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Consider an undirected network with n nodes and K perceivable
communities, where some nodes may have mixed memberships. We
assume that for each node 1 ≤ i ≤ n, there is a probability mass
function πi defined over {1, 2, . . . ,K} such that

πi(k) = the weight of node i on community k, 1 ≤ k ≤ K.

The goal is to estimate {πi, 1 ≤ i ≤ n} (i.e., membership estimation).
We model the network with the degree-corrected mixed member-

ship (DCMM) model [8]. Since for many natural networks, the degrees
have an approximate power-law tail, we allow severe degree hetero-
geneity in our model.

For any membership estimation {π̂i, 1 ≤ i ≤ n}, since each πi is a
probability mass function, it is natural to measure the errors by the
average `1-norm

1

n

n∑
i=1

‖π̂i − πi‖1.

We also consider a variant of the `1-loss, where each ‖π̂i− πi‖1 is re-
weighted by the degree parameter θi in DCMM (to be introduced).

We present a sharp lower bound. We also show that such a lower
bound is achievable under a broad situation. More discussion in this
vein is continued in our forthcoming manuscript [7].

The results are very different from those on community detection.
For community detection, the focus is on the special case where all
πi are degenerate; the goal is clustering, so Hamming distance is the
natural choice of loss function, and the rate can be exponentially fast.
The setting here is broader and more difficult: it is more natural to
use the `1-loss, and the rate is only polynomially fast.

1. Introduction. Consider an undirected network N = (V,E), where
V = {1, 2, . . . , n} is the set of nodes and E is the set of (undirected) edges.
Let A ∈ Rn,n be the adjacency matrix where

A(i, j) =

{
1, if nodes i and j have an edge,
0, otherwise.

1 ≤ i, j ≤ n,

The diagonals of A are zero since we do not allow for self-edges. Suppose
the network has K perceivable communities (i.e., clusters)

C1, C2, . . . , CK ,
1
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and a node may belong to more than one cluster (i.e., mixed memberships).
For each node 1 ≤ i ≤ n, suppose there exists a Probability Mass Function
(PMF) πi = (πi(1), πi(2), . . . , πi(K))′ ∈ RK such that

πi(k) is the “weight” of node i on Ck, 1 ≤ k ≤ K.

We call node i “pure” if πi is degenerate (i.e., one entry is 1 and the other
entries are 0) and “mixed” otherwise. The primary interest is to estimate
πi, 1 ≤ i ≤ n.

Estimating mixed memberships is a problem of great interest in social
network analysis [1, 2, 8, 16]. Take the Polbook network [13] for example.
Each node is a book on US politics for sale in Amazon.com, and there is
an edge between two nodes if they are frequently co-purchased. Jin et al.
(2017) [8] modeled this network with a two-community (“Conservative” and
“Liberal”) mixed membership model, where the estimated mixed member-
ship of a node describes how much weight this book puts on “Conservative”
and “Liberal”.

We are interested in the optimal rate of convergence associated with mem-
bership estimation. Below, we introduce a model and present a sharp lower
bound. We show that the lower bound is achievable in a broad class of
situations where we allow severe degree heterogeneity.

1.1. Model. Consider the degree-corrected mixed membership (DCMM)
model [8]. Recall that A is the adjacency matrix. DCMM assumes that

(1.1) {A(i, j) : 1 ≤ i < j ≤ n} are independent Bernoulli variables,

where the Bernoulli parameters are different. For a symmetric non-negative
matrix P ∈ RK,K and a vector θ = (θ1, θ2, . . . , θn)′, where θi > 0 is the
degree heterogeneity parameter of node i, DCMM models

(1.2) P
(
A(i, j) = 1

)
= θiθj · π′iPπj , 1 ≤ i < j ≤ n.

To ensure model identifiability, we assume

(1.3) P is non-singular and have unit diagonals.

We now calibrate DCMM with a matrix form. Introduce the two matrices
Θ = diag(θ1, θ2, . . . , θn) ∈ Rn,n and Π = [π1, π2, . . . , πn]′ ∈ Rn,K . Then,

A = [Ω− diag(Ω)]︸ ︷︷ ︸
“signal”

+ W︸︷︷︸
“noise”

, Ω = ΘΠPΠ′Θ, W = A− E[A].
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Here Ω is a low-rank matrix (rank(Ω) = K) containing Bernoulli parameters
and W is a generalized Wigner matrix.

