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In Section A, we introduce two GetQT algorithms; each of them can be plugged into the main

algorithm, BEMA. In Section B, we prove Theorem 1 and Theorem 2.

A GetQT algorithms

We present details of the GetQT algorithms used in BEMA. Under the general spiked covariance

model (7), the empirical spectral distribution (ESD) converges to a fixed distribution Fγ(x;σ2, θ).

Write γn = p/n. The purpose of the algorithm GetQT(y, γn, θ) is as follows: Fixing σ = 1, given

any θ > 0 and y ∈ [0, 1], it outputs the y-upper-quantile of the distribution Fγn(x; 1, θ).

A.1 The Monte Carlo simulation algorithm GetQT1

As explained in Section 3.1, Fγn(·; 1, θ) is also the theoretical limit of the ESD under the following

null covariance model:

Σ = diag(σ2
1 , . . . , σ

2
p), where σ2

k
iid∼ Gamma(θ, θ). (A.1)

We can simulate data from (A.1) and use its ESD as a numerical approximation to Fγn(·; 1, θ).

Write p̃ = min{n, p} and y = k/p̃. When the population covariance matrix satisfies (A.1),

the kth eigenvalue of the sample covariance matrix, λ̂k, is asymptotically close to the y-upper-

quantile of Fγn(·; 1, θ). We thereby use the mean of λ̂k, obtained by sampling the data matrix

multiple times, to estimate the desired quantile. We note that model (A.1) only specifies how to

sample Σ, but it does not specify how to sample Xi’s. Due to universality theory of eigenvalues

(Knowles and Yin, 2017, Section 3.3), the choice of distribution of Xi’s does not matter. For

convenience, we sample Xi’s from multivariate normal distributions. See Algorithm 3.

In the practical implementation, we use the following strategies to further reduce computation

time and memory use: (i) When n is smaller than p, we no longer construct the p× p covariance
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Algorithm 3. GetQT1.

Input: n, p, θ, k, and an integer B.

Output: An estimate of the (k/p̃)-upper-quantile of Fγn(·; 1, θ).

1. For b = 1, 2, . . . , B, repeat: First generate Σ(b) from (A.1), and then generate

X
(b)
i

iid∼ N(0,Σ(b)), 1 ≤ i ≤ n. Write X(b) = [X
(b)
1 , . . . ,X(b)

n ]> ∈ Rn×p. Construct the

sample covariance matrix S(b) = (1/n)(X(b))>X(b) and obtain its kth eigenvalue λ̂
(b)
k .

2. Output 1
B

∑B
b=1 λ̂

(b)
k as the estimated (k/p̃)-upper-quantile.

matrix S(b). Instead, we construct an n × n matrix (1/n)X(b)(X(b))>. This matrix shares the

same nonzero eigenvalues as S(b) but requires much less memory in eigen-decomposition. This

strategy is especially useful for genomic data, where n is typically much smaller than p. (ii) In

the main algorithm, Algorithm 2, GetQT1 is applied multiple times to compute the (k/p̃)-upper-

quantile for a collection of k. We let the sampling step, Step 1 above, be shared across different

values of k: For each b = 1, 2, . . . , B, we obtain and store λ̂
(b)
k for all values of k; next, in Step 2,

we output the estimated (k/p̃)-upper-quantile simultaneously for all values of k. This strategy

can significantly reduce the actual running time.

A.2 The deterministic algorithm GetQT2

This algorithm directly uses the definition of Fγn(·; , 1, θ). Let Hθ(t) be the CDF of Gamma(θ, θ).

Given a positive sequence ξn such that ξn → 0 as n→∞, let mn(y) = mn(y, ξn, γn, θ) ∈ C+ be

the unique solution to the equation

y + i ξn = − 1

mn
+ γn

∫
t

1 + tmn
dHθ(t). (A.2)

Then, the density of Fγn(·; 1, θ), denoted by fγn(y; 1, θ), is approximated by

f̂∗γn(y; 1, θ) =
1

π(γn ∧ 1)
=(mn(y, ξn, γn, θ)), (A.3)

where =(·) denotes the imaginary part of a complex number. The choice of ξn needs to satisfy

ξn � n−1, in order to guarantee that the approximation is not governed by stochastic fluctuations

(Knowles and Yin, 2017). We choose ξn = n−2/3 for convenience.

The above motivates a three-step algorithm.

1. Fix a grid y1 < y2 < . . . < yN . Solve equation (A.2) to obtain mn(yj) for 1 ≤ j ≤ N .

2. Use equation (A.3) to obtain f̂∗γn(yj ; 1, θ), for 1 ≤ j ≤ N . Obtain the whole density curve

f̂γn(y; 1, θ) by linear interpolation.
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Algorithm 4. GetQT2.

Input: n, p, θ, and y ∈ [0, 1].

Output: An estimate of the y-upper-quantile of Fγn(·; 1, θ).

Step 1: Write p̃ = n ∧ p and γn = p/n. Fix a grid y1 < y2 < . . . yN−1 < yN . For each

1 ≤ j ≤ N , compute m̂n(y) as follows:

• For a tuning parameter δ > 0, construct the set of grid points in R× R+:

Sy,γn,δ =
{

(a, b) : a = kδ, b = `δ, k, ` ∈ Z, (a− 1/yj)
2 + b2 ≤ γn/y2

j , a < (γn − 1)/2yj
}
.

• For each (a, b) ∈ Sy,γn,δ and ξn = n−2/3, compute

∆(a, b) =
∣∣∣y + i ξn +

1

m
− γn

∫
t

1 + tm
dHθ(t)

∣∣∣,
where Hθ(t) is the CDF of Gamma(θ, θ). The integral above can be computed via

standard Monte Carlo approximation (by sampling data from Gamma(θ, θ)).

• Find (â, b̂) = argmin(a,b)∈Sy,γn,δ∆(a, b). Let m̂(y) = â+ b̂i.

Step 2: Let f̂γn(yj ; 1, θ) = 1
π(γn∧1) =(m̂(y)), for 1 ≤ j ≤ N . For any yj−1 < z < yj , let

f̂γn(z; 1, θ) =
yj − z

yj − yj−1
f̂γn(yj−1; 1, θ) +

z − yj−1

yj − yj−1
f̂γn(yj ; 1, θ).

