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This file contains four sections. Section A discusses an extension of ARW
where the nonzero coordinates of µ have both positive and negative signs.
Section B-D contain supplementary proofs for the main paper [5]: Section B
proves Lemmas 2.1–2.4, Section C proves Lemmas 3.1–3.3, and Section D
proves the secondary lemmas that are used in Sections B-C.

APPENDIX A: AN EXTENSION OF THE ARW MODEL

We consider an extension of the Asymptotic Rare and Weak (ARW) model
in Section 1.2, where Models (1.1)-(1.2) and the calibration (1.8) continue
to hold but (1.7) is replaced by a more sophisticated signal configuration:

(A.1) µ(j)
iid∼ (1− ε)ν0 + a · ε · ν−τ + (1− a) · ε · ντ , 1 ≤ j ≤ p,

where 0 ≤ a ≤ 1/2 is a constant. This extended model includes the orig-
inal ARW as a special case with a = 0. In this extension, we allow the
nonzero coordinates of the feature vector µ to have positive and negative
signs. Due to such a change, we need to slightly modify the definition of the
(normalized) Hamming distance for signal recovery: Hammp(µ̂, α, β, θ) =
(pεp)

−1
∑p

j=1 P (sgn(µ(j)) 6= sgn(µ̂(j))). The loss functions for clustering
and hypothesis testing remain the same.

When 0 < a < 1/2, with high probability, the majority of the nonzero
coordinates of µ are positive, and the performance of the four methods in
Section 1.1 is not affected. Furthermore, the statistical limits and CTUB for
all three problems continue to hold. For brevity, we omit the details.

The case of a = 1/2 is more delicate. In this case, the two aggregation
methods turn out to be ineffective. In light of this, we introduce a variant
of the Sparse Aggregation, where we cluster the n subjects by

(A.2) ˆ̀(sa)
N = sgn(Xµ̂

(sa)
N ).
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Here,

(A.3) µ̂
(sa)
N = argmaxµ∈{−1,0,1}p:‖µ‖0=N‖Xµ‖1.

Also, we use µ̂
(sa)
N to estimate the sign of µ (i.e., for signal recovery), and

use the test statistic

(A.4) T̂
(sa)
N = N−1/2‖Xµ̂(sa)

N ‖1

for hypothesis testing. Note that if we force µ(j) ∈ {0, 1} in (A.3), then it
reduces to the original Sparse Aggregation.

Remark. We have not found a variant of Simple Aggregation that both
achieves the statistical limit and is computationally tractable. However, in
the less sparse case, the classical PCA turns out to be already optimal. 1

We now present the statistical limits and CTUB for all three problems.
They are different from the ones we present in the main paper [4]. First, we
look at the statistical limits.

ηcluθ (β) =


(1 + θ − 2β)/4, β < (1− θ)/2,
θ/2, (1− θ)/2 < β < (1− θ),
(1− β)/2, β > (1− θ).

ηsigθ (β) =

{
θ/2, β < (1− θ),
(1 + θ − β)/4, β > (1− θ).

ηhypθ (β) =


(1 + θ − 2β)/4, β < (1− θ)/2,
θ/2, (1− θ)/2 < β < (1− θ),
(1 + θ − β)/4, β > (1− θ).

Figure 1 (top left panel) displays the statistical limits for three problems.
Comparing it with Figure 2 (top left panel), we find that : (a) the black curve
(signal recovery) remains the same, (b) the red curve (clustering) remains
the same, except for the segment on the left is replaced by τ4 = p/(ns2), (c)
for the blue curve (hypothesis testing), the right most segment remains the
same, while the other two segments coincide with those of the red curve.

Achievability. The statistical limit of clustering is achieved by the classical
PCA (the left segment) and the variant (A.2) of Sparse Aggregation (the
right two segments). For signal recovery, the right two segments are achieved

1Classical PCA for hypothesis testing is to reject the null hypothesis when the leading
singular value of X is larger than

√
p+
√
n+log(p); for signal recovery is as the description

in Section 3. However, for signal recovery, since we need to estimate not only the support
but also the sign of µ, we slightly modify it to µ̂

(if)
∗ (j) = sgn(ŷ(j)) · 1{|ŷ(j)| > 2

√
log(p)},

where ŷ = X ˆ̀(if)∗ and ˆ̀(if)∗ denotes the class label vector estimated by classical PCA.



3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

β

α

 

 

τ = (sn)−1/4

τ=(pn)1/4s−1/2

τ=n−1/2

τ = s−1/2

τ=n−1/4

s=n

Clustering
Signal Recovery
Hypothesis Testing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

β

α

 

 

τ=n−1/4

τ=(pn)1/4s−1/2

τ=s−1/2
s=p1/2

Clustering (stat)
Signal Recovery
Hypothesis Testing
Clustering (compu)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

β

α

 

 

τ=n−1/2

τ=(pn)1/4s−1/2

τ=n−1/4

s=p1/2

Clustering
Signal Recovery (stat)
Hypothesis Testing
Signal Recovery (compu)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

β

α

 

 

τ=n−1/4

τ=(pn)1/4s−1/2

s=p1/2

Clustering
Signal Recovery
Hypothesis Testing (stat)
Hypothesis Testing (compu)

Fig 1. Top left: statistical limits for clustering (red), signal recovery (black), and hypothesis
testing (blue); s = pεp. Other three panels: CTUB (green) for clustering (top right), signal
recovery (bottom left) and hypothesis testing (bottom right), respectively.

by the modified Sparse Aggregation (A.3), and the left segment is achieved
by classical PCA. For hypothesis testing, the left segment is achieved by
classical PCA and the right two segments are achieved by the modified
Sparse Aggregation (A.4).

Next, we present a CTUB for each of the three problems:

η̃cluθ (β) =


(1 + θ − 2β)/4, β < 1/2,
θ/4, 1/2 < β < 1− θ/2,
(1− β)/2, β > (1− θ).

η̃sigθ (β) =


θ/2, β < (1− θ)/2,
(1 + θ − 2β)/4, (1− θ)/2 < β < 1/2,
θ/4, β > 1/2.

η̃hypθ (β) =

{
(1 + θ − 2β)/4, β < 1/2,
θ/4, β > 1/2.

See Figure 1 (top right and the two bottom panels).
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Methods associated with CTUB. The CTUB for clustering is associated
with the methods of classical PCA (left segment) and IF-PCA (right two
segments). The CTUB for signal recovery is associated with the methods
of classical PCA (left segment) and IF-PCA (right segment). The CTUB
for hypothesis testing is associated with the methods of classical PCA (left
segment) and IF-PCA (right segment).

Remark. We now make a connection to the recent literature on the Gaus-
sian mixture learning (e.g.[1, 3]). In our framework, we calibrate with (ε, τ).
In the latter, we calibrate with ‖µ‖ and ‖µ‖0. For brevity, we only discuss the
problem of hypothesis testing. The statistical limits for hypothesis testing
can be (roughly) re-stated as follows:

• √np� s� p: sτ2 =
√
p/n.

• n� s� √np: τ = n−1/2.

• s� n: τ = (sn)−1/4.

