of Qn, over the
event E1 ∩ E2 ∩ E3.

It remains to show (a) and (b). Consider (a) first. We claim that

P A
n (T ∗(β)) = 0 for any β ∈ B. (A.7)

To see this, for a given β ∈ B, write µ = T ∗(β). It suffices
to check |µk+1 − µk| > aλn for k = 1, . . . , K − 1. Note that
|µk+1 − µk| ≥ mini∈Ak,j∈Ak+1 |βi − βj | ≥ mini,j |β0

i − β0
j | − 2∥β −

β0∥∞ ≥ 2bn − 2C
√

K log(n)/n. Since bn > aλn ≫
√

K log(n)/n, it
is easy to see that |µk+1 − µk| > aλn.

Using (A.7), we see that QA
n (T ∗(β)) = LA

n (T ∗(β)), for all β ∈ B.
Since QA

n = Qn ◦ T −1 and T −1 ◦ T ∗ is the orthogonal projection from
Rp to MA, for any β ∈ B,

Qn(β∗) = Qn(T −1 ◦ T ∗(β)) = QA
n (T ∗(β)) = LA

n (T ∗(β)). (A.8)

In particular, noting that β̂
oracle ∈ B and its orthogonal projection to

MA is itself, the above further implies

Qn(β̂
oracle

) = LA
n (µ̂oracle). (A.9)

By definition and the fact that ∂2LA
n (µ)

∂µ∂µT = 1
n
XT

AXA is positive definite,

µ̂oracle is the unique global minimizer of LA
n (µ). As a result,

LA
n (T ∗(β)) ≥ LA

n (µ̂oracle), (A.10)

and the inequality is strict whenever T ∗(β) ̸= µ̂oracle, that is, β∗ ̸=
T −1(µ̂oracle) = β̂

oracle
. Combining (A.8)–(A.10) gives (a).

Second, consider (b). For a positive sequence {tn} to be determined,
let

Bn = B ∩ {β : ∥β − β̂
oracle∥ ≤ tn}.

Since β∗ is the orthogonal projection of β to MA, ∥β − β∗∥ ≤ ∥β −
β ′∥ for any β ′ ∈ MA. In particular, ∥β − β∗∥ ≤ ∥β − β̂

oracle∥. As a
result, to show (A.6), it suffices to show

Qn(β) ≥ Qn(β∗), for any β such that ∥β − β∗∥ ≤ tn, (A.11)

and the inequality is strict whenever β ̸= β∗.
To show (A.11), write µ = T ∗(β) so that β∗ = T −1(µ). By Taylor

expansion,

Qn(β) − Qn(β∗)

= − 1
n

( y − Xβm)T X(β − β∗) +
p∑

j=1

∂Pn(βm)
∂βτ (j )

(βτ (j ) − β∗
τ (j ))

≡ I1 + I2,

where βm is in the line between β and β∗. Consider I2 first. Direct
calculations yield

∂Pn(β)
∂βτ (j )

=

⎧
⎨

⎩

−λnρ̄(βτ (2) − βτ (1)), j = 1
λnρ̄(βτ (j ) − βτ (j−1)) − λnρ̄(βτ (j+1) − βτ (j )), 2 ≤ j ≤ p − 1
λnρ̄(βτ (p) − βτ (p−1)), j = p,

where ρ̄(t) = ρ ′(|t |)sgn(t) and ρ(t) = λ−1pλ(t). Plugging it into I2 and
rearranging the sum, we obtain

I2 = λn

p−1∑

j=1

ρ̄(βm
τ (j+1) − βm

τ (j ))
[
(βτ (j+1) − βτ (j )) − (β∗

τ (j+1) − β∗
τ (j ))

]
.

(A.12)

When τ (j ) and τ (j + 1) belong to the same group, β∗
τ (j ) = β∗

τ (j+1), and
hence the sign of (βm

τ (j+1) − βm
τ (j )) is the same as the sign of (βτ (j+1) −
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βτ (j )) if neither of them is 0. In addition, recall that Ak = {τ (jk), τ (jk +
1), . . . , τ (jk+1 − 1)} for all 1 ≤ k ≤ K , for some indices 1 = j1 <

j2 < · · · < jK < jK+1 = p + 1. Combining the above, we can rewrite

I2 = λn

K∑

k=1

jk+1−2∑

j=jk

ρ ′(|βm
τ (j+1) − βm

τ (j )|)|βτ (j+1) − βτ (j )|

+λn

K∑

k=2

ρ̄(|βm
τ (jk ) − βm

τ (jk−1)|)
[
(βτ (jk ) − βτ (jk−1))

− (β∗
τ (jk ) − β∗

τ (jk−1))
]
.

