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Notational conventions: We write A < B (respectively, A 2 B) if there exists an absolute
constant C' > 0 such that A < C'- B (respectively A > C - B). If both A < B and B < A, we
write A =< B. The implicit constant C' may vary from line to line. For sequences a;, b; indexed by
an integer ¢ € N, we write a; < by if b;/a; — 0o as t — oo, and we write a; > b; if a; /by — 00 as
t — 0o. We also may write a; = o(b;) to denote a; < b;. In particular, we write a; = (140(1))b;
if a; /by — 1 as t — oo. Given a positive integer T, define [T] = {1,2,...,T}.



A Additional simulation results

We present some simulation results that are not included in the main paper for space constraint.

A.1 Power diagrams of DELVE+

In Experiment 2 of Section [5], we investigate the power of the DELVE test. We now present the
power diagrams for DELVE+. Please see Figure [SI} where the simulation settings are the same
as those in Figure [2| Comparing these two figures, we observe that DELVE+ and DELVE have
similar power on simulated data. This is consistent with our theory in Section [2.2
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Figure S1: Power of the level-5% DELVE+ test (z-axis represents the SNR A(7,) = %)

A.2 More comparison between LR and DELVE+

In Experiment 3 of Section 5], we compare the power of DELVE+ with that of the likelihood ratio
(LR) test. We recall that in our general setting , both the null and alternative hypotheses are
highly composite, because §2;’s are allowed to be unequal within each group. It is impossible to
compute the LR test statistic, except in the special setting where all of the €2;’s in group k are
equal to pug. In this special setting, the LR test statistic takes the form

LR := anNkZﬂkj log(l{kj), (A1)
A 7 K
where «
1 1 - 1 «
(p = - X, d = —= Nipip = — X;. A2
Kk e N, EZS an K nN};nk kHk nNz; (A.2)
3 k = 1=

To ensure that LR is well-defined in the case of zero-counts (ie, fix; = 0 ), we define log(0/0) = 0.

In Figure [3of the main paper, we have seen the power diagrams of LR and DELVE+ for two
values of (p, n, K, Nin, Nmax, ¢). Results for some other values of (p, n, K, Niin, Nmax, ¢) are in
Figure These results suggest that when p is relatively large, DELVE+ outperforms LR in
terms of power. In theory, DELVE+ attains the optimal detection boundary, but the asymptotic
behavior of LR for large-p is unclear. There are cases where LR performs somewhat better than
DELVE+, but they seem to be limited to the smaller-p regime.

B Supplementary results from real data

B.1 The pairwise Z-score of another author

In Section 6.1, we give a pair-wise Z-score plot for a representative author (denoted by Author A).
We can produce such a plot for any author in our data set. Here we show another example (this
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Figure S2: Power curves for DELVE+ (blue) and LR (orange) versus SNR A for two different
settings of (p,n, K, Nmin, Nmax, @)-

author is denoted by Author B). Compared to Author A, the publication years of Author B’s
papers are less evenly distributed. We divide Author B’s abstracts into 6 groups, and the time
window sizes for 6 groups are unequal, to guarantee that all groups have roughly equal numbers
of abstracts. The pairwise Z-score plot for Author B is in the right panel of Figure We also
include the pairwise Z-score plot for Author A in the left panel of this figure (which is the same
as the right panel of Figure [4)).
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Figure S3: Pairwise Z-score plots for Author A (left) and Author B (right). In the cell (z,y),
we compare the corpus of an author’s abstracts from time z with the corpus of that author’s
abstracts from time y. The heatmap shows the value of DELVE+ with K = 2 for each cell.

There are some interesting temporal patterns. For Author A, the group consisting of 2004-
2005 abstracts has comparably large Z-scores in the pairwise comparison with other groups, and
similarly for Author B, the group of 2011-2012 abstracts have relatively large Z-scores. To gain
further insight, we collected the titles and abstracts of each author’s papers and manually in-
spected them. We found that Author A extensively studied topics related to bandwidth selection
in the context of nonparametric estimation. For Author B, the time period 2011-2012 reveals a
more intense focus on variable selection, compared to this author’s papers in other years within
this data set.

B.2 Checking the applicability of our asymptotic result on real data

The properties of the DELVE test are established in the asymptotic regime of n2N?2/(Kp) — oo
(see Section . We check if this “asymptotics” is reasonable for real applications. To this end,
define the dimension ratio as

DR :=n?*N*K'p~'. (B.1)



Author Total papers Average abstract Vocab size DR

(n) length (V) () (nN2/p)
1 81 75.90 1103 423.07
2 40 81.78 801 333.94
3 39 75.38 758 292.39
4 32 68.66 562 268.39
5 30 98.77 672 435.48
6 27 85.74 698 284.37
7 27 72.59 592 240.34
8 24 65.58 471 219.17
9 22 61.23 415 198.73
10 20 73.55 463 233.68
11 20 84.15 502 282.12
12 19 114.53 617 403.90
13 19 52.47 361 144.92
14 18 77.06 459 232.85
15 18 59.17 369 170.77

Figure S4: Summary statistics and DR values of the corpora of the top 15 most prolific authors.

2003 2004 2005 2006 2007 2008 2009 2010

2003 Time \ Time | 2003 2004 2007 2008 2009
2004 | 1411 — 2003
2005 | 1313 1518 2004 1145

2006 | 1986 2208 2107

2007 | 1408 1541 1470 2216 2007 859 1636

2008 | 1448 1615 1547 2263 1615 2008 784 1548 1263

2009 | 1887 2088 1981 2753 2065 2223 2009 1226 2064 1675 1597

2010 | 1506 1714 1650 2395 1714 1758 2293 2011 963 1694 1347 1358 1843

2011 | 1393 1576 1499 2213 1617 1631 2160 1762

Figure S5: The DR values for cells the pairwise Z-score plots in Figure where the left table
is for Author A and the right table is for Author B.

The larger DR, the more appropriate to apply our asymptotic theory. We report the DR values
of all the corpora used in the analysis of statistics abstracts. In the first experiment of Section [6.1]
for each author, we take all his/her abstracts as the corpus and apply DELVE with K = n. Each
author is associated with a corpus. Figure [S4] displays the DR values for the corpora of the 15
most prolific authors. In the second experiment of Section we take the abstracts written by
an author (Author A), divide them by year into 9 groups, and apply DELVE with K = 2 to each
pair of groups. There are a total of (9 x 8)/2 = 36 corpora for this experiment, whose DR values
are shown in the left panel of Figure In Section we conduct similar analysis for another
author (Author B). The DR values in this experiment are in the right panel of Figure These
DR values are large, suggesting that our asymptotic setting is relevant for real applications and
that the Z-scores obtained in these experiments are trustworthy.

C Some analysis of the naive ANOVA test

In Section [2| we introduced a native estimator of p? as

K
T=Y nNyliw - pl*.
k=1
Consider a K x p “contingency table” whose (k, j)th cellis ) ;. Xi(j). Then, T is an ANOVA-
type statistic associated with this contingency table. It is interesting to investigate the test based
on T and compare it with our proposed DELVE test.



In the proof of Lemma we will show that

]E[ﬂ =p’ + Js, where Z Z Z( nka) NiQij(lf_ Q”) (C.1)

ng N,
k=1i€S, j kVk

Here, p? is the signal of interest, and J5 characterizes the bias in T. To gain some insight about
the order of these two terms, we consider a simple case where (i) groups have equal size, (ii) N;’s
are equal, (iii) ;; = O(p~!), (iv) under Hy, miny ||ux — pl| > collu||, for a constant ¢o > 0. It
holds that

= K/p under Hy and Hy, and p? =<nN/p? under H;. (C.2)

The bias term is negligible if nN < Kp. This is a stronger condition than the optimal detection
boundary, which only requires n? N? > Kp. In particular, when

Kp < n’N? <« K%*?,

the bias term dominates the “signal” term, so the test based on T may lose power. In comparison,
the DELVE statistic T" in @ is a de-biased version of T, hence, it has no such issue.

An example where T is powerless. Suppose K = n, both n and p are even, and N; = N.
Take two vectors o € {—1,1}? and € € {—1,1}" such that Z§:1 oj=0and Y. ;& =0. Under
Hy, let @ = p~11,1/. Under Hy, let Q;; = p~! + ap~le;04, for some a € (0,1). We can easily
check that each ; is indeed a PMF. For this example,

1 1 1 1 1 1 1
Jalt_Jnull: 1— = - 1+OZE7;U' 1—7—70682‘0" — (1= = (11— =
S = 1= D30 L0 o)L= 5 = aeie) — (- Y00 = )
1 Z 1 59 5 1. a%n
:7(175) fQCY E,LO'J :7(1fﬁ)7

Moreover, p2,,; = 0, and p2,, = O(nN/p?). When p > N and « is lower bounded by a constant,

m) -

EA[T] ~ BolT] = plyy + 5" — ' = O™

Since E4[T7] is smaller than Eo[T], the test based on T is powerless.

D Properties of 7' and V
This section is a preparation for the proofs of our main theorems. We recall that
X; ~ Multinomial(N;, Q;), 1<i<n. (D.1)

For each 1 < k < K, define

= N;Q; € RP, Y = NQ QL € RPXP, D.2
i€ Sy 1€Sk
Moreover, let
1 & 1 & 1 & . 1 & )
k=1 =1 k=1 =1

The DELVE test statistic is ¢ = T/\/V, where T'is as in @ and V is as in . As a preparation
for the main proofs, in this section, we study T and V separately.



D.1 The decomposition of T’

It is well-known that a multinomial with the number of trials equal to N can be equivalently
written as the sum of N independent multinomials each with the number of trials equal to 1.
This inspires us to introduce a set of independent, mean-zero random vectors:

{Zir}1<i<n 1<r<N;; with Zir = Bir — EBiT, and Bir ~ Multinomial(L Ql) (D4)

N, 1IXTS

We use them to get a decomposition of 7" into mutually uncorrelated terms:

Lemma D.1. Let {Z;; h<i<ni<r<n; be as in (D.4). For each Z;, € R?, let {Z,;, }1<j<p denote
its p coordinates. Recall that p* = ZkK:l kN |\ — pl|?. For 1 < j <p, define

K N;
23 3 kg — 1) Ziji

k=1i€Sy r=1

= 1 1y N
Ugj = ZZ Z (nka*an—[)ﬁZierijs,

k=1i€S; 1<r#s<N;

=
I

N; Np,

1
Ugj = —W Z Z Z ZZZiermjsv

1<k#0<K i€S, meS, r=1 s=1

Uy = 3 2 23 (o ) Ziir Zss
k=1i€S,,meSE r=1s=1 nka nN

Then, T = p? + 24 1/ U,... Moreover, E[U,] = 0, and IE[U,{UQ =0pxp for1 <k #( <4

k=1 "p

D.2 The variance of T

By Lemma the four terms {I;Un}lg,ﬁg are uncorrelated with each other. Therefore,
Var(T) = Var(1,U;) + Var(1,,Uz) + Var(1,Us) + Var(1,Uy).

It suffices to study the variance of each of these four terms.

Lemma D.2. Let Uy be the same as in Lemma[D 1] Define

K

O =4 np Ny |diag (pue) /(s — )| (D.5)
k=1
il . 2
Lo =4 meNe| [ (e — )| (D.6)
k=1

Then Var(1,U1) = On1—Ly. Furthermore, if maxi<k<x ||irlloo = 0(1), then Var(1,U) = o(p?).

Lemma D.3. Let Uy be the same as in Lemma[D.d]. Define

K
1 1 N
On2 =2 — - — d 12 D.7
=23 (o o) 2w o)
= 1 k
K
1 1 N;
A, =2 ( ,——) IO DS
=23 (o aw) o Il (D-8)
k=1 €Sk

Then
@ng — An S Var(1;U2) S @ng.



Furthermore, if

Yics, N2NIulI3

12562k V3 g, N2 ||2} -

then Var(1,Uz) = [1+ o(1)] - Opa.

Lemma D.4. Let Us be the same as in Lemma[D.d] Define

On3 = 2NQZZ > NiNm Qi Qm; (D.10)

k#Li€S, meSy j

_ 9 Z npneNk Ny

L (S0 D)L, (D.11)

kL

Then
@ng — Bn < Var(l%Ug) < ®n3 + Bn

Lemma D.5. Let Uy be the same as in Lemma[D.d] Define

n4—22 3 Z(nka — )NNmQUQm] (D.12)

k=11€S,,meS, j

i#m
1 2
E.=2% Y % (nka nN) NN Qs Qs Qe (D.13)
k ZGSk‘#mGSk 1<4,5'<p

Then
Ona — B, < Var(1,Uy) < Opy + B,

Using Lemmas we derive regularity conditions such that the first term in Var(1,U.)
is the dominating term. Observe that ©, = 0,1 + O,2 + O,3 + O,4, where the quantity O,, is
defined in (10). The following intermediate result is useful.

Lemma D.6. Suppose that holds. Then

On2 + Oz + Ona < Y _ [lal*. (D.14)
k

Moreover, under the null hypothesis, ©,, =< K| u|*.
The next result is useful in proving that our variance estimator V' is asymptotically unbiased.
Lemma D.7. Suppose that holds, and recall the definition of ©,, in . Define

N 1.3 5,12
max ZkZieSk W” ill3 s Zk 12k %

= . D.15
A Klal? (D-15)

If B, = o(1), then under the null hypothesis, Var(T) = [1 4+ o(1)] - O,.

We also study the case of K = 2 more explicitly. In the lemmas below we use the notation
from Section First we have an intermediate result analogous to Lemma [D.6] that holds under
weaker conditions.



Lemma D.8. Consider K = 2 and suppose that min N; > 2, min M; > 2 Then

mM nN 2
= =17 + = =
niN + mM niN +mM

@nQ + ®n3 + ®n4 = H

Moreover, under the null hypothesis, ©, < ||u||?.

The next result is a version of Lemma [D.7 for the case K = 2 that holds under weaker
conditions.

Lemma D.9. Suppose that min; N; > 2 and min; M; > 2. Define

. max{zianmn?z AT, zl||%+||zz||%}
ﬁ —

(D.16)
[l
If B2 = o(1), then under the null hypothesis, Var(T) = [1 4+ o(1)] - ©,,.
D.3 The decomposition of V'
Lemma D.10. Let {Z; }1<i<ni<r<n, be as in . Recall that
K p 2
1 1 \2[NiX2 N, X (Ni — Xi))

— 2 ( _ _ 77) 1) _ 7 1] 7 1] D17
Y (ow {Ni_l e .17
k=1i€Sk
2 2

NS D10 55 35 S EEE) SED SR 3 e S SO
n2N neNy nN

1<k#(<K i€S; meS, j=1 k= 1z€Sk7ém€Sk ,i=1
Define
1 1 N3
0 = (—= — —=)2 j d let
A nN) N 1 forie Sy, andle
ﬁ ifi € Sg,m € Sp, k£ 4L
Qim = o

Q(nklﬁk — ﬁ)Q if i,m € Sy

If we let

Al ZZZ 40 Q’L] + Z 2az7rLNTnan]] jry (DIS)

i r=1 g n]\{i}
Z Z — 1 ZZZ]TZZJS (D.19)
i T#GE

= Z Z Qim Z Zijr Zmjs) (D.20)

i#£m r=1s=1

then these terms are mean zero, are mutually uncorrelated, and satisfy

V=A+As+ A3+ 0,5 +0,3+ O,4. (D.21)

D.4 Properties of VV

First we control the variance of V.



Lemma D.11. Let Ay, Ao, and Az be defined as in Lemma|D.10} Then

Var(Ar) < — ||l Jrz\\ukﬂs <Z||ukH§
N 3 nka

NQQ 2
Var( ) 3 3 4'NJ‘2<Z”’;’;y2

k 1€Sk
|Uk|| 2 | s |2
varta £ DU L o el
k

Next we show consistency of V' under the null, which is crucial in properly standardizing our
test statistic and establishing asymptotic normality.

Proposition D.12. Recall the definition of B, in (D.15)). Suppose that B,, = o(1) and that the
condition holds. If under the null hypothesis we have

K2||U||4 > Z ”:u”2 Z HMH? , (D22)
2N2 & nka

then V/VarT — 1 in probability.

To later control the type II error, we must also show that V does not dominate the true
variance under the alternative. We first state an intermediate result that is useful throughout.

Lemma D.13. Suppose that, under either the null or alternative, max; ||Q;||co < 1 — ¢o holds
for an absolute constant co > 0. Then

Var(T) Z @n2 + 9713 + ®n4~ (D23)

Proposition D.14. Suppose that under the alternative holds and

2]\72 & nka

Then V = Op(Var(T')) under the alternative.

We also require versions of Proposition [D.12] and Proposition [D.14] that hold under weaker
conditions in the special case K = 2. We omit the proofs as they are similar. Below we use the
notation of Section [3.4l

Proposition D.15. Suppose that K = 2 and recall the definition of 6,(?) mn . Suppose that
/J’T(LZ) = o(1), min; N; > 2, min; M; > 2, and max; ||Q;]jcc < 1—co,max; ||Tillecc < 1—co. If under
the null hypothesis

4 lolf | ol )l )y
Il > max { (s + o) Ot + ) (D.25)

then V/Var(T) — 1 in probability.
Under the alternative we have the following.

Proposition D.16. Suppose that K = 2, min; N; > 2, min; M; > 2, and max; ||Qi|lcc < 1 —

co,max; |Ts|lec < 1—co. If under the alternative

mM nN *
= =17 + = =

nN +mM nN +mM

then V- = Op(Var(T)).

0

I3 1eN3 \ nl3 |, 119113
> mac{ (ags * oang) Gon *rr) ) 020

10



In the setting of K = n and utilize the variance estimator V*. The next results capture the
behavior of V* under the null and alternative. The proofs are given later in this section.

Proposition D.17. Define

ny _ 2o |1l
A = Cnflpl? (B-21)
Suppose that (21) holds, By(Ln) =o(1), and
2l HMH
[l ® > E (D.28)

Then V*/Var(T) — 1 in probability as n — oo.

Proposition D.18. Suppose that under the alternative holds and

Q 2 Q3

Then V* = Op(Var(T)) under the alternative.