Note that the first item corresponds to the non-sparse cases in the Gaussian
mixture learning literature, where ‖µ‖2 = sτ2 =

√
p/n; the results match

with those in, e.g., [1, 3]. The second one is part of the sparse case in the
Gaussian mixture learning literature, where 1 � ‖µ‖2 = p/n �

√
p/n

and n � ‖µ‖0 �
√
np. The last one is also part of the sparse case, where

‖µ‖2 =
√
s/n and s� n.

APPENDIX B: PROOF OF LEMMAS IN SECTION 2

In this sectoin, we prove the post-selection random matrix theory results
in Section 2, specifically Lemmas 2.1–2.4.

B.1. Preliminary lemmas for Section 2. Lemma B.1 states the
well-known Bernstein inequality [6]. Lemma B.2 is a result from classical
Random Matrix Theory [7, Page 21]. Lemma B.3 states some properties
about columns of the matrix Z(q); it is proved in Section D.1.

Lemma B.1 Let X1, · · · , XN be independent random variables with E[Xk] =
0 and var(Xk) ≤ vk, for 1 ≤ k ≤ N . Suppose E(|Xk|m) ≤ vkm!cm−2/2 for
all m ≥ 2, where c > 0 is a constant. Then for all λ > 0,

P
(∣∣ N∑
k=1

Xk

∣∣ ≥ λ√N) ≤ exp

(
− λ2/2∑n

k=1 vk/N + cλ/
√
N

)
.

Lemma B.2 Let A be an N×n matrix whose entries are independent stan-
dard normal random variables. Then for every x ≥ 0, with probability at least



5

1− 2 exp(−x2/2),

√
N −

√
n− x ≤ smin(A) ≤ smax(A) ≤

√
N +

√
n+ x,

where smin(A) and smax(A) are the respective minimum and maximum sin-
gular values of A.

Fix q > 0. With e1 = (1, 0, · · · , 0)′ and z ∼ N(0, Ip), we introduce a few
notations:

π
(q)
0 = P (‖z‖2 > n+ 2

√
qn log(p)),

π
(q)
1 = P (‖z +

√
nτ∗p e1‖2 > n+ 2

√
qn log(p)),

a(q)
p = E

[
(z(1))2 · 1{‖z‖2 > n+ 2

√
qn log(p)}

]
,

b(q)p = E
[
(z(2))2 · 1{‖z +

√
nτ∗p e1‖2 > n+ 2

√
qn log(p)}

]
,

c(q)
p = E

[
(z(1))2 · 1{‖z +

√
nτ∗p e1‖2 > n+ 2

√
qn log(p)}

]
.

For notation simplicity, we omit all the superscripts. In the following lemma,

m(q)(`, µ), m
(q)
∗ (`, µ) and the event Dp are defined in Section 2.

Lemma B.3 Let S(µ) denote the support of µ, κm = E(|z(1)|m) and κ2m(n) =
E(‖z‖2m), where z ∼ N(0, In). Below, all the probabilities are conditioning
on (`, µ), and the o(1) terms are uniform for all realizations of (`, µ) in the
event Dp.

(a) Fix j /∈ S(µ). For any v ∈ Sn−1 and any integer m ≥ 1

E[(v′z
(q)
j )2] = ap,

E(|v′z(q)
j |m) ≤ κmπ0(1 + o(1)),

E(‖z(q)
j ‖2) = nap,

E(‖z(q)
j ‖2m) = κ2m(n)π0(1 + o(1)),

ap = π0(1 + Lpn
−1/2).

(b) Fix j ∈ S(µ). For any v ∈ Sn−1 and any integer m ≥ 1

E[(v′z
(q)
j )2] = bp + (cp − bp) (v′`)2

‖`‖2

E(|v′z(q)
j |m) ≤ κmπ1(1 + o(1)),

E(‖z(q)
j ‖2) = nbp + (cp − bp),

E(‖z(q)
j ‖2m) ≤ 2mκ2m(n)π1(1 + o(1)),

bp = π1(1 + Lpn
−1/4), cp = π1(1 + Lpn

−1/4).



6

(c) m(q)(`, µ) = (p− |S(µ)|)π0 + |S(µ)|π1,

m
(q)
∗ (`, µ) = (p− |S(µ)|)ap + |S(µ)|[bp + n−1(cp − bp)].

Remark. Lemma B.3 allows us to characterize the quantities m(q) and m
(q)
∗ .

First, by (a)-(b), ap ∼ π0 and bp ∼ cp ∼ π1. Combining them with (c) gives

that m
(q)
∗ ∼ m(q). Second, we look at m(q). By Lemma D.1 and Mills’ ratio

[6], π0 ∼ Φ̄(
√

2q log(p)) = Lpp
−q. Similarly, π1 ∼ Lpp−[(

√
r−√q)+]2 . Plugging

them into (c) gives

m(q) ∼ Lpp1−q + pεp · Lpp−[(
√
r−√q)+]2 .

This is the equation (2.1) in the main text of [5].

B.2. Proof of Lemma 2.1. Fix q > 0 and write H0 = Z(q)(Z(q))′

and Ŝ = Ŝ
(if)
q for short. Fix a realization (`, µ). With probability at least

1−O(p−3),

(B.5) ||Ŝ| −m(q)| ≤
√

6m(q) log(p).

First, we consider q > q̃(β, θ, r), so that m(q) ≤ np−δ for some δ > 0. Let
k = dm(q) +

√
6m(q) log(p)e. Under (B.5),

λmax(H0) ≤ max
T⊂{1,··· ,p},|T |≤k

λmax((ZZ ′)T,T ),

λ+
min(H0) ≥ min

T⊂{1,··· ,p},|T |≤k
λ+

min((ZZ ′)T,T ),

where for a matrix A, λ+
min(A) denotes the minimum non-zero eigenvalue

and AT,T is the submatrix restricted to rows and columns in T . For each
fixed T , we can write (Z ′Z)T,T = ZT (ZT )′, where ZT = (zj , j ∈ T ) is an
n × |T | matrix with iid entries of N(0, 1). Using Lemma B.2, for each T ,
with probability at least 1−O(p−(k+3)), all non-zero eigenvalues of (ZZ ′)T,T

fall into[(√
n+

√
|T |+

√
6k log(p)

)2
,
(√
n−

√
|T | −

√
6k log(p)

)2]
= n± C

√
nk log(p).

Note that the number of subsets T such that |T | ≤ k is no more than pk.
Combining the above results, we find that with probability at least 1 −
O(p−3), all non-zero eigenvalues of H0 fall into

(B.6) n± C
√
nm(q) log(p).

The claim then follows.
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Next, we consider q < q̃(β, θ, r), so that m(q) ≥ npδ for some δ > 0. Write
for short

ωp =
√
nm(q) + o(1)|S(µ)|π1,

where π1 is as in Lemma B.3 and m
(q)
1 = |S(µ)|π1 by definition. It suffices

to show that with probability at least 1−O(p−3),

(B.7) ‖H0 −m(q)
∗ In‖ ≤ Cωp.

We now show (B.7). Fix α > 0. A subset Mα of the unit sphere Sn−1 is
called an α-net if for any v ∈ Sn−1, there exits u ∈Mα such that ‖u−v‖ ≤ α.
The following lemma states some well-known results and its proof can be
found in [7, Page 8].

Lemma B.4 Fix α ∈ (0, 1/2). For any Mα, an α-net of Sn−1, and any
symmetric matrix A ∈ Rn,n, ‖A‖ ≤ (1−2α)−1 supu∈Mα

{|u′Au|}. Moreover,
there exists an α-net M∗α of Sn−1 such that |M∗α| ≤ (1 + 2/α)n.