First, since β0 ∈ MA and β∗ is the orthogonal projection of β to MA,
∥β∗ − β0∥ ≤ ∥β − β0∥. Hence, β ∈ B implies β∗, βm ∈ B. By repeat-
ing the proof of (A.7), we can show ρ̄(|βm

τ (jk ) − βm
τ (jk−1)|) = 0 for 2 ≤

k ≤ K . So the second term in I2 disappears. Second, in the first term
of I2, since |βm

τ (j+1) − βm
τ (j )| ≤ 2∥βm − β∗∥∞ ≤ 2∥β − β∗∥∞ ≤ 2tn, it

follows by concavity that ρ ′(|βm
τ (j+1) − βm

τ (j )|) ≥ ρ ′(2tn). Together, we
have

I2 ≥ λn

K∑

k=1

jk+1−2∑

j=jk

ρ ′(2tn)|βτ (j+1) − βτ (j )|. (A.13)

Next, we simplify I1. Let z = z(βm) = XT ( y − Xβm) and write I1 =
− 1

n
zT (β − β∗). For any fixed k and l such that τ (l) ∈ Ak and l ̸=

jk+1 − 1, let A1
kl = {τ (j ) ∈ Ak : j ≤ l} and A2

kl = {τ (j ) ∈ Ak : j > l}.
Regarding that β∗

τ (i) = 1
|Ak |

∑jk+1−1
j=jk

βτ (j ) for i ∈ Ak , we can reexpress
I1 as

I1 = −1
2

K∑

k=1

jk+1−1∑

i=jk

1
n

zτ (i)
[
βτ (i) − β∗

τ (i)

]
− 1

2

K∑

k=1

jk+1−1∑

j=jk

1
n

zτ (j )

×
[
βτ (j ) − β∗

τ (j )

]

= −
K∑

k=1

1
2n|Ak|

jk+1−1∑

i,j=jk

zτ (i)
[
βτ (i) − βτ (j )

]
−

K∑

k=1

1
2n|Ak|

×
jk+1−1∑

i,j=jk

zτ (j )
[
βτ (j ) − βτ (i)

]

= −
K∑

k=1

1
2n|Ak|

jk+1−1∑

i,j=jk

[
zτ (j ) − zτ (i)

][
βτ (j ) − βτ (i)

]

= −
K∑

k=1

1
n|Ak|

∑

jk≤i<j=jk+1−1

[
zτ (j ) − zτ (i)

] ∑

i≤l<j

[
βτ (l+1) − βτ (l)

]

= −
K∑

k=1

1
n|Ak|

jk+1−2∑

l=jk

[
βτ (l+1) − βτ (l)

]

×
[
|A1

kl |
∑

j∈A2
kl

zτ (j ) − |A2
kl |
∑

i∈A1
kl

zτ (i)

]

≡
K∑

k=1

jk+1−2∑

l=jk

wτ (l)(z)
[
βτ (l+1) − βτ (l)

]
, (A.14)

where for any vector v ∈ Rp ,

wτ (l)(v) = n−1

[ |A2
kl |

|Ak|
∑

j∈A1
kl

vτ (j ) − |A1
kl |

|Ak|
∑

j∈A2
kl

vτ (j )

]
.

We aim to bound |wτ (l)(z)|. Let η = XT X(β∗ − β0), ηm = XT X(βm −
β∗) and write z = XT ε − η − ηm. First, wτ (l)(v) is a linear function of v.
Second, since βm lies between β and β∗, we have ∥β∗ − βm∥ ≤ ∥β∗ −
β∥ ≤ tn. It follows that ∥ηm∥ ≤ λmax(XT X)tn. Moreover, |wτ (l)(v)| ≤

(|Ak|/n)∥v∥∞ ≤ (p/n)∥v∥ for all v. Combining the above yields

|wτ (l)(z)| ≤ |wτ (l)(XT ε)| + |wτ (l)(η)| + sup
v:∥v∥≤λmax(XT X)tn

|wτ (l)(v)|

≤ |wτ (l)(XT ε)| + |wτ (l)(η)| + (p/n)λmax(XT X) · tn. (A.15)

