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Summary. Motivated by applications in text mining and discrete distribution inference, we
test for equality of probability mass functions of K groups of high-dimensional multinomial
distributions. Special cases of this problem include global testing for topic models, two-
sample testing in authorship attribution, and closeness testing for discrete distributions. A
test statistic, which is shown to have an asymptotic standard normal distribution under the
null hypothesis, is proposed. This parameter-free limiting null distribution holds true with-
out requiring identical multinomial parameters within each group or equal group sizes. The
optimal detection boundary for this testing problem is established, and the proposed test
is shown to achieve this optimal detection boundary across the entire parameter space of
interest. The proposed method is demonstrated in simulation studies and applied to ana-
lyze two real-world datasets to examine, respectively, variation among customer reviews
of Amazon movies and the diversity of statistical paper abstracts.
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1. Introduction

Statistical inference for multinomial data has garnered considerable recent interest (Di-
akonikolas and Kane, 2016; Balakrishnan and Wasserman, 2018). One important appli-
cation is in text mining. It is common to model the word counts in a text document
by a multinomial distribution (Blei et al., 2003). As a motivating example, the study of
online customer ratings and reviews is a trending topic in marketing research. Customer
reviews are a good proxy to the overall “word of mouth” and can significantly influence
customers’ decisions. Research works aim to understand the patterns in online reviews
and their impacts on sales. Classical studies only use numerical ratings but ignore the
rich text reviews because of their unstructured nature. More recent works have revealed
the importance of analyzing text reviews, especially for hedonic products such as books,
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movies, and hotels (Chevalier and Mayzlin, 2006). A question of interest is to detect the
heterogeneity in reviewers’ response styles. For example, Leung and Yang (2020) dis-
covered that younger travelers, women, and travelers with less review expertise tend to
give more positive reviews and that guests staying in high-class hotels tend to have more
extreme response styles than those staying in low-class hotels. Knowing such differences
will offer valuable insights for hotel managers and online rating/review sites.

The aforementioned heterogeneity detection can be cast as a hypothesis test on multi-
nomial data. Suppose reviews are written using a vocabulary of p distinct words. Let
Xi ∈ Rp contain the word counts in review i. We assume Xi’s are independent, and

Xi ∼ Multinomial(Ni,Ωi), 1 ≤ i ≤ n, (1)

where Ni is the total length of review i and Ωi ∈ Rp is a probability mass function
(PMF) containing the population word frequencies. These reviews are divided into K
groups by reviewer characteristics (e.g., age, gender, new/returning customer), product
characteristics (e.g., high-class versus low-class hotels), and numeric ratings (e.g., from
1 star to 5 stars), where K can be presumably large. We view Ωi as representing the
‘true response’ of review i. The “average response” of a group k is defined by a weighted
average of the PMFs:

µk = (nkN̄k)
−1

∑
i∈Sk

NiΩi, 1 ≤ k ≤ K. (2)

Here Sk ⊂ {1, 2, . . . , n} is the index set of group k, nk = |Sk| is the total number of
reviews in group k, and N̄k = n−1

k

∑
i∈Sk

Ni is the average length of reviews in group k.
We would like to test

H0 : µ1 = µ2 = . . . = µK . (3)

When the null hypothesis is rejected, it means there exist statistically significant differ-
ences among the group-wise “average responses”.

We call (1)-(3) the “K-sample testing for equality of average PMFs in multinomials”
or “K-sample testing for multinomials” for short. As K varies, it includes several well-
defined problems in text mining and discrete distribution inference as special cases.

(a) Global testing for topic models. Topic modeling (Blei et al., 2003) is a popular text
mining tool. In a topic model, each Ωi in (1) is a convex combination of M topic
vectors. Before fitting a topic model to a corpus, it is often desirable to determine
if the corpus indeed contains multiple topics. This boils down to the global testing
problem, which tests M = 1 versus M > 1. In this case, we set K = n and view
each document as a separate group, so that Ωi itself is the within-group average.
Under the null hypothesis, all these Ωi’s are equal to a single topic vector. Under
the alternative, the Ωi’s are not all equal. This is thus a special case of our problem
with K = n and nk = 1.

(b) Authorship attribution (Mosteller and Wallace, 1963; Kipnis, 2022). In these appli-
cations, the goal is to determine the unknown authorship of an article from other
articles with known authors. A famous example (Mosteller and Wallace, 2012) is
to determine the actual authors of a few Federalist Papers written by three authors
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but published under a single pseudonym. It can be formulated (Mosteller and
Wallace, 1963; Kipnis, 2022) as testing the equality of population word frequencies
between the article of interest and the corpus from a known author, a special case
of our problem with K = 2.

(c) Closeness between discrete distributions (Chan et al., 2014; Bhattacharya and Valiant,
2015; Balakrishnan and Wasserman, 2019). There has been a surge of interest in
discrete distribution inference. Closeness testing is one of most studied problems.
The data from two discrete distributions are summarized in two multinomial vec-
tors Multinomial(N1, µ) and Multinomial(N2, θ). The goal is to test µ = θ. It is a
special case of our testing problem with K = 2 and n1 = n2 = 1.

In this paper, we provide a unified solution to all the aforementioned problems. The
key to our methodology is a flexible statistic called DELVE (DE-biased and Length-
assisted Variability Estimator). It provides a general similarity measure for comparing
groups of discrete distributions such as count vectors associated with text corpora. Sim-
ilarity measures (such as the classical cosine similarity, log-likelihood ratio statistic, and
others) are fundamental in text mining and have been applied to problems in distribution
testing (Kim et al., 2022), computational linguistics (Gomaa et al., 2013), econometrics
(Hansen et al., 2018), and computational biology (Kolodziejczyk et al., 2015). Our
method is a new and flexible similarity measure that is potentially useful in these areas.

We emphasize that our setting does not require that the Xi’s in the same group are
drawn from the same distribution. Under the null hypothesis (3), the group-wise means
are equal, but the Ωi’s within each group can still be different from each other. As a
result, the null hypothesis is composite and designing a proper test statistic is non-trivial.

1.1. Our results and contributions
The dimensionality of the testing problem is captured by (n, p,K) and N̄ := n−1

∑n
i=1Ni.

We are interested in a high-dimensional setting where

nN̄ → ∞, p→ ∞, and n2N̄2/(Kp) → ∞. (4)

In most places of this paper, we use a subscript n to indicate asymptotics, but our method
and theory do apply to the case where n is finite and N̄ → ∞. In text applications, nN̄ is
the total count of words in the corpus, and a large nN̄ means either there are sufficiently
many documents, or the documents are sufficiently long. Given that nN̄ → ∞, we
further allow (p,K) to grow with n at a speed such that Kp≪ n2N̄2. In particular, our
settings allow K to range from 2 to n, so as to cover all the application examples.

We propose a test that enjoys the following properties:

(a) Parameter-free null distribution: We shall define a test statistic ψ in (12) and show
that ψ → N(0, 1) under the null H0 in (3). Even under H0, the model contains
a large number of free parameters because the null hypothesis is only about the
equality of “average” PMFs but still allows (Ni,Ωi) to differ within each group.
As an appealing property, the null distribution of ψ does not depend on these
individual multinomial parameters; hence, we can always conveniently obtain the
asymptotic p-value for our proposed test.
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(b) Minimax optimal detection boundary: We define a quantity ωn := ωn(µ1, µ2, . . . , µK)
in (25) that measures the difference among the K group-wise mean PMFs. It sat-
isfies that ωn = 0 if and only if the null hypothesis holds, and it has been properly
normalized so that ωn is bounded under the alternative hypothesis (provided some
mild regularity conditions hold). We show that the proposed test has an asymp-
totic full power if ω4

nn
2N̄2/(Kp) → ∞.We also provide a matching lower bound by

showing that the null hypothesis and the alternative hypothesis are asymptotically
indistinguishable if ω4

nn
2N̄2/(Kp) → 0. Therefore, the proposed test is minimax

optimal. Furthermore, in the boundary case where ω4
nn

2N̄2/(Kp) → c0 for a con-
stant c0 > 0, we show that ψ → N(0, 1) under H0, and ψ → N(c1, 1), under a
specific alternative hypothesis H1 in (35), with c1 being an explicit function of c0.