By Lemma B.4 with α = 1/4 , there exists a subsetM∗, such that |M∗| ≤ 9n

and supv∈M∗ v
′Av ≥ ‖A‖/2 for any n × n matrix A. Therefore, to show

the claim, it suffices to show that for each fixed v ∈ M∗, with probability
≥ 1−O(9−np−3),

(B.8) |v′(H0 −m(q)
∗ In)v| ≤ Cωp.

We now show (B.8). Fix v and define

Wj = (v′z
(q)
j )2 − ap, for j /∈ S(µ); Wj = (v′z

(q)
j )2 − bp, for j ∈ S(µ),

where ap and bp are defined in Section B.1. By (c) of Lemma B.3, m
(q)
∗ =

(p−|S(µ)|)ap+ |S(µ)|bp+n−1(cp− bp)|S(µ)|. Since |cp− bp| = o(π1), we can
rewrite

(B.9) v′(H0 −m(q)
∗ In)v =

p∑
j=1

Wj + o(n−1|S(µ)|π1).

Here Wj ’s are independent of each other. Applying Lemma B.3, we get the
following results. For j /∈ S(µ), E(Wj) = 0, var(Wj) ≤ 3π0(1 + o(1)) and
E(|Wj |m) ≤ κ2mπ0(1 + o(1)). For j ∈ S(µ), |E(Wj)| ≤ |bp − cp| = π1 · o(1),
var(Wj) ≤ 3π1(1 + o(1)) and E(|Wj |m) ≤ κ2mπ1(1 + o(1)). So we have

|
p∑
j=1

E(Wj)| = o(1)|S(µ)|π1,

p∑
j=1

var(Wj) . 3m(q).
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We apply Lemma B.1 with λ =
√

9p−1m(q)(n log(9) + 2 log(p) + log(2)). To
check the moment conditions, we note that κ2m = EY∼N(0,1)(|Y |2m) ≤ 2mm!

for all m ≥ 1. Furthermore, since m(q)/n → ∞, we have
∑

j var(Wj)/p ∼
3m(q)/p� λ/

√
p. It follows that with probability ≥ 1−O(9−np−3),

|
p∑
j=1

Wj | . 3
√

log(9)
√
nm(q) + o(1)|S(µ)|π1.

This gives (B.8), and the proof is now complete. �

B.3. Proof of Lemma 2.2. We have shown the first claim in (B.7),

noting that ωp ∼
√
nm(q) when r < ρ∗θ(β) (see also (B.15)).

We now show the second claim. Write for short H0 = Z(q)(Zq)′. The key
is the following lemma, which is proved in Section D.

Lemma B.5 Under conditions of Lemma 2.2, as p → ∞, conditioning on
any realization of (`, µ) on the event Dp, with probability at least 1−O(n−2),

|n−1tr(H0)−m(q)
∗ | ≤ C

√
m(q) log(p),

‖H0‖2F ≥ n−1[tr(H0)]2 + Cn2m(q).

Let k be the largest integer that is no larger than m(q)/2. Since k � n,
for each fixed k × k submatrix of ZZ ′, its rank is n with probability 1.
Using (B.5), the rank of H0 is n with probability at least 1 − O(p−3). Let
λ1 ≥ λ2 ≥ · · · ≥ λn > 0 be the eigenvalues of H0 and write λ̄ = n−1

∑n
i=1 λi.

For δp ≡
√
nm(q), (B.7) and Lemma B.5 imply

(B.10) |λ1 − λn| ≤ A1δp, λ̄ = m
(q)
∗ + o(δp),

n∑
i=1

λ2
i ≥ nλ̄2 +A2nδ

2
p,

for some constants A1, A2 > 0. On one hand,
n∑
i=1

(λi − λ̄)2 ≥ A2nδ
2
p.

On the other hand, λi − λ̄ ≤ λ1 − λ̄ for i satisfying λi ≥ λ̄; moreover,
λ̄− λi ≤ A1δp for i such that λi < λ̄. It follows that

n∑
i=1

(λi − λ̄)2 ≤ (λ1 − λ̄)
∑
i:λi≥λ̄

(λi − λ̄) +A1δp
∑
i:λi<λ̄

(λ̄− λi)

= [(λ1 − λ̄) +A1δp]
∑
i:λi≥λ̄

(λi − λ̄)

≤ n[(λ1 − λ̄) +A1δp](λ1 − λ̄).
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Now, if we write x = λ1 − λ̄, then x(x+A1δp) ≥ A2δ
2
p. It follows that

(B.11) λ1 − λ̄ ≥
√
A2

1 + 4A2 −A1

2
δp.

Combining it with the second equation in (B.10), we obtain that λ1 ≥
m

(q)
∗ + C

√
nm(q). �

B.4. Proof of Lemma 2.3. Write for shortA = `(Z(q)µ(q))′+(Z(q)µ(q))`′.
Since

‖A‖ ≤ 2‖`‖‖Z(q)µ(q)‖ ≤ 2n‖Z(q)µ(q)‖∞,

it suffices to show that with probability 1−O(p−3),

(B.12) ‖Z(q)µ(q)‖∞ ≤ Cτ∗p
√
m

(q)
1 .

Note that

(B.13) ‖Z(q)µ(q)‖∞ = max
1≤i≤n

|
∑
j∈S(µ)

µ(j)z
(q)
j (i)| = τ∗p max

1≤i≤n
|
∑
j∈S(µ)

z
(q)
j (i)|.

Fix i and write Vj = z
(q)
j (i) for short. Then Vj ’s are independent and E(Vj) =

0 by symmetry. We apply Lemma B.3 with v = e1 and find that var(Vj) ≤
bp + 2|cp − bp| = π1(1 + o(1)). By Lemma B.1 (the moment conditions can
be verified using Lemma B.3), |

∑
j∈S(µ) Vj | ≤ 2

√
|S(µ)|π1 with probability

1−O(p−4). It follows that with probability 1−O(p−3),

(B.14) max
1≤i≤n

|
∑
j∈S(µ)

z
(q)
j (i)| ≤ C

√
|S(µ)|π1 = C

√
m

(q)
1 .

Combining (B.13)-(B.14) gives (B.12). �

B.5. Proof of Lemma 2.4. Introduce

∆†(q, β, r, θ)

=

{
β − 1

2 min{q, β − θ
2}, q ≤ r,

β + (
√
q −
√
r)2 − 1

2 min{q, β − θ
2 + (

√
q −
√
r)2}, q > r.

By elementary algebra,

r < ρ∗θ(β) ⇐⇒ min
q>0

∆†(q, β, r, θ) > 1/2,
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Moreover, using Mills’ ratio,

min

{
n(τ∗p )2|S(µ)|π1√

nm(q)
, τ∗p

√
|S(µ)|π1

}
= Lpp

1/2−∆†(q,β,r,θ).

It follows that for some δ > 0,

(B.15) r < ρ∗θ(β) ⇐⇒ |S(µ)|π1 ≤ p−δ max{
√
m(q),

√
n}.