D.5 Proof of Lemma [D.1]

We first show that E[U,] = 0, and IE[UKUH = 0, for k # ¢. Note that {Z;; }1<i<n,1<r<n, are
independent mean-zero random vectors. It follows that each U, is a mean-zero random vector.
We then compute E[U,;, Uej,] for k # ¢ and all 1 < jq,j2 < p. By direct calculations,

1 N;
[U1]U2j2 =2 (kz ) (k/Z: ) (nka nN) (/J,k 1 /’I’])ﬁE[ZZJ2TZ'LJQSZ'L/]1TI]
1,T,8 T

If i/ #4,orif i’ =4 and 7’ ¢ {r, s}, then Zz’jl'r’ is independent of Z;;,,Z;j,s, and it follows that
E(Z;jyr ZijysZivjir]) = 0. If i/ =4 and v = v/, then E[Z;;,+Zij,s Zisjir] = ElZijyr Zijir] - Bl Zijys);
since r # s, we also have E[Z;;,,Z;;,sZi j,r+] = 0. This proves E[U;;Us;,] = 0. Since this holds
for all 1 < j1, jo < p, we immediately have

E[hU3] = 0pxp-

We can similarly show that E[U,U{] = 0,x,, for other x # (. The proof is omitted.
It remains to prove the desirable decomposition of 7. Recall that T = 5’:1 T;. Write

p* = 30_\ p}, where p? = 25K i Ng(urj — 115)2. Tt suffices to show that
Tj Zp?+U1j+U2j+U3j+U4j, forall 1 <j <p. (D30)
To prove (D.30]), we need some preparation. Define

Qi;(1 = Q4y)
N; :

Xij
Y= 2 Z Zije,  Qij=Y2-EY2=Y}- (D.31)

N;
With these notations, X;; = N;(Q;; +Y;;) and Nij = N;Qi; +;;(1 — ;). Moreover, we can
use (D.31)) to re-write Q;; as a function of {Z;;, }1<r<n, as follows:

Ni

1 1
Qij = 2 Z g~ Q)+ 52 Yo ZijeZige

= i 1<r£s<N;

11



Note that Z;j. = B;j, — €;j, where B;;, can only take values in {0,1}. Hence, (Z;;, + Q;;)* =
(Zijr + Qij;) always holds. Re-arranging the terms gives ijr — Q1 —Q45) = (1 —2Q45) Zijr. 1t
follows that v 1
Qij = (1 — QQ”)ﬁ + m Z Zierijs' (D32)
¢ b 1<r#s<N;
This is a useful equality which we will use in the proof below.
We now show (D.30)). Fix j and write T; = R; — D;, where

S N X, ) _ i Ny
k=1 k=14€Sk

FiI‘St, we study Dj. Note that ng (sz le) = NZQ(QU +Y;j)(1 — Qij 7}/;]) = NZQQ”(l — QZJ) —
NZY2 + N2(1 - 2Q;;)Y;;, where Y2 = Q5 + N; '€;(1 — Q). It follows that

Xij(Nij — Xij) NiQij N;
Rt TG (1 - Q) — 1—20:,)Y3,.
NZ(N’L_I) Z]( U) Nl—l Nl—l( 1]) ¥
We apply (D.32) to get
Xij (Nij — Xij) 1
Rt = Aig) (1 ) + (1 - 20) Y5y — ZiinZiss. (D
Nz(Nl _ 1) ]( ]) + ( J) J N7,<Nz _ 1) 1<T7£ZS<N. J J ( 33)
It follows that
K K
§kN; ExV;
Dy =) 2051 Q)+ ) > 2 (1-29;)Y,
k=145, 1k Nk k=14€S; 1k Nk
K
T X
- Z Y Zijr Zijs- (D.34)
k=14€ Sy e Ny (Ni — 1) 1<r£s<N;

Next, we study R;. Note that ny Ny (fix; — fij) = > e, (Xij — Nifi;). It follows that

Recall that X,; = N;(Q;; +Y;;). By direct calculations, ZzeS i = nkaukj + Ziesk N;Y;,
and fi; = p; + (nN)=13°" _ N, Ye,;. We then have the following decomposition:

m=1

o i Nk (0
> (Xij = Nifty) = neNe(pa — 1) + Y NiYij — N (Z Nmij)-
i€Sk i€Sy m=1

Using this decomposition, we can expand [;cg, (Xi; — Nifij)]? to a total of 6 terms, where 3
are quadratic terms and 3 are cross terms. It yields a decomposition of R; into 6 terms:

K N n 2
:kz_: N st = ) +anNk(ZNY”) +ZZ§N§(ZNWYW)

1€SK m=1
9 leNk i
+ Z Hkj — Hj (Z NY;]) - 22 nN (p’kj - ,Uj)( Nmij>
1€S k=1 m=1
9 K n
~ o (2 M) (3 M)
k=1 €Sk m=1

12



=h+L+L+1L+ 15+ 1.

By definition, 25:1 npN, = nN and 25:1 nk Nk = nNpuj. It follows that

1 n 2 2 " 2
f3:m(,,;Nmij) o B0 IGZ‘W(;N’”YW) =

It follows that
Ri=5L+1,— I3+ 14

We further simplify 3. Recall that & = 1 — (nN)~'ngNy. By direct calculations,

b () = 5 S )|

m=1 k=1 i€Sy

“ (D) iy 2 (5 80) (3 )

k=1 €Sy 1<k#(<K €Sy meS,

K 1 ) )
= Z(l — fk)nkﬁk (IEZSIC NiYij) + N Z Z Z NN, Y Y

k#Li€Sy meS,

J1

=L+J-) 5% (Z NfYﬁ) -> nfj\[k > NiNwYij¥m;.

1E€ESk k=1 ’L‘GS)_;.,émGSk
1Fm

J2
By ([D.31)), N;V;Z = NiQi + (1 — Q45). We further apply (D.32) to get

NZY2 = Ni(1 = 2Q0)Ys + > ZijeZijs + N (1 - Q).

1<r#s<N;
It follows that
K K
3 (Z 22 ExV;
S (S ) =YY S a,y,
i 1ij ij )L
=1 ek i€Sk k=1i€5S), WAL
J3
> ¢ N D
k & NV;
S ey 2,2 S $a,)
k=1i€Sk nka r#s k=1i€Sk nka
J4 JS

(D.35)

(D.36)

(D.37)

(D.38)

We plug (D.38)) into (D.37) to get Is = I, +.J, — Jo — J3 — J4 — Js. Further plugging I5 into the

expression of R; in (D.36]), we have

Rji]1+f47J1+J2+J3+J4+J5,

(D.39)

where I; and Iy are defined in (D.35), Ji-Jo are defined in (D.37)), and Js-J5 are defined in

39,

13



Finally, we combine the expressions of D; and R;. By (D.34) and the definitions of J;-Js,

D —J5+J3fzznka _1 ZZz]rsze

k=1i€Sk
SN
= J: J Jy — ZijrLijs -
5+ J3+ Ju ;z;:nka N D) Z rZij

Je

Combining it with (D.39)) gives T; = R; — D; = Iy + Iy — J1 + J2 + Js. We further plug in the
definition of each term. It follows that

T = anNkukj 1) +2ZZ gk — 1) ;Y Z > NiNuYi;Ym;

k=11€Sy k;ﬁf’besk,MESg
VDI LRI 3 Nf’” > L i
k—1icSy.meS, 'k h=1icS, Uk k(N — 1) r;ﬁs

(D.40)

We plug in Y;; = N;* Zivzil iir and take a sum of 1 < j < p. It gives (D.30) immediately. The
proof is now complete. O

D.6 Proof of Lemma [D.2

Recall that {Z; }1<i<n,1<r<n, are independent random vectors. Write

K N,
50 =23 Y 3 - 2
k=1i€S) r=1
The covariance matrix of Z;, is diag(Q;) — ;€. It follows that

Var(1,U;) = 42 > Z . — )’ [diag(Q:) — Q9] (s, — )

k=1i€Sy r=1

—4Zuk— [dwg(ZNQ) (ZNQQ)} Lk — [)

= 42 P — [dlag(nkaﬂk) - nkaEk] (pr — 1)

= 4anNk||diag(/~Lk)l/2(/~Lk —w” = 43" N3 2 G = w)|*. (D.41)
k k

This proves the first claim. Furthermore, by (D.41)),

~ . 2 ~ .
Var(1,U1) < 43 mi N ding ()2 — )]|” < 4 i N ding ) 12 — 2
k k

Note that ||diag(ug)|| = ||k]lco. Therefore, if maxy ||prllco = o(1), the right hand side above is
o(1) - 43", niNg|lpe — p||? = o(p?). This proves the second claim. O

14



D.7 Proof of Lemma [D.3

For each 1 < k < K, define a set of index triplets: ./\/lk = {(z r,8):1€E Sk, 1<r<s<N;}. Let

M = UE_ | M. Write for short 6; = (nka - ﬁ)z N

P
1/ Us =2 ’LTS7 with  Wi,.s = ZijrLijs-
2 — Z \/7_1 E J J
(i,r,8)EM
For Wi.s and Wirue, if 4 # @', or if & = 4’ and {r,s} N {r’,s’} = 0, then these two variables
are independent; if i = ', r = 1" and s # &', then E[Wi Wirs'] = 3, 5 B[ Zijr Zijs Zijir Zijrs'] =
Zj i E(Zjr Zijir) - B[ Zijs) - E[Zijs] = 0. Therefore, {Wiys}(i,rs)em is a collection of mutually

uncorrelated variables. It follows that

0;
/
Var(l U2 =4 Z WV&I‘(W@«S).
(i,r,s)EM
It remains to calculate the variance of each W;,.;. By direction calculations,

Var ZT‘g Z E ZszrZzZJS + 2 Z E[ZieriszihZigs]
j<t

= Z ij 1 — Qij)}z +2 Z(*Qijﬂi£)2

j<t
2
2 3 2
D IRE) SR )
J J J
= [1%[1* = 20|€2%l13 + 11921
(D.42)
Since max;; 2;; < 1, we have
Q)17 = 115 < Var(Wips) < |94

Therefore,

9.
1/ v s
Var(1,Uz) = <T;< N 1>Var(Wz s)

o 1 <N;

K
Z 0 Var zrs 22 Z 92 [||Ql||2 - HQl”g] = 6n2 - An’
€Sk

k=1i€Sk

\TMN TTMN

and similarly Var(lggUg) < O,,2, which proves the first claim. To prove the second claim, note
that Var(1,Uz) = O,2 + O(A,). By and the assumption min N; > 2, we have

4,53 nka - )Y Nl

k €Sk

> Gy ) o S V0P = ot

1E€Sk

which implies that Var(1,Uz) = [1 4 0(1)]©y2, as desired.
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D.8 Proof of Lemma [D.4

For each 1 <k < £ < K, define a set of index quadruples: Jx¢ = {(¢,7,m,s) 11 € Si,j € S¢, 1 <
r < Ni,1 <5< Ny} Let J = U p)1<k<e<ri Jre- It is seen that

P
1 U3 - 77’llN Z V%rmsa where V%rms = Z Ziermjs-
(i,r,m,s)€T =

For Vipms and Vi, if {(i,7), (m, s)} N {(#, "), (m/,s")} = (Z) then the two variables are
independent of each other. If (i,r) = (¢,r') and (m,s) # (m’,s’), then E[V;rpmsVipms] =
Zj,j’ E[Zz]er]sZz] er j’s’] = Ej,j’ E[ZijTZij/T} . E[Zm]s} . E[Zm Ty ] = 0. Therefore, the only
correlated case is when (i,r,m,s) = (i',r',m’,s’). This implies that {Virms}(@irm.s)es 5 a
collection of mutually uncorrelated variables. Therefore,

4
Var(1,Us) = e Z Var(Vipms)-

(i,r,m,s)€T

Note that Var(Vipms) = E[(Z] Zl-erij)z] = Zj,j’ EZijrZmjsZijirZmjs); also, the covariance
matrix of Z;, is diag(€2;) — ;. It follows that

Var(Vims) ZIE 21 EZ2,)+ Y ElZije Zijn) - ElZmjsZumgrs)
J#5’
= ZQm = Q) (1= Q) + Y i Qi Dy Qe
J#5’
= Z QijQmj — 2 Z 0502+ Z Qi Qg QL Qo (D.43)
3,3

Write for short ;,, = —2 Zj Q%Q?Rj + Zj J Q45 Qi j Qs .Combining the above gives

Var(10) = 5 3030 2 ZZ(Z%ﬂmﬁ&m)

k<l i€Sk meS, r=1s=1

—2 Z SN NiNgQ QU+ 55 2N2 >3 NiNpbim.  (D.44)

k#L1€S, mES, j k#L i€S, meSy

It is easy to see that || < Z 0 82585 Qi Q. Also, by the definition of ¥y in (D.2]), we
have X (4,5') = nklNk > ies, Ni Q €57 Using these results, we immediately have

’ngNQZZ > NilNy, 6m‘§ QZZZZNN Q5o Qi
k#Li€SK mES, k#Li€Sk, m€ES, j,5
2
T 2NZ ZZ(Z NiQijQz‘j') ( > NiQijmj’)
3" kAL Q€S mese
= n2N2 ZZ“kaEk(J ") - neNeEe(5,5")
J,j" k#L
= 22 %]]\g;]wl/p(zk o Z@)lp =: B, (D45)

kL

as desired.
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D.9 Proof of Lemma [D.5

For 1 < k < K, define a set of index quadruples: Qy = {(i,r,m,s) : i € Sk, m € Sg,i <m,1 <
r < Ni,1 <5< Ny} Let Q= Ui, Qp. Write wy = (5 — 7) NilVim, for @ € Sy and
m € Si. It is seen that

V=2 Y _Vhim where V; —XP:Z»-Z -
P - Z'f'mé ) mrms — yr mjs-
VNN -

(i,m,m,s)EQ

It is not hard to see that Vi.p,s and Vi e are correlated ounly if (¢,r,m,s) = (¢',7',m/,s'). Tt
follows that

Rim
Var(1;U4) = 4({ Z)GQ Nivaar(VirmS)‘

In the proof of Lemma [D.4] we have studied Var(V;ms). In particular, by (D.43), we have
Var(virms) = Z Qiijj + 5ima with |6im| < ZQijQij’Qijmj’-
J 5.3’
Thus

N; Np,

Var U4 —42 Z ZZ ’izm Var zrms)

k=1i€SkL,meSy i=1 r=1
<m

= 4i Z Kim (Z Q5 Qm; + §im)
J

k=11i€S,,meSy

<m
= 22 Z Z/{zsz]Qm] :I:QZ Z RszQUQU’Qijmj ,
k=1i€Skr,meS, j k i#mESy
i#Em
= O3+ B, (D.46)
which proves the lemma.
O
D.10 Proof of Lemma [D.6l
2
By assumption (21), N?/(N; — 1) < N; and (nka - ﬁ) = ﬁ First, observe that
k 'k
K
O+ Opy =2 (o - )
2 Ons ; n Ny nN ZN
2y Y Y- e,
k=11€Sr,meSE j nka 7’LN
i#=m
- 2
Z(nka) 0 D0 Nifhy Nl = 3l (D.47)

J i,mESk

Recall the definitions of pj and p in (D.2)-(D.3)). By direct calculations, we have

0 =233 (y 3 M) (g X Mt

J k#L ZG k
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_QZanNk j.%%

P
nkneNgNe
=2 Z n2NZ  He e
)

<2Z(Z meV )’ =23 = 2ul® (D.48)

By Cauchy—Schwarz,

P = 3 (S )

J k

(5 (54)
> (Z =) (Zuk]) VR VTSR

Combining (D.47)), (D.48), and (D.49)) yields

(D ukl?) < Oz + Oz + s < C(D [lkll?)
k k

for absolute constants ¢, C > 0. This completes the proof. O

D.11 Proof of Lemma
By (21), it holds that

1 1 5 1
— — — ) =X —— D.50
nka nlN (nka)Q ( )
and moreover, for all ¢ € {1,2,... n},
N3
t = NZ2. D.51

Recall the definitions of A,,, B,,, and E,, in , (D.11)), and (D.13)), respectively. Note that
these are the remainder terms in Lemmas D4 and respectively. Under the null
hypothesis (recall ©,,; = 0 under the null),

Var(T) =02+ 0,3+0,4+ O(An + B, + En) (D.52)

It holds that

i(nkN) > N2l (D.53)

€Sk

Next, by linearity and the definition of ¥, in -, respectively,

nkne N, Ng
B, <22 —7 1(Sg 0 2)1,



=21/ (o %)1, =2|Z|%

By Cauchy—Schwarz,

B, < |2lF = Z (;(nZNkEk(] j ))2
<z(2"kN'“ ) (Em77)
<Z<Z”kN’“> (ZEHJ )—Z;zk<j,j'>2—§||zk||%. (D.54)

Next by the definition of ¥ in (D.2]), we have Xk (j,5’) = ﬁ Zz‘esk N;Q;;8;5. 1t follows

that
B S5 (ke 32 ) (i 3 M)
J>d 1E€Sk

mGSk
=N "0G ) =D ISklF (D.55)
kG k
Next, Lemma [D.6 implies that
Onz + Oz + Ons < Y _ [ll® = K| u])?, (D.56)
k

where we use that the null hypothesis holds. By assumption of the lemma, we have
sz ¢ 3 ) 2
max Zk Ziesk WH ill3 Zk 12k (1%
ﬂn = = 0(1)
K||pl?

Combining this with (D.52)), (D.53|), (D.54), (D.55)),and (D.56]) completes the proof of the first
claim. The second claim follows plugging in p; = p for all k € {1,2,..., K}.