To the best of our knowledge, this testing problem for a general K has not been
studied before. The existing works primarily focused on closeness testing and authorship
attribution (see Section 1.2), which are special cases with K = 2. In comparison, our
test is applicable to any value of K, offering a unified solution to multiple applications.
Even for K = 2, the existing works do not provide a test statistic that has a tractable
null distribution. They determined the rejection region and calculated p-values using
either a (conservative) large-deviation bound or a permutation procedure. Our test is
the first one equipped with a tractable null distribution. Our results about the optimal
detection boundary for a general K are also new to the literature. By varying K in
our theory, we obtain the optimal detection boundary for different sub-problems. For
some of them (e.g., global testing for topic models, authorship attribution with moderate
sparsity), the optimal detection boundary was not known before; hence, our results help
advance the understanding of the statistical limits of these problems.

1.2. Related literature
First, we make a connection to discrete distribution inference. LetX ∼ Multinomial(N,Ω)
represent a size-N sample from a discrete distribution with p categories. The one-sample
closeness testing aims to test H0 : Ω = µ, for a given PMF µ. Existing works focus on
finding the minimum separation condition in terms of the ℓ1-norm or ℓ2-norm of Ω− µ.
Balakrishnan and Wasserman (2019) derived the minimum ℓ1-separation condition and
proposed a truncated chi-square test to achieve it. Valiant and Valiant (2017) studied the
“local critical radius”, a local separation condition that depends on the “effective spar-
sity” of µ, and they proposed a “2/3rd + tail” test to achieve it. In the two-sample close-
ness testing problem, given X1 ∼ Multinomial(N1,Ω1) and X2 ∼ Multinomial(N2,Ω2),
it aims to test H0 : Ω1 = Ω2. Again, this literature focuses on finding the minimum
separation condition in terms of the ℓ1-norm or ℓ2-norm of Ω1 − Ω2. When N1 = N2,
Chan et al. (2014) derived the minimum ℓ1-separation condition and proposed a weighted
chi-square test to attain it. Bhattacharya and Valiant (2015) extended their results to
the unbalanced case where N1 ̸= N2, assuming ∥Ω1 − Ω2∥1 ≥ p−1/12. This assumption
was later removed by Diakonikolas and Kane (2016), who established the minimum ℓ1-
separation condition in full generality. Kim et al. (2022) proposed a two-sample kernel
U -statistic and showed that it attains the minimum ℓ2-separation condition.

Since the two-sample closeness testing is a special case of our problem with K = 2
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and n1 = n2 = 1, our test is directly applicable. An appealing property of our test is its
tractable asymptotic null distribution of N(0, 1). In contrast, for the chi-square statistic
in Chan et al. (2014) or the U -statistic in (Kim et al., 2022), the rejection region is
determined by either an upper bound from concentration inequalities or a permutation
procedure, which may lead to a conservative threshold or need additional computational
costs. Regarding the testing power, we show in Section 4.3 that our test achieves the
minimum ℓ2-separation condition, i.e., our method is an optimal “ℓ2 testor.” Our test
can also be turned into an optimal “ℓ1 testor” (a test that achieves the minimum ℓ1-
separation condition) by re-weighting terms in the test statistic (see Section 4.3).

Another related problem is the independence testing (Diakonikolas and Kane, 2016;
Berrett and Samworth, 2019). Given i.i.d. bivariate samples from the joint distribution
of discrete variables I and J , it aims to test if I and J are independent. This is connected
to our testing problem with K = n, as in this case our null hypothesis implies that the
word distribution is independent of the document label. However, the data generating
processes in two problems are not the same. In independence testing, it is assumed that
the vectorization of X follows a multinomial distribution with nN̄ trials and np possible
outcomes. In our problem, each Xi follows a multinomial distribution with Ni trials and
p possible outcomes. Hence, we cannot directly apply existing results from independence
testing. In addition, we allow K to be any integer in [2, n]. When K ̸= n, it is unknown
how to relate independence testing to our problem.

Next, we make a connection to text mining. In this literature, a multinomial vector
X ∼ Multinomial(N,Ω) represents the word counts for a document of length N written
with a dictionary containing p words. In a topic model, each Ωi is a convex combination
of M “topic vectors”: Ωi =

∑M
k=1wi(k)Ak, where each Ak ∈ Rp is a PMF and the

combination coefficient vector wi ∈ RK is called the “topic weight” vector for document
i. Given a collection of documents X1, X2, . . . , Xn, the global testing problem aims
to test M = 1 versus M > 1. Interestingly, the optimal detection boundary for this
problem has never been rigorously studied. As we have explained, this problem is a
special case of our testing problem with K = n. Our results (a) provide a test statistic
that has a tractable null distribution and (b) reveal that the optimal detection boundary
is ω2

n ≍ (
√
nN̄)−1√p. Both (a) and (b) are new results. When comparing our results

with those about estimation of Ak’s (Ke and Wang, 2022), it suggests that global testing
requires a strictly lower signal strength than topic estimation.

For authorship attribution, Kipnis (2022) treats the corpus from a known author as
a single document and tests the null hypothesis that this combined document and a
new document have the same population word frequencies. It is a two-sample closeness
testing problem, except that sparsity is imposed on the difference of two PMFs. Kipnis
(2022) proposed a test which applies an “exact binomial test” to obtain a p-value for
each word and combines these p-values using Higher Criticism (Donoho and Jin, 2004).
Donoho and Kipnis (2022) analyzed this test when the number of “useful words” is o(

√
p),

and they derived a sharp phase diagram (a related one-sample setting was studied in
Arias-Castro and Wang (2015)). In Section 4.2, we show that our test is applicable to
this problem and has some nice properties: (a) tractable null distribution; (b) allows for
s ≥ c

√
p, where s is the number of useful words; and (c) does not require documents

from the known author to have identical population word frequencies, making the setting
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more realistic. On the other hand, when s = o(
√
p), our test is less powerful than the

one in Kipnis (2022); Donoho and Kipnis (2022), as our test does not utilize sparsity
explicitly. We can further improve our test in this regime by modifying the DELVE
statistic to incorporate sparsity (see the remark in Section 4.2).

The rest of this paper is arranged as follows. In Section 2, we introduce the test
statistic and explain the rationale behind it. We then present in Section 3 the main
theoretical results, including the asymptotic null distribution, power analysis, a matching
lower bound, the study of two special cases (K = n and K = 2), and a discussion of the
contiguity regime. Section 4 applies our results to text mining and discrete distribution
testing. Simulations are in Section 5 and real data analysis is in Section 6. The paper
is concluded with a discussion in Section 7. All proofs are in Cai et al. (2023).

2. The DELVE Test

Recall that X1, . . . , Xn are independent, and Xi ∼ Multinomial(Ni,Ωi) for 1 ≤ i ≤ n.
There is a known partition {1, 2, . . . , n} = ∪K

k=1Sk. Write nk = |Sk|, N̄k = n−1
k

∑
i∈Sk

Ni,

and N̄ = n−1
∑n

i=1Ni. In (2), we have defined the group-wise mean PMF µk =
(nkN̄k)

−1
∑

i∈Sk
NiΩi. We further define the overall mean PMF µ ∈ Rp by

µ :=
1

nN̄

K∑
k=1

nkN̄kµk =
1

nN̄

n∑
i=1

NiΩi. (5)

We introduce a quantity ρ2 = ρ2(µ1, . . . , µK) by

ρ2 :=

K∑
k=1

nkN̄k∥µk − µ∥2. (6)

This quantity measures the variations across K group-wise mean PMFs. It is true that
the null hypothesis (3) holds if and only if ρ2 = 0. Inspired by this observation, we hope
to construct an unbiased estimator of ρ2 and develop it to a test statistic.

We can easily obtain the minimum variance unbiased estimators of µk and µ:

µ̂k =
1

nkN̄k

∑
i∈Sk

Xi, and µ̂ =
1

nN̄

K∑
k=1

nkN̄kµ̂k =
1

nN̄

n∑
i=1

Xi. (7)

For each 1 ≤ j ≤ p, let µkj , µj , µ̂kj and µ̂j represent the jth entry of µk, µ, µ̂k and µ̂,
respectively. A naive estimator of ρ2 is

T̃ =

p∑
j=1

T̃j , where T̃j =

K∑
k=1

nkN̄k(µ̂kj − µ̂j)
2. (8)

This estimator is biased. In Section F.1 of Cai et al. (2023), we show that E[T̃j ] =∑K
k=1

[
nkN̄k(µkj − µj)

2 +
(

1
nkN̄k

− 1
nN̄

)∑
i∈Sk

NiΩij(1−Ωij)
]
. It motivates us to debias

T̃j by using an unbiased estimate of Ωij(1 − Ωij). By basic properties of multinomial
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distributions, E[Xij(Ni−Xij)] = Ni(Ni−1)Ωij(1−Ωij). We thereby use 1
Ni(Ni−1)Xij(Ni−

Xij) to estimate Ωij(1− Ωij). It yields an unbiased estimator of ρ2:

T =

p∑
j=1

Tj , Tj =

K∑
k=1

[
nkN̄k(µ̂kj − µ̂j)

2 −
( 1

nkN̄k
− 1

nN̄

) ∑
i∈Sk

Xij(Ni −Xij)

Ni − 1

]
. (9)

Lemma 1. Under Models (1)-(2), the estimator in (9) satisfies that E[T ] = ρ2.