DCMM can be viewed as extending the mixed membership stochastic block
model (MMSB) [1] to accommodate degree heterogeneity, and can also be
viewed as extending the degree-corrected block model (DCBM) [11] to accom-
modate mixed memberships. DCMM is similar to the overlapping continuous
community assignment model (OCCAM) [16], where the difference is that
DCMM regards each membership vector πi as a PMF with a unit `1-norm
while OCCAM models that each πi has a unit `2-norm (which seems hard
to interpret).

Remark. The identifiability condition of DCMM is different from that of
DCBM. In DCBM, even when P is singular, the model can still be identifi-
able. However, in DCMM, since there are many more free parameters, the
full rank assumption of P is required for identifiability.

An example. Let’s look at an example with K = 2 and

P =

(
a b
b c

)
.

If nodes i and j are both pure nodes, then there are three cases:

P
(
A(i, j) = 1

)
= θiθj


a, i, j ∈ C1,

c, i, j ∈ C2,

b, i ∈ C1, j ∈ C2 or i ∈ C2, j ∈ C1.

As a result, in the special case with all nodes being pure, the “signal” matrix
Ω has the form

Ω =

θ1

. . .

θn




1 0
0 1
...

...
1 0


[
a b
b c

] [
1 0 · · · 1
0 1 · · · 0

]
︸ ︷︷ ︸

ΠPΠ′

θ1

. . .

θn

 ,

where the matrix ΠPΠ′ can be shuffled to a block-wise constant matrix by
some unknown permutation:

ΠPΠ′ =


a b a b a
b c b c b
a b a b a
b c b c b
a b a b a

 permute−→


a a a b b
a a a b b
a a a b b

b b b c c
b b b c c

 .
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In general cases where the nodes have mixed memberships, Ω has a similar
form, except that Π is no longer a matrix of 0’s and 1’s and ΠPΠ′ can no
longer be shuffled to a block-wise constant matrix.

Ω =

θ1

. . .

θn




0.8 0.2
0 1
...

...
0.7 0.3


[
a b
b c

] [
0.8 0 · · · 0.7
0.2 1 · · · 0.3

]
︸ ︷︷ ︸

ΠPΠ′

θ1

. . .

θn

 .

1.2. Loss functions. Given estimators Π̂ = [π̂1, π̂2, . . . , π̂n]′, since each πi
is a PMF, it is natural to measure the (unweighted) `1-estimation error:

(1.4) H(Π̂,Π) = n−1
n∑
i=1

‖π̂i − πi‖1.

We also consider a variant of the `1-error where ‖π̂i − πi‖1 is reweighed by
the degree parameter θi. Write θ̄ = n−1

∑n
i=1 θi, θmax = max1≤i≤n θi, and

θmin = min1≤i≤n θi. Define the degree-weighted `1-estimation error as

(1.5) L(Π̂,Π) = n−1
n∑
i=1

(θi/θ̄)
1/2‖π̂i − πi‖1.

When θmax/θmin is bounded, the above loss functions are equivalent in
the sense that for a constant C > 1,

C−1H(Π̂,Π) ≤ L(Π̂,Π) ≤ CH(Π̂,Π).

However, when there is severe degree heterogeneity (i.e., θmax/θmin � 1), the
weighted `1-loss is more convenient to use: The minimax rate for H(Π̂,Π)
depends on all θi in a complicated form, but the minimax rate of L(Π̂,Π) is
a simple function of θ̄.

Remark. The weights in (1.5) are motivated by the study of an oracle
case where all true parameters of DCMM are known except for πi of one
node i. In this case, there exists an oracle estimator π̂i0 such that

‖π̂i0 − πi‖1 = (θi/θ̄)
−1/2 ·O((nθ̄2)−1/2)

with high probability. It motivates us to re-weight ‖π̂i − πi‖ by (θi/θ̄)
1/2.
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1.3. Lower bound. In the asymptotic analysis, we fix K and P ∈ RK,K
and let (Θ,Π) change with n. Our results take the form: For each θ in a
broad class Q∗n(K, c) (to be introduced), we provide a minimax lower bound
associated with a class of Π.