O
D.12 Proof of Lemma [D.8
By assumption, N2 /(N; — 1) < N;, M3 /(M; — 1) < M;. By direct calculation,
mM 2 nN 2
2 Ona [(nN—I—mM)nN i%:j ’ ]+[(nN—|—mM)mM] ; 7
1 _ _
= WW((WM)2||77||2+”N2H9|2)- (D.57)
Next
Onz = nN+mM e N Y Y N Ny
i€S1 mESy j
4 L

Combining (D.57) and (D.58) yields

1
On2+0p3+0 X ———
2+ 0,3+ 0Ony (nN+mM)2(
mM nN
— —17) + —= —
nN +mM nN +mM
which proves the first claim. The second follows by plugging in § = = p under the null. O

(mM)?|[n]|* + 2nNmM(0,7) + nN?|10]%)

2

)
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D.13 Proof of Lemma [D.9]
As in (D.52)), we have under the null that

Var(T) =0,2+06,3+06,4+ O(An + B, + En) (D59)

For general K, observe that the proofs of the bounds

K
Y ) > Nl
k=1 nie Vi €S,
K
B <Y IISkl}
k=1
K
E, <Y [15kl13

~
Il
—

derived in (D.53)), (D.54)), and (D.55]), only use the assumption that N;, M; > 2 for all i.
Translating these bounds to the notation of the K = 2 case, we have

An <Y ONFIQulP + D MEITP

B < |S1]|F + 122017
En < 113 + 122017 (D.60)

Furthermore, we know that ©,, > ¢||u||* under the null by Lemma for an absolute constant
¢ > 0. Combining this with (D.59) and (D.60)) completes the proof. O

D.14 Proof of Lemma [D.10
Define

%_2;1222(%% nN) {Ni—jl_ (J]Vi—l)? :

2
Vo = n2N2 Z Z Z ZXUXWJ

1<k#(<K i€S), meSy j=1

2
Ve =2 ( —_) X, X,
T kzlzesk;%esk,gzl nka nN ’ ’

Observe that V] + Vo + Va3 = V. Also define

All - ZZZ 49 Q” zgr (D61)

Z’I”lj

i or=1 5 me[n]\{i}

and observe that A1 + Ao = A;.
First, we derive the decomposition of V;. Recall that

Xij
}/ij = J ZJ = N ZZUT’ Qij = Y;? — E)fz? = }75 _

Qi (1 = Qi)
N; '

N;

(D.63)
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With these notations, Xij = NZ(Q” + }/2]) and N’LY;? = NiQij + Ql‘j(l — Q”)
Write

o O X% XN — Xy)
Vl =2 Z Z 7Aij7 where Aij = e g (D64)
== N; N; N;(N; — 1)

Note that Xij = NZ(QZJ + Yz_]) and YZ? = Qij + Ni_lﬂij(l - Qij)- It follows that

2
ing = Ni%; 4 2N, Yij + NiQuj + Qij(1 — Q).
In (D.32), we have shown that @Q;; = (1 — 2€;;) }1/\7/ + w7 > o1<rps<n; ZigrZijs- 1t follows that
2
i 1
FJ = N;QZ + 2N, Yi; + (1 — 2Q5)Yi; + ¥ S ZijpZigs + Qi (1 — Q).
v v 1<r#£s<N;
Additionally, by (D.33)),
Xij (Nij — Xij) 1
Nz(Nz_]-) J( ])+( ]) J NZ(NZ_l) 1ST;§Ni J J
Combining the above gives
1
Aij = Ni%; 4 2N,V + N1 Z ZijrZijs
1<r#s<N;
ol 1
= N +205) Zijr + —— o > ZijeZijs (D.65)
r=1 1<r7£s§Ni

Recall the definition of ©,2 in (D.7), A2 in (D.19), and A1 in (D.61)). We have
N.
- 1
2
=23, Z [N +2QzJZZijr+ﬁ > ZieZigs].

ki€Sk j = ¢ 1<r#s<N;
40, QU
=0+ > > g Z Zyrt DD w1y D Dl
k, €S, j k,i€SK J 1<r#s<N;
= Opa + A11 + Ay (D.66)

Next, we have

Vot Va= ZamNNmZ{ Yij + Qj)( m]—%Qm])}

i#Em
=Y aimNiNp, Z Yinj +2Y Qi NiNp, Z Qi+ D WimNiNp > Qi Qi
i#£m i#Em i#Em J
Ni N
= Z Z Z Qjm Z Zzngm]s +2 Z Z Z Z aimNQOj] Zijr + 6113 + ®n4
i#£mr=1s=1 i r=1 j men]\{i}

= A3+ A2+ Op3 + Op4.
Hence
A1+ A+ A3+ 0,0+ 0,3+ 0,4 =V,

which verifies (D.21]). By inspection, we also see that EA, = 0 for b € {1,2,3}. That Ay, Ay, A3
are mutually uncorrelated follows immediately from the linearity of expectation and the fact
that the random variables {Zij, }ir U{Zijr Zmjs}(i,r)#(m,s) are mutually uncorrelated.

O
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D.15 Proof of Lemma [D.11

Define

Yirj =

and recall that A;
1 € Sk. Then we have

'Yirj ~ ning
< Hkj
~ nka

= Zz ZTG[N

i Zj Virj Zijr- First we develop a bound on ~;,;.

i

+ Z 204imNQOj
mée[n]\{i}

Nm(}mj Nm(}m]
mesgn’n;éi TliN,? Z{Ic]» Tn;k/ n*N?

.
niN’

Next using properties of the covariance matrix of a multinomial vector, we have

Var(A Z Var(v.,. Zi.r) = Z Vir:COV(Zir )i
1,7 €[N;) i,7€[N;]
Z Vir:diag(Qs:)vir: = Z ZQU’WQM
i,r€[N;] i,r€[N;] J
] 2
S Z n ]\Jf nN) Z i
kiVk i€Sy, re[N]
< Z /“Lkz nka,Ukj + Z _ nkaukj
k,j
Z ”,Uk”?, H# Z ||,uk_||3
nka niN ni Nk’

(D.67)

Suppose that

(D.68)

which proves the first claim. The last inequality follows because by Jensen’s inequality (noting
that the function z — z3 is convex for z > 0),

g =3 (Z("‘“N’“

J k

/’Lk])

42=3 ) NN D

i r#s

Next observe that

nka

<22

Kk < Z i 113-

7/!’8

N; (N,

(D.69)

where recall Wi, = > j ZijrZijs. Also recall that Wi, and Wjs,v e are uncorrelated unless ¢ = ¢/

and {r,s} = {r',s'}. By (D.42)),

Var(Az) = ZZN2 _1 5 Var(Wirs)
i or#s
<Z§N3 e lul?
ST Gl et i
DN el
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(D.70)



Also observe that

S s L VIRIES Y i 3 (G (e

k iesy k i,mESk

=3 sl
?nm

This establishes the second claim.
Last we study Asz. Observe that

N; Np,
A3: E § § O41‘771‘/1'7‘7715
i#mr=1s=1

where recall Vs = D, j ZijrZmjs- Recall that Vipme and Virye are uncorrelated unless

(r,s) = (r',¢') and {i,m} = {i',m'} By (D.43),

Var(A3) $ Y o}, NiNn, Z Qi Qi

i#Em
1

’S Z Z n4N4 <N Q“N Om +Z Z niN4 <NlQuNQO>

k i£meS, k'k k££ i€ Sy, mES,
S i +y - (n Nigpire, neNepue)
~ n2 N2 nAN4

k [

||/~Lk||2 [l s

<Z nZNZ ' nINe §Z nZNE (D.71)

In the last line we use that ||u|? < 23" ||ux|/? as shown in (D.49). This proves all required
claims. O

D.16 Proof of Proposition

Under the null hypothesis, we have ©,,; = 0. Thus, EV = ©,, under the null by Lemma [D:10}]
Under (21)), we have Var(T) = [1 + 0(1)]©,,. Therefore,

EV = [1+ o(1)]Var(T), (D.72)
so V is asymptotically unbiased under the null. Furthermore, by Lemma[D.6] we have
0, < K||u|* (D.73)
In Lemma we showed that

N2 Q;
Var(an) £ Y2 30 PR
k icS, |k

We conclude by Lemma that under the null
[ ]? [ 44[13
Var(V) < § TN Ek o (D.74)

By Chebyshev’s inequality, (D.73)), (D.74)), and assumption (D.22)) of the theorem statement, we
have

|V —-EV| _|V-EV|
Var(T) Kllp?

= O]p(l).
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Thus by (D72),

V. _(V-EV) EV _
Var(@) ~ V(@) | Varp ~ W HIFe

as desired. 0

D.17 Proof of Lemma [D.13
By Lemmas we have

4 4
Var(T) =Y " Var(1,Us) > (O Ona) = (An + Bn + E). (D.75)

a=2

Using that max; [|[Q;]|cc < 1 — co, we have [|Q;]|> < (1 — ¢o)||€2%]|?, which implies that

An < (1 - CO)@n2- (D76)

Again using max; ||Q;|lco <1 — ¢, as well as Ej, Q5 =1, we have

2
Bn= DD DD NiNm iy U Uy

k#Li€S, meSy 7,5’

<(1—=cp)- # Z Z Z ZNiNinjQij’Qmj

k#Li€S, meSy 4,5’
2
=(l=co) =2 > D D NilNmij
n?N ; -
k#Li€S, meSy j
S (1 - Co) . 9713- (D??)

Similarly to control E,, we again use max; ||Q;|lcc < 1 — ¢p and obtain

1 1 \2
E, = 22 Z Z (m - W> NiNp Q4550 Qi Qi

kE i€Sk,meSk,1<5,j'<p

1 1 \2
S (1 - Co) . QZ Z Z (nka - m) NszszQZJ’Qm]

k i€SK,mESK, 1<5,j'<p

1 1 \2
<(l-c)-2) > > (nka - W) NiNp i

k i€SK,meS, 1<j<p

i#Em
<(1—co) O (D.78)
Combining (D.75)), (D.76)), (D.77), and (D.78]) finishes the proof.
O
D.18 Proof of Proposition
By Lemmas and
k
By Lemma [D.1T]
Var(V) 5 Y el 5 e lI3 (D.50)
~ & ’I’LiN,? & ’I’Lka
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Using a similar argument based on Chebyshev’s inequality as in the proof of Proposition
and applying (D.79) and (D.80)), we have

V-EV| _ |V -EV|

Var() Sl sy

Next, by Lemma and ,
EV =0y 4+ O3 + 0,4 S Var(T). (D.82)
Combining (D-81)) and (D-82) finishes the proof. O

D.19 Proof of Proposition
From the proof of Lemma we have

V* :‘/1 == ®n2+A11+A27
and the terms on the right-hand-side are mutually uncorrelated. From (D.68)), we have

1€ 13
N;

Var(A;n)

Hence
EV* = 0,2

V(v < S~ 1918 5 92 b
ar( )NZ N, \/Z ~NT (D.83)

Since K = n and the null hypothesis holds, we have ©,; = 0,4 = 0. Moreover, by ([D.48]),
we have

Ons < [lull* < Onz = nllp*.
It follows that
Var(T) = [1 + 0(1)]0,2 =< nl|p|*. (D.84)
Thus by and Chebyshev’s inequality, we have
v vV —EV* EV*

Var(T)  Var(T) +Var(T)

=op(l) + 1+ o(1),

as desired.
O
D.20 Proof of Proposition
By Lemmas and
Var(T) 2 Op2 + 0,3 2 > 1412 (D.85)
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By (D-83),

Using a similar argument based on Chebyshev’s inequality as in the proof of Proposition
and applying (D.85) and (D.86)), we have

|[V* —EV*| > |[V* —EV*|

Var) ~ow e 50

Next, by Lemma and 7
EV* = ©,2 < Var(T). (D.88)
Combining (D-81)) and (D-88) finishes the proof. O

E Proofs of asymptotic normality results

The goal of this section is to prove Theorems |l| and [2, The argument relies on the martingale
central limit theorem and the lemmas stated below. As a preliminary, we describe a martingale
decomposition of T' under the null.

Define

U= 1;(U3 + U4), and S = 1;U2

By Lemma we have T = U + S under the null hypothesis. It holds that

N; Ny
U= Zgi,i’ZZ(ZZijTZi/js>. (El)
i<é’ r=1s=1 7
where we define
;4 = 2(nklNk - fﬁ) if i7il S Sk; for some k
7 *% else.

Define a sequence of random variables
N;
Dy = Z i Z Z ZijrZijs (E.2)
i€[—1] r=1 j

indexed by (¢,s) € {(i,7) }1<i<n,1<r<n,, Where these tuples are placed in lexicographical order.
Precisely, we define
(617 81) < (€27 82)

if either
o /1 < 52, or

o /1 =4y and s1 < s9.
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Observe that

> Dy =U
l,s
Next define F_ ) to be the o-field generated by {Zi.,}(;r<(e,s)- Observe that
E[Dl,s|]:<(275)} = 07

and hence {Dy s} is a martingale difference sequence. Turning to S, we have

S = Z 0> > ZijeZijs. (E.3)

r<s j

where we define

1 1 N;
(il )
ngN, nN/N;—1

if i € S. Define

o Y ZijeZujs. (E.4)

rels—1] J

Note that Ey; = 0. Order (Z s) lexicographically as above, and recall that F_ ) is the o-field
generated by {Z., } (;,r) . Observe that

E[Eys|F<e,s] =0,

and hence {E; ,} is a martingale difference sequence. We have

n

N¢
ZG@ Z ZZngZngZZZO'z Z ZZéerst:S'

(¢,s) rels—1] J l=1s=1  rels—1] J
Define
v MZ s
Mps=Dps+E;rs, Mps=——=. E.5
A ¢, A A Var (1) (E.5)
Thus we obtain the martingale decomposition:
T=U+S=) [Dps+Epsl = ZM“ (E.6)
(2,s) (2,s)

The technical results below are crucial to the proof of Theorem [I] given in Section
Theorem [2] then follows easily from Theorem [[] and Theorem

Lemma E.1. Let /\A/ng}S be defined as in (E.D). It holds that
E { Z Var(ﬂ&s}]‘}(g’s))} =1.
(t,5)

Lemma E.2. Suppose that min N; > 2 and max ||Q;]|ec < 1 —co. Under the null hypothesis, it
holds that

(|32 Ver(Dne ) 5 (52 g el + Kl

(£,s)
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Lemma E.3. Suppose that min N; > 2 and max ||Q;]|cc < 1—co. Under the null hypothesis, it
holds that

1
Y ED{ S (D QNZ)IIMII2 (Zm)llu\ﬁ

() k k
Lemma E.4. Suppose that min N; > 2 and and max ||€;]|cc <1 —c¢o. Then we have
3 N[5 N9l
ar( Z Var(Ey o| F< (0,5 ) Z Z 4N4 3y Z Z 4N4 4 (E.7)
(l,s) k 1€Sk k 1€Sg
Lemma E.5. Suppose that min N; > 2 and and max ||Q;]|cc < 1— co. Then we have
N2JI€12 NP3
4 L ll3eill3
D EFL D) T V2 Taa
(Z,s) k €Sk k i€Sk

Lemma E.6. Under either the null or alternative, it holds that

N2 92 1
XY Sanr < el

k €Sk
NP3 1 3
D> o < 0 Nl
k icSy Wi - "edVk
NS4
>y My,
k i€Sk k

E.1 Proof of Theorem [1

By the martingale central limit theorem (see e.g. [Hall and Heyde [2014]), we have that T'/+/Var(T) =
N(0,1) if the following conditions are satisfied:

> Var(Me,| Fages) = 1 (E.8)
(Z’s)
S EIMZ A 5, ool Faee] 0, for any £ > 0. (E.9)
(£:5)

It is known that (E.9), which is a Lindeberg-type condition, is implied by the Lyapunov-type
condition

STEM], =o(1). (E.10)
(£,s)
See e.g. Jin et al. [2018].
Since holds,
Var(T) 2 © = Oz + Onz + Ona 2 K| . (E.11)

Recall that
M@,s _ D@,s + E&s

Mes = Var(T)  Var(T) '

Note that (E.8|) holds if

E Var(x/l/g&’}}(g’s)) — 1, and (E.12)
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Var (Var(./f\/lvg,s|f<(g,s))> — 0. (E.13)

Recall that (E.12) holds by Lemma

Next note that
E(Dy¢,s By s|F<e,s)) = 0,
by inspection of the expressions for D, ; and Ey ; in and . Therefore
Var(My s|F<e,s)) = Var(Dy s| F<e,s)) + Var(Ee s | F<e,s))-

Hence by (E.11)); Lemmas 7 and and the assumption , under the null hypothesis,

we have

— 1
VaI‘(VaI'(Mg75|.F_<(g,s))> < W {VaI‘(VaI‘(DASU:_«g’S))) +Var<Var(Eg7s’f<(g7s)))]

1 1
S e | (2o e el + Kl 2] — o(1).
M [(Xk:nka)llullg 2/l el (1)

This proves (E.13|). Thus, (E.12)) and (E.13)) are established, which proves (E.8).

Similarly, (E.10) (and thus (E.9))) holds by (E.11); Lemmas (E.3), (E.5)), and (E.6), and the
assumption (24). Combining (E.8) and (E.9) verifies the conditions of the martingale central

limit theorem, so we conclude that T'//Var(T) = N(0,1). Since Var(T) = [1 +0(1)]©,, by
and Lemma the proof is complete. O

We record a useful proposition that records the weaker conditions under which 7'/+/Var(T)
is asymptotically normal.

Proposition E.7. Recall that o, is defined as

k=1 Ny k=1 niENi k=1

mn . If under the null hypothesis,

SN £ o 171 S o 7 o ) RS - SRt
" neNy' = ngNg ’ Klpl* = '

k=1

then T/+/Var(T) = N(0,1).

E.2 Proof of Theorem

By our assumptions, Proposition holds, and V/Var(T') — 1. Thus the variance estimate V'
is consistent under the null. Theorem [2 then follows from Slutsky’s theorem and Theorem O

E.3 Proof of Lemma [E.T]
By Lemma|[D.I] S and U are uncorrelated, and it holds that

Var(T) = Var(S) + Var(U). (E.16)
Next note that

E(Dy,s By s| F<e,s)) = 0,
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by inspection of the expressions for Dy s and Ey ¢ in (E.2)) and (E.4]). Therefore
Var(./\/lgys|]'-_<(g7s)) = VaI‘(Dgys|]:_<(g7s)) -+ Var(Eg,s|]:_<(@7s)).

Observe that

E{Z Var(Eé,sl‘F-<(€,s)):| = Z EE}, = Z a; Z ZE[ZEerstZZj’r’ZEj’s]

(£,8) (2,s) £,s) r,r'€ls—1] 7,5'

= Z O-g Z ZE Z@jT'Zéj’TZstZZj/s]

(¢,s) rels—1] 4,3’

—ZO’Z Z Z (ZZeerst)z

£=1 SE[Ng] re[s—1] J
= Var(9). (E.17)

The last line is obtained noting that S as defined in (E.3]) is a sum of uncorrelated terms over

(i,7,8).