To use T for hypothesis testing, we need a proper standardization of this statistic.
In Sections D.1-D.2 of Cai et al. (2023), we study V(T ), the variance of T . Under mild
regularity conditions, it can be shown that V(T ) = Θn · [1 + o(1)], where

Θn := 4

K∑
k=1

p∑
j=1

nkN̄k(µkj − µj)
2µkj + 2

K∑
k=1

∑
i∈Sk

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2 N3
i

Ni − 1
Ω2
ij (10)

+
2

n2N̄2

∑
1≤k ̸=ℓ≤K

∑
i∈Sk

∑
m∈Sℓ

p∑
j=1

NiNmΩijΩmj + 2

K∑
k=1

∑
i∈Sk,m∈Sk,

i ̸=m

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2
NiNmΩijΩmj .

In Θn, the first term vanishes under the null, so it suffices to estimate the other three
terms in Θn. By properties of multinomial distributions, E[XijXmj ] = NiNmΩijΩmj ,
E[X2

ij ] = N2
i Ω

2
ij+NiΩij(1−Ωij), and E[Xij(Ni−Xij)] = Ni(Ni−1)Ωij(1−Ωij). It inspires

us to estimate ΩijΩmj by
XijXmj

NiNm
and estimate Ω2

ij by
X2

ij

N2
i
−Xij(Ni−Xij)

N2
i (Ni−1) =

X2
ij−Xij

Ni(Ni−1) . Define

V = 2

K∑
k=1

∑
i∈Sk

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2 X2
ij −Xij

Ni(Ni − 1)
+

2

n2N̄2

∑
k ̸=ℓ

∑
i∈Sk

∑
m∈Sℓ

p∑
j=1

XijXmj

+ 2

K∑
k=1

∑
i∈Sk,m∈Sk,

i ̸=m

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2
XijXmj . (11)

The test statistic we propose is as follows (in the rate event V < 0, we simply set ψ = 0):

ψ = T/
√
V . (12)

We call ψ the DEbiased and Length-adjusted Variability Estimator (DELVE). In Sec-
tion 3.1, we show that under mild regularity conditions, ψ → N(0, 1) under the null
hypothesis. For any fixed κ ∈ (0, 1), the asymptotic level-κ DELVE test rejects H0 if

ψ > zκ, where zκ is the (1− κ)-quantile of N(0, 1). (13)

Remark 1 (Other testing ideas). The likelihood ratio (LR) test can only be ap-
plied when Ωi’s are equal within each group (in this case, the null/alternative hypotheses
have much fewer free parameters). Moreover, the DELVE test attains the minimax opti-
mal detection boundary in high-dimensional settings, but there is no such guarantee for
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the LR test. From simulations in Section 5, when p is large, DELVE has better power
than LR. Another idea is to use the ANOVA statistic T̃ in (8) without de-biasing and ap-
ply a chi-square approximation or permutation procedure to compute the p-value. This
test is unfortunately suboptimal. There are settings in which the bias term dominates
the “signal” term in T̃ , causing the test to lose power (see Remark 4 for details).

Remark 2. We have assumedX1, . . . , Xn are independent. This is better interpreted
as the conditional independence given Ωi’s. When Ωi’s are random and have some
dependence structure, Xi’s can be (marginally) dependent. We will see in Section 3 that
the asymptotic null distribution of ψ does not depend on Ωi’s; then, the same asymptotic
distribution also holds for random and dependent Ωi. We have also assumed that the
distribution of Xi is multinomial. However, our test only uses the first two moments of
multinomials, not the likelihood. As a result, our method is relatively robust to model
misspecification, and it is extendable to settings with under/over dispersion.

2.1. The special cases of K = n and K = 2
As seen in Section 1, the application examples of K = n and K = 2 are particularly
intriguing. In these cases, we give more explicit expressions of our test statistic.

When K = n, we have Sk = {i} and µ̂kj = N−1
i Xij . The null hypothesis becomes

H0 : Ω1 = Ω2 = . . . = Ωn. The statistic in (9) reduces to

T =

p∑
j=1

n∑
i=1

[
(Xij −Niµ̂j)

2

Ni
−
(
1− Ni

nN̄

)Xij(Ni −Xij)

Ni(Ni − 1)

]
. (14)

Moreover, in the variance estimate (11), the last term is exactly zero, and it can be
shown that the third term is negligible compared to the first term. We thereby consider
a simpler variance estimator by only retaining the first term in (11):

V ∗ = 2

n∑
i=1

p∑
j=1

( 1

Ni
− 1

nN̄

)2 X2
ij −Xij

Ni(Ni − 1)
. (15)

The simplified DELVE test statistic is ψ∗ = T/
√
V ∗.

WhenK = 2, we observe two collections of multinomial vectors, denoted by {Xi}1≤i≤n

and {Gi}1≤i≤m. We assume for 1 ≤ i ≤ n and 1 ≤ j ≤ m,

Xi ∼ Multinomial(Ni,Ωi), Gj ∼ Multinomial(Mj ,Γj). (16)

Write N̄ = n−1
∑n

i=1Ni and M̄ = m−1
∑m

i=1Mi. The null hypothesis becomes

H0 : η = θ, where η =
1

nN̄

n∑
i=1

NiΩi, and θ =
1

mM̄

m∑
i=1

MiΓi, (17)

where θ and η are the two group-wise mean PMFs. We estimate them by η̂ = (nN̄)−1
∑n

i=1Xi

and θ̂ = (mM̄)−1
∑m

i=1Gi. The statistic in (9) has an equivalent form as follows:

T =
nN̄mM̄

nN̄ +mM̄

[
∥η̂ − θ̂∥2 −

n∑
i=1

p∑
j=1

Xij(Ni −Xij)

n2N̄2(Ni − 1)
−

m∑
i=1

p∑
j=1

Gij(Mi −Gij)

m2M̄2(Mi − 1)

]
. (18)
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The variance estimate (11) has an equivalent form as follows:

V =
4
∑n

i=1

∑m
i′=1

∑p
j=1XijGi′j

(nN̄ +mM̄)2
+

2m2M̄2
[∑n

i=1
X2

ij−Xij

Ni(Ni−1) +
∑

1≤i ̸=i′≤nXijXi′j

]
n2N̄2(nN̄ +mM̄)2

+
2n2N̄2

[∑m
i=1

G2
ij−Gij

Mi(Mi−1) +
∑

1≤i ̸=i′≤mGijGi′j

]
m2M̄2(nN̄ +mM̄)2

. (19)

The DELVE test statistic is ψ = T/
√
V .

2.2. A variant: DELVE+
We introduce a variant of the DELVE test statistic to better suit real data. Let µ̂, T
and V be as in (7), (9) and (11). Define

ψ+ = T/
√
V +, where V + = V ·

(
1 + ∥µ̂∥2T/

√
V
)
. (20)

We call (20) the DELVE+ test statistic. In theory, this modification has little effect on
the key properties of the test. To see this, we note that ∥µ̂∥2 = oP(1) in high-dimensional
settings. Suppose T/

√
V → N(0, 1) under H0. Since ∥µ̂∥2 → 0, it is seen immediately

that V +/V → 1; hence, the asymptotic normality also holds for ψ+. Suppose T/
√
V →

∞ under the alternative hypothesis. It follows that V + ≤ 2max{V, ∥µ̂∥2 · T
√
V } and

ψ+ ≥ 1√
2
min{T/

√
V , ∥µ̂∥−1

2 (T/
√
V )1/2} → ∞. We have proved the following lemma:

Lemma 2. As nN̄ → ∞, suppose ∥µ̂∥2 → 0 in probability. Under H0, if T/
√
V →

N(0, 1), then T/
√
V + → N(0, 1). Under H1, if T/

√
V → ∞, then T/

√
V + → ∞.

In practice, this modification avoids extremely small p-values. In some real datasets, V
is very small and leads to an extremely small p-value in the original DELVE test. In
DELVE+, as long as T is positive, ψ+ is smaller than ψ, so that the p-value is adjusted.

In the numerical experiments, we consider both DELVE and DELVE+. For theo-
retical analysis, since these two versions have almost identical theoretical properties, we
only focus on the original DELVE test statistic.