Step 3: Find q such that
∫ (1+

√
γn)2

q
f̂γn(z; 1, θ) = y. Output q as the estimated

y-upper-quantile.

3. Find q such that
∫ (1+

√
γn)2

q
f̂γn(z; 1, θ)dz = y. Output q as the estimated y-upper-quantile.

Step 2 is straightforward. Step 3 is also easy to implement, since f̂γn(y; 1, θ) is a piece-wise linear

function. Below, we describe Step 1 with more details.

In Step 1, fix y and write m = a+ bi, where i =
√
−1, and a ∈ R and b ∈ R+ are the real and

imaginary parts of m, respectively. We aim to find (a, b) so that m solves the complex equation

(A.2). Pretending that ξn = 0, the equation (A.2) can be re-written as a set of real equations: 1y = γn
∫

t
1+2at+(a2+b2)t2 dHθ(t),

1
a2+b2 = γn

∫
t2

1+2at+(a2+b2)t2 dHθ(t),
⇐⇒

2ay = γn
∫

2at
1+2at+(a2+b2)t2 dHθ(t),

1 = γn
∫ (a2+b2)t2

1+2at+(a2+b2)t2 dHθ(t).

First, by combining the above equations with γn = γn
∫ 1+2at+(a2+b2)t2

1+2at+(a2+b2)t2 dHθ(t), we have

γn − 1− 2ay = γn

∫
1

1 + 2at+ (a2 + b2)t2
dHθ(t) > 0.

1The second equation is obtained by letting the imaginary part of both hand sides of (A.2) be equal. The first

equation is obtained by letting the real part of both hand sides of (A.2) be equal and then substituting a
a2+b2

by a times the second equation.
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It yields that a < (γn−1)/2y. Second, by Cauchy-Schwarz inequality,
[∫

t
1+2at+(a2+b2)t2 dHθ(t)

]2 ≤∫
1

1+2at+(a2+b2)t2 dHθ(t) ·
∫

t2

1+2at+(a2+b2)t2 dHθ(t). It follows that

y2 ≤ (γn − 1− 2ay) · 1

a2 + b2
.

Re-arranging the terms gives (a− 1/y)2 + b2 ≤ γn/y2. So far, we have obtained a feasible set of

(a, b) for the solution of (A.2) when ξn = 0:

Sy,γn =
{

(a, b) : (a− 1/y)2 + b2 ≤ γn/y2, a < (γn − 1)/2y
}
. (A.4)

Since ξn is very close to 0, we use the same feasible set when solving (A.2). Observing that Sy,γn

is bounded, we solve equation (A.2) by a grid search on this feasible set. See Algorithm 4.

A.3 Comparison

We compare the performance of two GetQT algorithms on a numerical example where (n, p, θ) =

(10000, 1000, 1). The results are in Figure 1. To generate this figure, first, we simulate eigenvalues

{λ̂(b)
k }1≤k≤p,1≤b≤B as in Step 1 of GetQT1, where B = 20, and plot the histogram of eigenvalues.

Next, we plot the estimated density f̂γn(y; 1, θ) from GetQT2 (tuning parameter is δ = 0.05).

The estimated density fits the histogram well, suggesting that the steps in GetQT2 for estimating

fγn(y; 1, θ) are successful. Furthermore, the estimated quantiles from two algorithms are very

close to each other.

In terms of numerical performance, the two GetQT algorithms are similar. We now discuss the

computing time. The main computational cost of GetQT1 comes from computing the eigenvalues

of S(b) at each iteration. As we have mentioned in the end of Section A.1, if p < n, we conduct

eigen-decomposition on an p× p matrix; if n < p, we conduct eigen-decomposition on an n× n

matrix. Therefore, as long as min{n, p} is not too large, GetQT1 is fast.

Compared with GetQT1, the advantage of GetQT2 is that it does not need to compute any

eigen-decomposition. As a result, when min{n, p} is large, GetQT2 is much faster than GetQT1

(and GetQT2 also requires less memory use). The computational cost of GetQT2 is proportional

to the number of grid points in the algorithm, governed by the tuning parameter δ. Sometimes,

we need to choose δ sufficiently small to guarantee the accuracy of computing m̂(y, γn, θ), which

significantly increases the cost of grid search. Our experience suggests that GetQT2 is faster than

GetQT1 only in the case that min{n, p} is larger than 104.
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Figure 1: Comparison of two GetQT algorithms. The simulated histogram is from GetQT1, and the density curve

is estimated by GetQT2.

A.4 Modifications under Model (13)

Section 4.2 introduces Model (13), as a proxy of Model (2), to facilitate the theoretical analysis.

In Model (13), the diagonal entries of D are iid generated from a truncated Gamma distribution.

In Section 4.2, we described how to adapt Algorithm 2 to this setting, where the key is to modify

GetQT so that it can compute the y-upper-quantile of the distribution Fγ(·; 1, θ, T1, T2), for any

given y and (θ, T1, T2).

To modify GetQT1, we note that Fγn(·; 1, θ, T1, T2) is the theoretical limit of the ESD under

the null covariance model:

Σ = diag(σ2
1 , . . . , σ

2
p), where σ2

k
iid∼ TruncGamma(θ, θ, T1, T2). (A.5)

We can simulate data from (A.5) and use its ESD as a numerical approximation to Fγn(·; 1, θ, T1, T2).

In Algorithm 3, we only need to modify Step 1 so that Σ(b) is generated from (A.5).

To modify GetQT2, we solve (A.2) with Hθ(t) replaced by Hθ,T1,T2
(t), where Hθ,T1,T2

(·) is

the CDF of TruncGamma(θ, θ, T1, T2). We note that the feasible set in (A.4) is derived without

using the explicit form of Hθ(t), so it continues to apply. In Algorithm 4, we only need to modify

the definition of ∆(a, b) to

∆(a, b) =
∣∣∣y + i ξn +

1

m
− γn

∫
t

1 + tm
dHθ,T1,T2(t)

∣∣∣,
and the other steps remain the same.
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B Proofs

B.1 Proof of Theorem 1

Let zk = λ̂k − σ2qk, for all 1 ≤ k ≤ p̃. It follows that

σ̂2 =

∑
αp̃≤k≤(1−α)p̃ qk(σ2qk + zk)∑

αp̃≤k≤(1−α)p̃ q
2
k

= σ2 +

∑
αp̃≤k≤(1−α)p̃ qkzk∑
αp̃≤k≤(1−α)p̃ q

2
k

.