Similarly, we have

E { > Vaf(De,s|]:<(z,s))] =E { > E[D} | F<s ] > E[D7,]

(¢,s) (2,s) (¢,s)
=Y > oVar ZZZWZM
(¢,s) i€[—1] r=1 j
N; Ne
=2 > aNVar(Y Y ZijeZuys)
Y4 ie[é—l] r=1s=1
— Var(U). (E.18)
The lemma follows by combining (E.16)—(E.18). O
E.4 Proof of Lemma [E.2]
Let My = npNi and M = nN. Define
1 1
= %:Mkzk =+ g{:] NoQej, sy (E.19)
n

Our main goal is to control the conditional variance process. Define

Qg (1 — Q) ifj=4

(E.20)
— Q0 else.

8jjre = BZojr Zyjrr = {

Observe that

Var(Dy,s| F<e,s)) = E[ Z Z Z 0i0irt Zijyr Ztjy s it jor Zejas| F < (6,5))

il €le—1] 7 j1,2

Z Z Z Uzlaz’€ ij1r i’ jgr’E[ZZjlsZijs]

i,i'€[l—1] 7,1’ j1,J2

E § 0i00ig § 6j1j2€leer7/]2r

i3 €[—1] r,r’ J1,J2
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Define

it 1o = Z NgO’wO’ilg(Sjleg. (E.Ql)
>4’
Thus
N; N ’
Z Var(Dg7s|]:<(g,S) Z Z Z Z 0i04'¢ Z 5]1]25 ijir i jar!
(¢,s) ls qi/et—1]r=1r'=1 31,72
N; N;
DD WP LIEIEI
i r=1r'=1 j1,j2 0>1i
N; Ny
#2505 S (3 Nt ) oo Zus
i<i/ r=1r'=1 j1,jo “€>i’
N; N;
=22 D D i Litiar
i r=1r'=1 j1,j2
N; N i’
#2333 3 i Zigi Zir
i<i’ r=17r'=1 j1,j2
Define
Ciritrr = Z ity jo Ligrr Lt jor - (E.22)
J1,J2
Then
N; N ’
Z Var(D€7s|]:<(f,s)) = Z Z Ci’!'i’!' + ( Z Z <z7z7’ + QZZ Z CZ’IZ/T/)
(£,s) i re[N;] i r<r’€[N, i<i’ r=1r'=1
=Vi+ W

With this decomposition, Lemma[E.2|follows directly from Lemmas and stated below
and proved in the next remainder of this subsection.

Lemma E.8. It holds that
1 3
var() £ (30 77l

k
Lemma E.9. It holds that

Var(Va) S K|pll

E.4.1 Statement and proof of Lemma

The proofs of Lemmas[E.8| and [E:9] heavily rely on the following intermediate result that bounds
the coefficients a4, 5, in all cases.

Lemma E.10. It holds that

1 . o« . . .

m:u‘jl ZfZ,’L/ € Ska]l =J2

1 1 poe . . .

s < mzkjljé + szljz if i,7" € Sk, j1 # j2
17192 ~ - . . .
ﬁ'u’jl ZfZESk1aZI€Sk27k1#k27]1:¢72

A Shjiie + o Sis  ifi € Sky,i' € Sky, k1 # Koy ji # o
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Proof. If j1 = jo and 4,7 € Sk, we have

K
|iijin] = 1Y Neoiwoinabsjuel <D Neowoiedy,jye
> k=1 eesk,
< b 1 1 1
~ Mk; ZEZ NZQZ]l é;] NZQZ]l ~ M /"le M/‘LJI ~ M /‘LJI
k

If j1 # jo and 4,7 € Sk, we have

(i jigl = 1Y NeoieoineSj,joel < Neloieoine|Quj, Qs
> ¢eln)

1 1 1
’S ﬁk M Z NgQgth]z M Z NKQZﬁ ijz ~ M Ek]l]z + szljz'
LES) ée[n]

If i #£4', j1 = j2, and i € Sk, , 7’ € Sk, where ky # ko, we have

|Qiirjugi| = 1D Neoweoinedjijel < ZNZ\UzeUz'dQeal
£>4!

2

1 1 1 3

S i O Nt gy O Nees = gy
a=1 @ LESk, Le[n]

If i # 4, j1 # j2, and @ € Sk, , 7’ € Sk, where ky # ka, we have

|Oé” ]1]2| — | § Niazfo—l’fajljgd ~ § NZO—’LZO—'L/ZQZjlﬁéjQ
£>4!

1 1
3, D NeQuj Qg + YA Z NS5, Qo5
ko pesy, t€[n)

5

| /\

1
Dkajrga T 7S

IIMM : MN’

E.4.2 Proof of Lemma [E.§
We have

Var(V1) ZJE rir

Next by symmetry,
E¢ir = Qiigy jo Qiigsja Blijyr Lijar Lijor Lijar
J1,J2,J3,J4
2
S A Qg+ Y i iy g gy Qi
J1 J17#ja
2
> iigig Qiigags Qipy Qg + Y i, iy i
J17#33 J17#7d2
Y i Qigags ijy Qg Qi D Qi ja Qiiga ja$Pigy Qigo Qija

J1,93,ja(dist.) J1,42,j4(dist.)

7
+ E : O‘iijlhaiijsﬂgwlthglstlM = E :Ba,iﬂ’

J1,32.3,5a(dist.)
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Thus

Var(V;) Z(ZBGM)

a
=:B,

We analyze Bi— By separately, bounding the ay;;, j, coefficients using Lemma [E.10]
For By,

B 5 N Zzall_]l]QQZ]l 5 Z Z Z Z M /.le l]l

ir o g1 k=1i€Sk re[N;] j1
1
<SS )2 M, S (3 <)l (E.23)
w G M M
For Bs,
By S D g Qiigga iy g,
LT j1#ja
1
S Z Z Z Z M VAl Ekhh + szlj4) 'QiﬁQiM
k €Sk 76[N 131774
1 1
S Z Z M o M Ek]l.M + Mzhh) - My Xigj, 54
k 317534
S Z Z kle4IuJ1 + Z Z kg1 ja 2grda s
1175]4 k J17’5]4
1392y 1(ZgoX)u 1292y
< it 2 ol St Bl o i i
S ot >
k k k
Next,
Z Ei]&]@/}’]l - Z Z NN'QUlQl JlQl]4QZ Ja " Mja
J1#Ja J17éj4 k iiresy
< Z Z NiNioQuj, Qv g (D Qg Q)
1,3’ €Sk Ja
<5ty 3 N
kg i’ €S
< Zujl = |lul3, (B.24)
J1
and similarly
1
Z Lkjrga Xjijabliy = YA Z NiNisQijy Qirjy Qi Qg -+
J1#£3ja J17#3ja k 1€Sk,i’ €[n]
1
<2 war | 2 NeNef Qe
J1 €S, €[n]
=> pd = ul}
J1
Thus
< (X o)l (8.25)
Mk

k
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For Bs,

By S Y g Qiigags gy Liga
i,r j1#£53

<ZZ Z Z Mk'qu'M Hijs - Qi]lgljs

k i€eSg re[N ] jﬁéjg

1% Zk,u
S Z Z M a7 i M — Wiy - MiDgj s S Z .
k j1#7s

We have by Cauchy-Schwarz,

/ _
W Spp = — Mk > N Qup
1€Sk
=75 Z N ZMJ U
zGSk
S Z N Z QZ] Z M?sz
lGSk
=> = ||M||3- (E.26)
j
Thus
1
BsS (D) 7)||u||§ (E.27)
k
For By,
1 1
BiSY D afiy Qi ) > (37 Sindz + szm)z Qij, Qijy
i 174 k i€Skre[Ni]jitjz  F
1 1(393)1 M, R
S z};j; kaz szm)Q MY, S Zk: (TZ) - zk: ﬁgll(zk 0 X1

1(293)1 1
< k _— q/(y03
N(; )+

First,

o 1
1/(21;))1:@ > NN, N, ZQMJ i27ia;)

Kk 41,i2,i5€8,

1
SVE > NG NN > Q0,5 = = |l

k i1ia,iz€Sk J J

and similarly,
o 1 2
(21 = Ve > NG NG N (D0, ,0,;) " < [lull3-
i1,d2,i3€[n] J
Thus
1
Zﬁ ||M||3 (E.28)
L k



For Bs,

B; < ) Qiigr jr Qiigaga Ligs Ligs Qiga

41 g1,3,54(dist.)

1 1
N Z Z Ni Z M FVAL Zkhﬂ + o M 1314) Qijy iy Qij,

k i€Sk J1,J3,74

§ZZ Z Niujlzkj3‘7]4\l4%ljlgz]3gz‘]4+zz Z Niﬂjlzjsjj\}Q;\;Qmst
k k

k i€Sk j1,J3.Ja k i€Sk j1,J3.Ja

= B51 + B52.

We have

Z Z Z 12:“]1Qh]lQMJSQWJSQMMQWM

ll,lzesk J1,93,J4

ZM3 > NN () - (2, Q)

k i1 in€S)
—Z Z NlelQQ//LllLLQ//LlQ/LQ
k i1,i2€Sk
1 1
_ 0. ’ = - 3
_;WZNHN 2, = g B < nguung. (E.29)
i1

In the last line we apply (E.26)). Similarly,

1
B52 - Z MkM2 Z Z NilNi2lujlQlljlQllhﬂlzjsﬂllhﬂw]};
k

11 €Sk,i2€[n] J1,J3,J4

1
SZW Z Niy Ni -Q;lﬂ-leﬁh
k

11 €Sk, i2€[n]
1
LR ATES B 118 (E.30)
i1 €Sk k
Thus
< (52 ) uli. (E:31)
k Mk
For 367
Be<) ). (37 St + 17 55052) (T Shsuse + 27 D) Qs Qs
. e M, M M, M
k i€Sk r€[N;] J17]27J4(dlst )
leth QZM

SIIPNPPE S DI IPIP UL

1€SK r€[N;] J1,J2,74 k 1€Sk rE€[N;] j1,72,Ja
E Ql]lglh QZJ4

+ZZ Z sz e =: Bg1 + B2 + Be3-
— = e

First,

R
BasY 3 3 N oSOt < 3l

k €Sk r€[N;] j1,J2,Ja
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where we applied (E.24]). Similarly,

1
Bsz S Z MHM@ and

Bes S Z HM||3

Thus

1
— E.32
0% (3 g7 (.32)

For B7, we have

1 1 1 1
Br ’S Z (mzkﬁjz + szljz) (ﬁkzkjsjzx + = M 1314)QU191J292139134

J1,J2.J3,ja(dist.)

5 Z Z Z Z Ekjljzzkjgh?\;% 97']291139114

k i€Sk re[N;] j1,J2,93:Ja

+ 22 Z Z Z Ekjlh21”4](\2:}\?23291]39134

k 1€Sk rE€[N;] j1,J2,93.J4

_|_Z Z Z Z 21112213149111szQszh —: Byy + By + Bas.

M2
k i€Sk r€[N;] j1,J2,33:da
Note that
Ykjrje = Z Nifij, i, < Z Nifdij, = pj,, and
lESk ’LGSk
1 1
Siia = 37 D N, Qy, < i > NiQij, = pyy- (E.33)
i€[n] i
Thus

Bn < Z Z Z Z Mjlzkj”‘lg}]\}gljzgusgzﬂ

k 1€Sk r€[N;] j1,52,73,J4

Y Y N, ijg,gj\;/‘%ngusgm < Z ||M||3

k i€Sk j1,J3.Ja

where we applied (E.29). Similarly,
1
Br S Z ﬁ”/i”g, and
Brs < Z HM||3

Thus

Z HMII?- (E.34)

k

Combining the results for B;—B7 concludes the proof.



E.4.3 Proof of Lemma [E.9
We have

Va'r(‘/Q) 5 4 Z ]EC’?TiT”
(&,m) (")

where r € [N;] and r € [Ny] in the summation above.
By symmetry, if (i,7) # (¢, 1),

2 e .. . . ey . e
E( i = E , Qi jy jo Qiit jyja Blijyr Zijgr Bl jons Zit e

J1,J2,73:d4
N Z 04“ Jij1 Ul Q; it § : Q3! 51 51 i’ §1 54 thQz J1Qz Ja
J1#ja
2
* Z Qi 12 Vi’ jaja Qijl Qij?’ Qi'jl Qi’j3 + E Qi 51 s Qz]l Qi "j2
7 1
+ Z Qi j1 51 i’ ja ja Qijl Qijs Qi’jl Qi’j4 =+ § Qi 1 ja Aii’ j1ja Qz]lgz J2 Qyr "ja
jl:jg,jz;(diSt.) j17j2,j4(di8t.)
7
+ Z @i’ j1 52 aii'janLthQz]z 927 'j2 927 TGy =+ E Ca,i,r- (E.35)
J1,J2,J3,Ja(dist.) -
Thus
7 7
Var(Va) < E E Coinr S E § NiNyCair.
a=1 (i,r)# (&) a=1 i

=:C,

Next we analyze C1, ..., C7, bounding the a;yj, j, coefficients using Lemma [E.10}
For Cl,

Crsd N S TONiNwad 5 Q5 Qg+ > > Y NiNgads Qg Qi

k i,i'€Sk J1 k#k/ZGSkZGSk/ J1
SO0 I AR WRTITIS S DI S E PRI
k i,i'€Sk J1 k#k! €Sk, i’ €Sy J1
< 4 MMy 4 < Kllull* E
SO DM+ YD et S Kl (E.36)
k1 k#k" j1
For 02,
G2 % Z Z NiNy Z ity iy ity ja $lig vy Qi
k i, €Sk J17#ja
+> D NiNe Y g Qe Qigy Qi Qg
k£k' i€Sk,i' €S, j1¢j4
1 1
S Z Z NiNy Z M a7 P 2/€J1J4 + 7 M J1]4)QUlQl PRUTH
k 4,i’€Sk J1#Ja
1
+ Z Z NiNis Z MM Z Yajija T J1J4> Qijy Qurj, Qary
k#k! i€Sy,i’ €Sys j17éj4 ae{k k'}
1
<Z Z NiNy Z M FVALU M T Hin T M”Jl)QUlQZﬁQZ]&L
k i,i€Sk J1#Ja
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9% Ql JlQ'L Ja

ij1

1

+ Z Z NiN;s Z At (Mﬂyl M/“’]l)
J1#ja

MMy 1< Kl (E37)

k#£k' i€Sh, i’eSk/
<ZZ “Jl—l_iuh ZZ Hjy >
k k#k" j1

where we applied (E.33).
For Cg,
105 SEETRS S SRR B S
k i,i’€Sy k;ék’ 1€SE, i’ESk/ J17#73
S Z Z NNy Z M 7 Mg M s iy Qi iy Qi
k i,i'€Sk J1#33
1 1

+ Z Z NiNi/ Z M!ujl ’ Hﬂ]s Qljlﬂljsgl JlQi Js

k;ék' iESk,i’ESk/ j175j3
IeMk’

/’Lh/’cjzzkh]@,zk’juza

k#k" j1#j3

= Z Z u]l'u]SZkJIJS + Z Z

k j1#73
Zu SpPp) 4 /80

First, by Cauchy—Schwarz,
o 1
/L/EkQ/i =7 Z N;N; Z,U,JQ”QZ]
k 1,4’ €S
1
Y > NNy ZQUQH Z“?QUQH
k 4’ E€Sk
1
SV Y NN Zug iy = > pf = |lplli- (E.38)
k 1,i’ €Sk J
Similarly
WS S i, (E:39)
Hence
Cy S K| ulli (E.40)

For C4,

S X NN S NN 5,
i’ J17#3d2

Cy S (
; k;ék’ €Sk /€S,
Qi Qi ja

k i,/ €Sk
1
<Z Z NNy Z Ek]1]2 M ]1]2) ij1
k 4,i'€Sk 1772
1

+ Z Z NiNis Z (7 Z Yajijs 3132) Qijy Qi

k£k' i€Sk,i' €S, jl;ﬁjz ae{k K}

J1J2) Qlﬂlgl "2

<Z Z NNy Z MQEkJ1]2

J1#£3d2
22

+ Z Z N N Z Z Zﬂ]1]2 Jij2
J1#j2 ae{k k'Y

k#k’ i€S) i’ ESk/
38

k i,4' €Sk
) szl Qy Ty =t Cy1 + Ca2



First,

041 S Z Z NN Z M2 EkthlJlQ2 J2 +Z Z NN Z 7251]29U192 "J2

k i,i’ €Sk 1752 k 4,4’ €Sk J1#j2
2 2
< Z Z Ekjuzf“ﬂ/u]? +Z Z M2 11J2/“LJ1/”LJ2 = ZMEO “+Z M2’uzo
k  ji1#j2 k ji1#j2

Similarly,

MkMk-/ MkMk/
Cas S Z Z Ek]l]z'ujlluﬂ + Z Z ]1J2/’Lj1uj2
k#£k! j1#j2 k#£k! j17#j2

M, M,
<> ;421{ (WERPp+ /'S p)
kK

Combining the previous two displays and applying (E.38|) and ( , we have

Cy S K|ull3 (E.41)
For 05,
Gs (XX My ¥ NiNﬂ) S ot %000, 0
k i,i’€Sy k;ék:’ 1€ Sk,i' €S,y 143,44 (dist.)
1 1
S Z Z NiNy Z M VAL Zk]3]4 + M 3334) Qij, Qijy Qir, Qv
k i1/ €Sk J1,33:J4
1
+ Z Z NiNi Z M/"le Z Yajsjs T M 1314) Qij, Qijy Qarj, Quv g,
k#k' i€S),i' €Sy J1,J3,J4 ac{k, /c’}
= Z Z Py Xikeja ja Dk ja 2kejr ja "’Z Z Mﬂjl s ja ki js Dk ja
k J1,J3,ja k J1,J3,ja
MkMk/ MkMk/
+2 Z Z 5 My Dkjaja kigs Sk jrja T Z Z 7z M M ja Dk gs Dk 1 ja
k#k' j1,93,]a k#K' j1,53,5a

= Cs1 + Cs2 +2C53 + Csy

For Cs1, we have

1
CSl:ZW Z Niy Nig Nig (0 iy, iy ) (5 Qi ) (i, Qi)

’il i2,i13ESk
= Z Z MoQith) ’ <Qi17Ein2>
k i1,i2€Sk
1/2
Z < > NiNi,(uo Q¢1,912>2> ( > Ny N (5, 2k ,) )
i1,i2€Sk k i1,i2€Sk
/2 ~1/2
= Z C5l/1k : 51/2k' (E.42)
k
We have by Cauchnychwarz that
Cs1ik = Z Z/ij i1 m
11,2265}9
< > NilNi2(ZN?thQizj)(ZQileizj) < lpall3,
ki1 ,ineSy J J
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and similarly

Coiok =~ O NiNiy (D Qi B o 0sza)”

11712€Sk J1,J2

- M2 Z Z Q“lekjuz i2j2)( Z QiljlginQ)
1,42 J1,J2 J1,J2

< M2 D NN (D iy 28,5, Qiaia) = 1 S 40 (E.43)
1,12 J1,J2

Since by Cauchy—-Schwarz,

/222 = Z :ujlrujz Z N; Qllewz M2 Z Hjy Hgs Z NiNy i, Qi Qirjy Qv

J1,J2 1€Sk J1,J2 1,3’ €Sk
> (o mu) < 5 D D HuQ < luld (E.44)
k 1,4’ €Sk 7 k i,/ ESE J

we have in total Cs1or < K||u|3. Combining the result with the bound for Csy1y implies that
Co1 S K||pll3-

Next we study Cse using a similar argument.