3. Theoretical Properties

We first present the regularity conditions. For a constant c0 ∈ (0, 1), we assume

min
1≤i≤n

Ni ≥ 2, max
1≤i≤n

∥Ωi∥∞ ≤ 1− c0, max
1≤k≤K

nkN̄k

nN̄
≤ 1− c0. (21)

In (21), the first condition is mild. Noting that ∥Ωi∥1 = 1, the second condition excludes
those cases where one of the p categories has an extremely dominating probability in the
PMF Ωi, which is also mild. In the third condition, nkN̄k is the total number of counts
in all multinomials of group k, and this condition excludes the extremely unbalanced
case where one group occupies the majority of counts (in the special case of K = 2, we
further relax this condition to allow for severely unbalanced groups (see Section 3.4)).
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Recall that µk = 1
nkN̄k

∑
i∈Sk

NiΩi is the mean PMF within group k. We also define

a ‘covariance’ matrix of PMFs for group k by Σk = 1
nkN̄k

∑
i∈Sk

NiΩiΩ
′
i. Let

αn := max

{
K∑
k=1

∥µk∥33
nkN̄k

,

K∑
k=1

∥µk∥2

n2kN̄
2
k

}/( K∑
k=1

∥µk∥2
)2

, (22)

and

βn := max

{ K∑
k=1

∑
i∈Sk

N2
i

n2kN̄
2
k

∥Ωi∥33,
K∑
k=1

∥Σk∥2F
}/

(K∥µ∥2). (23)

We assume that as nN̄ → ∞,

αn = o(1), βn = o(1), and
∥µ∥44
K∥µ∥4

= o(1). (24)

Here αn and βn only depend on group-wise quantities, such as µk, Σk and
∑

i∈Sk
N2

i ∥Ωi∥33;
hence, a small number of ‘outliers’ (i.e., extremely large entries) in Ω has little effect
on αn and βn. Furthermore, in a simple case where maxk nk ≤ Cmink nk, maxk N̄k ≤
Cmink N̄k and ∥Ω∥max = O(1/p), it holds that αn = O(max{ 1

nN̄
, Kp
n2N̄2 }), βn = O(max{K2

n2p ,
1
p})

and ∥µ∥4
4

K∥µ∥4 = O( 1
Kp). When nN̄ → ∞ and p → ∞, (24) reduces to n2N̄2/(Kp) → ∞.

This condition is necessary for successful testing, because our lower bound in Section 3.3
implies that the two hypotheses are asymptotically indistinguishable if n2N̄2/(Kp) → 0.

3.1. The asymptotic null distribution
Under the null hypothesis, the K group-wise mean PMFs µ1, µ2, . . . , µK , are equal to
each other, but this hypothesis is still highly composite, as (Ni,Ωi) are not necessarily
the same within each group. We show that the DELVE test statistic always enjoys a
parameter-free asymptotic null distribution. Let T , Θn and V be as in (9)-(11). The
next two theorems are proved in Cai et al. (2023).

Theorem 1. Consider Models (1)-(2), where the null hypothesis (3) holds. Suppose
(21) and (24) are satisfied. As nN̄ → ∞, T/

√
Θn → N(0, 1) in distribution.

Theorem 2. Under the conditions of Theorem 1, as nN̄ → ∞, V/Θn → 1 in prob-
ability, and ψ := T/

√
V → N(0, 1) in distribution.

By Theorem 2, the asymptotic p-value is 1−Φ(ψ), where Φ(·) is the CDF of N(0, 1).
For any κ ∈ (0, 1), the rejection region of the asymptotic level-κ test is as given in (13).

The proofs of Theorems 1-2 contain two key steps. In the first step, we decompose T
into mutually uncorrelated terms. Define a set of independent, mean-zero random vectors
{Zir}1≤i≤n,1≤r≤Ni

, where Zir ∼ Multinomial(1,Ωi) − Ωi. Then, Xi = NiΩi +
∑Ni

r=1 Zir

(in distribution). We plug it into (9) to get T = T1 + T2 + T3 + T4, where T1 is a
linear form of {Zir}, T2-T4 are quadratic forms of {Zir}, and T1-T4 are uncorrelated
(see Section D of Cai et al. (2023)). In the second step, we construct a martingale
for each term Tj . This is accomplished by re-arranging the double-index sequence Zir
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to a single-index sequence and successively adding terms in this sequence to Tj . We
then apply the martingale central limit theorem (CLT) (Hall and Heyde, 2014) to prove
asymptotic normality of each Tj . The asymptotic normality of T follows by identifying
the dominating terms in T1-T4 (as model parameters change, the dominating terms also
change) and studying their joint distribution. This step involves extensive calculations
to bound conditional variances and verify the Lindeberg conditions of martingale CLT,
as well as subtle uses of the Cauchy-Schwarz inequality to simplify moment bounds.

Remark 3 (An adjustment when p = O(1)). While we focus on high-dimensional
settings, the case of p = O(1) is still of interest. In this case, the variance estimator

V may not be consistent. We propose a refined estimator Ṽ in Section H of Cai et al.
(2023). When V is replaced by Ṽ , ψ → N(0, 1) continues to hold.

3.2. Power analysis
Under the alternative hypothesis, the PMFs µ1, µ2, . . . , µK are not the same. In Sec-
tion 2, we introduce a quantity ρ2 (see (6)) to capture the total variation in µk’s, but
this quantity is not scale-free. We define a scaled version of ρ2 as

ωn = ωn(µ1, µ2, . . . , µK) :=
1

nN̄∥µ∥2
K∑
k=1

nkN̄k∥µk − µ∥2. (25)

It is seen that ωn ≤ maxk{∥µk−µ∥2

∥µ∥2 }, which is properly scaled.

Theorem 3. Consider Models (1)-(2), where (21) and (24) are satisfied. Then,

E[T ] = nN̄∥µ∥2ω2
n, and V(T ) = O

(∑K
k=1 ∥µk∥2

)
+ E[T ] ·O

(
max1≤k≤K ∥µk∥∞

)
.

For the DELVE test to have an asymptotically full power, we need E[T ] ≫
√

V(T ).
By Theorem 3, this is satisfied if E[T ] ≫

√∑
k ∥µk∥2 and E[T ] ≫ maxk ∥µk∥∞. Be-

tween these two requirements, the latter one is weaker; hence, we only need E[T ] ≫√∑K
k=1 ∥µk∥2. It gives rise to the following theorem:

Theorem 4. Under the conditions of Theorem 3, we further assume that under the
alternative hypothesis, as nN̄ → ∞,

SNRn :=
nN̄∥µ∥2ω2

n√∑K
k=1 ∥µk∥2

→ ∞. (26)

Under the alternative hypothesis, ψ → ∞ in probability. For any fixed κ ∈ (0, 1), the
level-κ DELVE test has an asymptotic level of κ and an asymptotic power of 1. If we
choose κ = κn such that κn → 0 and 1 − Φ(SNRn) = o(κn), where Φ is the CDF of
N(0, 1), then the sum of type I and type II errors of the DELVE test converges to 0.

The detection boundary in (26) has simpler forms in some special cases. For example,
if ∥µk∥ ≍ ∥µ∥ for 1 ≤ k ≤ K, then SRNn ≍ nN̄ω2

n∥µ∥/
√
K. If, furthermore, all entries

of µ are at the same order, which implies ∥µ∥ ≍ p−1/2, then SRNn ≍ n2N̄2ω2
n/

√
Kp. In

this case, the detection boundary simplifies to ω4
nn

2N̄2/(Kp) → ∞.
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Remark 4 (The effect of de-biasing on power). Let T̃ be the statistic in (8)

without bias correction. Under H1, when SNRn → ∞ but nN̄ ≪ Kp, the bias in T̃ can
dominate the “signal” ρ2. Consequentely, any test based on T̃ has no power (details and
examples are in Section C of Cai et al. (2023)). This shows that de-biasing is critical for
achieving not only parameter-free limiting null but also good power.

3.3. A matching lower bound
We have seen that the DELVE test successfully separates two hypotheses if SNRn → ∞,
where SNRn is as defined in (26). We now present a lower bound to show that the two
hypotheses are asymptotically indistinguishable if SNRn → 0.