It follows that

|σ̂2 − σ2| ≤
∑
αp̃≤k≤(1−α)p̃ |qk|∑
αp̃≤k≤(1−α)p̃ q

2
k︸ ︷︷ ︸

≡Bn,p(α)

× max
αp̃≤k≤(1−α)p̃

|zk|.

We recall that qk is the (k/p̃)-upper-quantile of a standard Machenko-Pastur distribution associ-

ated with γn = p/n. Note that p/n→ γ and α ≤ k/p̃ ≤ 1−α, where γ > 0 and α ∈ (0, 1/2) are

constants. It follows immediately that there is a constant C1 = C1(α, γ) such that Bn,p(α) ≤ C1.

As a result,

|σ̂2 − σ2| ≤ C1 max
αp̃≤k≤(1−α)p̃

|λ̂k − σ2qk|. (B.6)

We bound the right hand side of (B.6). By Assumption 1, the data vectors X1,X2, . . . ,Xn

are obtained from a random matrix Y = [Y 1,Y 2, . . . ,Y n]> ∈ Rn×p, where the entries of Y are

independent variables with zero mean and unit variance. Given Y , define X∗1,X
∗
2, . . . ,X

∗
n by

X∗i (j) = σ · Y i(j), 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Then, X∗1, . . . ,X
∗
n follow a “null” model that is similar to the factor model in Assumption 1 but

corresponds to K = 0. Let S∗ be the sample covariance matrix of X∗1, . . . ,X
∗
n. Then, S∗ serves

as a reference matrix for S. The eigenvalue sticking result says that eigenvalues of S “stick” to

eigenvalues of the reference matrix. The precise statement is as follows: Let λ̂∗1 > λ̂∗2 > . . . > λ̂∗p̃

be the nonzero eigenvalues of S∗. When the entries of Y satisfy the regularity conditions stated

in Theorem 1, by Theorem 2.7 of Bloemendal et al. (2016), there is a constant C2 = C2(α, γ, σ2)

such that, for any ε > 0 and s > 0,

P
{

max
(α/2)p̃≤j≤(1−α/2)p̃

|λ̂j+K1
− λ̂∗j | > C2n

−(1−ε)
}
≤ n−s, (B.7)

where K1 is the total number of spiked eigenvalues in Model (3) such that λk = σ2(
√
γ+ τk) for

some τk ≥ n−1/3. It remains to study λ̂∗j . Its large deviation bound can be found in Pillai and

Yin (2014) (also, see Theorem 3.3 of Ke (2016)). There is a constant C3 = C3(α, γ, σ2) > 0 such

that, for any ε > 0 and s > 0,

P
{

max
(α/2)p̃≤j≤(1−α/2)p̃

|λ̂∗j − σ2qj | > C3n
−(1−ε)

}
≤ n−s. (B.8)
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Furthermore, since K1 ≤ K and K is fixed, there is a constant C4 = C4(γ,K) such that

max
(α/2)p̃≤j≤(1−α/2)p̃

|qj − qj+K1
| ≤ C4n

−1. (B.9)

Combining (B.7)-(B.9) gives that, for any ε > 0 and s > 0,

P
{

max
(α/2)p̃≤j≤(1−α)p̃

|λ̂j+K1
− σ2qj+K1

| > Cn−(1−ε)
}
≤ n−s.

We plug it into (B.6). The claim follows immediately.

B.2 Proof of Theorem 2

Denote by Tn,p(σ̂
2, βn) the threshold used in Algorithm 1. It satisfies that

Tn,p(σ̂
2, βn) = σ̂2[(1 +

√
γn)2 + ωn], where ωn = O(n−2/3t1−βn). (B.10)

Here, t1−βn is the (1 − βn)-quantile of Tracy-Widom distribution. Note that τn � n−1/3. We

can choose βn →∞ appropriately slow such that 1� t1−βn � n2/3 min{τ2
n, 1}. It follows that

n−2/3 � ωn � min
{
τ2
n, 1

}
. (B.11)

First, we derive a lower bound for λ̂K and show that K̂ ≥ K with probability 1−o(1). Recall

that λk denotes the kth largest eigenvalue of Σ. In view of Model (3), it is true that λk = µk+σ2

for 1 ≤ k ≤ K and λk = σ2, for K < k ≤ p. Introduce

λ∗k = λk

(
1 +

γn
λk/σ2 − 1

)
, 1 ≤ k ≤ K.

Write δk = λk/σ
2 − 1, for k = 1, 2, . . . ,K. Let g(t) = (1 + t)(1 + γn/t). Then,

λ∗k = σ2 · g(δk), 1 ≤ k ≤ K.

The function g satisfies that g(
√
γn) = (1 +

√
γn)2 and g′(t) ≥ 1−√γn/t. Hence, it is monotone

increasing in (
√
γn,∞). For any τ > 0 and t >

√
γn+τ , we have g(t) ≥ g(

√
γn)+g′(

√
γn+τ)·τ ≥

(1 +
√
γn)2 + τ2/(

√
γ
n

+ τ). It follows that

λ∗K ≥ σ2
[
(1 +

√
γn)2 +

δ2
K√

γn + δK

]
. (B.12)

At the same time, by Theorem 2.3 of Bloemendal et al. (2016), with probability 1− o(1),

|λ̂K − λ∗K | ≤ C2σ
2n−1/2

δ
1/2
K , if δK < 1,

1 + δK/(1 +
√
γn), if δK ≥ 1,

(B.13)

7



for a constant C2 > 0. If δK ≥ 1, then (B.12) implies λ∗K − σ2(1 +
√
γn)2 ≥ C3σ

2δK , for a

constant C3 > 0, and (B.13) yields that |λ̂K − λ∗K | ≤ C2σ
2(1 + δK)n−1/2. It follows that

λ̂K − σ2(1 +
√
γn)2 ≥ (C3/2) · σ2δK ≥ (C3/2) · σ2.