Cs2 —Z Z M:LLJI Yja ja Dk js Dk ja

k j1,93,ja
1
- Z Z M ,Lle Z N; QHJsQHJ4 Z Ni Ql2jlgl2js Z Ni 913]1913j4)
k  j1,73,Ja ile[n] zzESk ’LgESk
_ZMsz Z Z Ni N N MOQi27Qi3><Ql1’Q ><anQ >
J1,J2,J3 11€[n]
i2,i3€Sk

=Z > NNy (o Qiy, Q) (i, 50,)
k i2,i3€[Sk]
1/2 1/2
= ( i3<“OQi279is>2> ( Z QWZQ >>

k

727136[51@] i2,i3€[Sk]
1/2 1/2
52/1k 52/2k' (E.45)

Observe that Cso1x = Cs11x, and thus Csz; < ||p||* by (E.43). With a similar argument as in
(E.44) we obtain Csaor < ||u/|7- Hence we obtain

1/2 ~1/2
Cse < 2052/1k052/2k S KH“”i-
k
For Cs3, we have

MkMk,
Cs3 = Z Z M]lzknhzkhmzk'hm
k#k’ j1,33:J4

Mj,
SZ Z W”jlzkj3j42kj1j32j1j4

k j1,J3, j4
1 1
- Z Z M lU‘J1 Z Nhﬂl'ljsﬂilm Z N; Ql2lel2js) (M Z Ni, lehﬂmh)
k Ji1,J3,ja My, i1 €Sk b ires, iz€[n]
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:Z M Z N; N N N’OQiz7Qi3><Qi1vQi2><Qi1aﬂi3>
k

k 11712€Sk
i3€[n]
= Zﬁ Z N¢2Ni3<,u0Qi2,Qi3><Qi2,Ein3>. (E46)
k 12€Sk,i3€[n]

We then upper bound the last line using a similar strategy as in that we used for Cs; and Cjo,
respectively. We omit the details and state the final bound:

Css S K|ulli (E.47)

Finally for Cs4, summing over k, k' we obtain

1
Csq < Z Hj12j3j42j1j32j1j4 = m Z NilNizNi3<:uOQi2’Qi3><QZnQ ><Ql1aQ >
J1,J3,J4 i1,i2,i3€[n]

(E.48)

We then proceed as in (E.46)) to control the right-hand side. We omit the details and state the
final bound:

Csa S K| |pll3- (E.49)
Combining the results for Csq, ..., (54, we see that
Cs S K|lp)*.

For Cg, we have

Co < <Z > NiNe+ Y Y NiNz") D Qiirjupa Qs iy Qirn Qv

k i,i'€Sk k#k’ i€Sy i’ €Sy J1,J2,J4

1 1 1 1
YD NiNe Y (Ezkjljz + 37 Ziie) (ﬁkzkjm + 37 Zinda) Qi Qg

k 4,4’ €S J1,J2,J4
+ E : N N § : 2@1]2 J1J2 E : Ea]lj4 J1J4) QZth JQQl "ja
k#k' ae{k k'} ae{k k'}
iESk,iIESk/
J1,J2,74
=: Cp1 + Cga.

For Cg1, we have

Ce1 = Z Z Nis Z M ~— Dkjr gz Dk ja g Qi Jle Ja

k €Sy J1,J2,J4

+22 Z Nis Z Mzkjuz B ja by i o Qi

k €Sy J1,J2:da

Mj,
+ Z Z Nis szuz griatbis §2ir g, irjy =1 Ce11 + 20612 + Ces.

k €Sy J1,J2,J4

Relabeling indices, we see that

C611 = Z Z /ufj12kj1j22kj1j42kj2j4 = C51

k  Jji1,J2,Ja
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Hence, Cg11 < K||pl|3. Next,

C’612 < Z Z :ujlzkjljzzjlj‘lzlﬁ]z]z; ~ KH:U’H4

J1,d2,74

where we applied (E.46)). Similarly,

M2
Ce13 = Z Z Mgy 2142 21 da Bkjajs < Z H31 55152 551 5a Bjaga S Kllp*,

J1,J2,74 J1,J2,J4

where in the final bound we apply (E.48) and (E.49). Combining the results above for Cg11, Ce12, Cs13,
we obtain

Co1 S Klull (E.50)
The argument for Cgo is very similar, so we omit proof and state the final bound. We have
Coz < Klplla-
Thus
Cs S K|uli

For C;, we have

075(2 doONNe+ Y Y NiNi/) D iy @i ja iy Qs iy Qi

k i, ESy k#k’ i€S),i' €Sy J1,J2,33,J4
<> > NN 2(12 50 (S + D) iy Qi 2
< N, Sl 3y M ) (ks il S DI O Oy O
'S UYL N[ TR N p IR A TRIsIA T TI94 RIS s TR J2 TR g4
1,3’ €Sy J1,92,33,Ja
+ Z Z NiN Z Yajijs T Jl]z Z Yajaja T J3]4)leQUBQ’ 329’ Ja
k#k! j1,42,]3,J4 ae{k K’} ae{k k'}
i€Sy,i' €Sy
=:Cr + Cro
Write
1
Cn = Z Z NiNi Z Wzkjljzzkjskgwlﬂzmgl J2QZ 'Ja
k i,i’ €Sy J1.d2.d5,0a
+2Z Z NiNis Z M, MzhjzzkmMQUlQUSQl JZQZ 'Ja
k i,i'€Sy J1,J2,J3,J4
1
+ Z Z NNy Z WZjl]zE]sMthQUS,QZ JzQZ ja = Cr1 +2C72 + Crs.
k 1,i’ €Sk J1,J2,93:J4

For C711, we have
Crit = > SkjiioShjaisShirio Shiais
k J1,J2,33.j4

:Z% ST N NN Vi (@i, 2000, R0, i), i)

k iy inis,ia€8)

M2 Z Z (9,2 ,) Z Z ZQMJE]CJJ'QMJ )

kb isig 3,14
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Z Mz D NiuNiu D05y < 303wy S Kl (E5)

13,14 J:3' k4.3’

In the last line we applied Cauchy—Schwarz and (E.44)). For C712, we have similarly

M,
Criz = Z Z i1 g2 Dok da kg1 js Dkiada

k J1,J2,J3,J4
*ZMQM]C > NN Nig N (i, Qi ), 20,) (R, i) (R, i)
i1€[n]

12,13,54 €Sk

M My,
= Zﬁz Z Nlez <QzlaEszg Zﬁ Z NilNig Zﬂiljziﬁ-,ﬂmf
k k

i1€[n],i2 €Sk i1E€[n],i2 €Sk 7,3’
M? <
= ZWZMEW#J K |pll;- (E.52)
Next,
M2
Cns = > D5 S Shiris Shisia
]17]27]5 Ja
- Z Z Ni1Ni2Ni3Ni <921?Q%3><Qi1ﬂ9i4><9127 Q ><le7Q >

llﬂzé[n]
13,14 €Sk

and applying a similar strategy as in (E.51), (E.52)) leads to the bound Cr713 < K||p||3. Thus

Cr1 S K||plli-

Next , by symmetry and summing over i € Si,i € Sy, we have

My My
Cra=) M2 > {mkha‘zzmm A 22051 Dk ga T A8k go Mjsga + 21 e Visia | Bkiris Bk jaja
k#k’ J1,J2:93:J4
=:2C721 + 2C722 + 4C723 + Cr24
First,

My,
Cran < Z Z Ekjro Bkijaja Sk js Dgaja = Cr12 S KHU”4

k J1,J2,73,J4

by (E.52). Next,

M M,
Craz = ) 2 Y ks Shiaga Shirs Sk jaja
k#K’ J1,J2,J3,J4

<Y e 3 NN N Vi (00 (8, ) (i, ) (i, )
k,k’ i1,i2E€Sk
13,Z4€Sk/
2
ZM2M/ D NNk D)t < 3 s 2 NaNu Yt
13,14 €Sy i3,is€S, IR
MMy .
SZ M2 PER < |l (E.53)
k!

where we applied Cauchy-Schwarz in the penultimate line and (E.44) in the last line.
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For Crs3, we have

M My
Cra3 = Z M2 Z Ek]ljzzjshzkﬁjszk'hm < Z Z Ekjljzzjsﬂzkjljézj’zjz;
k#k! J1,92,93:J4 J1,J2,98:J4
Z M3 Z Ni1Ni2Ni3Ni <Ql179 ><Ql1)Q ><Ql27Q ><912’Q >
11’13651‘
i2,i4€[n]

1
Z W Z NiBNi4 <Qi37 Zin4 > <ng 9 ZQ >

i3€Sk,i4€[n]

1 1
352@ > NN (g ZeQi,)% + (Q4,,29;,)%)
k

i3E€Sk,14€[n]

Using a similar technique as in (E.51)—(E.53) and applying (E.38)), (E.39)) we obtain
Cras < lells-

Finally, for C724 we have

MkMk’
Croa = Z M2 Z 2512 Mg ja Sokjr js 2k faja Z 212 X ja X1 js Mgz ja

k#k’ J1,J2,J3,J4 J1,J2,J3,J4

1
:W Z NilNiQNisNi <QZUQ ><Qi1aQi4><QlQaQ ><92279 >

i1,92,13,14 €[]

The details are very similar to (E.51)—(E.53)), so we omit them and simply state the final bound:

Craa S |lplld

Combining the bounds for C721, C722, C723, and Cray yields
Cr S K||pli.

Combining the bounds for C;—C7 proves the result.

E.5 Proof of Lemma [E.3
We have

N;
ED;,=E {( Z T Z Z Zier£js)4]
i€[e—1] r=1 j

= E 0010020050040 E E(Zi,jir Ztjys Ziggara Zejas Zisjsrs Ltjss Lisjars Ltjas)

T1,72,73,74

itz da€le=1] J1,J2,73,J4
IVPEVER

= E 0100430043040 E : E[Zhjﬂl Zizjoz Zi3j3T3Zi4j4T4]E[ijlszszszfﬁszfﬂs]

11,%2,i3,i4 €[{—1] ;17;2,;37;4
1,J2,73,J4

E E[ijlsz@ésZstSZij] E : Ui1faiﬂaisZUiME[Ziljlﬁ Zi2j27“2 Zi3j3T3 Zi4j47’4]

J1,J2,93:Ja i1,i2,i3,i4€[(—1]
71,72,73,T4

= Z ]E[ZMISZZESZ@J&SZéjw}Ajl,j27j37j4 (E.54)

J1,J2,78:J4

In the summations above, r; ranges over [N, ].
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Observe that

Qej, if j1=J2=1Jjs=Ja
ijlﬂfﬂ if j1 =Jo=Js,Ja# 51
B[ Zej1s Ztjrs Zejss Zejas|| S Qagy Qe if j1 = j2,73 = ja. 51 # J3 (E.55)
Qejy s Qe if j1 = J2, J1, Js, ja dist.
Qejy Qejy Qejs Qg 3 1, J2, s, Ja dist.

Up to permutation of the indices ji, ..., j4, this accounts for all possible cases.

To proceed we also bound Aj, ;, j, ;, by casework on the number of distinct j indices. For
brevity we define w; = (i, ;) and slightly abuse notation, letting Z., ; = Z;,;r,. Further let
Iy ={w=(i,r): i € [{],1 <r < N;}. Our goal is to control

Aj1,j2,j3,j4 = E : JilfUiﬂJis»laiME[thZw2j2 Zw3j3 Zw4j4]' (E'56)

w1,w2,w3,wa€Lp—1

To do this, we study (E.56) in five cases that cover all possibilities (up to permutation of the
indices j1,...,Jj4)-

Case 1: j1 = jo = j3 = js. Define j = j;. It holds that

UiléaizéaiglaidE[ZwljszjZ ‘ZUJ4]‘]

w3]
4 4 4 0. . . _ _ _
_ {Uilé EZ,,; S 00 Shinj ifw =wr =w3=uwy (E.57)
2 2 2 2 2 2 0. .0.. . _ _ :
UillaingZwlengj S UilzaigeQszay if wy = wo, w3 = wy, w1 # ws

Up to permutation of the indices wq,...,wy, this accounts for all cases such that (E.57) is
nonvanishing. To be precise, by symmetry, it also holds that for all permutations 7 : [4] — [4]
that if wr(1) = Wr(2), Wr(3) = Wr(4), Wr(1) # Wr(3), then

2 2
Uiﬂo'izlo'i?,fo'iME[Zwﬂszj ZwaijU] 5 Ui,r(1)éaiﬂ<3)€in(1)jin(3)j'

In all other cases besides those considered above, we have
0i00i000i500:,0 B[ Zus, j Zusaj Zusaj Zusas) = O

by independence.
Therefore,

4 2 2
Aiiji S D0 i+ D 0700, (E.58)
W€y w1Fw3€Lp_ 1

In the remaining Cases 2-6, we follow the same strategy of writing out bounds for

Uiléaigéo'iaeaidE[Zwljl szjz Zwaja Zw4j4]

that cover all nonzero cases, up to permutation of the indices wq,...,ws.

Case 2: jl = jg = jg,jl 7& j4. It holds that

0is00is00i500i,0 B[ Zusy 1 Zso 1 Lo 1 Zuwsja)

4 3 . 4 O i — — —
N aile]E[Zwljl Zw1J4] S 0.0 Qiyjy Qi ja fw =wr =ws=uwy
2 2 2 2 2 : — —
UiléaigéEZwlleZWSjlZwsjzl 5 Uilfo—igé Qi1j19i3j19i3j4 lf W1 = W, W3 = Wyq,W1 7é w3
(E.59)
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Up to permutation of the indices wi,...,wy, this accounts for all cases such that (E.59) is
nonvanishing. Thus

4 2 2
Ajiinin &Y 00 Qs+ Y 05100550 iz Qig gy QLigja (E.60)

wETp_1 w1 Fw3z€Ly_1

Case 3: j1 = ja,j3 = ja,j1 # jz- It holds that

ailéaizfo'iﬂaid]E[Zwﬂl Zw2j1 Zw3j3 Zw4j3]
4 2 2 4 L L : — _ —
O.ileZwljl Zbd1j3 fs O-'L'lf Q'Ll]lQll]S if W) = W2 = W3z = Wy
— 2 2 2 2 2 2 L L : _ _
= Uilegigz]EZwllengjg < O; 4 Tine Qi1 Qigjs if w; = wo, w3 = wy, w1 # w3

2 2 2 2 : _ _
03005508 Zwy 1 2y 5 B s jy Loy S O3 000 ings Qi g iy Qingy i w1 = w3, wa = wa, w1 # wo.
(E.61)

Up to permutation of the indices wq,...,wy, this accounts for all cases such that (E.61) is
nonvanishing. Thus by symmetry,

4 2 2
Ajdnds S D OheQi Qg+ > 05100550 iy Qig s (E.62)

w€ELp_1 wi1Fw3s€Lp_1

2 2
+ E 0310055081 51 i 5 i gy iy

w1 F#w3€Ly—1

Case 4: j1 = jo and j1, js, j4 distinct. We have

O'iléa'izéo-igfo-iﬂE[Zwl.h szjl Zwsj3Zw4j4]
4 2 4 : _ — —
UiMEZwljl Zw1j3Zw1j4 S UiM Qi1j19i1j3ﬂi1j4 lf W] = Wy = W3 = W4
— 2 2 2 2 2 : _ —
=000 B 25, 5 BZ gy Zigjy S 030070 Qinga Qig s Qisja if wi = wa, w3 = w4, w1 # w3

2 2 2 2 : — —
Uilfo—iQé]EZlel ZwljsEZw2j1 ZW2J'4 S/ UilégiQZ Qilleilj:sQi'zjl Qi2j4 lf W1 = W3,W2 = Wyq,W1 # wo
(E.63)

Up to permutation of the indices wi,...,ws, this accounts for all cases such that (E.63)) is
nonvanishing. Thus

4 2 2
Ajrdrdsida S E 0510 Qiyga Qi s Qi g + E 0510550 Qi ja Qi s ig g (E.64)

wE€Tp_1 wi1Fwsz€Lyp_1

2 2
§ 0100440 Qiljl QiljSQiSjl Qi3j4'

wi1F#w3z€TLp_1
Case 5: j1,j2,j3, ja distinct. For this final case, it holds that

Ui1€0i240i380i4€E[Zw1j1 szjz Zw3j3 Zw4j4]

4 4 o — —_ —_
5082wy j1 Zeor s Lo s Zonda S Oy Qi Qi Qi 5 Qi ifwr = wy = wy =ws

2 2 2 2 o — —
aillaiglEzwljl ZwlszZw3j3 Zw3j4 5 0310030 Qiljl Qiljz Qisjs Qi3j4 if wi = wa, w3 = wa, w1 # w3

The above accounts for all nonzero cases, up to permutation of w,ws,ws,ws. Hence

4 2 2
Aj1,j2,j3,j4 5 E : Uilfﬂiljlﬂiljégiljzgiljz;+ E UiléaigéQi1j1Qi1jQQi3j39i3j4- (E-65)

w€Ly_1 w1F#w3€Ly 1

Finally we control the fourth moment using the casework above. By (E.54) and symmetry,

ED{, S ElZijsZejs Zejs Zajs) Asggg + Y, BlZejus Zess Zons Zagas| Ay v v ia
J J1#Ja
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+ Z E[ijlSijlszZJ'zSij?.S]Ajl7j1’j3,j3 + Z E[ZéjlSZZjISZZj3SZZj4S]Aj17j17j35j4

J1#73 J1,33,Ja dist.