Consider the first claim. The proof is similar to that of (B.8), except that
we take λ = C

√
p−1m(q) log(p) when applying Lemma B.1. It follows that

for any v ∈ Sn−1, with probability at least 1−O(p−3),

|v′(H0 −m(q)
∗ In)v| ≤ C

√
m(q) log(p) + o(|S(µ)|π1).

By (B.15), the second term above is negligible and the claim follows.
Consider the second claim. H −H0 = ‖µ(q)‖2``′ + A, where with proba-

bility at least 1−O(p−3), ‖A‖ ≤ Cnτ∗p
√
m

(q)
1 by Lemma 2.3. Furthermore,

by elementary statistics, ‖µ(q)‖2 ≤ Cm
(q)
1 (τ∗p )2. Note that m

(q)
1 = |S(µ)|π1

due to the spherical symmetry of N(0, In). Together, we see that

‖H −H0‖ ≤ Lp(
√
n|S(µ)|π1 + n3/4

√
|S(µ)|π1).

If q > q̃(β, r, θ), then m(q) = o(n) and (B.15) implies ‖H −H0‖ ≤ p−δn. If

q < q̃(β, r, θ), then n = o(m(q)) and (B.15) implies ‖H −H0‖ ≤ p−δ
√
nm(q).

�

APPENDIX C: PROOF OF LEMMAS IN SECTION 3

In this section, we prove Lemmas 3.1–3.3.

C.1. Proof of Lemma 3.1. We first show the claim for B = Ip and
then generalize it to any B satisfying max{‖B‖, ‖B−1‖} ≤ Lp.

Fix B = Ip. We use δ > 0 to denote a generic constant which only depends
on (α, β, θ) but may change from occurrence to occurrence. In our model,
X = `µ′ + Z. Let H0 = ZZ ′ − pIn. It is seen
(C.16)
XX ′−pIn = [‖µ‖2``′+`µ′Z ′+Zµ`′]+ZZ ′−pIn = [‖µ‖2``′+`µ′Z ′+Zµ`′]+H0.

Since ξ is a left singular vector of X, λξ = [‖µ‖2(ξ, `)+(ξ, Zµ)]`+(ξ, `)Zµ+
H0ξ. Rearranging it, we have

(C.17)
√
nξ = (In − (1/λ)H0)−1[b1`+ b2Z(µ/‖µ‖)],
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where b1 = b1(`, Z, µ) = (1/λ)·[
√
n‖µ‖2(ξ, `)+

√
n(ξ, Zµ)] and b2 = b2(`, Z, µ) =

(1/λ)
√
n‖µ‖(ξ, `). Therefore, min{‖

√
nξ − `‖∞, ‖

√
nξ + `‖∞} is no greater

than
(C.18)
min{|b1−1|, |b1+1|}+|b1|‖`−(In−(1/λ)H0)−1`‖∞+|b2|‖(In−(1/λ)H0)−1Z(µ/‖µ‖)‖∞.

To show the claim, it is sufficient to show that with probability at least
1− o(p−3),

(C.19) min{|b1 − 1|, |b1 + 1|} ≤ p−δ, |b2| ≤ p−δ,

and
(C.20)

‖`−(In−(1/λ)H0)−1`‖∞ ≤ p−δ, ‖(In−
1

λ
H0)−1Z(µ/‖µ‖)‖∞ ≤ C

√
log(p).

We now show (C.19). Consider the first item. Since Z and µ are in-
dependent, we have that with probability at least 1 − o(p−3), |(ξ, Zµ)| ≤
‖µ‖ · ‖Z(µ/‖µ‖)‖ ≤ 2‖µ‖

√
n. Combining this with the triangle inequality,

min{b1 − 1, b1 + 1}
≤(n‖µ‖2/λ)|cos(`, ξ)− 1|+ |1− (n‖µ‖2/λ)|+ (

√
n/λ)|(ξ, Zµ)|

≤(n‖µ‖2/λ)|cos(`, ξ)− 1|+ |1− (n‖µ‖2/λ)|+ 2n‖µ‖/λ.(C.21)

At the same time, we rewrite (C.16) as

(C.22) XX ′− pIn = A+H0, where A = ‖µ‖2``′ + `µ′Z ′ + Zµ`′ for short.

Note that A is a symmetric matrix of rank 2. For short, write ν = ‖µ‖−2µ
and a = a(`, µ, Z) = (1+4n−1[`′Zν+‖Zν‖2])1/2. Let λ± be the two nonzero
eigenvalues of A, and let η± be the corresponding eigenvectors. By elemen-
tary algebra,

(C.23) λ±(A) = n‖µ‖2[(1/2)(1±a)+n−1`′Zν], η± ∝ (1/2)(1±a)`+Zν.

By elementary statistics, it is seen that with probability at least 1− o(p−3)
that n−1[|`′Zν|+ ‖Zν‖2] does not exceed
(C.24)
C
√

log(p)n−1[(
√
n‖µ‖−1) + n‖µ‖−2] = C

√
log(p)[(

√
n‖µ‖)−1 + ‖µ‖−2].

Note that for (α, β, θ) in our range of interest, pεpτ
2
p ≥

√
p/n = p(1−θ)/2. By

the way µ is generated, ‖µ‖2 ∼ pεpτ
2
p . Therefore, with probability at least

1− o(p−3),

(C.25) ‖µ‖2 ∼ pεpτ2
p ≥ pδ

√
p/n, n‖µ‖2 ∼ npεpτ2

p ≥ pδ
√
pn.
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Inserting (C.25) into (C.24) gives that with probability at least 1− o(p−3),
|a− 1| ≤ Cp−δ. Combining this with (C.23),
(C.26)
|(n‖µ‖2/λ+)− 1| ≤ p−δ, (λ−/λ+) ≤ p−δ, |cos(`, η+)− 1| ≤ p−δ.

At the same time, by a direct use of the elementary Random Matrix Theory
[7], ‖H0‖ = ‖ZZ ′−pIp‖ ≤ C

√
pn. Combining these with (C.25)-(C.26) gives

(C.27) ‖(1/λ+)H0‖ ≤ C
√
pn/(n‖µ‖2) ≤ Cp−δ.

This says that in (C.22), the leading eigenvalue of A is larger than that of H0

by pδ times. By matrix perturbation theory, we have that with probability
at least 1− o(p−3),

(C.28) |λ+/λ− 1| ≤ p−δ, |cos(η+, ξ)− 1| ≤ p−δ.

Combining (C.26) and (C.28) gives

(C.29) |(n‖µ‖2/λ)− 1| ≤ p−δ, |cos(`, ξ)− 1| ≤ p−δ.

In particular, combining (C.25), (C.27), and (C.28) gives that with proba-
bility at least 1− o(p−3),

(C.30) ‖(1/λ)H0‖ ≤ Cp−δ,
√
pn/λ ≤ p−δ.

Inserting (C.29) into (C.21) gives the first item of (C.19).
Consider the second item of (C.19). Note that |b2| ≤ (n‖µ‖/λ), where by

(C.29), the right hand side ≤ ‖µ‖−1. The claim follows directly from (C.25).
We now show (C.20). Since the proofs are similar, we only show the first

item. Let e1 be the first base vector of Rn. Note that by symmetry and by
using the union bound, it is sufficient to show that with probability at least
1− o(p−4),
(C.31)∣∣e′1(In−

1

λ
H0)−1e1− 1

∣∣ ≤ p−δ, |e′1(In−
1

λ
H0)−1(`− `1e1)| ≤ C

√
log(p).