Given θ ∈ Rn+, let θ(1) ≤ θ(2) ≤ . . . ≤ θ(n) be the sorted values of θi’s. For
a constant c ∈ (0, 1/K), introduce

(1.6) Q∗n(K, c) =
{
θ ∈ Rn+ : θ̄ ≥ n−1/2 log(n), θ(cKn) ≥ n−1/2 log(n)

}
Denote by Gn(K) the set of all matrices Π ∈ Rn,K such that each row πi

is a PMF. Given Π ∈ Gn(K), let

Nk = {1 ≤ i ≤ n : πi = ek}, M = {1, 2, . . . , n} \ (N1 ∪ . . . ∪NK),

where e1, e2, . . . , eK are the standard bases of RK . It is seen that Nk is the
set of pure nodes of community k and M is the set of mixed nodes. Fix
(K, c) and an integer L0 ≥ 1. Introduce

G̃n(K, c, L0; θ) =
{

Π ∈ Gn(K) :

|Nk| ≥ cn, for 1 ≤ k ≤ K;∑
i∈Nk

θ2
i ≥ c‖θ‖2, for 1 ≤ k ≤ K;

there is L ≤ L0, a partition M = ∪L`=1M`, PMF’s γ1, ..., γL,
where minj 6=` ‖γj − γ`‖ ≥ c, min1≤`≤L,1≤k≤K ‖γ` − ek‖ ≥ c,
such that |M`| ≥ c|M| ≥ log3(n)

θ̄2
,maxi∈M`

‖πi − γ`‖ ≤ 1
log(n)

}
.

(1.7)

Theorem 1.1 (Lower bound of the weighted `1-error). Fix K ≥ 2, c ∈
(0, 1/K), and a nonnegative symmetric matrix P ∈ RK,K that satisfies (1.3).
Suppose the DCMM model (1.1)-(1.2) holds. As n→∞, there are constants
C0 > 0 and δ0 ∈ (0, 1) such that, for any θ ∈ Q∗n(K, c),

inf
Π̂

sup
Π∈G̃n(K,c,L0;θ)

P
(
L(Π̂,Π) ≥ C0√

nθ̄2

)
≥ δ0.

When θmax ≤ Cθmin, the unweighted and weighted `1-errors are equiva-
lent, and we also have a lower bound for the unweighted `1-error:

Corollary 1.1 (Lower bound of the unweighted `1-error). Suppose the
conditions of Theorem 1.1 hold. As n→∞, there are constants C1 > 0 and
δ0 ∈ (0, 1) such that, for any θ ∈ Q∗n(K, c) satisfying θmax ≤ Cθmin,

inf
Π̂

sup
Π∈G̃n(K,c,L0;θ)

P
(
H(Π̂,Π) ≥ C1√

nθ̄2

)
≥ δ0.
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Remark. Our results allow for severe degree heterogeneity: for θ ∈ Q∗n(K, c),
it is possible that θmax/θmin � 1. In addition, we allow for sparse networks
because θ ∈ Q∗n(K, c) only requires that the average node degree grows with
n in a logarithmic rate.

Remark. The lower bounds here are different from those on community
detection [15, 3]. For community detection, the focus is on the special case
where all πi are degenerate; the goal is clustering, so Hamming distance is
the natural choice of loss function, and the rate can be exponentially fast.
The setting here is broader and more difficult: it is more natural to use the
`1-loss, and the rate is only polynomially fast.

1.4. Achievability. Jin et al. [8] proposed a method Mixed-SCORE for
estimating πi’s. The Mixed-SCORE is a fast and easy-to-use spectral ap-
proach, and can be viewed as an extension of Jin’s SCORE [5, 4, 9]. However,
SCORE is originally designed for community detection, and to extend it to
membership estimation, we need several innovations; see [5, 8] for details. It
turns out that Mixed-SCORE is also rate-optimal.

The following theorem follows directly form Theorem 1.2 of [8]:

Theorem 1.2 (Upper bound). Fix K ≥ 2, c ∈ (0, 1/K), and a nonnega-
tive symmetric irreducible matrix P ∈ RK,K that satisfies (1.3). Suppose the
DCMM model (1.1)-(1.2) holds. Let Π̂ be the Mixed-SCORE estimator. As
n→∞, for any θ ∈ Q∗n(K, c) with θmax ≤ Cθmin and any Π ∈ G̃n(K, c, L0),
with probability 1− o(n−3),

L(Π̂,Π) ≤ CH(Π̂,Π) ≤ C log(n)√
nθ̄2

.