If δK < 1, then (B.12) yields that λ∗K − σ2(1 +
√
γn)2 ≥ C4σ

2δ2
K , for a constant C4 > 0, and

(B.13) yields that |λ̂K − λ∗K | ≤ C2σ
2δ

1/2
K n−1/2. It follows that

λ̂K − σ2(1 +
√
γn)2 ≥ C4σ

2δ2
K −

C2σ
2δ2
K√

nδ3
K

≥ (C4/2) · σ2δ2
K ,

where the last inequality is because δK ≥ τn � n−1/3. We combine the two cases and note that

δK ≥ τn. It gives that

P
{
λ̂K ≥ σ2

[
(1 +

√
γn)2 + C min{τ2

n, 1}
]}

= 1− o(1).

Furthermore, by Theorem 1, |σ̂2 − σ2| ≺ n−1 � min{τ2
n, 1}. Hence, we can replace σ2 by σ̂2 in

the above equation, i.e.,

P
{
λ̂K ≥ σ̂2

[
(1 +

√
γn)2 + C min{τ2

n, 1}
]}

= 1− o(1). (B.14)

We compare λ̂K with the threshold in (B.10). Since ωn � min{τ2
n, 1}, it is implied from (B.14)

that λ̂K exceeds this threshold with probability 1− o(1). Therefore,

P
{
K̂ ≥ K

}
= 1− o(1).

Next, we derive an upper bound for λ̂K+1 and show that K̂ ≤ K with probability 1− o(1).

We apply Theorem 2.3 of Bloemendal et al. (2016) again: For any ε > 0 and s > 0,

P
{
λ̂K+1 − σ2(1 +

√
γn)2 ≤ σ2n−(2/3−ε)

}
= 1− o(1). (B.15)

Since ωn � n−2/3, we can take ε arbitrarily small to make n−(2/3−ε) ≤ ωn/2. We also apply the

large deviation bound for σ̂2 in Theorem 1 to replace σ2 by σ̂2. It follows immediately that

P
{
λ̂K+1 ≤ σ̂2

[
(1 +

√
γn)2 + ωn/2

]}
= 1− o(1). (B.16)

We compare λ̂K+1 with the threshold in (B.10). It is seen that λ̂K+1 is below this threshold

with probability 1− o(1). Therefore,

P
{
K̂ ≤ K

}
= 1− o(1).

The claim follows immediately.

8



B.3 Proof of Theorem 3

Throughout this proof, we let C be a generic constant, whose meaning may vary from occurrence

to occurrence. Let Fγ(·;σ2, θ, T1, T2) be the theoretical limit of ESD, whose definition is given in

Lemma 1. We replace γ by γn = p/n in this definition, write F̄γn = 1− Fγn and let qi(σ
2, θ) =

F̄−1
γn (y;σ2, θ, T1, T2) denote the (i/p̃)-upper-quantile of this distribution, where p̃ = n ∧ p. We

use (σ2
0 , θ0) to denote the true parameters. Write sn = dαp̃e and

R̂(σ2, θ) =
∑

sn≤i≤p̃−sn

[λ̂i − qi(σ2, θ)]2, R(σ2, θ) =
∑

sn≤i≤p̃−sn

[qi(σ
2
0 , θ

2
0)− qi(σ2, θ)]2.

Let ∆ =
∑
sn≤i≤p̃−sn |λ̂i − qi(σ

2
0 , θ0)|2. By direct calculations and Cauchy-Schwarz inequality,

|R̂(σ2, θ)−R(σ2, θ)| ≤ 2
∑

sn≤i≤p̃−sn

|qi(σ2
0 , θ0)− qi(σ, θ)| · |λ̂i − qi(σ2

0 , θ0)|

+
∑

sn≤i≤p̃−sn

|λ̂i − qi(σ2
0 , θ0)|2

≤ 2
√
R(σ2, θ)

√
∆ + ∆.

It follows that R̂(σ2, θ) ≤ R(σ2, θ) + 2
√
R(σ2, θ)

√
∆ + ∆ =

(√
R(σ2, θ) +

√
∆
)2

. In the above

inequality, we can switch R̂(σ2, θ) and R(σ2, θ) and similarly derive that R(σ2, θ) ≤
(√

R̂(σ2, θ)+
√

∆
)2

. As a result, ∣∣∣√R̂(σ2, θ)−
√
R(σ2, θ)

∣∣∣ ≤ √∆. (B.17)

We now bound ∆. By Lemma 1, for all K < i ≤ p̃,

|λ̂i − qi(σ2
0 , θ0)| ≺ [i ∧ (p̃+ 1− i)]−1/3n−2/3.

We note that the stochastic dominance in Lemma 1 can be made ‘uniform’ over i; i.e., the integer

N(ε, s) in Definition 3 is shared by allK < i ≤ p̃ (Knowles and Yin, 2017). Hence, summing over i

preserves ‘stochastic dominance.’ Additionally,
∑p̃/2
i=sn

i−2/3n−4/3 ≤ Cn−1
[

1
p̃

∑p̃/2
i=sn

(i/p̃)−2/3
]
≤

Cn−1
∫ 1/2

sn/n
x−2/3dx ≤ Cn−1. Combining the above arguments gives

∑
sn≤i≤p̃−sn

|λ̂i − qi(σ2
0 , θ0)|2 ≺

∑
sn≤i≤p̃−sn

[i ∧ (p̃+ 1− i)]−2/3n−4/3

≺
∑

sn≤i≤p̃/2

i−2/3n−4/3 ≺ n−1.

This gives ∆ ≺ n−1. We plug it into (B.17) to get∣∣∣√R̂(σ2, θ)−
√
R(σ2, θ)

∣∣∣ ≺ n−1/2. (B.18)
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Since ∆ does not depend on (σ2, θ), the ‘stochastic dominance’ here is uniform for all (σ2, θ) ∈

Jσ2 × Jθ. We claim that there exists a constant c0 > 0 such that for any (σ2, θ) in Jσ2 × Jθ,

R(σ2, θ) ≥ c0n ·
[
(σ2 − σ2

0)2 + (θ − θ0)2
]
. (B.19)

Note that R(σ2
0 , θ0) = 0. Combining it with (B.18)-(B.19) gives√

R̂(σ2
0 , θ0) ≺ n−1/2,

√
c0n

√
(σ̂2 − σ2

0)2 + (θ̂ − θ0)2 ≤
√
R̂(σ̂2, θ̂) +O≺(n−1/2),

where a random variable is O≺(bn) if its absolute value is ≺ bn. Since (σ̂2, θ̂) minimizes R̂(σ2, θ),

we have R̂(σ̂2, θ̂) ≤ R̂(σ2
0 , θ0) ≺ n−1. It follows that√

(σ̂2 − σ2
0)2 + (θ̂ − θ0)2 ≺ n−1.