The first claim follows easily by (C.30) and basic algebra. For the second
claim, write ` = (`1, ˜̀)′, and let Z̃ be the (n − 1) × p matrix consisting all
but the first row of Z, and let H̃0 = Z̃Z̃ ′ − pIn−1. It follows that

In − (1/λ)H0 =

(
1− (1/λ)[‖Z1‖2 − p], −(1/λ)Z ′1Z̃

−(1/λ)Z̃Z1, In−1 − (1/λ)H̃0

)
,
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and
(C.32)

e′1(In−
1

λ
H0)−1(`−`1e1) = (e′1[In−(1/λ)H0]−1e1)·(1/λ)Z ′1Z̃

′[In−1−(1/λ)H̃0]−1 ˜̀.

Now, since rows of Z are independent, Z1 and Z̃[In−1−(1/λ)H̃0]−1 ˜̀ are two
vectors that almost independent of each other; the only issue is that Z1 is
correlated with λ. To overcome the difficulty, we write
(C.33)

Z ′1Z̃
′[In−1 − (1/λ)H̃0]−1 ˜̀

λ
=

∞∑
k=0

Z ′1Z̃H̃
k
0

˜̀

λk+1
=

∞∑
k=0

‖Z̃H̃k
0

˜̀‖
λk+1

· Z
′
1Z̃H̃

k
0

˜̀

‖Z̃H̃k
0

˜̀‖
.

Now, for each k, Z1 and Z̃H̃k
0

˜̀ are independent, and so

Z ′1(Z̃ ′H̃k
0

˜̀/‖Z̃ ′H̃k
0

˜̀‖) ∼ N(0, 1).

For k-th term, with probability 1−o(p−4(k+1)), there is |Z ′1(Z̃ ′H̃k
0

˜̀/‖Z̃ ′H̃k
0

˜̀‖)| ≤√
8(k + 1) log(p). Additionally, by basics in RMT [7], with probability at

least 1− o(p−4), ‖Z̃H̃k
0 ‖ ≤

√
p(C
√
np)k for all k.

(1/λ)k+1‖Z̃H̃k
0

˜̀‖ ≤
√

(n− 1)(1/λ)k‖Z̃H̃k
0 ‖ ≤ (C

√
np/λ)k+1.

Combining these with (C.33) and the second term of (C.30), it is seen that
with probability at least 1− o(p−4),

|(1/λ)Z ′1Z̃
′[In−1 − (1/λ)H̃0]−1 ˜̀| ≤ p−δ.

Inserting this into (C.32) and using the first item of (C.31), the second item
of (C.31) follows.

For a general B, the proof is similar by noting that ‖ZB‖ ≤ Lp‖Z‖ and
the following lemma, which is proved below.

Lemma C.1 As n, p → ∞ and p/n → ∞, for an n × p random ma-

trix Z where Z(i, j)
iid∼ N(0, 1) and any non-random matrix B ∈ Rp,p

such that max{‖B‖, ‖B−1‖} ≤ Lp, with probability 1 − O(p3), ‖ZBB′Z ′ −
tr(BB′)In‖ ≤ C

√
np.

C.2. Proof of Lemma 3.2. Letting Φ be the CDF of N(0, 1), denote
the mean and variance of |zi + h| by u(h) and σ2(h), respectively. It is seen
that

(C.34) u(h) =
√

2/πe−h
2/2 + h[1− 2Φ(−h)], σ2(h) = 1 + h2 − µ2(h).
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By Jensen’s inequality, E|zi + h| ≥ |E(zi + h)| = h. It follows that

(C.35) u(h) ≥ h, σ2(h) ≤ 1,

At the same time, we claim that as n→∞, for any 0 ≤ x ≤
√
n/ log(n),

(C.36) P
(∣∣ n∑
i=1

(
|zi + h| − u(h)

)∣∣ ≥ √nx) ≤ 2exp
(
−(1 + o(1))

x2

2σ2(h)

)
,

where o(1)→ 0 as n→∞, uniformly for all h > 0 and 0 < x ≤
√
n/ log(n).

Combining (C.35) and (C.36) gives Lemma 3.2.
We now show (C.36). Write for short Yi = |zi + h|. It is sufficient to show

that

(C.37) P
( n∑
i=1

Yi ≥ nu(h) +
√
nx
)
≤ exp

(
−(1 + o(1))

x2

2σ2(h)

)
,

and

(C.38) P
( n∑
i=1

Yi ≤ nu(h)−
√
nx
)
≤ exp

(
−(1 + o(1))

x2

2σ2(h)

)
.

Since the proofs are similar, we only show (C.37). By elementary calcula-
tions, the moment generating function of Yi is

(C.39) MY (s) = E[esY ] = es
2/2[ehsΦ(s+ h) + e−hsΦ(s− h)],

By Cramer-Chernoff Theorem ([2]), for any s > 0 and any y,

(C.40) P (

n∑
i=1

Yi ≥ ny) ≤ e−n(ys−logMY (s)).

We now show this (C.37) for the cases of h < 2 log(
√
n/x) and h ≥ 2 log(

√
n/x)

separately.
Consider the case where h < 2 log(

√
n/x). We wish to use (C.40) with

s =
1

σ2(h)

x√
n
, y = u(h) + x/

√
n.

By our assumptions of h < 2 log(
√
n/x) and 0 < x ≤

√
n/ log(n),

s = O(x/
√
n) = o(1), hs ≤ 2 log(

√
n/x)(x/

√
n) = o(1).
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Now, on one hand, since y log3(1/y) → 0 as y → 0+, h3s = o(1) and
h3s3 = o(s2). Combining this with elementary Taylor expansion,

(C.41) e±hs = 1± hs+
(hs)2

2
+ o(s2).

On the other hand, applying Taylor expansion to Φ(s± h) and noting that
φ is a symmetric function,

(C.42) Φ(s± h) = Φ(±h) + φ(h)s− hφ(h)s2 + o(s2).

where we have used that the third derivative of Φ is a bounded function.
Combining (C.41)-(C.42) and re-arranging,

ehsΦ(s+ h) + e−hsΦ(s− h)(C.43)

=1 + 2sφ(h) + hs[Φ(h)− Φ(−h)] + h2s2/2 + o(s2)

=1 + u(h)s+ h2s2/2 + o(s2),(C.44)

where in the first step, we have used Φ(h) + Φ(−h) = 1, and in the second
step, we have used the expression of u(h) given in (C.34).

We now analyze log[ehsΦ(s + h) + e−hsΦ(s − h)]. Write for short w =
ehsΦ(s+ h) + e−hsΦ(s− h)− 1. By (C.44) and |u(h)| ≤ h+ 1 from (C.34),
|w| ≤ C max{(h+ 1)s, h2s2}, and so

| log(1 + w)− w + w2/2| ≤ C|w|3 ≤ C max{(h+ 1)3s3, h6s6},

where by similar argument as above, max{(h + 1)3s3, h6s6} = o(s2). Com-
bining this with (C.44),

log[ehsΦ(s+ h) + e−hsΦ(s− h)]

= log(1 + w)

=w − w2/2 + o(s2)

=u(h)s+ h2s2/2− [u(h)s+ h2s2/2]2/2 + o(s2)

=u(h)s+ (h2 − u(h)2)s2/2− [u(h)h2s3 + h4s4/4]/2 + o(s2),

where we note |u(h)h2s3 + h4s4/4| ≤ C(h + 1)h2s3 + h4s4/4 = o(s2). As a
result,

log[ehsΦ(s+ h) + e−hsΦ(s− h)] = u(h)s+ (h2 − u(h)2)s2/2 + o(s2).