In the case that θmax ≤ Cθmin, the upper bound and lower bound have
matched, and the minimax rate of convergence for both weighted and un-
weighted `1-errors is

(nθ̄2)−1/2, up to a multiple-log(n) factor.

For more general settings where θmax/θmin is unbounded, in a forthcoming
manuscript Jin and Ke [7], we demonstrate that

• The minimax rate of convergence for the weighted `1-loss L(Π̂,Π) is
still (nθ̄2)−1/2, up to a multiple-log(n) factor.
• The minimax rate of convergence for the unweighted `1-loss H(Π̂,Π)

depends on individual θi’s in a more complicated form.
• Mixed-SCORE achieves the minimax rate for a broad range of settings.
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At the heart of the upper bound arguments is some new node-wise large
deviation bounds we derived; see our forthcoming manuscript [7]. On a high
level, the technique is connected to the post-PCA entry-wise bounds in Jin
et al. [6] and Ke and Wang [12], but is for very different settings. The main
interest of [6] is on gene microarray analysis, where we discuss three inter-
connected problems: subject clustering, signal recovery, and global testing;
see also Jin and Wang [10] on IF-PCA. The main interest of [12] is on topic
estimation in text mining.

As far as we know, Jin et al. [6] is the first paper that has carefully
studied post-PCA entry-wise bounds. The bounds are crucial for obtaining
sharp bounds on the clustering errors by PCA approaches.

2. Proof of Theorem 1.1. We introduce a subset of G̃n(K, c, L0; θ):

G∗n(K, c; θ) =
{

Π ∈ Gn(K) : |Nk| ≥ cn, for 1 ≤ k ≤ K;∑
i∈Nk

θ2
i ≥ c‖θ‖2, for 1 ≤ k ≤ K;

‖πi − (1/K)1K‖ ≤ 1/ log(n), for i ∈M
}
.

Since G∗n(K, c; θ) ⊂ G̃n(K, c, L0; θ), for any estimator Π̂,

sup
Π∈G̃n(K,c,L0;θ)

P
(
L(Π̂,Π) ≥ C0√

nθ̄2

)
≥ sup

Π∈G∗n(K,c;θ)
P
(
L(Π̂,Π) ≥ C0√

nθ̄2

)
.

Hence, it suffices to prove the lower bound for Π ∈ G∗n(K, c; θ).
We need the following lemma, which is adapted from Theorem 2.5 of [14].

We recall that Gn(K) is the set of all matrices Π ∈ Rn,K each row of which
is a PMF in RK .

Lemma 2.1. For any subset G∗n ⊂ Gn(K), if there exist Π(0),Π(1), . . . ,Π(J) ∈
G∗n such that:

(i) L(Π(j),Π(k)) ≥ 2C0sn for all 0 ≤ j 6= k ≤ J ,
(ii) 1

J+1

∑J
j=0KL(Pj ,P0) ≤ β log(J),

where C0 > 0, β ∈ (0, 1/8), Pj denotes the probability measure associated
with Π(j), and KL(·, ·) is the Kullback-Leibler divergence, then

inf
Π̂

sup
Π∈G∗n

P
(
L(Π̂,Π) ≥ C0sn

)
≥

√
J

1+
√
J

(
1− 2β −

√
2β

log(J)

)
.

As long as J → ∞ as n → ∞, the right hand side is lower bounded by a
constant.

By Lemma 2.1, it suffices to find Π(0),Π(1) . . . ,Π(J) ∈ G∗n(K, c) that satisfy
the requirement of Lemma 2.1. Below, we first consider the case K = 2 and
then generalize the proofs to K ≥ 3.
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2.1. The case K = 2. We re-parametrize the model by defining a ∈ (0, 1]
and γ = (γ1, . . . , γn) ∈ [−1, 1]n through

(2.8) P =

[
1 1− a

1− a 1

]
, πi =

(1 + γi
2

,
1− γi

2

)′
, 1 ≤ i ≤ n.