+ Z E[ijlSZZJQSZ@'SSZZMS]Ajl,j2>j3,j4

J1,32,93,J4 dist.

= Flés + FQZS + F3€s + F4€s + FSZS (E66)

By (E.55), (E.53), (E.60) ,(E.62), (E.64), and (E.65),
Flgs g ZQ@j( Z U?EQ”' + Z 05120?3£Qi1j9i3j>
J

wELp_1 w1 Fw3€Ly_1

4 2 2
Fos 5 Z ijl ij4( Z UiEQiljl Qi1j4 + Z 04,0045¢ Qi1j1Qi3j19i3j4>

J1#7a w€ZLp_1 w1Fw3sE€Lp_1

4 2 2
Fys < E Qéjlﬁejg( E 050 Qiyis Qiyjs + E 0310550 iy ja Qig s

J1#7s3 w€Ly 1 wiFws€Lo_1

2 2
+ E 0510055082151 iy 5 Qig Qi:sja)

w1Fw3€Lp—1

4 2 2
Fyes S E Qf]d ijs ij4 < E 00 Qi1j1 Qi1j3 Qi1j4 + E 03,0055 Qiljl Qi3j39i3j4

J1,73,Ja dist. WELy_1 w1Fws€Lp_1

2 2
+ E 03100450 Qi1j1 Qi1j3Qi3j1 Qi3j4')

wi1Fw3€Lp—1

4
Fos S ) erlﬁeszfzstm( D ot e Qg Do Qs Ui

J1.92,53,Ja dist. welp—1

2 2
+ E 03100450 Qiljl Qiljz Qisjs Qi3j4> .

wi1Fw3€Lp—1

Define

Fis = Y ol Y Qi
i

w€ZLp—1

_ 4 E . 0. 0. .
Iy = g O Q€J1Q€J4 Q11]1 Q11]4
w€Ly_1 J1#Jja

4
F314 = § 0.0 § Q5]'1 Qéjagiljl Qiljs
w€ETp_1 J1#3J3

— E 4 E ) ) 0. 0.0
Faies = e ijlQf]sﬂfugumgujggum

w€Ty 1 J1,J3,Ja dist.

_ 4
Fs14s = E 040 E Q5]'1 ijé ijs er4Qi1j1 Qile QiljSQilj4

w€Typ—1 J1,32,93,Ja dist.
and

o 2 2
Fiops = E 03,4050 E Qi i, j g5

w1Fw3€Ly_1 J
_ § 2 2 § . e TN o TN 0 T
Fages = 03100530 Qf]l Q5]4911]1913]1913]4
w1F#w3€Tp_1 J1#ja

2 2
Fo0s = E : 0410930 § I:Qéjl er?, Qi1j1 Qi3j3 + erl Qf]é Qiljl Qiljs Qisjl QiSjs]
w1FAw3€Ty 1 J1#J3
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_ 2 2
Fuos = E 0310050 § [ijl ij3 er4 Qiljl Qi?,js Qi3j4

w1#w3€Ly 1 J1,J3,ja dist.
+ ijl ijz ij4 Qi1j1 Qi1j3 Qisjl Qist
— 2 2 . . . . . .
Fso0s = E : 03100450 E : 95]19@2 Qéh Q€J4 QMJlQllJz Qla]s Q13]4
w1 Fw3z€Lp—1 J1,J2,J3,Ja dist.

Note that Zizl Fip0s = Fys for all ¢t € [5]. Using the fact that Zj Q;; = 1, we have

Y P SFius= Y, oh Y Q= Y ol Q). (E.67)
t

wETp_1 J WETLp_1

To control ), Fyoss , observe that, since €;; < 1 for all 4, j,
ZQEjQilj = (¢, iy 0 Qi)

> Q0 iy, Qs Vi < (0, i, 0 Qi) - (Q, Q)
J1#Ja

Z [szlgeh Qiljl Qi373 + ijl ers Qiljl Qi1j3 Qisjl Qizjz] < 2<QZ, Qz1> ’ <Q£7 st>
J17#33

Z [0, 05 Q0 Qi gy Qi s Qi + Qegy Qg Qi Qi Ui Qi Qi ] < 2(Q0, Qi ) (R0, i)
J1,73,Ja dist.
Z erl ng? ng@) Qéﬂ QZI]I Qlljz lejs stj4 < <Q€a Qi1 >2 <QZ7 Qi3>2'

J1,32,93,Ja dist.

These bounds are relatively sharp, and it is clear that the first and third lines dominate. Fur-
thermore as. Hence,

ZFms S Fioes + Faops S Z 07 00 [0,y 0 Qi) + (e, Qi) - (D0, Q)] (E68)

t wi1F#wz€Lp—1

Observe that if £ € Sy, then

> oy < Z oV + Z > Vi (E.69)

1€Sk k'= 1ZESk/
1
S niNG ks + RESELk (E.70)
and
> oy < Z NQ” + Z Z
w iESk k! — 17’€Sk/
< 1 + 1 .
nlcNk‘uk] Nt
Next,
SY sy Y ohnn
(L) t (£,5) WEL—1
1
S ZZ 3N3/‘kﬂ ngNgl'l‘j)
(Ls) J
S — 73 Mg — 3l S - 2 E.71
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where we applied that ||u||?> <>, ||kl (see (D.49). Furthermore,

K
DD P <YLY Ne Y 0n0he[(Q Qo Q) + (R, Qi) - (R, Q)]

(£,8) t k=1/£€S} w1,w3
S 3 3 N[00+ i)+ (S0 (e + )
% les niN J ; J ’I’Lka 7 niN J
k
1 2
< .
TR T

In the last line we apply Cauchy—Schwarz. Continuing, we have

Z Zthgs < Z Z NZZQZ Nkj ]Z-V}’Lj)2

(t,s) t k (€S,
<ZZMZW ) +ZZMZW
k €Sy k (eSk
2513 ||M||3 2113
S Zk: o, Z S Z P (E.72)

where we applied (D.68). Combining (E.66)), (E.71]) and (E.72]), we have
[l ? [l 3
ZED{éNZZZF“Lé‘SNZ 2N2 Zk:nkav

(¢,s) (¢,s) z=1t=1

as desired.

E.6 Proof of Lemma [E.4]

Var [ > Var(E&s]-}(g’s))} -0 (E.73)
)

Next we study (E.73). We have
Var(Eps| F<e,s)) = E[E] (| Fxe,9)] = 07 Z ZE[Zeerzg‘sZej'r'Zej's

ror/€[s—1] 7,5’

=0f Y > ZijeZeywB[Zej Zyjrs]

ror/€[s—1] 7,5’

o D bieZegrZag, (E.74)

ror'€ls—1] 7,5’

)]

where we let

Qi (1 — Qs if j=4'
Ojjre = BZyjsZyjrs = i i) (E.75)
— Qi Q0 else.
Define
Pererr = Z 8jjreZejrZajir - (E.76)

53"
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By we have
n
Z VaI‘(E&S‘]:<(g s) Z Z Z UZ Perer!

(¢,s) =1 s=1rr'€[s—1]

n Ny

= Z Z [ Z U? Perer + 2 Z 0-? (pérf'r’]
{=1s=1 re[s—1] r<r/€ls—1]

- Z Z Z U? Dlrbr +2 Z Z Z J? Lerer’
£=1r=1s€[N;]:s>r £=1r<r'€[N;] s€[Ng]:s>r’

—ZZ Ne—r)oy Wrer-f—?Z > (Ne—1")0} Porer
(=1r=1 (=1 r<r'€[N,]

=57+ 5.

Observe that S; and S; are uncorrelated. In addition, the terms in the summation defining S
are uncorrelated; the same holds for Sy also.
First we study Ss. Next,

2 — . . . . . .
Epyrer = E 014200430t BZejyr Zpjors Ztjgr Lojar
J1,J2,33,J4
= E 5j1j2g5j3j4gEZgjlngjsr]EZghr/Zgjw/. (E.77)
J1,J2,33,J4

First we study V5. By casework,

105152403546 BZ 0j1r ZtjsrBZejare Zijar | (E.78)
0B 2L, B2, S if 1= =ja
5]1J1€5J1J4f|EZ£J1TEZ€J1T’Z€J4T s QZ}ﬂQ?M if j1 =Jjo2=1Js,Jn # Ja
011005555t BZ 0y v Zjsr B Z gy v Zujar S Q5 Q3 if j1 = Jj2,J3 = ja, J1 # J3

=\ B2 B2, S 5, Q0 if j1 = s, jo = ja, 1 # J2
01105556 B Z 0y r Z0js v B Z0j v Zujarr S s 0,95, if j1 = jo, J1,73, ja dist.

8 jzg(sjljdEZZm]EZem/ZW < Qgﬂgﬁmﬂgh if j1 = j3, 1, jo, ja dist.
53152033530 2031 r Ztsar B sy Zosrr S Q2 Q2,02 Q2 if i, o js, ja dist.

Up to permutation of the indices ji,...,js, all nonzero terms of (E.77) take one of the forms
above. By (E.78) and Cauchy—Schwarz, we have

Egfrer S 119013 + 1213121 + 20192115 + 201 l13120* + 19217 < 19I5 (E.79)

Recalling that {©erer }or<re[n,) are mutually uncorrelated, it follows that

Var 52 < Z Z Nﬁ - T U{%]EWEMW

£ r<r’€[Ng]
S0 (Ne=) el
£ r<r’€[Ng]
1
SO0 N Il (E.80)
k LSk kST
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Next we study S;. We have

2
Evirer = E 0415200555t B Zejyr Zojor Zejsr Ztjar-

J1,J2,73,Ja

We have the following bounds by casework.

|051200j3a B Z 510 Ztjor Zejar Zjar | (E.81)
02,BZ, S O ifj1=-=Ja
05151005154 \BZ3;,  Zojur| S Q25,5 if j1 = j2 = j3,J1 # Ja
01100433t BZ3;, 2850 S Q05 Q0 if j1 = jo,J3 = Jja, J1 # J3

=02, BZ8,, 25, < Q3 Q7 if j1 = js,J2 = Jja, J1 # J3
851 e0siat 235, Zejor Zojur| S Qy, 05,9, if j1 = j2, 1, g, ja dist.
05132005131t BZ; 1 Zejar Zeja | S 5,97, 9%, if j1 = js, 1,2, ja dist.
015200354t (B Zejs v Zejor Zejsr Zejur| S 5,90, 9,, 9%, 3 1, G2, Js, Ja dist.

Up to symmetry, this accounts for all possible (nonzero) cases. Hence by Cauchy—Schwarz,

Ezrer S 112el13 + 12131920 + 1926]* + 112615 + 121 + 19213121 + 12]I® < (123

(E.82)
Recalling that {¢e¢r }e,re[n,] is an uncorrelated collection of random variables, we have
Var(Sl) ,S Z Z (Ng - r)QJZL]ESDETET
4 7'E[Ng]
S D (Ne—r)2opll}
14 ’I‘E[Ng]
1
SN N ol (E.33)
k £€Sy k=K

Combining (E.83)) and (E.80|) proves the result. O

E.7 Proof of Lemma [E.5

We have
]EEE{S = Z JZL Z EZjiri Zejis Lejors Zejas Lejsrs Ltjss Ltjara Ltjas
r1,72,73,74€[s—1] J1,J2,73,J4
= 0'21 Z |: E[ij18Z€j2SZZJSSZ€j4S] ) Z E[ijﬂlle2r2Z€j3r3Z€j4r4]
J1,J2,J3,J4 r1,72,r3,74€[s—1]
=:Be,s;51.52,33.44
(E.84)
We have by exhaustive casework that
E[Zejir1 Zejars Zejors Zejard ]| (E.85)
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4 . . . El
EZj10, S Qi if J =y
IEZZJIHIEZZJIW <02

if J1=J2=Jj3=Ja;

£j1 r1=To,r3="T4,r17£T3
[B[Z3;, 1, Ztjar )| S gy Qi if 1208017
UE[ Zglrl]EZ@jlm Z€7'4T3H ~ QZngh if T1j1:g7zr—3]37,q£zj;;ﬁd
|Ele1T1 Zéjgrl | ~ Qé]l th if jl_Jéjrszzjé’]lfﬁ’
_JBIZE,,, 25, )| S S, if 23 e
| [ijl r1 Zf]sﬁEZZhTz ZZ]STZH ~ Qéjl Qé]g if 11_3"23:3“32_]7:2’7];17;]:27
UE[ i1y Z4J3T1 Z€]47‘1]| ~ Qf]lﬂsz Q€J4 if 71 ]12ij12’j371§4 gzgt
|E[ZZJ1 Tl]EZeJSTS ZZJU&] ‘ ~ Qeﬁl QZJSQZM if ]7”11_—]7’227?3]37:1%7”?;:763
|E[ZZJ1T1 Zojor BZyj,r, ZZ]M“Q] | < Qéjl szs QZM if j7‘11—_]r”23,’jr12,j37:i1r§l;8£2
|E[Z3J1 r1 Ze]zh Zf]zﬁ ZZJ4"'1] | ~ Q£J1 QZJQQZJSQZ.ﬁL if 7 ’J27J237]7§3 dz&t
|]E[Zg]1 r1 Z€J2T1 EZ@]S% Zf]z;TS] | ~ QZ]I Qf]z Qf]s Qf]z; if rljzl;ﬁ;«];gé il:;ém

Up to permutation of the indices j1, j2, j3, ja and 71, 72,73, 4, this accounts for all possible cases
such that (E.85|) is nonzero. Therefore,

5Q;j, +5°0; ifj1=Jo=17J3=1Ja

$Q0j, Qujy + 82QF; Quj, if j1 = ja = js, 1 # ja
Bo,sijgagada S § SR Qujs + 57 Qujy Qg if j1 = jo,J3 = Jja, J1 # J3

590, Qujs Qejy + 57y sy Ly if j1 = ja,J1, 73, Ja dist.

8y Doy Qg Qajy + 52y gy Uiy e if 51,72, 43, ja dist.

Up to permutation of ji, jo, j3,j4, this accounts for all possible cases. Returning to (E.84), we
have by applying (E.55)) and the previous display that

EE;, Sop ( D Qi (sQu + 5207 + Y Qg Qi (Qu5, Uy, + 5°Q7F;, Q)
J J1#£ja

D Qg Qg (505, ey + 5° sy Uy )
J1#J3

Y Qi Qs (505, Qs Qs+ 57, gy Q)
J1.J3,54(dist.)

O Q05 Qi Qs (55, gy Qs ey + 57y sy Qi Qm))
J1,32,33,Ja dist.

< 500 [19Ql? + 5207 [1920l13-

In the third line we group the coefficients of s and s and use the fact that ||Q||* < ||Q]|3 by
Cauchy—Schwarz. Therefore

Y EEL S soflQl®+ ) sPor ]l

) (€,s) (,s)
=20 > solulP+Y" D> Y sSorleld
k (€S s€ Ng] k (LESk SE[NZ]
1
SZ ZNZQ 4N4||Qf||2+ZZNZ 4]\74”9@”%’
k £ES) k £ES) ek
as desired. 0O
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E.8 Proof of Lemma [E.6
We have

N7 |19,
> l'N4” < T D N (S )

k i€Sk i,meESk
_ L 2
_;H%ngnﬂku )

which establishes the first claim.
Similarly,

N2 |1€2,
ZZ z|1|N4H3 Z 4N4 Z NiNp, Nm’ZQmeJQmJ

k 1€Sk i,m,m’ €Sy

< _ 3
<3 ol

which proves the second claim.
The third claim follows similarly and we omit the proof.

F  Proofs of other main lemmas and theorems

F.1 Proof of Lemma [1

We start from computing E[(fix; — fi;)?]. Write X;; = N;(Q4; + Y;;). It follows by elementary
calculation that

ﬂkj—ﬂj:”kj_uj+(nka nN)ZNY”_fZ > Nii.

i€Sk 004K €S,

For different k, the variables ), s, ViYi; are independent of each other. It follows that
1
Bl 5% = s =+ (= ) B(( M) T+ 20 ol (30 M)
é;é
nN) ZNQU - 1]) Z ZNQ” - ZJ)

= (g — 113)° + (

N i€SH Cize " €S,
1 nk]\_fk
= (uj — 5)* + W22 (1 TN ) > Nifu(1 - Q)
1€Sk
1
i (1 ) X M0 -0+ 3 5 N0 - )
1€ESE Ll#k i€Sy
1 nka
:(/“fjfﬂj)QjL 2]\72( )ZNQU - 1])
M dVi 1E€Sk
1 |:Z ’I’LkN]c
i [ N0 - NS S 0]
nNnka 1€ Sk {=11i€S,
5kj
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Since X; follows a binomial distribution, it is easy to see that E[X;;] = N;€;; and E[X7] =
(E[X45])? + Var(X;;) = NfQ?j + N;Q;;(1 — €;5). Combining them gives

Define B ( )
N N R 1 nka Xi* NZ'—Xi'
J— R A _ _ _ J J
Cj = (firj — fi;) n2 N2 (1 nN ) Z N, — 1 ’
k™ 'k 1E€SK
It follows from (F.1)-(F.2) that
1
P R F.3
Kkj] (Hj — 15) nNny Ny kj (F.3)

We are ready to compute E[T]. By definition, T = Z§:1 Eszl i NiCr; and p? = > k(b —
)%, Consequently,

r K 1 1 & K
= Zznka[ ,ukj —/Lj)2 - m6kj:| = p2 - WZZ&W (F4)

j=1k=1 j=1k=1

We use the definition of d; in (F.1J). It is seen that for each 1 < j < p,

K K
S0 =30 3T N (1 - 94) - (Z ”ka) S NI-0g -0 (F5)
k=1

k=1i€Sy k=1 L=114€S,

Combining (F.4)-(F.5) gives E[T] = p2. This proves the claim. O

F.2 Proof of Theorem [3|
First we show that

Var(T) < 6, (F.6)
Recall

K p
On1 = 42 anNk(ij — 15)° bk

k=1 j=1

2 Nl_3

k=1i€Sy j=1

) p
@n3 = W Z Z Z ZNiN'inij]

1<k#(<K i€S, meS, j=1

k=1i€S,meSk, j=1
i#m

and that 2 ©,, = 0,.
By Lemma [D.2] we immediately have

Var(lg,Ul) < ®n1- (F?)