First, we bound the term wτ (l)(XT ε). Let E3 be the event that

max
τ (l)∈Ak

|wτ (l)(XT ε)| ≤ n−1/2
√

σk|Ak| log(2(n ∨ p))/c3,

k = 1, . . . , K, (A.16)

where we recall σk is the maximum eigenvalue of n−1XT X restricted
to the (Ak, Ak)-block. Given τ (l), we can express wτ (l)(XT ε) as

wτ (l)(XT ε) = aT
τ (l)ε,

where aτ (l) = n−1

( |A2
kl |

|Ak|
XA1

kl
1A1

kl
− |A1

kl |
|Ak|

XA2
kl

1A2
kl

)
.

Write L1 = |A1
kl | and L2 = |A2

kl |, so that |Ak| = L1 + L2. It is
observed that ∥XA1

kl
1A1

kl
∥2 ≤ nσk∥1A1

kl
∥2 ≤ nσkL1. Using the fact

that (a + b)2 ≤ 2(a2 + b2) for any real values a, b, we have
∥aτ (l)∥2 ≤ 2n−1σk(L2

2L1/|Ak|2 + L2
1L2/|Ak|2) = 2σkL1L2/(n|Ak|) ≤

σk|Ak|/(2n). Applying Condition 3.3 and the probability union bound,

P (Ec
3)

≤
K∑

k=1

∑

τ (l)∈Ak

P
(
|wτ (l)(XT ε)| > n−1/2

√
σk|Ak| log(2(n ∨ p))/c3

)

≤
∑

1≤j≤p

P (|aT
j ε| > ∥aj∥

√
2 log(2(n ∨ p))/c3) < (n ∨ p)−1. (A.17)

Second, we bound the term wτ (l)(η). Observing that for any vector v,
wτ (l)(v) = wτ (l)(v − v̄k1), where v̄k is the mean of {vj , j ∈ Ak}, we
have

|wτ (l)(v)|2 ≤ 2
( |A2

kl |2|A1
kl |

n2|Ak|2
+ |A1

kl |2|A2
kl |

n2|Ak|2

) (
max
j∈Ak

|vj − v̄k|
)2

≤ |Ak|
2n2

(
max
j∈Ak

|vj − v̄k|
)2

.

Since η = XT X(β∗ − β0) and β∗ − β0 ∈ MA, we have maxj∈Ak
|ηj −

η̄k| ≤ nνk∥β∗ − β0∥, where νk is defined in (13). As a result,

max
τ (l)∈Ak

|wτ (l)(η)| ≤ νk√
2
|Ak|1/2 · ∥β∗ − β0∥ ≤ Cνk

√
K|Ak| log(n)/n,

(A.18)
where the last inequality is because we consider β ∈ B in (A.6), and
∥β∗ − β0∥ ≤ ∥β − β0∥ (noticing that β∗ is the orthogonal projection
of β onto MA).

Combining (A.14)–(A.18), we find that over the event E1 ∩ E2 ∩ E3,

|I1|

≤
K∑

k=1

jk+1−2∑

l=jk

[
C

(√
σk|Ak| log(n ∨ p)

n
+ νk

√
K|Ak| log(n)

n

)

+pλmax(XT X)
n

tn

]
|βτ (l+1) − βτ (l)|

≤
K∑

k=1

jk+1−2∑

l=jk

(
λn

2
+ pλmax(XT X)

n
tn

)
|βτ (l+1) − βτ (l)|, (A.19)

where we have used condition (14) on λn.
From (A.13) and (A.19), over the event E1 ∩ E2 ∩ E3,

inf
β∈B:∥β−β∗∥≤tn

[
Qn(β) − Qn(β∗)

]

≥
K∑

k=1

jk+1−2∑

l=jk

[λn

2
− gn(tn)

]
|βτ (l+1) − βτ (l)|,
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Ke, Fan, and Wu: Homogeneity Pursuit 193

where gn(tn) = n−1pλmax(XT X)tn − λn[1 − ρ ′(2tn)]. Since ρ ′(0+) =
1, gn(0+) = 0. So we can always choose tn sufficiently small to make
sure |gn(tn)| < λn/2; consequently, the right-hand side is nonnegative,
and strictly positive when

∑K
k=1

∑jk+1−2
l=jk

|βτ (l+1) − βτ (l)| > 0, that is,
β ̸= β∗. This proves (b). !