Since there is a one-to-one mapping between Π and γ, we instead construct
γ(0), γ(1), . . . , γ(n). Without loss of generality, we assume θ1 ≥ θ2 ≥ . . . ≥ θn.
Let n1 = bcnc and n0 = n− 2n1. Introduce

γ∗ =
(
0, 0, · · · , 0︸ ︷︷ ︸

n0

, 1, 1, · · · , 1︸ ︷︷ ︸
n1

,−1,−1, · · · ,−1︸ ︷︷ ︸
n1

)′
.

Note that γ∗i ∈ {±1} implies that node i is a pure node and γ∗i = 0 indi-
cates that π∗i = (1/2, 1/2). From the Varshamov-Gilbert bound for packing

numbers [14, Lemma 2.9], there exist J0 ≥ 2n0/8 and ω
(0)
∗ , ω

(1)
∗ , . . . , ω

(J0)
∗ ∈

{0, 1}n0 such that ω
(0)
∗ = (0, 0, . . . , 0)′ and ‖ω(j)

∗ − ω
(`)
∗ ‖1 ≥ n0/8, for all

0 ≤ j 6= ` ≤ J0. Let J = 2J0, ω(0) = ω
(0)
∗ , and ω(2`±1) = ±ω(`)

∗ for 1 ≤ ` ≤ J0.
Then, the resulting ω(0), ω(1), . . . , ω(J) satisfy that:

(a) min0≤j 6=`≤J ‖ω(j) − ω(`)‖1 ≥ n0/8.

(b) For any real sequence {hi}ni=1,
∑J

`=0

∑n0
i=1 hiω

(`)
i = 0.

For a properly small constant c0 > 0 to be determined, letting δn = c0(nθ̄)−1/2,
we construct γ(0), γ(1), . . . , γ(J) by
(2.9)

γ(`) = γ∗ + δn
(
v ◦ ω(`), 0, 0, . . . , 0︸ ︷︷ ︸

2n1

)
, with v =

( 1√
θ1
,

1√
θ2
, . . . ,

1√
θn0

)
.

We then use the one-to-one mapping (2.8) to obtain Π(0),Π(1), . . . ,Π(J). To

check that each Π(`) belongs to G∗n(K, c; θ), we notice that ‖π(`)
i −(1/2, 1/2)‖ =

O(θ
−1/2
i δn) = O(θ

−1/2
n0 δn) for 1 ≤ i ≤ n0; θn0 is the (2cn)-smallest value of

θ1, . . . , θn and it satisfies that θn0 ≥ n1/2 log(n); additionally, θ̄ ≥ n1/2 log(n);

it follows that ‖π(`)
i − (1/2, 1/2)‖ = O(c0/ log(n)); hence, Π(`) ∈ G∗n(K, c; θ)

as long as c0 is appropriately small.
What remains is to show that the requirements (i)-(ii) in Lemma 2.1 are

satisfied for sn = (nθ̄2)−1/2. Consider (i). Note that for any 0 ≤ j 6= ` ≤ J ,

L(Π(j),Π(`)) = min
±

{ 1

n
√
θ̄

n∑
i=1

√
θi|γ(j)

i ± γ
(`)
i |
}
.



9

For “−”, the term in the brackets is at most δn
∑n0

i=1 θ
−1/2
i ≤ n0δnθ

−1/2
n0 =

o(n); for “+”, this term is at least 4n1 ≥ 4cn. Therefore, the minimum is
achieved at “−”. Furthermore, we have

L(Π(j),Π(`)) =
1

n
√
θ̄

n∑
i=1

√
θi|γ(j)

i − γ
(`)
i | =

δn

n
√
θ̄
‖ω(j) − ω(`)‖1 ≥

n0δn

8n
√
θ̄
,

where the last inequality is due to Property (a) of ω(0), . . . , ω(J). Since δn =
c0(nθ̄)−1/2 and n0 ≥ (1 − cK)n, the right hand side is lower bounded by
(c0ε0/8) · (nθ̄2)−1/2. This proves (i).

We now prove (ii). Note that KL(P`,P0) =
∑

1≤i<j≤n Ω
(`)
ij log(Ω

(`)
ij /Ω

(0)
ij ).

Additionally, the parametrization (2.8) yields that

(2.10) Ωij = θiθj
[
(1− a/2) + (a/2)γiγj

]
, 1 ≤ i 6= j ≤ n.