For Uy, it is shown in the Proof of Lemma [D.3] that

K
Vartu) =4Y. 3 Y e 1+ oL

k=1i€8S, 1<r<s<N;

o4



Thus

Ve <43 Y i

k=1i€S; 1<r<s<N; ="

22 D 0:]1]° = Ona (F.8)

k=1i€Sk

Next we study Us. Using that Q,,,;7 <1 and ||€;|l1 = 1, we have

nk’nﬂVkNg , 2
> Wlp(z’“ 0o¥)1, = —7 SN DT NiNm Qe Qi Qo
k#£¢e k4L i€S, meSy j,j’

= nZNQZZ > D NilNm QWQWZQU

k#Li€S, meSy j

= HZNZZZ Z ZNN Qi Q-

k#Li€Sy meSy j
Therefore by Lemma [D.4]
9 P
1<k#£I<K i€S), mES, j=1
Similarly for Uy, we have by the Proof of Lemma that

K
Var(L,U) =43 > kim (Z Qi Qunj + 5im)
J

k=11€S) ,mESk

<m
K
k=11€S),meESy 7
<m
Above we use that |§;,| < Zj Q;Qy; and recall that K, = (ﬁ — ﬁ)QNiNm.
Observe that by Lemma
O =43 > meNi(uns = 1)ty S max [laelloo - p7 = max | gl|oo - ET. (F.11)
k=1j=1
Since holds, Lemma applies and
Ony + Onz + Ong < Y [lsl*. (F.12)
k
Combining (F.6), (F.11), and (F.12)) proves the theorem. O

F.3 Proof of Theorem /4
To prove Theorem [4] we must prove the following claims:

(a) Under the alternative hypothesis, 1) — oo in probability.

(b) For any fixed x € (0,1), the level-xk DELVE test has an asymptotic level of k and an
asymptotic power of 1.

%)



(c) If we choose k = K, such that x,, = 0 and 1 — ®(SNR,,) = o(k,,), where ® is the CDF of
N(0,1), then the sum of type I and type II errors of the DELVE test converges to 0.

We show the first claim, that ¥ — oo, under the alternative hypothesis and the conditions
of Theorem (4. In particular, recall we assume that

P’ _ NfplPen (F.13)
VEE el S a2
Our first goal is to show that
T/\/Var(T) = oo (F.14)
under the alternative. By Chebyshev’s inequality, it suffices to show that
ET > \/Var(T). (F.15)
By Theorem
Var(T) < zk: sl + max|pag]|oc - ET = zk: il + masc | ax oo - p* (F.16)
By (E.13),
K
ET = p* > ; il = max |l s loo-
Therefore,
llg}Cang l|pek|loo - p < p* = ET. (F.17)
Moreover, by ,
S llll? < p* = (BT)2. (F.18)
k

Combining (F.16), (F.17), and (F.18) implies (F.14).

Next we show that V' > 0 with high probability (i.e., with probability tending to 1 as

nN — 00). Recall that by Lemmas and

EV = On2+ Ons + Ona 2> [lml|* > 0, and (F.19)
k

Var(V) < Z ||MkJ|2 v Z ||UkU§ (FQO)
~ & ’I”LiN,? & nka

Using this, the Markov inequality, and (24), we have

4Var(V
P(V < E[V]/2) <P([V —E[V]| > E[V]/2) < (EB[“V(DZ) = o(1), (F.21)
which implies that V' > 0 with high probability.
To finish the proof of the first claim, note that the assumptions of Proposition are

satisfied and we have V/Var(T) = Op(1). By this, (F.14), and (F.21)), we have

_ T1V>0 - Var(T) T

. My > L o
VvV VvV / Var(T) \/ Var(T)
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in probability.
The second claim follows directly from the first claim and Theorem
To prove the third claim, by Chebyshev’s inequality and 7'/+/Var(T) — oo, it follows that
T > (1/2)ET = (1/2)p? with high probability as nN — co. By a similar Chebyshev argument
as above, it also holds that V < (3/2)EV with high probability as nN — co. Recall that
EV = On2 + Op3 + 0,4 <>, [lpx]|* by Lemmas and Thus, with high probability as
nN — oo, we have
b= Tlyso/V7 2 VBV 3 2l en _ gy
V2 el
Choosing «,, as specified yield the third claim. The proof is complete since all three claims are
established.
O

F.4 Proof of Theorem [5

Without loss of generality, we assume p is even and write m = p/2. Let u € R™ be a nonnegative
vector with ||ulls =1/2 . Let o= (¢/, 1)’ € RP. We consider the null hypothesis:

Hy : Q= i, 1<i<n. (F.22)
We pair it with a random alternative hypothesis. Let by, bo,...,b, be a collection of i.i.d.
Rademacher variables. Let z1, 29, ..., 2k denote an independent collection of i.i.d. Rademacher

random variables conditioned on the event |)_, 2| < 100v/ K. For a properly small sequence
wy, > 0 of positive numbers, let

H. - Q0. — {/.Lj(l +wn(nka)_1(% EkeK nkl\_fk)zkbj), if 1 S] S m,i € Sk
1- ij —

[l,j (1 — wn(nka)*l(% ZkeK nka)zkbj_m), ifm+1<j5<2m,i €Sk

(F.23)
In this section we slightly abuse notation, using w, to refer to the (deterministic) sequence above
and reserving w(€?) for the random quantity

K
1 _
w(Q) = |~ 2 Nkl — pl? (F.24)
nN |2 kZ:l
As long as B )
mink nka mink nka
Wn, =

then €;; > 0 for all ¢ € [n],j € [p]. Furthermore, for each 1 < ¢ < n, we have ||Q;]1 = 2||p|: = 1.
We suppose there exists a constant ¢ € (0, 1) such that

cK™InN < npNp < ¢ 'K 'nN for all k € [K] (F.25)
With (F.25) in hand, we may assume without loss of generality that
wp, < ¢/2 (F.26)

This assumption implies that (F.23) is well-defined and moreover €;; = p;.
Next we characterize the random quantity w(2) in terms of w,.

Lemma F.1. Let w?(Q) be as in (F.24). When Q follows Model (F.23), there exists a constant
c1 € (0,1) such that cyw? < w?(Q) < cl_lwfl with probability 1.
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The proof of Lemma is given in Section By Lemma under the model (F.23))
it holds with probability 1 that

N ||ul|2w? ()
Sy [l 12

Above we use that €;; < p; , since we assume (F.26)

= K720 N||p||w?. (F.27)

We also require Proposition below, whose proof is given in Section

Proposition F.2. Suppose that (F.25) and (F.26) hold. Consider the pair of hypotheses in
(F.22)-(F.23|) and let Py, and Py be the respective probability measures. If

nN||l|2e?(9)
Sy 12

then the chi-square distance between Py and Py converges to 0.

= K~ Y20 N|p||w? — 0,

Now we prove Theorem [5] Let §,, denote an arbitrary sequence tending to 0. Without loss
of generality, we may assume that J,, < ¢* for a small absolute constant ¢* € (0,1). Note that
K~12nN > 1 since K < n. Thus for appropriate choice of sequences of p = p,, and w, < c/2

in models (F.22)), (F.23)) and applying (F.27)), we obtain

ndV]|pl*w? ()
K
2= llel®

Recall the definitions of Qf, and Qf, in (28). Let II denote the distribution on & =
{(N;,94,4;)} € Qi, induced by (F.23). Let & denote the parameter associated to the sim-
ple null hypothesis in associated to our choice of i and w,, satisfying . We have by
standard manipulations,

20, > > 0. (F.28)

R(QG,, Qi) :i=  inf { sup  Pe(U=1)+ sup Pe(¥ = 0)}
Ye{0,1} Yee s, (cosen) £€Q7,, (5nscoren)
=B e P 7D =0
> Wei?il}{gegf&i,en)]%wn {Pg(‘l’ =1) +Pe (V= 0)} }
> int (Ben [Bo (0 = 1)+ Pe(v = 0)]}
- mei?(il}{Po(W = 1)+ Py(U = 0)}.

In the last line we recall the definition of Py and Py in (F.22) and (F.23|), noting that for all
events F,

P1(E) = Eg/nr Per (E).
Next, by the Neyman—Pearson lemma and the standard inequality TV(P, Q) < v/x2(P, Q) (see

e.g. Chapter 2 of [Tsybakov [2008)),
(Q()m an) inf {PO(\II = 1) + ]Pl(‘I/ _ O)}

ve{o,1}
=1- TV(P(),]PH) Z 1-— X2(P0,P1).
By Proposition as 6, — 0 we have x%(Py,P;) — 0 and thus R(Qj,,, Q,) — 1, as desired.
O
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F.4.1 Proof of Proposition

Next, we perform a change of parameters that preserves the signal strength and chi-squared
distance. The testing problem and has parameters Qij,Ni,Nk,nk,n, and K.
Let Py and P; denote the distributions corresponding to the null and alternative hypotheses,
respectively. For each k € [K], we combine all documents in sample &k to obtain new null and
alternative distributions Py and P; with parameters Q”, N;, N;, 7,71, and K such that

K=K=

Ni=n; ]\7 for i € [K]

N, =N, for i € [K]

;=1 for i € [K] . (F.29)
For notational ease, we define N = J\:f = %ZkE[K] neNy. Furthermore, we have QZ = U

for all 4 € [] under the null Q; = y; for all i € [A2] under the alternative. Explicitly, in the
reparameterized model, we have the null hypothesis

and alternative hypothesis
(14w, N"INzb,), if1<j<m,
H: Q= ’fj( tw T i) Hizg=m (F.31)
f; (1 —wo N7 'Nzibj_p), ifm+1<j<2m.
for all i € [K] = [K] = [ii]. Observe that the likelihood ratio is preserved: ggo = ZEO and also
w() = w(ﬁ) For simplicity we work with this reparameterized model in this proof.
If z1,..., 25 are independent Rademacher random variables then with probability at least

1/2 it holds that
1>z < 100V7 (F.32)

by Hoeffding’s inequality. Recall that our random model is defined in where (i) z1,..., 25
are independent Rademacher random variables conditioned on the event | Y. 2| < 100v/7, and
(ii) by, ..., by, are independent Rademacher random variables.

Now we study wQ(ﬁ). For each 1 < j < m, we have ﬁij = u,;(1 +wnN 1szb ). Define
n; = (AN)~! Zf;l Ni€%j; = p;j(1 4 w,zb;) for 1 < j < m and n; = (AN)~ Ly ]\7?2
f;(1 — wy,2b;) for m < j < 2m. We have

By (F.32), |z| < 100v/7%. Thus |z; — z| =< 1. Write N, = (2~ Z?Zl N;7Y). Tt follows that
n o p o ~ B
DD Ny — 1) = wp NPl - AN

Note that N > N,. Additionally, by assumption (F.25)), N; = N < ¢ IN,. It follows that

n p
ZZN i —5)% = |l ?w?. (F.33)

=1
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Moreover, ||n]|2 = S°P_, 12(1 + w, 2b;)2. By our conditioning on the event in (F.32),
j=1H;j J
|wnZb;| < w,n Y2,

Since w, <1 and Zj b; = 0, we have

Inll* = Hull2+2u2 22 = |lul 1+ Om™H] =< [lull®. (F.34)

Hence

X S K@, )
wWwi(Q) = wi(Q) x W2, where recall w(Q) = iz ij{ (€2 = ;) . (F.35)
N |2

This finishes the proof. O

F.4.2 Proof of Proposition

In this proof, we continue to employ the reparametrization in (F.29)). As discussed there, this
reparametrization preserves the likelihood ratio and thus the chi-square distance.
By definition, x?(Pg,P;) = f(dlpl) dPy — 1. Tt suffices to show that

/(jﬁ;) dPy =1+ o(1). (F.36)

Xij

From the density of of multinomial distribution, dPo =[], ; /];(ij, and dPy = Ey . [[]; ﬁij ] It

follows that

Let () = (bgo), ce bSP)’ and 2(®) = (zio), e ,z%o))' be independent copies of b and z. We
construct Qg?) similarly as in (F.31)). It is seen that

P8 00 x,
/(Zgé) dPo = ExEy ;0 20 {H H(#)X }
J
P8GO x,
_Ebzb(o) Z(O){H]EX1 [H( ]~22J )XJ:|}

i=1

noP 0,00\ 8
Eb,z,wa,zw){H(Zﬁj' j/)gj> H

p
= Elexp(M)], with M := ZNlog<Z ;mmgg)). (F.37)
i=1 j=1

Here, the third line follows from the moment generating function of a multinomial distribution.
We plug in the expression of ;; in (F.23)). By direct calculations,

p
Z S10,;00 = Zuj 1+ wo N7 N 23y ) (14w N N2 76)
m

—|—Z,u (1—wnN 1szb )(l—w N 1Nz(o)b(o)

j=1
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—2||u||1+22u] 2N b0
Jj=1

=1+2 Z ujwiN[QJ\N/'inzfo)bjb(vo).

J
j=1

We plug it into M and notice that log(1 + ¢) < ¢ is always true. It follows that

MgiN QZp]w —zz 20550 = 2Nw? (Z = (0)) (Zujb b(o)) = M*. (F.38)
i=1 = =1

We combine (F.38) with (F.37). It is seen that to show (F.306)), it suffices to show that
Elexp(M™)] =1+ o(1). (F.39)

We now show ([F.39). Write My = Z~ LN 1N)z, ) and M, = Zj 1 150505 ),
Recall that we condition on the event - By Hoeffding’s mequahty, Bayes’s rule, and

F33.
P(|My| > t) = (|Z 22 >t‘Zzl|<100\f|22(0)|<100\f>

_ (|Z —zl \>t)
(|32, il < 100vA) P(| S, 2| < 100v/7)

2
§4~2exp(— = t T )
821 I(N N)
2

= 8exp(—;—ﬁ).

for all t > 0. In the last line, we have used the assumption of N; < N. By Hoeffding’s inequality
again, we also have

t2 t2
P(|My]| >t) < QCXP(_W) = 2CXp<—W>
for all ¢ > 0. Write s2 = vVANw2||u|. It follows that
P(M* > t) = P(2Nw2 M My > t) = P(M My > t - Vi|us;?)
< B(My > Vi Visy) +P(Ms > Vi sy )

t t
< SQXP(—s?) + QQXP(‘gsz)

< dexp(—cit/s3), (F.40)

for some constant ¢; > 0. Here, in the last line, we have used the assumption of N; =< N.

Let f(z) and F(x) be the density and distribution function of M*. Write F(z) = 1 —
F(x). Using integration by part, we have Elexp(M*)] = [ exp(x)f(z)dz = — exp(x)F ()| +
fooo exp(x)F(x)dr =1+ fooo exp(x)F(x)dz, provided that the integral exists. As a result, when
Sp = 0(1),

Elexp(M™*)] — 1= /000 exp(t) - P(M™* > t)

< 4/ exp(—[c1s5? — 1]t)dt
0
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<A(ers;t = 1)t =dsp/(e1 — sq).
It implies E[exp(M*)] = 1 + o(1), which is exactly (F.39). This completes the proof. because

nN|lpllws _ — nN|lpllwy

VE T Cex Tl

§% = VAN |ul =

F.5 Proof of Theorem

First we show that

T/+/Var(T) = N(0,1), and (F.41)
V/Var(T) — 1. (F.42)

If and hold, then by mimicking the proof of Theorem [2] we see that v is asymp-
totically normal and the level-x DELVE test has asymptotic level k. We omit the details as they
are quite similar.

Recall the martingale decomposition of 7' described in Section [E] Observe that, under our

assumptions, Lemmas are valid. Moreover, by Lemmas and

mM nN 2
= =1 + = =
niN + mM nN +mM

Combining with Lemmas [E.1 and mimicking the argument in Section implies
that T/vV = N(0,1). Thus is established.

Moreover, is a direct consequence of our assumptions and Proposition The
claims of Theorem [0] regarding the null hypothesis follow.

To prove the claims about the alternative hypothesis, it suffices to show

T/+/Var(T) — oo, (F.44)
V >0 with high probability, and (F.45)
V = Op(Var(T)). (F.46)

Once these claims are established, we prove that ¢ = T1y s/ V'V — oo under the alternative
by mimicking the last step of the proof of Theorem []in Section [F.3] We omit the details as they
are very similar.