Let ℓi ∈ {1, 2, . . . ,K} denote the group label of Xi. Write ξ = {(Ni,Ωi, ℓi)}1≤i≤n. Let
µk, αn, βn, and ωn be the same as defined in (2), (22), (23), and (25), respectively. For
each given (n, p,K, N̄), we write µk = µk(ξ) to emphasize its dependence on parameters,
and similarly for αn, βn, ωn. For any c0 ∈ (0, 1) and sequence ϵn, define

Qn(c0, ϵn) :=
{
ξ = {(Ni,Ωi, ℓi)}ni=1 : (21) holds for c0, max(αn(ξ), βn(ξ)) ≤ ϵn

}
(27)

Furthermore, for any sequence δn, we define a parameter class for the null hypothesis
and a parameter class for the alternative hypothesis:

Q∗
0n(c0, ϵn) = Qn(c0, ϵn) ∩ {ξ : ωn(ξ) = 0} ,

Q∗
1n(δn; c0, ϵn) = Qn(c0, ϵn) ∩

ξ : nN̄∥µ(ξ)∥2ω2
n(ξ)√∑K

k=1 ∥µk(ξ)∥2
≥ δn

 . (28)

Theorem 5. Fix a constant c0 ∈ (0, 1) and positive sequences ϵn and δn such that
ϵn → 0 as n→ ∞. For any sequence of (n, p,K, N̄) indexed by n, consider Models (1)-
(2) for Ω ∈ Qn(c0, ϵn). Let Q∗

0n(c0, ϵn) and Q∗
1n(δn; c0, ϵn) be as in (28). If δn → 0, then

lim supn→∞ infΨ∈{0,1}
{
supξ∈Q∗

0n(c0,ϵn)
Pξ(Ψ = 1) + supξ∈Q∗

1n(δn;c0,ϵn)
Pξ(Ψ = 0)

}
= 1.

3.4. The special case of K = 2
The special case of K = 2 is found in closeness testing and authorship attribution. We
study this case more carefully. Given {Xi}1≤i≤n and {Gi}1≤i≤m, we assume

Xi ∼ Multinomial(Ni,Ωi), Gj ∼ Multinomial(Mj ,Γj). (29)

Write N̄ = n−1
∑n

i=1Ni and M̄ = m−1
∑m

i=1Mi. The null hypothesis becomes

H0 : η = θ, where η =
1

nN̄

n∑
i=1

NiΩi, and θ =
1

mM̄

m∑
i=1

MiΓi, (30)

where θ and η are the two group-wise mean PMFs. In this case, the test statistic ψ has
a more explicit form as in (18)-(19).
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In our previous results for a general K, the regularity conditions (e.g., (21)) impose
restrictions on the balance of sample sizes among groups. For K = 2, the severely
unbalanced setting is interesting (e.g., in authorship attribution, n = 1 and m can be
large). We relax the regularity conditions to the following ones:

Condition 1. Let θ and η be as in (30) and define two matrices Σ1 =
1

nN̄

∑n
i=1NiΩiΩ

′
i

and Σ2 = 1
mM̄

∑m
i=1MiΓiΓ

′
i. We assume that the following statements are true (a) For

1 ≤ i ≤ n and 1 ≤ j ≤ m, Ni ≥ 2, ∥Ωi∥∞ ≤ 1 − c0, Mj ≥ 2, and ∥Γj∥∞ ≤ 1 − c0,

where c0 ∈ (0, 1) is a contant, (b) max
{(∥η∥3

3

nN̄
+ ∥θ∥3

3

mM̄

)
,
( ∥η∥2

2

n2N̄2 + ∥θ∥2
2

m2M̄2
2

)}/∥∥ mM̄
nN̄+mM̄

η +

nN̄
nN̄+mM̄

θ
∥∥4 = o(1), (c) max

{∑
i

N2
i

n2N̄2 ∥Ωi∥33,
∑

i
M2

i

m2M̄2 ∥Γi∥33, ∥Σ1∥2F + ∥Σ2∥2F
}/

∥µ∥2 =

o(1), and (d) ∥µ∥44/∥µ∥4 = o(1).

Condition (a) is similar to (21), except that we drop the sample size balance requirement.
Conditions (b)-(d) are equivalent to (24) but have more explicit expressions for K = 2.

Theorem 6. In Model (29), we test the null hypothesis H0: θ = µ. As min{nN̄,mM̄} →
∞, suppose Condition 1 is satisfied. Under the alternative hypothesis, we further assume

∥η − θ∥2(
1

nN̄
+ 1

mM̄

)
max{∥η∥, ∥θ∥}

→ ∞. (31)

Consider the DELVE test statistic ψ = T/
√
V . The following statements are true.

Under the null hypothesis, ψ → N(0, 1) in distribution. Under the alternative hypothesis,
ψ → ∞ in probability. Moreover for any fixed κ ∈ (0, 1), the level-κ DELVE test has an
asymptotic level of κ and an asymptotic power of 1.

Compared with the theorems for a general K, first, Theorem 6 allows the two groups
to be severely unbalanced and reveals that the detection boundary depends on the
harmonic mean of nN̄ and mM̄ . Second, the detection boundary is expressed using
∥η − θ∥, which is easier to interpret. We also note that, when K = 2, straightforward
calculation yields E[T ] = ρ2 = ( 1

nN̄
+ 1

mM̄
)−1∥η− θ∥2, which explains the appearance of

the harmonic means in the detection boundary (31).

3.5. The special case of K = n
The special case of K = n is interesting for two reasons. First, the application example
of global testing in topic models corresponds to K = n. Second, for any K, when
Ωi’s within each group are assumed to be the same (e.g., this is the case in closeness
testing of discrete distributions), it suffices to aggregate the counts in each group, i.e.,
let Yk =

∑
i∈Sk

Xi and operate on Y1, . . . , YK instead of the original Xi’s; this reduces
to the case of K = n.

When K = n, the null hypothesis has a simpler form:

H0 : Ωi = µ, 1 ≤ i ≤ n. (32)

Moreover, under the alternative hypothesis, the quantity ω2
n in (25) simplifies to

ωn = ωn(Ω1,Ω2, . . . ,Ωn) =
1

nN̄∥µ∥2
n∑

i=1

Ni∥Ωi − µ∥2. (33)
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The DELVE test statistic also has a simplified form as in (14)-(15). We can prove the
same theoretical results under weaker conditions:

Condition 2. We assume that the following statements are true: (a) For a con-
stant c0 ∈ (0, 1), 2 ≤ Ni ≤ (1 − c0)nN̄ and ∥Ωi∥∞ ≤ 1 − c0, 1 ≤ i ≤ n, and (b)

max
{∑

i
∥Ωi∥3

3

Ni
,
∑

i
∥Ωi∥2

N2
i

}/
(
∑

i ∥Ωi∥2)2 = o(1), and (
∑

i ∥Ωi∥33)/(n∥µ∥2) = o(1)

When K = n, Condition (a) is equivalent to (21); and Condition (b) is weaker than

(24), as we have dropped the requirement ∥µ∥4
4

K∥µ∥4 = o(1). We obtain weaker conditions

for K = n because the dominant terms in T differ from those for K < n.

Theorem 7. In Model (1), we test the null hypothesis (32). As n→ ∞, we assume
that Condition 2 is satisfied. Under the alternative, we further assume that

nN̄∥µ∥2ω2
n√∑n

i=1 ∥Ωi∥2
→ ∞. (34)

Let T and V ∗ be the same as in (14)-(15). Consider the simplified DELVE test statistic
ψ∗ = T/

√
V ∗. Under the null hypothesis, ψ∗ → N(0, 1) in distribution. Under the

alternative hypothesis, ψ∗ → ∞ in probability. Moreover, for any fixed κ ∈ (0, 1), the
level-κ DELVE test has an asymptotic level of κ and an asymptotic power of 1.

The detection boundary in (34) has a simpler form if
∑

i ∥Ωi∥2 ≍ n∥µ∥2. In this case,
(34) is equivalent to

√
nN̄∥µ∥ω2

n → ∞. Additionally, if all entries of µ are at the same

order, then ∥µ∥ ≍ 1/
√
p, and (34) further reduces to

√
nN̄2/p · ω2

n → ∞.

3.6. A discussion of the contiguity regime
Our power analysis in Section 3.2 concerns SNRn → ∞, and our lower bound in Sec-
tion 3.3 concerns SNRn → 0. We now study the contiguity regime where SNRn tends
to a constant. For illustration, we consider a special choice of parameters, which allows
us to obtain a simple expression of the testing risk.

Suppose K = n and Ni = N for all 1 ≤ i ≤ n. Consider the pair of hypotheses:

H0 : Ωij = p−1, v.s. H1 : Ωij = p−1(1 + νnδij), (35)

where {δij}1≤i≤n,1≤j≤p satisfy that |δij | = 1,
∑p

j=1 δij = 0 and
∑n

i=1 δij = 0. Such δij
always exist.‡ The SNRn in (26) satisfies that SNRn ≍ (N

√
n/

√
p)ν2n. We thereby set

ν2n =

√
2p

N
√
n
· a, for a constant a > 0. (36)

Since K = n here, we consider the simplified DELVE test statistic ψ∗ as in Section 3.5.