Combining this with (C.39) and the expression of σ(h) given in (C.34) and
rearranging it,

ys−log[MY (s)] = (y−u(h))s−(1+h2−u(h)2)
s2

2
+o(s2) = (y−u(h))s−σ2(h)

s2

2
+o(s2).
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Now, invoking s = 1
σ2(h)

x/
√
n and y = u(h) + x/

√
n gives

ys− log[MY (s)] =
1

2σ2(h)
(x/
√
n)2(1 + o(1)).

Combining this with (C.40) gives the claim.
We now consider the case of h ≥ 2 log(

√
n/x). We wish to use (C.40)

again, with the same y but a different s: s = x/
√
n. In the current case,

since x ≤
√
n/ log(n),

h→∞, s→ 0.

By the assumptions of h ≥ 2 log(
√
n/x) and s = x/

√
n, and

φ(h/2) ≤ Cexp(−(log(
√
n/x))2/2) = o(s2),

it follows that max{Φ(−s − h),Φ(s − h)} ≤ Φ(−h/2) = o(1)φ(h/2), where
the right hand side is o(s2). As a result,
(C.45)
ehsΦ(s+h)+e−hsΦ(s−h) = ehs[1−Φ(−s−h)+e−2hsΦ(s−h)] = ehs[1+o(s2)],

and so
log[ehsΦ(s+ h) + e−hsΦ(s− h)] = hs+ o(s2).

Combining this with (C.39) and (C.47) and invoking s = x/
√
n and y =

u(h) + x/
√
n,

ys− logMY (s) = (u(h) + x/
√
n− h)s− s2/2 + o(s2)

= s2/2 + o(s2)

= s2/(2σ2(h)) + o(s2),(C.46)

where in the last two steps, we have used
(C.47)
h− u(h) = 2hΦ(−h)− 2φ(h) = o(s), σ2(h) = 1 + h2− u(h)2 = 1 + o(s).

Inserting (C.46) into (C.40) gives the claim. �

C.3. Proof of Lemma 3.3. Denote by Φ the CDF of N(0, 1). By direct
calculations,

u(h) =
√

2/πe−h
2/2 + h[1− 2Φ(−h)].

This implies u(h) →
√

2/π when h → 0 and u(h)/h → 1 when h → ∞.
Furthermore,

u′(h) = −2hφ(h) + [1− 2Φ(−h)] + 2hφ(−h) = 1− 2Φ(−h),

u′′(h) = 2φ(−h) > 0.
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So u(h) is strictly convex and monotony increasing for h ∈ (0,∞).
Let h0 be the unique solution of u′(h) = 0.9. Fix (h1, h2) such that h2 >

h1 > 0. If h1 > h0, by convexity,

u(h2)− u(h1) ≥ u′(h1)(h2 − h1) ≥ 0.9(h2 − h1).

If h2 < h0, using the Taylor expansion, for some h̃ ∈ [h1, h2],

u(h2)− u(h1) = u′(h1)(h2 − h1) +
1

2
u′′(h̃)(h2 − h1)2 ≥ 1

2
u′′(h0)(h2 − h1)2.

If h1 < h0 < h2, then we decompose the difference into u(h2) − u(h0) +
u(h0) − u(h1) and combine with the two cases we just dicussed, then we
have that

u(h2)− u(h1) ≥ 0.9(h2 − h0) + C1(h0 − h1)2.

When h2 − h0 ≥ h0 − h1, then we have u(h2) − u(h1) ≥ 0.45(h2 − h0) +
0.45(h0 − h1) = 0.45(h2 − h1); otherwise, there is u(h2)− u(h1) ≥ C1

2 [(h2 −
h0)2 + (h0−h1)2] ≥ C(h2−h1)2. Combining the three cases gives the claim.

�

APPENDIX D: PROOF OF SECONDARY LEMMAS

In this section, we show the proof of Lemmas B.3, B.5 and C.1.

D.1. Proof of Lemma B.3. The following lemma is useful, which is
proved below.

Lemma D.1 For any fixed q > 0,

π
(q)
0 = Φ̄

(√
2q log(p)

)(
1 + Lpn

−1/2
)
,

π
(q)
1 =

{
1− Lpp−(

√
r−√q)2 , r > q,

Φ̄
(
(
√
q −
√
r)
√

2 log(p)
)(

1 + Lpn
−1/4

)
, r ≤ q.

First, we prove (a). Write for short zj = z and z(q) = z
(q)
j . Since the

distribution of z(q) is spherically symmetric, v′z(q) has the same distribution
as e′1z

(q), for any v ∈ Sn−1. It follows that E[(v′z(q))2] = E[(z(q)(1))2] = ap.
Furthermore, E(‖z(q)‖2) = nE[(z(q)(1))2] = nap.

Consider E(|v′z(q)|m). Again, by spherical symmetry,

E(|v′z(q)|m) = E
(
|z(q)(1)|m

)
= E

(
|z(1)|m1{z2(1)+‖z̃‖2 > n+2

√
qn log(p)}

)
,
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where z̃ = (z(2), · · · , z(n))′. Note that z̃ is independent of z(1) and ‖z̃‖2 ∼
χ2
n−1. Let B1 be the event that |z(1)| ≤

√
2δ1 log(p), for some δ1 to deter-

mine. From basic properties of the N(0, 1) distribution, P (Bc
1) = Lpp

−δ1

and E(|z(1)|mIBc1) = Lpp
−δ1 . It follows that

E(|v′z(q)|m) ≤ E
(
|z(1)|m1{z2(1) + ‖z̃‖2 > n+ 2

√
qn log(p), B1}

)
+ Lpp

−δ1

≤ E
(
|z(1)|m1{‖z̃‖2 > n+ 2

√
qn log(p)− 2

√
δ1 log(p)}

)
+ Lpp

−δ1

= E(|z(1)|m) · P (‖z̃‖2 > n+ 2
√
qn log(p)(1 + o(1))) + Lpp

−δ1

= E(|z(1)|m)π0(1 + o(1)) + Lpp
−δ1 .

By choosing δ1 appropriately large, we find that the first term dominates.
Consider E(‖z(q)‖2m). Denote by fn the density of χ2

n, where fn(y) =
yn/2−1e−y

2n/2Γ(n/2)
. Note that ymfn(y) = 2mΓ(m+n/2)

Γ(n/2) fn+2m(y). It follows that

E(‖z(q)‖2m) =
2mΓ(m+ n/2)

Γ(n/2)
P (χ2

n+2m > n+ 2
√
qn log(p)).