Since γ
(0)
i = γ

(`)
i for all i > n0, if both i, j > n0, then Ω

(`)
ij = Ω

(0)
ij and the

pair (i, j) has no contribution to KL(P`,P). Therefore, we can write

1

J + 1

J+1∑
`=0

KL(P`,P0)

=
1

J + 1

J+1∑
`=0

( ∑
1≤i<j≤n0

+
∑

1≤i≤n0,n0<j≤n

)
Ω

(`)
ij log(Ω

(`)
ij /Ω

(0)
ij )

≡(I) + (II).(2.11)

First, consider (I). From (2.9) and (2.10), for all 1 ≤ i < j ≤ n0, we have

Ω
(0)
ij = θiθj(1− a/2) and

(2.12) Ω
(`)
ij = Ω

(0)
ij (1 + ∆

(`)
ij ), where ∆

(`)
ij =

a

2− a
δ2
n√
θiθj
· ω(`)

i ω
(`)
j .

Write ∆max = max1≤i<j≤n0,1≤`≤J |∆
(`)
ij |. Since θ1 ≥ . . . ≥ θn0 � n−1/2,

we have ∆max = O(n1/2δ2
n) = O((nθ̄2)−1/2) = o(1). By Taylor expansion,

(1 + t) ln(1 + t) = t + O(t2) ≤ 2|t| for t sufficiently small. Combining the
above gives

Ω
(`)
ij log(Ω

(`)
ij /Ω

(0)
ij ) = Ω

(0)
ij (1 + ∆

(`)
ij ) ln(1 + ∆

(`)
ij )

≤ 2Ω
(0)
ij |∆

(`)
ij |

≤ aδ2
n ·
√
θiθj · |ω(`)

i ω
(`)
j |
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≤ aδ2
n

√
θiθj ,

where the third line is due to (2.12) and the expression Ω
(0)
ij . It follows that

(2.13) (I) ≤ aδ2
n

∑
1≤i<j≤n0

√
θiθj ≤ aδ2

n ·
( ∑

1≤i≤n0

√
θi

)2
.

Next, consider (II). For i ≤ n0 and j > n0, Ω
(0)
ij = θiθj(1− a/2) and

(2.14)

Ω
(`)
ij = Ω

(0)
ij (1 + ∆̃

(`)
ij ), with ∆̃

(`)
ij = γ

(`)
j ·

a

2− a
δn√
θi
· ω(`)

i and γ
(`)
j ∈ {±1}.

Write ∆̃max = max1≤i≤n0,n0<j≤n,1≤`≤J |∆̃
(`)
ij |. Similar to the bound for ∆max,

we have ∆̃max = O(n1/4δn) = O((nθ̄)−1/4) = o(1). Also, by Taylor expan-
sion, (1 + t) ln(1 + t) = t + t2/2 + O(|t|3) ≤ t + t2 for t sufficiently small.
Combining the above gives

Ω
(`)
ij log(Ω

(`)
ij /Ω

(0)
ij ) = Ω

(0)
ij (1 + ∆

(`)
ij ) ln(1 + ∆

(`)
ij )

≤ Ω
(0)
ij ∆̃

(`)
ij + Ω

(0)
ij (∆̃

(`)
ij )2.(2.15)

Motivated by (2.15), we first bound

(II1) ≡ 1

J + 1

J∑
`=0

n0∑
i=1

n∑
j=n0+1

Ω
(0)
ij ∆̃

(`)
ij

=
1

J + 1

J∑
`=0

n0∑
i=1

n∑
j=n0+1

aδn
2
· θjγ(`)

j ·
√
θiω

(`)
i

=
aδn

2(J + 1)

( n∑
j=n0+1

θjγ
(`)
j

)
·
J∑
`=0

n∑
i=1

√
θiω

(`)
i

= 0,

where we have used Property (b) of ω(0), ω(1), · · · , ω(J). We then bound

(II2) ≡ 1

J + 1

J∑
`=0

n0∑
i=1

n∑
j=n0+1

Ω
(0)
ij (∆̃

(`)
ij )2

=
1

J + 1

J∑
`=0

n0∑
i=1

n∑
j=n0+1

a2δ2
n

4− 2a
· θj · |ω(`)

i |
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≤ a2δ2
n

4− 2a

( n∑
j=n0+1

θj

)
· max

0≤`≤J
‖ω(`)‖1

≤ a2δ2
n

4− 2a

( n∑
j=n0+1

θi

)
· n0.