‡For example, we can first partition the dictionary into two halves and then partition all the
documents into two halves; this divides {1, 2, . . . , p}×{1, 2, . . . , n} into four subsets; we construct
δij ’s freely on one subset and then specify the δij ’s on the other three subsets by symmetry.
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Theorem 8. Consider Model (1) with Ni = N . For a constant a > 0, let the null
and alternative hypotheses be specified as in (35)-(36). As n → ∞, if p = o(N2n), then
ψ∗ → N(0, 1) under H0 and ψ∗ → N(a, 1) under H1.

Let Φ be the cumulative distribution function of the standard normal. By Theorem 8,
for any fixed constant t ∈ (0, a), if we reject the null hypothesis when ψ∗ > t, then the
sum of type I and type II errors converges to [1− Φ(t)] + [1− Φ(a− t)].

4. Applications to other statistical problems

As mentioned in Section 1, our testing problem includes global testing for topic mod-
els, authorship attribution, and closeness testing for discrete distributions as special
examples. In this section, the DELVE test is applied separately to these three problems.

4.1. Global testing for topic models
Topic modeling (Blei et al., 2003) is a popular tool in text mining. It aims to learn a small
number of “topics” from a large corpus. Given n documents written using a dictionary
of p words, let Xi ∼ Multinomial(Ni,Ωi) denote the word counts of document i, where
Ni is the length of this document and Ωi ∈ Rp contains the population word frequencies.
In a topic model, there exist M topic vectors A1, A2, . . . , AM ∈ Rp, where each Ak is a
PMF. Let wi ∈ RM be a nonnegative vector whose entries sum up to 1, where wi(k) is
the “weight” document i puts on topic k. It assumes

Ωi =

M∑
k=1

wi(k)Ak, 1 ≤ i ≤ n. (37)

Under (37), the matrix Ω = [Ω1,Ω2, . . . ,Ωn] admits a low-rank nonnegative factorization.
Before fitting a topic model, we would like to know whether the corpus indeed involves

multiple topics. This is the global testing problem: H0 :M = 1 v.s. H1 :M > 1. When
M = 1, by writing A1 = µ, the topic model reduces to the null hypothesis in (32). We
can apply the DELVE test by treating each Xi as a separate group (i.e., K = n).

Corollary 1. Consider Model (1) and define a vector ξ ∈ Rn by ξi = N̄−1Ni.
Suppose that Ω = µ1′n under the null hypothesis, with µ = n−1Ωξ, and that Ω satisfies
(37) under the alternative hypothesis, with r := rank(Ω) ≥ 2. Suppose N̄/(miniNi) =
O(1). Denote by λ1, λ2, . . . , λr > 0 the singular values of Ω[diag(ξ)]1/2, arranged in the
descending order. We further assume that under the alternative hypothesis,

N̄ ·
∑r

k=2 λ
2
k√∑r

k=1 λ
2
k

→ ∞. (38)

For any fixed κ ∈ (0, 1), the level-κ DELVE test has an asymptotic level κ and an
asymptotic power 1.

The least-favorable configuration in the proof of Theorem 5 is in fact a topic model
that follows (37) with M = 2. Transferring the argument yields the following lower
bound that confirms the optimality of DELVE for the global testing of topic models.
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Corollary 2. Let Rn,M (ϵn, δn) be the collection of {(Ni,Ωi)}ni=1 satisfying the fol-
lowing conditions: 1) Ω follows the topic model (37) with M topics; 2) Condition 2 holds
with o(1) replaced by ≤ ϵn; 3) N̄(

∑r
k=2 λ

2
k)/(

∑r
k=1 λ

2
k)

1/2 ≥ δn. If ϵn → 0 and δn → 0,

then lim supn→∞ infΨ∈{0,1}

{
supRn,1(ϵn,0) P(Ψ = 1) + sup∪M≥2Rn,M (ϵn,δn) P(Ψ = 0)

}
= 1.

The detection boundary (38) can be simplified when M = O(1). Following Ke and
Wang (2022), we define ΣA = A′H−1A and ΣW = n−1WW ′, whereA = [A1, A2, . . . , AM ],
W = [w1, w2, . . . , wn] and H = diag(A1M ). Ke and Wang (2022) argued that it is rea-
sonable to assume that eigenvalues of these two matrices are at the constant order. If
this is true, with some mild additional regularity conditions, each λk is at the order of√
n/p. Hence, (38) reduces to

√
nN̄/

√
p → ∞. In comparison, Ke and Wang (2022)

showed that a necessary condition for any estimator Â = [Â1, Â2, . . . , ÂM ] to achieve
1
M

∑M
k=1 ∥Âk − Ak∥1 = o(1) is

√
nN̄/p → ∞. We conclude that consistent estimation

of topic vectors requires strictly stronger conditions than successful testing.

4.2. Authorship attribution
In authorship attribution, given a corpus from a known author, we want to test whether
a new document is from the same author. It is a special case of our testing problem
with K = 2. We can directly apply the results in Section 3.4. However, the setting in
Section 3.4 has no sparsity. Kipnis (2022); Donoho and Kipnis (2022) point out that the
number of words with discriminating power is often much smaller than p. To see how
our test performs under sparsity, we consider a sparse model. As in Section 3.4, let

Xi ∼ Multinomial(Ni,Ωi), 1 ≤ i ≤ n, and Gi ∼ Multinomial(Mi,Γi), 1 ≤ i ≤ m.
(39)

Let N̄ and M̄ be the average of Ni’s and Mi’s, respectively. Write η = 1
nN̄

∑n
i=1NiΩi

and θ = 1
mM̄

∑m
i=1MiΓi. We assume for some ζn > 0,

ηj = θj , for j /∈ S, and
∣∣√ηj −√

θj
∣∣ ≥ ζn, for j ∈ S. (40)

Corollary 3. Under the model (39)-(40), consider testing H0 : S = ∅ v.s. H1 : S ̸=
∅, where Condition 1 is satisfied. Let ηS and θS be the sub-vectors of η and θ restricted
to the coordinates in S. Suppose that under the alternative hypothesis,

ζ2n · (∥ηS∥1 + ∥θS∥1)(
1

nN̄
+ 1

mM̄

)
max{∥η∥, ∥θ∥}

→ ∞. (41)

As min{nN̄,mM̄} → ∞, the level-κ DELVE test has an asymptotic level κ and an
asymptotic power 1. Furthermore, if nN̄ ≍ mM̄ and minj∈S(ηj + θj) ≥ cp−1 for a
constant c > 0, then (41) reduces to nN̄ζ2n|S|/

√
p→ ∞.

Donoho and Kipnis (2022) studied a case where N =M , n = m = 1, p→ ∞,

|S| = p1−ϑ, and ζn = c ·N−1/2
√

log(p). (42)

When ϑ > 1/2 (i.e., |S| = o(
√
p)), they derived a phase diagram for the aforementioned

testing problem (under a slightly different setting where the data distributions are Pois-
son instead of multinomial). They showed that when ϑ > 1/2 and c is a properly large
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constant, a Higher-Criticism-based test has an asymptotically full power. Donoho and
Kipnis (2022) did not study the case of ϑ ≤ 1/2. By Corollary 3, when ϑ ≤ 1/2 (i.e.,
|S| ≥ C

√
p), the DELVE test has asymptotically full power.

Remark 5. When ϑ > 1/2 in (42), the DELVE test loses power. However, we can
borrow the idea of maximum test or Higher Criticism test (Donoho and Jin, 2004). For
example, recalling Tj in (9), we may use max1≤j≤p{Tj/

√
Vj} as the test statistic, where

Vj is a proper estimator of the variance of Tj . We leave this to future work.

4.3. Closeness testing between discrete distributions
Two-sample closeness testing is a subject of intensive study in discrete distribution
inference (Bhattacharya and Valiant, 2015; Chan et al., 2014; Diakonikolas and Kane,
2016; Kim et al., 2022). It is a special case of our problem with K = 2 and n1 = n2 = 1.
We thereby apply both Theorem 6 and Theorem 7.