This proves the claim.

What remains is to show (B.19). Define the quantile function hσ2,θ(α) = F̄−1
γn (α;σ2, θ, T1, T2).

Then, qi(σ
2, θ) = hσ2,θ(i/p̃). We can re-write

R(σ2, θ) =

p̃−sn∑
i=sn

[
hσ2,θ(i/p̃)− hσ2

0 ,θ0
(i/p̃)

]2
.

Introduce R∗(σ2, θ) = p̃
∫ 1

0
[hσ2,θ(α)− hσ2

0 ,θ0
(α)]2dα. Then, p̃−1R(σ2, θ) is the Riemann approx-

imation of the integral p̃−1R∗(σ2, θ). Note that sn/p̃ = o(1). Furthermore, hσ2,θ(α) is uniformly

square integrable for (σ2, θ) ∈ Jσ2 ×Jθ (the proof is very similar to the analysis of C2 below; we

thus omit it). Hence, the Riemann approximation error is negligible. Particularly, there exists a

constant c1 ∈ (0, 1) such that

R(σ2, θ) ≥ c1 ·R∗(σ2, θ). (B.20)

It suffices to study R∗(σ2, θ). The next lemma is proved in Section B.6.

Lemma B.1. Let F (x) be a distribution on (0,∞) with a continuous density f(x). Let F̄ (x) =

1 − F (x), hF (α) = F̄−1(α), and µm(f) =
∫
xmf(x)dx, m ≥ 1. For another distribution G(x)

on (0,∞) with a continuous density g(x), we define Ḡ(x), hG(α), and µm(g) similarly. Suppose∫
x2|F̄ (x)− Ḡ(x)|dx <∞. Let ǧ(x, y) = maxz∈[x,y]∪[y,x] g(z) for x, y ∈ (0,∞). We assume that

C1 ≡
∫ 1

0

[ ǧ(hF (α),hG(α))
f(hF (α))

]2
dα <∞ and C2 ≡

∫ 1

0

[hF (α)ǧ(hF (α),hG(α))
f(hF (α))

]2
dα <∞. Then,∫ 1

0

[hG(α)− hF (α)]2dα ≥ |µ1(f)− µ1(g)|2

4C1
,

∫ 1

0

[hG(α)− hF (α)]2dα ≥ |µ2(f)− µ2(g)|2

4C2
.

We apply Lemma B.1 to F (·) = Fγn(·;σ2
0 , θ0, T1, T2) and G(·) = Fγn(·;σ2, θ, T1, T2). Define

µ1(σ2, θ) =

∫
x dFγn(x;σ2, θ, T1, T2), µ2(σ2, θ) =

∫
x2 dFγn(x;σ2, θ, T1, T2).
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We now show that the quantities C1, C2 in Lemma B.1 are uniformly upper bounded by constants

for all (σ2, θ) ∈ J 2
σ × Jθ. We only study C2, and the analysis of C1 is similar. By Knowles and

Yin (2017); Ding (2020), the support of Fγn(·;σ2, θ, T1, T2) is in a compact subset of (0,∞), and

the density is upper bounded by a constant; these constants are uniform for (σ2, θ) ∈ Jσ2 ×Jθ.

It follows that

C2 ≤ C
∫ 1

0

[ 1

f(hF (α))

]2
dα =

∫
1

f2(x)
f(x)dx =

∫
1

f(x)
dx.

Here we have used a change of variable x = hF (α), where α = 1−F (x) and dα = f(x)dx. We then

apply Theorem 3.3 of Ji (2020). Note that F (·) = Fγn(·;σ2
0 , θ0, T1, T2) is the free multiplicative

convolution between a truncated Gamma distribution and the standard MP distribution. These

two distributions are compacted supported and have power law behavior on left/right ends. The

conditions in Theorem 3.3 of Ji (2020) are satisfied for tµ± = 0 (truncated Gamma) and tν± = 1/2

(MP law). By that theorem, the density of F (·) has a square-root decay at the left/right edge:

Let [b−, b+] be the support of F (·); then, C−1 ≤ f(x)/
√

(x− b−)(b+ − x) ≤ C for x ∈ [b−, b+].

It yields hat

C2 ≤
∫ b+

b−

C√
(x− b−)(b+ − x)

dx = O(1).

We have verified that C1 and C2 in Lemma B.1 are uniformly upper bounded. As a result,

R∗(σ2, θ) ≥ Cn
(∣∣µ1(σ2, θ)− µ1(σ2

0 , θ0)
∣∣2 +

∣∣µ2(σ2, θ)− µ2(σ2
0 , θ0)

∣∣2). (B.21)

Below, we study µ1(σ2, θ) and µ2(σ2, θ). Note that Gamma(θ, θ/σ2, σ2T1, σ
2T2) is equivalent

to σ2 ·Gamma(θ, θ, T1, T2). Then, the distributions Fγn(·;σ2, θ, T1, T2) and Fγn(·; 1, θ, T1, T2) also

have such a connection. This implies µ1(σ2, θ) = σ2 ·µ1(1, θ) and µ2(σ2, θ) = σ4 ·µ2(1, θ). Define

κ(θ) = µ2(σ2, θ)/[µ1(σ2, θ)]2.

Consider a mapping M from R2 to R2, where M(x, y) = (x, y/x2) . It maps (µ1(σ2, θ), µ2(σ2, θ))

to (µ1(σ2, σ2), κ(θ)). The Jacobian matrix is[
1 0

−2y/x3 1/x2

]
.