A.2 Proof of Theorem 2

First, we show that the LLA algorithm yields β̂
oracle

after one it-
eration. Let E1 be the event that the ranking τ is consistent with the
order of β0, E2 the event that ∥β̂ − β0∥ ≤ C

√
K log(n)/n, and E3

the event that (A.16) holds. We have shown that P (E1 ∩ E2 ∩ E3) ≥
1 − ϵ0 − n−1K − (n ∨ p)−1. It suffices to show that over the event
E1 ∩ E2 ∩ E3, the LLA algorithm gives β̂

oracle
after the first iteration.

Let wj = ρ ′(|β̂ initial
τ (j+1) − β̂ initial

τ (j ) |). At the first iteration, the algorithm
minimizes

Qinitial
n (β) ≡ 1

2n
∥ y − Xβ∥2 + λn

p−1∑

j=1

wj |βτ (j+1) − βτ (j )|.

This is a convex function, hence it suffices to show that β̂
oracle

is a strictly
local minimizer of Qinitial

n . Using the same notations as in the proof of
Theorem 1, for any β ∈ Rp , write β∗ = T −1 ◦ T ∗(β) as its orthogonal
projection to MA. Let B = {β ∈ Rp : ∥β − β0∥ ≤ C

√
K log(n)/n},

and for a sequence {tn} to be determined, consider the neighborhood
of β̂

oracle
defined by Bn = {β ∈ B : ∥β − β̂

oracle∥ ≤ tn}. It suffices to
show

Qinitial
n (β) ≥ Qinitial

n (β∗) ≥ Qinitial
n (β̂

oracle
), for any β ∈ Bn,

(A.20)
and the first inequality is strict whenever β ̸= β∗, and the second in-
equality is also strict whenever β ̸= β̂

oracle
.

We first show the second inequality in (A.20). For τ (j ) and
τ (j + 1) in different groups, |β0

τ (j+1) − β0
τ (j )| > 2bn. In addition,

∥β̂ initial − β0∥∞ ≤ λn/2. Hence, |β̂ initial
τ (j+1) − β̂ initial

τ (j ) | ≥ 2bn − λn > aλn,
and it follows that wj = 0. On the other hand, for τ (j ) and τ (j + 1) in
the same group, βτ (j+1) − βτ (j ) = 0 whenever β ∈ MA. Consequently,

Qinitial
n (β) = 1

2n
∥ y − Xβ∥2 = Ln(β), for β ∈ MA.

It is easy to see that β̂
oracle

is the unique global minimizer of Ln con-
strained on MA. So the second inequality in (A.20) holds.

Next, consider the first inequality in (A.20). We apply Taylor expan-
sion to Qinitial

n (β) − Qinitial
n (β∗), and rearrange the sums as in (A.12).

Then, for some βm that lies in the line between β and β∗,

Qinitial
n (β) − Qinitial

n (β∗)

= λn

p−1∑

j=1

wj · sgn(βm
τ (j+1) − βm

τ (j ))
[
(βτ (j+1) − βτ (j ))−(β∗

τ (j+1) − β∗
τ (j ))

]

− 1
n

( y − Xβm)T X(β − β∗) ≡ J1 + J2.

We first simplify J1. Note that wj = 0 when τ (j ) and τ (j + 1) are in
different groups. When τ (j ) and τ (j + 1) are in the same Ak , first,
β∗

τ (j+1) = β∗
τ (j ), and [βm

τ (j+1) − βm
τ (j )] has the same sign as [βτ (j+1) −

βτ (j )]; second, |β̂ initial
τ (j+1) − β̂ initial

τ (j ) | ≤ 2∥β̂ initial − β0∥∞ ≤ λn, and hence
wj ≥ ρ ′(λn) ≥ a0. Combining the above yields

J1 =λn

K∑

k=1

jk+1−2∑

j=jk

wj |βτ (j+1) − βτ (j )| ≥ a0λn

K∑

k=1

jk+1−2∑

j=jk

|βτ (j+1)−βτ (j )|.

(A.21)

Next, we simplify J2. Denote z = XT ( y − Xβm). Similarly to
(A.14)–(A.19), we find that

J2 = −
K∑

k=1

jk+1−2∑

l=jk

wτ (l)(z)
[
βτ (l+1) − βτ (l)

]
,

where over the event E3, for any jk ≤ l ≤ jk+1 − 2,

|wτ (l)(z)| ≤ C

(√
σk|Ak| log(n ∨ p)

n
+ νk

√
K|Ak| log(n)

n

)

+pλmax(XT X)
n

tn.