Combining the above gives

(2.16) (II) ≤ a2δ2
n

4− 2a
· n0

( n∑
j=n0+1

θi

)
.

Last, we combine (2.13) and (2.16). Using the Cauchy-Schwartz inequality,
(
∑

1≤i≤n0

√
θi)

2 ≤ n0
∑n0

i=1 θi. Hence, the right hand side of (2.13) is upper

bounded by aδ2
n · n0(

∑n0
i=1 θi). Furthermore, since a ∈ (0, 1], the right hand

side of (2.16) is upper bounded by aδ2
n · n0(

∑n
i=n0+1 θi). As a result,

1

J + 1

J∑
j=0

KL(Pj ,P0) ≤ aδ2
n · n0

( n∑
i=1

θi
)

= ac0n0,

where we have plugged in δn = c0(nθ̄)−1/2. At the same time, log(J) ≥
[log(2)/8]n0. Hence, the requirement (ii) is satisfied as long as c0 is chosen
appropriately small. The proof for K = 2 is now complete.

2.2. The case of K ≥ 3. The key step is to generalize the construction
of Π(0),Π(1), . . . ,Π(J) for K = 2 to a general K. Write P̌ = 1K1′K − P . Let
η ∈ RK be a nonzero vector such that

(2.17) η′1K = 0, η′P̌1K = 0.

Such an η always exists. We assume θ1 ≥ θ2 ≥ . . . ≥ θn without loss of
generality. Let n1 = bcnc and n0 = n − Kn1. Denote by e1, . . . , eK the
standard basis vectors of RK . Introduce

Π∗ =
(

1
K1K , · · · , 1

K1K︸ ︷︷ ︸
n0

, e1, · · · , e1︸ ︷︷ ︸
n1

, · · · , eK , · · · , eK︸ ︷︷ ︸
n1

)′
.

Let ω(0), ω(1), . . . , ω(J) ∈ {0, 1}n0 be the same as above. Let δn = c0(nθ̄)−1/2

for a constant c0 to be determined. Write Π∗ = [π∗1, . . . , π
∗
n]′. For each 0 ≤

` ≤ J , we construct Π(`) = [π
(`)
1 , . . . , π

(`)
n ]′ by

π
(`)
i = π∗i +

{
ω

(`)
i · (δn/

√
θi) · η, 1 ≤ i ≤ n0

0K , n0 + 1 ≤ i ≤ n.
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Same as before, we show the requirements (i)-(ii) in Lemma 2.1 are satisfied.
Note that

L(Π(j),Π(`)) =
δn‖η‖1
n
√
θ̄
‖ω(j)−ω(`)‖1 ≥

n0δn‖η‖1
8n
√
θ̄

= (c0ε0‖η‖1/8) · (nθ̄2)−1/2.

Hence, (i) holds for sn = (nθ̄2)−1/2.
It remains is to prove (ii). Let (I) and (II) be defined in the same way

as in (2.11). We aim to find expressions similar to those in (2.12) and (2.14)
and then generalize the bounds of (I) and (II) for K = 2 to a general K. For
preparation, we first derive an expression for Ωij . Introduce π̌i = πi− 1

K1K ∈
RK . Note that π′i1K = 1. By direct calculations,

Ωij = θiθjπ
′
iPπj = θiθj(1− π′iP̌ πj)

= θiθj − θiθj(π̌i + 1
K1K)′P̌ (π̌j + 1

K1K)

= θiθj(1− 1
K21

′
K P̌1K)− θiθj 1

K (π̌′iP̌1K + π̌′jP̌1K)− θiθj π̌′iP̌ π̌j .(2.18)

Consider (I). Since π̌
(0)
i is a zero vector for all 1 ≤ i ≤ n0, we have

Ω
(0)
ij = θiθj(1− ǎ), with ǎ ≡ 1

K21
′
K P̌1K , if 1 ≤ i 6= j ≤ n0.

Furthermore, for 1 ≤ i ≤ n0, π̌
(`)
i ∝ η, where it follows from (2.17) that

η′P̌1K = 0. Hence, the middle two terms in (2.18) are zero. As a result,

Ω
(`)
ij = θiθj(1− ǎ)− δ2

n√
θiθj
· η′P̌ η · ω(`)

i ω
(`)
j , 1 ≤ i 6= j ≤ n0.