First, by letting q = 0 on both hand sides, we have κ2m(n) = E(‖z‖2m) =
2mΓ(m+n/2)

Γ(n/2) . Second, since n+2
√
qn log(p) = n∗+2

√
qn∗ log(p)(1+Lpn

−1/2)

for n∗ = n+ 2m, Lemma D.1 implies that P (χ2
n+2m > n+ 2

√
qn log(p)) =

π0(1 + o(1)). Together, the above right hand side is κ2m(n)π0(1 + o(1)).
Consider ap. Similarly to the above, for n∗ = n+ 2,

ap = n−1E(‖z(q)‖2) =
2Γ(1 + n/2)

nΓ(n/2)
P (χ2

n+2 > n∗ + 2
√
qn∗ log(p)(1 + Lpn

−1/2))

= P (χ2
n+2 > n∗ + 2

√
qn∗ log(p)(1 + Lpn

−1/2))

= π0(1 + Lpn
−1/2).

Second, we prove (b). We first state an approximation of π1. From basic
properties of chi-square distributions, for all q, r ≥ 0,

P (χ2
n(0) > n+ 2

√
qn log(p)) = Φ̄(

√
2q log(p))(1 + Lpn

−1/2),

P (χ2
n(2r log(p)) > n+ 2

√
qn log(p)) = Φ̄

(
(
√
q −
√
r)
√

2 log(p)
)
(1 + Lpn

−1/4).

Therefore, we find that

π1 = P (χ2
n(2r log(p)) > n+ 2

√
qn log(p))

= P (χ2
n(0) > 2(

√
q −
√
r)
√
n log(p)) · (1 + o(1)).(D.48)
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Consider E[(v′z
(q)
j )2]. Fix v and introduce

w1 = `/‖`‖, w2 = (1− (v′`)2/‖`‖2)−1/2[v − (v′`)`/‖`‖2].

Both w1 and w2 are unit vectors and w′1w2 = 0. Let Q be any orthogonal
matrix whose first two columns are w1 and w2. By direct calculations, Q′v =
(x0,

√
1− x2

0, 0, · · · , 0)′ and Q′` = (
√
n, 0, · · · , 0), where x0 = (v′`)/‖`‖.

Since Q′z and z have the same distribution,

v′z
(q)
j = v′QQ′z · 1{‖Q′z + µ(j)Q′`‖2 > n+ 2

√
qn log(p)}

]
(d)
= v′Qz · 1{‖z + µ(j)Q′`‖2 > n+ 2

√
qn log(p)}

]
=
[
x0z(1) + (1− x2

0)1/2z(2)
]
· 1{‖z +

√
nτ∗p e1‖ > n}.(D.49)

It follows that

E[(v′z
(q)
j )2] = E

[
(x0z(1) + (1− x2

0)1/2z(2))21{‖z +
√
nτ∗p e1‖2 > n+ 2

√
qn log(p)}

]
= (1− x2

0)E
[
(z(2))21{‖z +

√
nτ∗p e1‖2 > n+ 2

√
qn log(p)}

]
+ x2

0 E
[
(z(1))21{‖z +

√
nτ∗p e1‖2 > n+ 2

√
qn log(p)}

]
= bp + (cp − bp)(v′`)2/‖`‖2,

where the second equality comes from the symmetry on z(2) (so the cross
term disappears).

Consider bp and cp. Let z̃ = (z(2), · · · , z(n))′, where ‖z̃‖2 ∼ χ2
n−1 and it

is independent of z(1). We write

cp = E
[
(z(1))21{‖z̃‖2 > n+2

√
qn log(p)−g(z(1))}

]
, g(x) ≡ (x+

√
nτ∗p )2.

For a constant δ2 > 0 to be determined, let B2 be the event that |z(1)| ≤√
2δ2 log(p). From basic properties of normal distributions, P (Bc

2) = Lpp
−δ2

and E[z2(1)IBc2 ] = Lpp
−δ2 . Over the event B2, we have g(z(1)) = [z(1) −

(2
√
nr log(p))1/2]2 = 2

√
rn log(p)(1 + Lpn

−1/4). It follows that

cp ≤ E
[
(z(1))2 · P (B2 ∩ {‖z̃‖2 > n+ 2

√
qn log(p)− g(z(1))}|z(1))

]
+ Lpp

−δ2

≤ E[(z(1))2] · P
(
χ2
n−1 > n+ 2(

√
q −
√
r)
√
n log(p)(1 + Lpn

−1/4)
)

+ Lpp
−δ2

= π1(1 + Lpn
−1/4),

where the last inequality comes from (D.48) and that δ2 is chosen appropri-
ately large. To compute bp, we write

bp = E
[
(z(2))21{‖z̃‖2 > n+ 2

√
qn log(p)− g(z(1))}

]
= (n− 1)−1E

[
‖z̃‖21{‖z̃‖2 > n+ 2

√
qn log(p)− g(z(1))}

]
.
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Let B2 be the same event. Let q∗ = [(
√
q −
√
r)+]2. We have

bp = (n− 1)−1E
[
‖z̃‖21{‖z̃‖2 > n+ 2

√
q∗n log(p)(1 + Lpn

−1/4)}
]

+ Lpp
−δ2

= (n− 1)−1E(‖z̃(q∗)‖2)(1 + Lpn
−1/4) = π1(1 + Lpn

−1/4),

where in the last equality, we have applied the result in (a) with q = q∗.
Consider E(|v′z(q)|m). Let w̃ = (z(3), · · · , z(n))′. Then ‖w̃‖2 ∼ χ2

n−2 and
it is independent of (z(1), z(2)). By (D.49),

E(|v′z(q)|m) = E
(
|x0z(1) + (1− x2

0)1/2z(2)|m

· 1{‖w̃‖2 > n+ 2
√
qn log(p)− g(z(1))− (z(2))2}

)
.

Let B3 be the event that max{|z(1)|, |z(2)|} ≤
√

2δ3 log(p). Then P (Bc
3) =

Lpp
−δ3 and over B3, g(z(1)) + (z(2))2 = 2

√
rn log(p)(1 + o(1)). Applying

similar arguments as above, we find that

E(|v′z(q)|m) ≤ E(|x0z(1)+(1−x2
0)1/2z(2)|m) ·π1(1+o(1)) = κmπ1(1+o(1)).

Here the last inequality is because x0z(1) + (1 − x0)1/2z(2) ∼ N(0, 1). The
claim then follows.

Consider E(‖z(q)‖2) and E(‖z(q)‖2m). Using Q defined above (for an ar-
bitrary v)

E(‖z(q)‖2) = E
(
‖Q′z‖21{‖Q′z + τ∗pQ

′`‖2 > n+ 2
√
qn log(p)}

)
= E

(
‖z‖21{‖z +

√
nτ∗p e1‖2 > n+ 2

√
qn log(p)}

)
= E

(
(z(1))21{‖z +

√
nτ∗p e1‖2 > n+ 2

√
qn log(p)}

)
+ (n− 1)E

(
(z(2))21{‖z +

√
nτ∗p e1‖2 > n+ 2

√
qn log(p)}

)
= cp + (n− 1)bp.