Corollary 4. Let Y1 and Y2 be two discrete variables taking values on the same p
outcomes. Let Ω1 ∈ Rp and Ω2 ∈ Rp be their corresponding PMFs. Suppose we have
N1 samples of Y1 and N2 samples of Y2. The data are summarized in two multinomial
vectors: X1 ∼ Multinomial(N1,Ω1), X2 ∼ Multinomial(N2,Ω2). We test H0 : Ω1 = Ω2.
Write µ = 1

N1+N2
(N1Ω1 + N2Ω2). Suppose min{N1, N2} ≥ 2, max{∥Ω1∥∞, ∥Ω2∥∞} ≤

1−c0, for a constant c0 ∈ (0, 1). Suppose 1
(
∑2

k=1 ∥Ωk∥2)2
max

{∑2
k=1

∥Ωk∥3
3

Nk
,
∑2

k=1
∥Ωk∥2

N2
k

}
=

o(1), and 1
n∥µ∥2

∑2
k=1 ∥Ωk∥33 = o(1). We assume that under the alternative hypothesis,

∥Ω1 − Ω2∥2(
N−1

1 +N−1
2

)
max{∥Ω1∥, ∥Ω2∥}

→ ∞. (43)

As min{N1, N2} → ∞, the level-κ DELVE test has level κ and power 1, asymptotically.

The requirement (43) matches with the minimum ℓ2-separation condition for two-
sample closeness testing (Kim et al., 2022, Proposition 4.4). Hence, our test is an optimal
ℓ2-testor. Other optimal ℓ2-testors (Chan et al., 2014; Bhattacharya and Valiant, 2015;
Diakonikolas and Kane, 2016) are not equipped with tractable null distributions.

Remark 6. We can modify DELVE to incorporate frequency-dependent weights.

Define T (w) :=
∑p

j=1wjTj , where Tj is the same as in (9) and let wj =
(
max{1/p, µ̂j}

)−1
.

Such weights were used in discrete distribution inference (Balakrishnan and Wasserman,
2019; Chan et al., 2014) to turn an optimal ℓ2 testor to an optimal ℓ1 testor. We can
similarly study the power of the test based on T (w), except that we need an additional
assumption nN̄ ≫ p to guarantee that µ̂j is a sufficiently accurate estimator of µj .

5. Simulations

We investigate the numerical performance of DELVE in simulations. Recall that we in-
troduced a variant of DELVE, DELVE+, in Section 2.2. DELVE+ has similar theoretical
properties but is more suitable for real data. We include both versions in simulations.

Experiment 1 (Asymptotic normality). Given (n, p,K,Nmin, Nmax, ϕ), we generate
data as follows: first, divide {1, . . . , n} intoK equal-size groups. Next, we draw Ωalt

1 , . . . ,Ωalt
n
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Fig. 1: Histograms of DELVE (top panels) and DELVE+ (bottom panels) statistics in
Experiments 1.1-1.3. In each plot, the blue and orange histograms correspond to the null
and alternative hypotheses, respectively; and the green curve is the density of N(0, 1).

i.i.d. from Dirichlet(p, ϕ1p). Third, we draw Ni
iid∼ Uniform[Nmin, Nmax] and set Ωnull

i =
µ, where µ := 1

nN̄

∑
iNiΩ

alt
i . Last, we generateX1, . . . , Xn using Model (1). We consider

three sub-experiments. In Experiment 1.1, (n, p,K,Nmin, Nmax, ϕ) = (50, 100, 5, 10, 20, 0.3).
In Experiment 1.2, ϕ is changed to 1, and the other parameters are the same. When
ϕ = 1, Ωalt

i are drawn from the uniform distribution of the standard probability simplex;
in comparison, ϕ = 0.3 puts more mass near the boundary of the standard probability
simplex. In Experiment 1.3, we keep all parameters the same as in Experiment 1.1,
except that (p,K) are changed to (300, 50). For each sub-experiment, we generate 2000
data sets under the null hypothesis and plot the histogram of the DELVE test statistic
ψ (in blue); similarly, we generate 2000 data sets under the alternative hypothesis and
plot the histogram of ψ (in orange). The results are contained in Figure 1.

In all sub-experiments, when the null hypothesis holds, the histograms of DELVE and
DELVE+ fit the standard normal density reasonably well. This supports our theory in
Section 3.1. Second, when (p,K) increase, the finite sample effect becomes slightly more
pronounced (c.f., Experiment 1.3 versus Experiment 1.1). Third, the tests have power in
differentiating two hypotheses. As ϕ decreases or K increases, the power increases, and
the two histograms become further apart. Last, in the alternative hypothesis, DELVE+
has smaller mean and variance than DELVE. By Lemma 2, they have similar asymptotic
behaviors. The simulations suggest that they have noticeable finite-sample differences.

Experiment 2 (Power curve). Similarly as in Experiment 1, we divide {1, 2, . . . , n}
into K equal-size groups and draw Ni ∼ Uniform[Nmin, Nmax]. In this experiment, Ωi’s
are generated in a different way. Under H0, we draw µ ∼ Dirichlet(p/2, ϕ1p/2) and set

Ωnull
i = µ̃, where µ̃j =

1
2µj for j ≤ p/2 and µ̃j =

1
2µj−p/2 for j ≥ p/2+1. UnderH1, fixing

some τn ∈ [0, 1], we draw z1, . . . , zK , b1, . . . , bp/2
iid∼ Rademacher(1/2) and let Ωalt

ij =

µ̃j(1 + τnzkbj), for i in group k and 1 ≤ j ≤ p/2, and let Ωalt
ij = µ̃j(1 − τnzkbj−p/2) for
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Fig. 2: Power of the level-5% DELVE test (x-axis represents the SNR λ(τn) =
nN̄∥µ∥τ2

n√
K

).

Fig. 3: Comparison of DELVE+, LR, and ANOVA (details are in Experiment 3).

p/2+ 1 ≤ j ≤ p. By applying our theory in Section 3.2 together with some calculations,
the signal-to-noise ratio is captured by λ(τn) := K−1/2nN̄∥µ∥τ2n. In particular, it holds
that ω2

n(Ω
alt) = τ2n, for the ω2

n defined in (25). We consider three sub-experiments,
Experiment 2.1-2.3, where the parameter values of (n, p,K,Nmin, Nmax, ϕ) are the same
as in Experiments 1.1-1.3. For each sub-experiment, we consider a grid of 10 equally-
spaced values of λ. When λ = 0, it corresponds to H0; when λ > 0, it corresponds to
H1. For each λ, we generate 500 data sets and compute the fraction of rejections of
the level-5% DELVE test. This gives a power curve for the level-5% DELVE test, in
which the first point associated with λ = 0 is the actual level of the test. The results
are in Figure 2. We repeat the same experiments for the DELVE+ test; owing to space
limit, the plots are in Cai et al. (2023). In all three experiments, the actual level of our
proposed tests is ≤ 5%, suggesting that our tests perform well at controlling the type-I
error. As λ increases, the power gradually increased to 1, suggesting that λ is a good
metric of the signal-to-noise ratio. This supports our theory in Section 3.2.

Experiment 3 (Comparison with the LR and ANOVA tests). This experiment contains
two sub-experiments. In Experiment 3.1, we compare DELVE+ with the likelihood ratio
(LR) test. The LR test is only well-defined in the special case where Ωi’s are equal within

each group. In this case, TLR =
∑

k nkN̄k

∑
j µ̂kj log

( µ̂kj

µ̂j

)
, where µ̂k and µ̂ are the same

as in (5), and log(0/0) = 0. Given (n, p,K,Nmin, Nmax, ϕ), we generate data in the same
way as in Experiment 2 (these settings guarantee that Ωi’s are equal within-group, hence
favoring the LR test). Since no asymptotic normality result is known for TLR, we use an
ideal threshold for the LR test - drawing 500 data sets from the null model (λ = 0) and
computing the empirical 95%-quantile of TLR. The power curves for two representative
settings (p = 200 and p = 10) are shown in the left two panels of Figure 3. More
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settings can be found in Section A.2 of Cai et al. (2023). We observe that DELVE+
significantly outperforms LR when p is large/moderate compared to n, and they perform
similarly (with LR being slightly better) when p is small. In Experiment 3.2, we compare

DELVE+ with the ANOVA test that uses T̃ in (8) as the test statistic. The simulation
settings are the same as in Experiment 1.1. The third panel of Figure 3 is a replication
of the bottom left panel of Figure 1 and shows the histograms of DELVE+ test statistics
under two hypotheses. The fourth panel of Figure 3 contains the histograms of T̃ . We see
that T̃ fails to distinguish two hypotheses while DELVE+ is able to do so. As explained
in Remark 4, the naive ANOVA test can lose power due to the lack of de-biasing.