From the condition on λn, the sum of the first two terms is upper
bounded by a0λn/3 for large n. We choose tn = a0nλn/(3pλmax(XT X)).
It follows that

|J2| ≤
K∑

k=1

jk+1−2∑

l=jk

2a0λn

3
|βτ (l+1) − βτ (l)|. (A.22)

Combining (A.21) and (A.22), over the event E1 ∩ E2 ∩ E3,

Qinitial
n (β) − Qinitial

n (β∗) ≥ a0λn

3

K∑

k=1

jk+1−2∑

l=jk

|βτ (l+1) − βτ (l)| ≥ 0.

This proves the first inequality in (A.20).
Second, we show that over the event E1 ∩ E2 ∩ E3, at the second it-

eration, the LLA algorithm still yields β̂
oracle

and, therefore, it converges
to β̂

oracle
. We have shown that after the first iteration, the algorithm out-

puts β̂
oracle

. It then treats β̂
oracle

as the initial solution for the second
iteration. So it suffices to check

∥β̂oracle − β0∥∞ ≤ λn/2.

This is true because over the event E1, ∥β̂oracle − β0∥ ≤
C

√
K log(n)/n ≪ λn. !

A.3 Proof of Theorem 3

It suffices to show that, with probability at least 1 − O(n−α), β0
i < β0

j

implies β̂ols
i ≤ β̂ols

j for any 1 ≤ i, j ≤ p. When β0
i < β0

j , necessarily

β0
j − β0

i ≥ 2bn. Moreover, β̂ols
j − β̂ols

i ≥ (β0
j − β0

i ) − 2∥β̂ols − β0∥∞.

So it suffices to show that ∥β̂ols − β0∥∞ ≤ bn with probability at least
1 − O(n−α).

From direct calculations, βols = β0 + (XT X)−1XT ε. Write β̂ols
j −

β0
j = aT

j ε, where aj = X(XT X)−1ej for j = 1, . . . , p. Then ∥aj∥2 =
eT
j (XT X)−1ej ≤ c4n

−1. By Condition 3 and applying the union bound,

P
(
∥β̂ols − β0∥∞ > bn

)

≤ P
(
∥β̂ols − β0∥∞ >

√
(2αc4/c3) log(n)/n

)

≤
p∑

j=1

P
(
|aT

j ε| > ∥a∥
√

2α log(n)/c3

)
≤ 2pn−2α.

Since p = O(nα), 2pn−2α = O(n−α). This completes the proof. !

SUPPLEMENTARY MATERIALS

The supplementary materials contain technical proofs for
Theorems 5, 6, 7, 8, and Corollary 1.

[Received May 2013. Revised October 2013.]
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Bühlmann, P., and van de Geer, S. (2011), Statistics for High-Dimensional Data,
Berlin: Springer. [175]

Chen, S. S., Donoho, D. L., and Saunders, M. A. (1998), “Atomic Decompo-
sition by Basis Pursuit,” SIAM Journal on Scientific Computing, 20, 33–61.
[175]

Fan, J., and Li, R. (2001), “Variable Selection via Nonconcave Penalized Likeli-
hood and its Oracle Properties,” Journal of American Statistical Association,
96, 1348–1360. [177,179,181,183]

Fan, J., and Lv, J. (2008), “Sure Independence Screening for Ultra-High Di-
mensional Feature Space,” Journal of Royal Statistical Society, Series B, 70,
849–911. [179]

——— (2011), “Nonconcave Penalized Likelihood With NP-Dimensionality,”
IEEE Transactions on Information Theory, 57, 5467–5484. [183]

Fan, J., Lv, J., and Qi, L. (2011), “Sparse High-Dimensional Models in Eco-
nomics,” Annual Review of Economics, 3, 291–317. [175,176]

Fan, J., Xue, L., and Zou, H. (2012), “Strong Oracle Optimality of Folded
Concave Penalized Estimation,” unpublished manuscript, available at
http://arxiv.org/abs/1210.5992. [177]

Fred, A., and Jain, A. K. (2003), “Robust Data Clustering,” Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
3, 128–136. [184]
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