Note that follows directly from our assumptions and Proposition

As in the proof of Theorem [4|in Section to establish 7 it suffices to prove that

ET = p? > Var(T). (F.47)
Our main assumption under the alternative when K = 2 is

ln — 0]

NS (F.48)
(v + ) max{[lnll, 161}
As shown in Section [F.2] we have that
4
Var(T) S 0n = Op1+ Y Onr. (F.49)

t=2
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Applying (F.17) to the first term and Lemma to the remaining terms, we have

2

M nN
Var(T) < o 11011} - 2 _mar _ _
on(T)  max(lles 101} 2 + |
< max{|[n]], 1011} - p* + max{||n]|*, 16]*} (F.50)
Next, note that
p* =nN|n— pl* +mM|6 — p|?
— TL7 mM 2
=nN — — — — —
" HTI (nN+mM77+nN+mM)
_ nN mM 2
M| — (— _ _ _
m H (nN+mMn+nN+mM)
_ mM 2 9 - nN 2 2
=nN - (—————)?|n—6 M- (——)n—0
" (nN—I—mM) = 6]" +m (nN+mM) =l
nNmM 1 1 -1
= MM o2 = (= — 9|2 F.51
(nN+mM)||n P=(+—) In-9l (F.51)
By (F-49), (F50), and (F51), we have
(ET)? o
Var(T) ~ max{|[n], [|0[]} - p> + max{[|n2, [|0]*}
— 0|2 — 0|2
> In I + ( lIm [ )2 = 0,

(o + mxp) max{[lnll, 101}~ (G + o) max{[lnll, 110}

which proves (F.47) and thus (F.44).
To prove (F.45]), we mimick the Markov argument in (F.21]) and use that under our assump-

tions, Var(V)/(EV)? = o(1) . We omit the details as they are similar. Since we have established

(F.44), (F.45)), and (F.46)), the proof is complete. O

F.6 Proof of Theorem [T

Note that T'/4/Var(T) = N(0,1) by our assumptions and Proposition In particular, using
that n — oo and the monotonicity of the ¢, norms we have

1722 a7 o 7 S S

Elpl* — nllgl* = n fplt

Moreover, V*/Var(T) — 1 in probability by Proposition It follows by Slutsky’s theorem
that 1* = T/V/V* = N(0,1) and that the level-x DELVE test has an asymptotic level .

To conclude the proof, it suffices to show that ¢* — oo under the alternative. As in the
proof of Theorem [4] this follows immediately if we can show

T/\/Var(T) — oo, (F.52)
V* > 0 with high probability, and (F.53)
V* = Op(Var(T)). (F.54)

Note that (F.52) follows from (F.14), and (F.54)) is the content of Proposition Since our

assumptions imply that EV* > |/Var(V*), (F.53) follows by a Markov argument as in (F.21)).
O
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F.7 Proof of Theorem

We apply Theorem [2| to get the asymptotic null distribution. Since N; = N and p = p~'1,, it
is easy to see that Condition [2|is satisfied under our assumption of p = o(N?n). Therefore, by
Theorem [2| 1* — N(0,1) under H,.

We now show the asymptotic alternative distribution. By direct calculations and using
>iz10ij =0and 3°F_, 6;; = 0, we have

nNv2 nNv2 n(l+v2)
DNy — ) = P DN Q- )P = > >olu)? = Y
— -~ -

We apply Lemmas [D.1 and plug in the above expressions. Let S = 1;U2. It follows that

\/TTV” + 1)’ where Var(S) = 2p~'n[l + o(1)]. (F.55)

VP
First, we plug in 12 = ay/2p/(Ny/n). It gives p~'nNv2 = \/2n/p. Second, p~'v/nNy, =
(np)~Y%\/n/p = o(r/n/p). Tt follows that

T =a\/2n/p+ S+ op(\/n/p), where Var(S) = (2n/p)[1 + o(1)]. (F.56)

Recall the martingale decomposition S = Z(m) E; s where Ey s is defined in (E.4). Observe

that Lemmas ﬂ and hold (even under the alternative). Define Eeﬁs = E;/+/Var(9).
Using Var(S) 2 n>_, [92|> and these lemmas, it is straightforward to verify that the following

N2
T:”p”"+s+op(

conditions hold:

Z Var(Eg7s|]:_<(g7s)) g 1 (F.57)
()
STEE!, 5o (F.58)
(t,s)

As in Section the martingale CLT applies and we have

S/+/Var(S) = N(0,1).
By [F55}
T/+/Var(S) — N(a,1). (F.59)
By Lemma and ,

Var(S) = [1 4 0(1)]©pn2 = [1 + o(1)]Var(T)
By Proposition we have that V*/Var(T') — 1 in probability. As a result,
V*/Var(S) — 1, in probability. (F.60)

We combine (F.59)) and (F.60) to conclude that ¢ = T/vV* — N(a,1).

G Proofs of the corollaries for text analysis

G.1 Proof of Corollary

Note that Corollary [1| follows immediately from the slightly more general result stated below.
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Corollary G.1. Consz'der Model (1)) and suppose that Q = pl! under the null hypothesis and
that © satisfies (37)) under the altematwe hypotheszs Define € € R™ by & = N™'N; and let
Q= Q[dlag(f)]l/2 Let M\i,...,2Ap > 0 and )\1,.. )\M > 0 denote the singular values of
and f~2, respectively, arranged in decreasing order. We further assume that under the alternative

hypothesis,
N-YM X2
Zk:Q k (G 1)

V hy A2

For any fired k € (0,1), the level-x DELVE test has an asymptotzc level k and an asymptotic
power 1. Moreover if N; < N for all i, we may replace Zk 9 )\ with Zk o A% in the numerator

of (G.1 -

Proof of Corollary[G.1 This is a special case of our testing problem with K = n. Moreover,
p = n~1Q¢ matches with the definition of y in . Therefore, we can apply Theorem |7| directly.
It remains to verify that the condition

N-TM N2
721\’;:2 E s o0 (G.2)
Dkt A
is sufficient to lead to the condition
N 12002
nV |l -

22 1212

If we show this then Theorem [7] applies directly. We first calculate w2. Recall ¢ = N;/N for
1 <i<n. Write
Q= Qdiag(&)]"/?, €= [diag(€)]"/*L,..

For K =n, by (33), w2 = W S NG[[€ — . Tt follows that

w2 = H — pl!)[diag(€) UQH

n n||/~L||2 Hﬁ_“g/H?J (G4)

1
onful?

Recall that 5\:7 .. X M are the singular values of Q. We apply a well-known result in linear algebra
[Horn and Johnson 1985/, namely Weyl’s inequality: For any rank-1 matrix A, [ — Alz >
Dokt /\2 In ), 1€ is a rank-1 matrix. It follows that

M
[ = Y (G.5)

k=2

Hence

N N M 5 N M 5
N2l NYMLRN-YML R
IS0 T Q M ’

Zz ” z” H HF Zk:l A2

k

which implies (G.3)) by our assumption. The first claim is proved.
Next we prove the second claim. Observe that if N; < N , then by Weyl’s inequality:

1 1
2 2 2
wp = Y N - pl? 2 > Il —
n || ||2 N - ’L” ? | ~ ‘2 - H ? M”

o f
= 2 n F = k'
Tl Tl &
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Thus
< 5 M 5 M
”NHMH2W721 > N'Zk:Q )‘i _ N'Zk:Q )‘i

Tz Q B M )
VIR S0

k=1

We see that the assumption

N-SMN2
721\’;:2 ko0 (G.6)
V2 k=1 AR

implies (G.3). The second claim is established and the proof is complete. O

G.2 Proof of Corollary

Recall the construction of a simple null and simple (random) alternative model from Section
[F-4.2] specialized below to the case of K = n and N; = N:

(1 nzibi), if1<j5<
I L N A (G3)
uj(l — wnzibj_m), ifm+1<j5<2m

where by,...,b,, are i.i.d. Rademacher random variables and z1,...,z2, are i.i.d Rademacher
random variables conditioned to satisfy | Y. z;| < 100y/n. Define

b=(b1,...,bm,b1,. .. bm)"

To derive the lower bound of Corollary 2 we assume without loss of generality that w, is a
sufficiently small absolute constant.

We claim that H; prescribes a topic model with M = 2 topics. To see this, under the
alternative,

- (G.9)

Q= o (1, +wy, b) ifz;=1
po(lp—wnb) if z; = —1.

Moreover, we showed in Section that Q;; > 0 for all 4, j and that ||Q;;]1 = 1. From (G.9)),
we see that Q = AW where A € RP*? and W € R**" are defined as follows:

Ag=po(l,+wyb), Ag=po(1l,—w,b)
@y ifzy=1
0,1 iz =1

Moreover, under the null hypothesis, €2 clearly prescribes a topic model with K = 1. Therefore
Q follows the topic model (37). Moreover, since N; = N, we have Q[diag(¢)]*/? = Q.

By Proposition specialized to our setting, we know that the x? distance between the null
and alternative goes to zero if

VN |ulw;, 0.

Thus to prove Corollary [2| it suffices to show that
M
N pso i _ N3
M M
VIR VLN
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Accordingly we study the second largest singular value of 2. First we have some preliminary
calculations. Let U = {i: z; =1}, and let V = {i : z; = —1}. Define

u=po(l,+wy,b), and
v=po(l, —w,b).

Observe that
(u,0) = |pl* —willpo bl|* = [|ull(1 = w3).
Also, since wy, is a sufficiently small absolute constant,

= llpel® + 20n {0 B) + wi w0 BlI* = (L + @) |ll® + 2w Y 13 b 2 [lull?,  and
j

loll* = llall* = 2w (g, 0 B) + willo b = (L widllull® = 2wn Y4305 2 ull®. (G.11)
j

Again, since we assume that w,, is a sufficiently small absolute constant,

o il (1 = w2)? SR 17 e
Julllvl? (L4 w?)?([pll* = 4wh (s o b)? — (1 + wi)?[|pll* — 4w? [ pl*
B R R 12
lpl]4(1 4 2w2 — 3w?) 1+ 2w2 — 3w? '
Note that
law +bv]|* = a®|Jull® + 2ab(u, v) + 0?||v]|* > a®[[u]|* + b*[[0]|* — 2abd|ul]|v]|
> (1= d)(a®[[uf]® + b?[[v]|*) + [law — bv[|* > (1 = ) (a®[Ju]l* + b?[|v]|?).
By (G.12), we have for w,, sufficiently small that
l_§>1— 1—w? :\/1+2w%—3w;’;—1—|—w%
V14 2w? — 3wi V1+2w2 — 3wi
2
> o 2wl
V14 2w2 — 3wl '
Thus
law +bvl* > wi (@®[|ul® + 6*[[0]1?) Z wil|ul® (a® + b?) (G.13)
Recall that if M is a rank k matrix, then
Ak(M) = sup [ Myl = sup [ Myl. (G.14)

y:llyll=1, yEKer(M)~+ y:llyll=1, yelm(M’)
We have
Q' = Zuu' + Zvv’ = |Uluv’ + |V |vv'.
iU eV
Let y € R™ satisfy ||y|| = 1 and y = @'z for some x. We have
Qy = QQ'x = |U{u, z)u + |V|(v, z)v.

By the previous equation and (G.13)),

2

19y]1* = 102 |* = ‘ U {u, @)+ Vv, 2ol 2 wpllull? (U (u, 2)* + [V v, 2)?).
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By our conditioning on z, we have min(|U|, |V|) 2 n. Moreover
1= lyll* = 1z]* = [U|(u, ) + [V (v, z).
Applying these facts and (G.14), we obtain
A5 > 19y)* = 19 2 wpllelPn (U u, 2)? + [VI(v,2)?) = wp [|u]*n.
Next,

ZAQ = Q0% = D llull® + > lloll® = U] ull® + V1] - [[o]® < nl|u)® (G.15)

ieU eV
We conclude that

M
N2k22 A _ NA3 > N - wh|lp]*n _ N 2
\/Zk:l i \/Zk:l o
which establishes ((G.10]). The proof is complete. O

G.3 Proof of Corollary

This is a special case of our testing problem with K = 2, we can apply Theorem [6] directly. It
remains to verify that the condition

G (mslls +110s]11)
(mx + mnr) max{|lnll, 101}

is sufficient to yield the condition in Theorem [6} This is done by calculating |ln — 6|
directly. By our sparse model , for j €S, [\/nj — /0| = G- Tt follows that for j € 5,

n; — 0;1* = (Vi + V0;)2 (Vs — V0;)? = C(/ij + v05)% = C(nj +6;).

It follows that

(G.16)

In =012 > 2 S+ 63) > (sl + 16s11). (@17)

j€S
We plug it into and see immediately that (G.16)) implies this condition. The claim follows
directly from Theorem [6} O

H A modification of DELVE for finite p

Below we write out the variance of the terms of the raw DELVE statistic under the null, using

the proofs of Lemmas

K
1 1 N2
Var(lgzUz) e 22 Z Z (—=——= )2712[”91”2 — 203 + ”QzHﬂ (H.1)
k= 1i€sk 1<r<s<N; 15Nk nN (Nl - 1)

Var(1,Us) = 2N2 Z Z Z NiNm, (ZQmeJ 2292 7, +ZQijQij’Qijmj/)
73"

k#L i€S, meS,

Var(1;,U4):22 3 (nklj\_fk ni\f) NN, (ZQMQW722912193,”+ZQ¢jQ,;j/Qijmj/).

k:lieSk,meSk 7 J j7j,

In this section we develop an unbiased estimator for each term above, which leads to an unbiased
estimator of Var(T') by taking their sum. We require some preliminary results proved later in
this section. Recall that Lemma [H.2) was established in the proof of Lemma [D.1]
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Lemma H.1. If j # j', an unbiased estimator of Q;;Q;;/ is
— Xii X
Q= g
I NG (N — 1)

Lemma H.2. An unbiased estimator of ij 18

— X2 — X,;;
(O} " H.2
Lemma H.3. If j # j/, an unbiased estimator for Q2 Q o 18
i NN, (N - (N, = 3)
Lemma H.4. An unbiased estimator of Q?j 18
— X3 —3XZ% +2X;;
Q= / / (H.3)

Ni(N; —1)(N; —2)°
Lemma H.5. An unbiased estimator of ij is

4 3 2
G i 73X X 3 (H.4)
Y Ni(Ng = 1)(N; — 2)(N; — 3)

Define
)% =)0
J
19213 == 293-
1 - _ZQ +3 20z, (H.5)

J#5’

Using Lemmas and (H.5), we define an unbiased estimator for each term of (H.1f). Let
Qij = Xij/Ni and define

1 N2 _—
1, =2 — )2 _T]|%]12 — 2|9 Q; H.
TARE) 35 i) N S g 0P -2+ ] (o)
k=1i€S, 1<r<s<N;

Var(1,U3) = mwzz Y NiNa (ZQ”QW 2292 Q2 +ZQ”QWQWQW)

k#Li€S, meS,

Va@4):22 > (nklNk —) )2N; Ny, (ZQmeJ—QZQQ oy ZQWQ”/QWQWLJ).

k=1i€SL,meES} 73’

Define
‘7 = Va@ﬂ + Va@;:,) + Va@@. (H?)
We define ezact DELVE as 9 = T/ vz, Combining our results above, we obtain the following.

Proposition H.6. Consider the statistic 1% defined in (H.7). Under the null hypothesis, V is
an unbiased estimator for Var(T).

With this result in hand, it is possible to derive consistency of V as an estimator of Var(T)
under certain regularity conditions. We omit the details.
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H.1 Proof of Lemma [H.1]

Recall that B;j. is the Bernoulli random variable B;;, = Z;j» + {);; and satisfies X;;. =
vazl Bj,. Observe that

Xinij’ = Z BijTBij s Z Bzgrsz r+ Z Bz]rBz] s — =0 + Z szrsz s
T, r#s r#s

Thus
EX;; X = Ni(N; — 1)Q;;Q57,

and we obtain

— XZJX”/

Qi QZ ) = —
T NG(N; - 1)
is an unbiased estimator for €2;;€2;;, as desired. O
H.2 Proof of Lemma [H.3
Note that
XZX2, = Z Bijr + Y BijrBijs) Z Bijr+ > BijBijrs)
r#s r#s
- ZBle‘B’Lj e+ Z Bl]’I”B’Lj s+ Z Blj’r’lBljS Z Bz; T2 + Z Bzy 1 B’L] s Z Bl]’l“g
r1#re r1#s ri#£s
Z BijrBijs Z Bij/TBij’s
r#s r#s
Z Bzgrsz s+ Z Bzgrles Z Bz] T2 + Z Bz] rlBZJ s Z B’L]’I“z
r1#£T2 r1#£s r17£s
(> BijrBijs) (> BijiwBijrs)
r#s r#s

Since Bjj,B;jr = 0, note that

(X% = Xi)) (X3 = Xij) = Y Y Bijr,Bijs, Bijirs Bijrs,
r1#£81 ro#£sa
= Z Bijrl Bijsl Bij’rgBij’52~

T1,581,72,82 dist.

Thus

E(XzQJ - Xl])(XEJ’ - Xij') = Z E[sznBusley TQBij/SQ]
71,81,72,52 dist.
= N;(N; — )(N; — 2)(N; — 3) - Q7,93
It follows that
(X7 — Xig) (X7

979\2/ _ i3’ — X’L]’)
G T NN, — D(N; — 2)(N, — 3)

is an unbiased estimator for Q%Q?j,.
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H.3 Proof of Lemma [H.4]

Recall that B;j. is the Bernoulli random variable B;;, = Z;j» + {);; and satisfies X;;. =
vazl Bj,. Observe that

Z Bzgr +3 Z Bzgrl Bzgrz + Z Bz]m BlezBle3
r1F#rs T1FET2F£T3
Thus

EX} = NiQy; + 3N;(N; — 1), + Ny(N; — 1)(N; — 2)Q2,.
Unbiased estimators for €;; and QF; are

Xij
N;
X5 Xiy(Ni — Xi5) 1

= X2 — X;.),
N? NZ(N; — 1) Ni(Ni—l)( g i)
respectively. Hence

X3 — X5 —3(X7 — Xij) = X5 — 3X] + 2X,;

is an unbiased estimator for N;(N; — 1)(N; — 2)Q7;, as desired.

O
H.4 Proof of Lemma [H.5l
Observe that
T1;£T2 ""179’”2
+3 Z B}, Bijry Bijey + Z Bijr, Bijry Bijrs Bijry
r1FT2#Ts T1FETo AT £
- Z Bzyr +10 Z szrl B’L]’l‘g +3 Z Bzgrl Bzyrngjrg
1 757“2 71 79"2#7'3
+ Y BijnBijrBijryBijr,-
T1AT2AT3FT,
Thus
EX}; = NiQi; + 10N;(N; — )Q? + 3N;(N; — 1)(N; — 2)Q3;
+ Ni(N; = 1)(N; = 2)(N; = 3);.
Plugging in unbiased estimators for the first three terms, we have
X — Xij; —10(X7 — Xi5) — 3(X) — 3X]} 4+ 2X5;) = X} — 3X}, — X7 + 3X,
is an unbiased estimator for N;(N; — 1)(N; — 2)(N; — 3), as desired. O
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