When (σ2, θ) ∈ Jσ2×Jθ, the vector (µ1(σ2, θ), µ2(σ2, θ)) is in a compact set. The spectral norm

of Jacobian is uniformly upper bounded. It follows that

∣∣µ1(σ2, θ)− µ1(σ2
0 , θ0)

∣∣2 +
∣∣µ2(σ2, θ)− µ2(σ2

0 , θ0)
∣∣2

≥ C
(∣∣µ1(σ2, θ)− µ1(σ2

0 , θ0)
∣∣2 +

∣∣κ(θ)− κ(θ0)
∣∣2). (B.22)
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We then study µ1(σ2, θ) and κ(θ). Denote by F̂ (·;σ2, θ, T1, T2) the ESD when (σ2, θ) are true pa-

rameters. Write µ̂1(σ2, θ) =
∫
xdF̂ (x;σ2, θ, T1, T2) and µ̂2(σ2, θ) =

∫
x2dF̂ (x;σ2, θ, T1, T2). The

converges of ESD to its theoretical limit yields that |µ̂1(σ2, θ)− µ1(σ2, θ)| → 0 and |µ̂2(σ2, θ)−

µ2(σ2, θ)| → 0 in probabiliy. In fact, we have a stronger result (Knowles and Yin, 2017):∣∣E[µ̂1(σ2, θ)]− µ1(σ2, θ)
∣∣ ≺ n−1,

∣∣E[µ̂2(σ2, θ)]− µ2(σ2, θ)
∣∣ ≺ n−1. (B.23)

Here the expectation is with respect to the null model (i.e., K = 0) with true parameters (σ2, θ).

The left hand sides above are non-stochastic quantities, and “≺ n−1” is interpreted as “≤ n−1+ε

for any ε > 0.” Since µ1(σ2, θ) and µ2(σ2, θ) are uniformly upper/lower bounded, it follows that∣∣∣κ̂(θ)− E[µ̂2(σ2, θ)](
E[µ̂1(σ2, θ)]

)2 ∣∣∣ ≺ n−1. (B.24)

By definition, we can also write µ̂1 = 1
p̃

∑p̃
i=1 λ̂i = 1

p̃ tr(S) and µ̂2 = 1
p̃

∑p̃
i=1 λ̂

2
i = 1

p̃‖S‖
2
F , where

S = 1
nX

>X is the sample covariance matrix under the null model of K = 0. By Assumption 1,

X = Y Σ1/2, where Y contains iid zero-mean, unit variance entries. Note that our purpose here

is to approximate the moments of the theoretical limit of ESD, and we are flexible to choose the

eigenvectors in Σ. We choose ξk as the kth standard basis, and so Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
p). By

direct calculations,

E[µ̂1(σ2, θ)] =
1

np̃
E
[ p∑
j=1

( n∑
i=1

σ2
jY

2
ij

)]
= (γn ∨ 1) · E[σ2

1 ],

E[µ̂2(σ2, θ)] =
1

n2p̃
E
[ p∑
j=1

( n∑
i=1

σ2
jY

2
ij

)2

+
∑

1≤j 6=`≤p

( n∑
i=1

σjσ`YijYi`

)2
]

=
1

n2p̃

[
npE[σ4

1 ]E[Y 4
11] + pn(n− 1)E[σ4

1 ] + p(p− 1)n
(
E[σ2

1 ]
)2]

= O(n−1) + (γn ∨ 1) · E[σ4
1 ] + γn(γn ∨ 1) ·

(
E[σ2

1 ]
)2
.

Note that σ2
1/σ

2 ∼ Gamma(θ, θ, T1, T2). The density of Gamma(θ, θ, T1, T2) is equal to xθ−1e−θx·

(
∫ T2

T1
zθ−1e−θzdz)−1. We immediately have

E[µ̂1(σ2, θ)] = (γn ∨ 1)σ2 ·
∫ T2

T1
xθ exp(−θx)dx∫ T2

T1
xθ−1 exp(−θx)dx

E[µ̂2(σ2, θ)] = O(
1

n
) + (γn ∨ 1)

σ4
∫ T2

T1
xθ+1 exp(−θx)dx∫ T2

T1
xθ−1 exp(−θx)dx

+ γn(γn ∨ 1)
σ4
[∫ T2

T1
xθ exp(−θx)dx

]2[∫ T2

T1
xθ−1 exp(−θx)dx

]2 .
Define Ψ(θ) = Ψ(θ;T1, T2) ≡ (

∫ T2

T1
xθe−θxdx)/(

∫ T2

T1
xθ−1e−θxdx). Let Φ(θ) be the same as in the

statement of this theorem. We plug the above equations into (B.23)-(B.24) to get

µ1(σ2, θ) = (γn ∨ 1)σ2 ·Ψ(θ) +O≺(n−1),

κ(θ) =
1

(γn ∨ 1)
· Φ(θ) +

γn
(γn ∨ 1)

+O≺(n−1). (B.25)
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Consider the mapping from (σ2, θ) to (µ1(σ2, θ), κ(θ)). The Jacobian matrix is

J = (γn ∨ 1)

[
Ψ(θ) σ2 ·Ψ′(θ)

0 1
(γn∨1)2 · Φ

′(θ)

]
+O≺(n−1).

First, since Jθ is a bounded set, Ψ(θ), Ψ′(θ) and Φ′(θ) are uniformly upper bounded by constants.

Second, we have Ψ(θ) > 0 in a fixed compact set Jθ. As a result, Ψ(θ) must be uniformly lower

bounded by a constant. Last, the assumption says that infθ∈Jθ |Φ′(θ)| ≥ ω, for a constant ω > 0.

Combining these arguments with the formula of the inverse of a 2×2 matrix, we have ‖J−1‖ ≤ C.

It follows that

∣∣µ1(σ2, θ)− µ1(σ2
0 , θ0)

∣∣2 +
∣∣κ(θ)− κ(θ0)

∣∣2
≥ C

(
|σ2 − σ2

0 |2 + |θ − θ0|2
)
. (B.26)

We plug (B.26) into (B.22), and then into (B.21), and then combine it with (B.20). It gives

(B.19).

B.4 Proof of Lemma 2

Write

J1(θ) = (

∫ t2

t1

xθ+1exp(−θx)dx)(

∫ t2

t1

xθ−1exp(−θx)dx), J2(θ) = (

∫ t2

t1

xθexp(−θx)dx)2.