6. Real Data Analysis

We consider two real corpora consisting of statistical paper abstracts and Amazon movie
reviews, respectively. We use them to showcase: Although testing the null hypothesis (3)
is only a binary decision problem, it can be used to answer various questions of interest
by simply varying the definition of “groups” in (3). For example, we may define “groups”
of movie reviews by movie title, star rating, posting time, reviewer characteristics, etc..
Then, our test can detect many different kinds of heterogeneity in movie reviews (the
same holds for other product reviews). In Section 2, we proposed DELVE and DELVE+
and explained that the latter is more suitable for real data; hence, we use DELVE+ here.

6.1. Abstracts of statisticians
The data set from Ji and Jin (2016) contains the bibtex information of published papers
in four top-tier statistics journals, Annals of Statistics, Biometrika, Journal of the Amer-
ican Statistical Association, and Journal of the Royal Statistical Society - Series B, from
2003 to the first half of 2012. In the pre-processing step, we first remove common stop
words such as “for”, “also”, “can”, and “the”, and common domain-specific words such
as “statistician”, “estimate”, and “sample”. We then perform stemming, which maps
together words with a common prefix such as “play”, “player”, and “playing”. Finally,
we perform tokenization, which maps each abstract to its vector of word (stem) counts.

We conduct two experiments. In the first one, we fix an author and treat the collection
of his/her co-authored abstracts as a corpus. We apply DELVE+ with K = n, where n is
the number of abstracts written by this author. The Z-score measures the “diversity” or
“variability” of this authors’ abstracts. An author with a high Z-score possesses either
diverse research interests or a variable writing style. A number of authors have only 1–2
papers, and the variance estimator V is often negative; we remove all those authors. In
Figure 4 (left), we plot the histogram of Z-scores of retained authors. The mean is 4.52
and the standard deviation is 2.94. In Figure 4 (middle), we show the plot of Z-score
versus logarithm of the number of abstracts written by this author. The most prolific
author has 82 papers and a Z-score larger than 20, implying a huge diversity in his/her
abstracts. There is also a positive association between Z-score and number of papers.
It suggests that senior authors have more diversity in their abstracts, which is intuitive.

In the second experiment, we further divide an author’s abstracts into smaller groups
by publication year. Owing to space limit, we only show the results for the most prolific
author who has 82 papers, but we keep in mind that the same analysis can be done for
each author in the data set (see Cai et al. (2023)). We divide this author’s abstracts into
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Fig. 4: Results about statistical abstracts. Left: Histogram of author Z-scores (mean is
4.52, and standard deviation is 2.94). Middle: Author Z-score versus number of papers.
Right: Pairwise Z-score plot for a representative author.

9 groups, each group corresponding to one year. For each pair of groups, we implement
DELVE+ with K = 2. This yields a pairwise plot of Z-scores, as shown in Figure 4
(right). It reveals the temporal patterns of this author in abstract writing. The group
consisting of 2004-2005 abstracts has comparably large Z-scores in the pairwise com-
parison with other groups. To interpret the results, we read titles and abstracts of all
of this author’s papers and found that in 2004-2005 he/she extensively studied topics
related to bandwidth selection in the context of nonparametric estimation.

Remark 7. The asymptotic normality in Section 3.1 is established under the con-
dition n2N̄2 ≫ Kp. It is worth checking if this holds in real data. We compute
DR := n2N̄2/(Kp) for all the corpora analyzed in the above two experiments (see
Section B.2 of Cai et al. (2023)). These DR values are quite large. Therefore, it would
be appropriate to apply the asymptotic normality result, and we think the Z-scores and
p-values are trustworthy.

6.2. Amazon movie reviews
The dataset in Maurya (2018) contains 1,924,471 reviews of 143,007 visual media prod-
ucts (ie, DVDs, Bluray, or streams). We cleaned and stemmed these review text similarly
as in Section 6.1. In the first experiment, given a movie, we consider the corpus con-
sisting of all reviews of this movie and apply DELVE+ with K = n. The results are
in the top panels of Figure 5. First, we plot the histogram of Z-scores for the top 500
most reviewed movies. The mean is 19.97 and the standard deviation is 5.07. Compared
with the histogram of Z-scores for statistics paper abstracts, there is much larger diver-
sity in movie reviews. Next, we list the 4 movies with the highest Z-scores and lowest
Z-scores out of the 20 most reviewed movies. Each movie has more than 800 reviews,
but some have surprisingly low Z-scores. The works by the comedian Jeff Dunham have
the lowest Z-scores, suggesting strong homogeneity among the reviews. The 2012 horror
film Prometheus has the highest degree of review diversity among the 20 most reviewed
movies. In the second experiment, we further divide each movie’s reviews into 5 groups
by star rating. We compare each pair of groups using DELVE+ with K = 2, resulting
in a pairwise Z-score plot. In the bottom panels of Figure 5, we plot this for 3 popular
movies. We see a variety of polarization patterns among the scores. In Harry Potter
and the Deathly Hallows Part I, DELVE+ signifies that the reviews with ratings in the
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Rank Title Z-Score Total reviews

1 Prometheus 34.44 813
2 Expelled: No Intelligence Allowed 34.17 830
3 V for Vendetta 32.24 815
4 Sin City 31.72 828
...

...
...

...
17 Cars 19.98 902
18 Food, Inc. 17.81 876
19 Jeff Dunham: Arguing with Myself 4.96 860
20 Jeff Dunham: Spark of Insanity 4.46 877

Fig. 5: Results about movie reviews. Top left: Histogram of Z-scores for the 500 most-
reviewed movies (mean is 19.97, and standard deviation is 5.07). Top right: Information
and Z-scores for the top 20 most reviewed movies. Bottom: Pairwise Z-score plots for
3 representative movies (the title lists the number of reviews of each rating from 1–5).

range 2–4 stars are all similar. We see a smooth gradation in how the 1-star reviews
differ from those from 2–4 stars, and similarly for 5-star reviews versus those from 2–4
stars. Twilight Saga: Eclipse shows three clusters: 1–2 stars, 3–4 stars, and 5 star, while
Night of the living dead shows two clusters: 1–2 stars and 3–5 stars.

As mentioned in Section 1, the marketing research aims to understand patterns of
online customer reviews. Our DELVE testing framework is a flexible approach to detect-
ing many kinds of heterogeneity in review text. If reviewer characteristics (e.g., gender)
are available, we can group reviews by these characteristics and answer questions such
as if female and male reviewers have different styles in writing review text. In the exper-
iments here, we showcase how to use DELVE to find patters in movie ratings. Although
many literature works have studied patterns of movie reviews (Baek et al., 2012), most
are based on the distribution of numeric ratings. The three movies in Figure 5 have sim-
ilar distributions of numerical ratings, but the patters in text reviews are considerably
different. Such plots will be useful for improving rating systems, recommending movies
to customers, and detecting fake reviews.

7. Discussions

We examine the testing for equality of PMFs of K groups of high-dimensional multi-
nomial distributions. The proposed DELVE statistic has a parameter-free limiting null
that allows for computation of Z-scores and p-values on real data. DELVE achieves the
optimal detection boundary over the whole range of parameters (n, p,K, N̄), including
the high-dimensional case p→ ∞, which is very relevant to applications in text mining.

This work leads to interesting questions for future study. Recall that the ρ2 defined
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in (6) is a measure of heterogeneity among the group-wise means. So far, the focus is
on testing ρ2 = 0, but we may also consider estimation and inference of ρ2. Assuming
ρ2 = 0, we have obtained a consistent variance estimator for the DELVE metric in (9)
and established it asymptotic normality. To construct a confidence interval for ρ2, we will
need such results under the alternative hypothesis (where ρ2 ̸= 0). From Figure 1, the
asymptotic normality still holds when ρ2 ̸= 0, except that stronger regularity conditions
may be required. Inspired by the authorship attribution problem (Kipnis and Donoho,
2021; Kipnis, 2022), it is interesting to consider a sparse alternative hypothesis where the
group mean vectors are equal except on a small set of “giveaway words”. As discussed
in Section 4.2, we may combine DELVE with the idea of higher criticism.

Another exciting future direction is to extend our methods from the ‘bag-of-words’
model to more realistic sequence-based models. One approach is to consider the counts of
adjacent words (bi-grams) instead of raw word counts. More generally, one can consider
the counts of short sequences of words, which are known as m-grams. It is possible that
a suitably modified version of DELVE would perform well in a setting where the next
word is generated according to a Markov transition kernel whose input is the previous
m − 1 observed words (Jurafsky and Martin, 2023). A final idea is to combine words
that have similar meanings or are close in a word embedding into ‘superwords’ and to
use these superword counts as the basis for DELVE. We leave them to future work.
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