Combining the above, we find that for all 1 ≤ i 6= j ≤ n0,

(2.19) Ω
(`)
ij = Ω

(0)
ij (1+∆

(`)
ij ), where ∆

(`)
ij =

−(η′P̌ η)ǎ

1− ǎ
· δ2

n√
θiθj
·ω(`)
i ω

(`)
j .

This provides a counterpart of (2.12) for a general K. Same as before, we

have the bound: ∆max ≡ max1≤i 6=j≤n0 max0≤`≤J |∆
(`)
ij | = O(n1/2δ2

n) = o(1).
Following the proof of (2.13), we find that
(2.20)

(I) ≤ C1δ
2
n

( n0∑
i=1

√
θi

)2
≤ C1n0δ

2
n

( n0∑
i=1

θi

)
, where C1 = |η′P̌ η| · |ǎ|.

Consider (II). In this case, we need to calculate Ωij , 1 ≤ i ≤ n0, n0 < j ≤ n.

Recall that π̌
(0)
i is a zero vector. Write {n0 + 1, n0 + 2, . . . , n} = ∪Kk=1Nk,
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where Nk = {1 ≤ j ≤ n : π
(0)
j = ek}. For j ∈ Nk, it holds that π̌

(0)
j + 1

K1K =
ek. Combining the above with (2.18), we find that for 1 ≤ k ≤ K,

Ω
(0)
ij = θiθj(1− b̌k), with b̌k ≡ 1

K e
′
kP̌1K , if 1 ≤ i ≤ n0, j ∈ Nk.

Additionally, we have (π̌
(`)
i )′P̌1K ∝ η′P̌1K = 0 and π̌

(`)
j + 1

K1K = ek. It
follows from (2.18) that

Ω
(`)
ij = θiθj(1− b̌k)− θiθj(π̌

(`)
i )′P̌ π̌

(`)
j

= θiθj(1− b̌k)− θiθj ·
ω

(`)
i δn√
θi
· η′P̌ (ek − 1

K1K)

= θiθj(1− b̌k)− θiθj ·
ω

(`)
i δn√
θi
· (η′P̌ ek),

where the last equality is because of η′P̌1K = 0. As a result, for 1 ≤ i ≤ n0

and j ∈ Nk,

(2.21) Ω
(`)
ij = Ω

(0)
ij (1+∆̃

(`)
ij ), where ∆̃

(`)
ij = −(η′P̌ ek)·

1

1− b̌k
δn√
θi
·ω(`)
i .

This provides a counterpart of (2.14) for a general K. Same as before, let

∆̃max ≡ max1≤i 6=j≤n0 max0≤`≤J |∆̃
(`)
ij |, and it is seen that ∆̃max = O(n1/4δn) =

o(1). Again, by Taylor expansion, we have (2.15). It follows that

(II) ≤ (II1) + (II2),

where (II1) and (II2) are defined the same as before. Using (2.21), we have

(II1) =
1

J + 1

J∑
`=0

n0∑
i=1

∑
j∈N1∪...∪NK

Ω
(0)
ij ∆̃

(`)
ij

=
δn

J + 1

( K∑
k=1

∑
j∈Nk

−(η′P̌ ek)θj

)
·
J∑
`=0

n∑
i=1

√
θiω

(`)
i

= 0,

where the last equality is due to Property (b) for ω(0), ω(1), . . . , ω(J). Using
(2.21) again, we have

(II2) =
1

J + 1

J∑
`=0

n0∑
i=1

∑
j∈N1∪...∪NK

Ω
(0)
ij (∆̃

(`)
ij )2
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≤ δ2
n

1− b̌
·
( ∑

1≤k≤K
(η′P̌ ek)

2
∑
j∈Nk

θj

)
· max

0≤`≤J
‖ω(`)‖1

≤ δ2
n

1− b̌
· max

1≤k≤K
(η′P̌ ek)

2 ·
( n∑
j=n0+1

θi

)
· n0.

Combining the above gives

(2.22) (II) ≤ C2n0δ
2
n

( n∑
i=n0+1

θi

)
, where C2 =

1

1− b̌
max

1≤k≤K
(η′P̌ ek)

2.

We note that (2.20) and (2.22) server as the counterpart of (2.14) and (2.16),
respectively. Similarly as in the case of K = 2, we obtain (ii) immediately.
The proof for a general K is now complete.
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