Then Ψ(θ) = J1(θ)/J2(θ) and

Ψ′(θ) =
J ′1(θ)J2(θ)− J1(θ)J ′2(θ)

J2(θ)2
. (B.27)

By direct calculations,

J ′1(θ) =(

∫ t2

t1

log(x)xθ+1exp(−θx)dx−
∫ t2

t1

xθ+2exp(−θx)dx)(

∫ t2

t1

xθ−1exp(−θx)dx)

+ (

∫ t2

t1

log(x)xθ−1exp(−θx)dx−
∫ t2

t1

xθexp(−θx)dx)(

∫ t2

t1

xθ+1exp(−θx)dx),

J ′2(θ) = 2(

∫ t2

t1

xθexp(−θx)dx)(

∫ t2

t1

log(x)xθexp(−θx)dx−
∫ t2

t1

xθ+1exp(−θx)dx).

Let L(α, θ; t1, t2) denote
∫ t2
t1

log(x)xαexp(−θx)dx and I(α, θ; t1, t2) denote
∫ t2
t1
xαexp(−θx)dx.

When not causing any confusion, we write them as L(α) and I(α). Then

J1(θ) = I(θ + 1)× I(θ − 1), J2(θ) = I(θ)2

J ′1(θ) = (L(θ + 1)− I(θ + 2))× I(θ − 1) + (L(θ − 1)− I(θ))× I(θ + 1)

J ′2(θ) = 2(L(θ)− I(θ + 1))× I(θ)

13



Plugging them into (B.27), we have

Ψ′(θ) =
I(θ + 1)I(θ − 1)

I(θ)2

((L(θ + 1)

I(θ + 1)
+
L(θ − 1)

I(θ − 1)
−2

L(θ)

I(θ)

)
−
(I(θ + 2)

I(θ + 1)
+

I(θ)

I(θ − 1)
−2

I(θ + 1)

I(θ)

))
.

Recall that we are interested in θ ∈ Jθ = [c, d]. For α ∈ [c− 1, d+ 2] and θ ∈ [c, d],∫ ∞
0

log(x)xαexp(−θx)dx−L(α, θ; t1, t2) =

∫ t1

0

log(x)xαexp(−θx)dx+

∫ ∞
t2

log(x)xαexp(−θx)dx,

∣∣∣ ∫ t1

0

log(x)xαexp(−θx)dx
∣∣∣ ≤ ∫ t1

0

(− log(x))xc−1exp(−cx)dx→ 0, as t1 → 0,∣∣∣ ∫ ∞
t2

log(x)xαexp(−θx)dx
∣∣∣ ≤ ∫ ∞

t2

log(x)xd+2exp(−cx)dx→ 0, as t2 →∞.

This implies for α ∈ [c−1, d+2], θ ∈ [c, d], as (t1, t2)→ (0,∞), L(α, θ; t1, t2) uniformly converges

to L0(α, θ) =
∫∞

0
log(x)xαexp(−θx)dx. By a similar argument, we can show that I(α, θ; t1, t2)

uniformly converges to I0(α, θ) =
∫∞

0
xαexp(−θx)dx. From the uniform convergence and the fact

that I0(α, θ) is lower bounded by a common positive constant when α ∈ [c− 1, d+ 2], θ ∈ [c, d],

we know that as (t1, t2)→ (0,∞) we have Ψ′(θ) uniformly converges to

I0(θ + 1)I0(θ − 1)

I0(θ)2

((L0(θ + 1)

I0(θ + 1)
+
L0(θ − 1)

I0(θ − 1)
−2

L0(θ)

I0(θ)

)
−
(I0(θ + 2)

I0(θ + 1)
+

I0(θ)

I0(θ − 1)
−2

I0(θ + 1)

I0(θ)

))
,

for all θ ∈ [c, d]. Here, L0(α) and I0(α) are short for L0(α, θ) and I0(α, θ). Let Z ∼ Gamma(α, θ)

and let ψ denote the digamma function. By properties of the Gamma distribution,

I0(α, θ)

I0(α− 1, θ)
= E(Z) =

α

θ
,

L0(α− 1, θ)

I0(α− 1, θ)
= E(log(Z)) = ψ(α)− log(θ).

Therefore, Ψ′(θ) uniformly converges to

θ + 1

θ

((
ψ(θ+ 2) +ψ(θ)− 2ψ(θ+ 1)

)
−
(θ + 2

θ
+
θ

θ
− 2× θ + 1

θ

))
=
θ + 1

θ

( 1

θ + 1
− 1

θ

)
= − 1

θ2
.

The first equation uses the recurrence relation of digamma function. By the uniform convergence,

for any δ > 0 there exists 0 < T ∗1 < T ∗2 <∞ such that supθ∈[c,d] |Ψ′(θ)− (− 1
θ2 )| ≤ δ. The claim

follows by choosing δ = 1/d2 − ω.

B.5 Proof of Theorem 4

Let dj = σ2
j + µj for 1 ≤ k ≤ K and dj = σ2

j for K + 1 ≤ j ≤ p. Then, d1, d2, . . . , dp are all the

eigenvalues of Σ. Define

Ĝ(x) = − 1

x
+
γ

p

p∑
j=1

1

x+ σ−2
j

. (B.28)

By Lemma 2.2 and Condition 3.6 of Ding (2020), this function Ĝ(x) has 2 critical points 0 > x̂1 >

x̂2; furthermore, conditioning on Σ, the ESD converges to a limit whose support is [Ĝ(x̂2), Ĝ(x̂1)].
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We apply Theorem 3.2 of Ding (2020). Using the first claim there, if −1/dk ≥ x̂1 +n1/3 for each

1 ≤ k ≤ K, then

|λ̂k − Ĝ(−1/dk)| ≺ n−1/2(−1/dk − x̂1)1/2, 1 ≤ k ≤ K.

Using the second claim there,

|λ̂K+1 − Ĝ(x̂1)| ≺ n−2/3.

The above “stochastic dominance” arguments are conditioning on Σ. Under Model (13) for Σ,

Ĝ(x) converges weakly to G(x) defined in (16), and the critical points (x̂1, x̂2) also converge to

(x∗1, x
∗
2), the critical points of G(x), almost surely. Replacing Ĝ(·) and x̂1 by G(·) and x∗1 in the

above inequalities has a negligible effect (e.g., see Example 3.9 of Ding (2020)). It follows that

max
1≤k≤K

|λ̂k −G(−1/dk)| ≺ n−1/2, |λ̂K+1 −G(x∗1)| ≺ n−2/3.

Note that dk = σ2
k + µk ≥ µK + T1. The assumption of −1/(T1 + µK) ≥ x∗1 + τ guarantees that

G(−1/dk) ≥ G(−1/(T1 + µK)) ≥ G(x∗1 + τ) ≥ G(x∗1) + c, where c > 0 is a constant. Therefore,

min
1≤k≤K

{λ̂k} −G(x∗1) ≥ c+O≺(n−1/2), λ̂K+1 −G(x∗1) ≺ n−2/3, (B.29)

where O≺(bn) means the absolute value is ≺ bn.

The estimator K̂ is obtained by thresholding the empirical eigenvalues at T̂β as in (15). Let

λ̂∗1 = λ̂∗1(σ2, θ) be the largest empirical eigenvalue under the null model (K = 0) with parameters

(σ2, θ). Applying Theorem 3.2 of Ding (2020) again, for the same x∗1 as above,

|λ̂∗1(σ2, θ)−G(x∗1)| ≺ n−2/3.

In Theorem 3, we have shown |σ̂2−σ2| ≺ n−1 and |θ̂−θ| ≺ n−1. Now, let x̂∗1 be the largest critical

point of G(x) in (16), except that (σ2, θ) is replaced by (σ̂2, θ̂). Then, we have |G(x̂∗1)−G(x∗1)| =

O
(√
|σ̂2 − σ2|2 + |θ̂ − θ|2

)
≺ n−1 and |λ̂∗1(σ̂2, θ̂)−G(x̂∗1)| ≺ n−2/3. Combining these claims gives

|λ̂∗1(σ̂2, θ̂)−G(x∗1)| ≺ n−2/3.

Note that T̂β is the (1− β)-quantile of λ̂∗1(σ̂2, θ̂) (it means the quantile of λ̂∗1(σ2, θ) evaluated at

(σ2, θ) = (σ̂2, θ̂)). The above inequality implies that there exists β → 0 properly slow such that

n−2/3 � T̂β −G(x∗1) � 1. (B.30)

It follows from (B.29) and (B.30) that K̂ = K.
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B.6 Proof of Lemma B.1

We only show the second inequality. The proof of the first inequality is similar and thus omitted.

Note that f(x)− g(x) is the derivative of Ḡ(x)− F̄ (x). Using integration by part, we have

µ2(f)− µ2(g) =

∫
x2[f(x)− g(x)]dx = 2

∫
x[F̄ (x)− Ḡ(x)]dx. (B.31)

We consider a change of variable from x to α = F̄ (x). Note that x = hF (α). It follows that∫
x[F̄ (x)− Ḡ(x)]dx =

∫ 1

0

hF (α)
[
α− Ḡ(hF (α))

]
h′F (α)dα

=

∫ 1

0

hF (α)
[
Ḡ(hG(α))− Ḡ(hF (α))

]
h′F (α)dα.

By mean value theorem, there is x∗ between hF (α) and hG(α) such that Ḡ(hG(α))−Ḡ(hF (α)) =

−g(x∗)[hG(α)− hF (α)]. Recall that ǧ(x, y) = maxz∈[x,y]∪[y,x] g(z). It follows that |Ḡ(hG(α))−

Ḡ(hF (α)| ≤ ǧ(hF (α), hG(α)) · |hG(α)− hF (α)|. We plug it into the above equation to get∣∣∣∫ x[F̄ (x)− Ḡ(x)]dx
∣∣∣ ≤ ∫ 1

0

|hG(α))− hF (α)| ·
∣∣hF (α) ǧ

(
hF (α), hG(α)

)
h′F (α)

∣∣dα.
Since hF (·) = F̄−1, we have h′F (α) = −1/f(hF (α)). It follows that∣∣∣∫ x[F̄ (x)− Ḡ(x)]dx

∣∣∣ ≤ ∫ 1

0

|hG(α)− hF (α)| · hF (α) · ǧ(hF (α), hG(α))

f(hF (α))
dα

≤

√∫ 1

0

|hG(α)− hF (α)|2dα

√∫ 1

0

[hF (α) · ǧ(hF (α), hG(α))

f(hF (α))

]2
dα

≤

√∫ 1

0

|hG(α)− hF (α)|2dα ·
√
C2. (B.32)

Combining (B.31)-(B.32) gives the claim.

C Robustness of BEMA on real data

For the two real data sets in Section 6, we apply BEMA with different values of α. The results

are presented in the tables below. Both the point estimator and the confidence interval are very

stable as long as α is in a reasonable range.
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BEMA (0.1) BEMA (0.2) BEMA (0.3) BEMA (0.4)

θ̂ 0.343 0.288 0.281 0.270

σ̂2 0.869 0.926 0.949 1

K̂ (β = 0.1) 1 1 1 1

90% quantile 16.074 19.231 20.261 21.944

10% quantile 9.379 10.872 11.186 12.098

confidence interval [1,4] [1,4] [1,4] [1,2]

Table 1: Lung Cancer data. BEMA is applied with α ∈ {0.1, 0.2, 0.3, 0.4} (denoted as BEMA (α) in the table).

The quantiles are from Gamma(θ̂, θ̂/σ̂2), and they are used to construct the 80% confidence interval.

BEMA (0.1) BEMA (0.2) BEMA (0.3) BEMA (0.4)

θ̂ 4.256 4.239 4.198 4.261

σ̂2 0.3779 0.3780 0.3782 0.3783

K̂ (β = 0.1) 28 28 28 28

90% quantile 6.895 6.899 6.909 6.903

10% quantile 6.822 6.829 6.838 6.831

confidence interval [28,30] [28,30] [28,29] [28,30]

Table 2: 1000 Genomes data. BEMA is applied with α ∈ {0.1, 0.2, 0.3, 0.4} (denoted as BEMA (α) in the table).

The quantiles are from Gamma(θ̂, θ̂/σ̂2), and they are used to construct the 80% confidence interval.
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