Recall that z̃ = (z(2), · · · , z(n))′, q∗ = [(
√
q−
√
r)+]2 and g(x) = (x+

√
nτ∗p )2

for any x ∈ R. Note that (x + y)m ≤ 2m(|x|m + |y|m) for any x, y ∈ R. We
have

E(‖z(q)‖2m) = E
(
‖z‖2m1{‖z +

√
nτ∗p e1‖2 > n+ 2

√
qn log(p)}

)
≤ 2mE

(
(z(1))2m1{‖z̃‖2 > n+ 2

√
qn log(p)− g(z(1))}

)
+2mE

(
‖z̃‖2m1{‖z̃‖2 > n+ 2

√
qn log(p)− g(z(1))}

)
= 2mκ2mπ1(1 + o(1)) + 2mE

(
‖z̃(q∗)‖2m

)
(1 + o(1))

= 2m(κ2m + κ2m(n− 1)) · π1(1 + o(1)).(D.50)
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Here, we have applied the result in (a) for E(‖z(q)‖2m) with q = q∗.
Last, we prove (c). Using the spherical symmetry of z(q) and the Q defined

above, we have already seen that ‖z + τ∗p `‖
(d)
= ‖z +

√
nτ∗p e1‖ and

z ·1{‖z+τ∗p `‖ > n+2
√
qn log(p)} (d)

= z ·1{‖z+
√
nτ∗p e1‖ > n+2

√
qn log(p)}.

Then the claims follow from the definitions and (a)-(b). �

D.2. Proof of Lemma B.5. Let π(j) = π0 for j /∈ S(µ) and π(j) = π1

for j ∈ S(µ), where π0, π1 are defined in Section B.1. Then
∑p

j=1 π(j) = m(q)

by (c) of Lemma B.3.

First, consider tr(H0). Write Mj = n−1[‖z(q)
j ‖2 − E(‖z(q)

j ‖2)]. By defini-
tion,

(D.51) n−1tr(H0)−m(q)
∗ =

p∑
j=1

Mj .

By Lemma B.3, E(‖z(q)
j ‖2) . nπ(j) and E(‖z(q)

j ‖2m) ≤ 2mκ2m(n)π(j) ≤
C4mπ(j)nm, where κ2m(n) is the m-th moment of the χ2

n distribution and
we have used κ2m(n) ≤ C2mnm. Noting that (a + b)m ≤ 2m(am + bm) for
any real values a and b, by direct calculations,

E(Mj) = 0, var(Mj) ≤ Cπ(j), E(|Mj |m) ≤ C8m.

By Lemma B.1 (Bernstein inequality), with probability at least 1−O(p−3),

(D.52) |
p∑
j=1

Mj | ≤ C
√
m(q) log(p).

Combining (D.51)-(D.52) gives the first claim.
Second, consider ‖H0‖2F . By direct calculations,

‖H0‖2F − n−1[tr(H0)]2 =
∑

1≤j,k≤p
[(z

(q)
j )′z

(q)
k ]2 − n−1(

p∑
j=1

‖z(q)
j ‖

2)2(D.53)

=
n− 1

n

p∑
j=1

‖z(q)
j ‖

4 + 2
∑

1≤j<k≤p

(
[(z

(q)
j )′z

(q)
k ]2 − 1

n
‖z(q)
j ‖

2‖z(q)
k ‖

2

)
≡ (I) + (II).

We now study (I). Write Uj = n−1‖z(q)
j ‖4 for short. By Lemma B.3, E(Uj) =

n−1κ4(n)π0(1+o(1)) and var(Uj) ≤ Cn2π0 for j /∈ S(µ); moreover, var(Uj) ≤



22

Cn2π1 for j ∈ S(µ). We also claim that E(Uj) ≥ n−1κ4(n− 1)π1(1 + o(1))
for j ∈ S(µ). The proof is similar to that for (D.50), but in the second line
of (D.50), we instead use the inequality ‖z‖2m ≥ ‖z̃‖2m. Note that κ4(n) is
the second moment of χ2

n and so κ4(n) = n2 + 2n. It follows that

p∑
j=1

E(Uj) & nm
(q),

p∑
j=1

var(Uj) ≤ Cn2m(q).

Using Lemma B.1, with probability at least 1−O(p−3),
∑p

j=1 Uj & nm
(q)−

Cn
√
m(q) log(p) & Cnm(q). Since (I) = (n− 1)

∑p
j=1 Uj ,

(D.54) (I) ≥ C1n
2m(q), for some constant C1 > 0.

We then study (II). Let Vjk = [(z
(q)
j )′z

(q)
k ]2 − 1

n‖z
(q)
j ‖2‖z

(q)
k ‖

2. Introduce

Wj(v) = [v′z
(q)
j ]2 − n−1‖z(q)

j ‖
2, for any v ∈ Sn−1.

Let vj = zj/‖zj‖. Then vj is independent of ‖z(q)
j ‖ and Vjk = ‖z(q)

j ‖2Wk(vj).

By Lemma B.3, for any fixed v ∈ Sn−1,

E[Wj(v)] = 0, E[(Wj(v))2] ≤ Cπ0, j /∈ S(µ),

E[Wj(v)] = (cp − bp)[(v′ ˜̀)2 − n−1], E[(Wj(v))2] ≤ Cπ1, j ∈ S(µ),

where ˜̀= `/‖`‖. As a result, if either j /∈ S(µ) or k /∈ S(µ), then E(Vjk) = 0;

if both j, k ∈ S(µ), then E(Vjk) = (cp − bp)E{‖z(q)
j ‖2[(v′j

˜̀)2 − n−1]} =

(cp − bp)E[Wj(˜̀)] = (1− n−1)(cp − bp)2 ≥ 0. It follows that

(D.55) E[(II)] ≥ 0.

To compute var((II)), we calculate E(VjkVj′k′) for all (j, k, j′, k′) such that
j 6= k and j′ 6= k′. Since Vjk = Vkj , we assume j 6= k′ and j′ 6= k with-
out loss of generality. We have the following observations: (1) E(Vjk) ≤
(cp − bp)

2 if both j, k ∈ S(µ) and E(Vjk) = 0 otherwise. (2) E(V 2
jk) =

E(‖z(q)
j ‖2)E[W 2

k (vj)] ≤ Cn2π(j)π(k) for any j 6= k. (3) When j 6= j′ and
k 6= k′, Vjk is independent of Vj′k′ , so E(VjkVj′k′) = E(Vjk)E(Vj′k′). (4)

When j = j′ and k 6= k′, E(VjkVjk′) = E[‖z(q)
j ‖4Wk(vj)Wk′(vj)]; as a re-

sult, E(VjkVjk′) = 0 when either k /∈ S(µ) or k′ /∈ S(µ); if k, k′ ∈ S(µ),
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E(VjkVjk′) = (cp − bp)2E[(Wj(˜̀))2] ≤ C(cp − bp)2π(j). Therefore,∑
(j,j′,k,k′):
j 6=k,j′ 6=k′

E(VjkVj′k′) ≤
∑

(j,k):j 6=k

Cn2π(j)π(k) +
∑

(j,k,k′):j /∈{k,k′}
{k,k′}⊂S(µ),k 6=k′

C(cp − bp)2π(j)

+
∑

(j,j′,k,k′):{j,j′,k,k′}⊂S(µ)
j,j′,k,k′ are different

(cp − bp)4

≤ Cn2(m(q))2 + C(cp − bp)2m(q)|S(µ)|2 + C(cp − bp)4|S(µ)|4

≤ Cn2(m(q))2 +m(q)(|S(µ)|π1)2 · o(1) + C(|S(µ)|π1)4 · o(1),

where the last inequality is due to that cp − bp = o(π1). Using (B.15), when
r < ρ∗θ(β) (“impossibility”) and q < q̃(β, θ, r) (“fat” case), (|S(µ)|π1)2 =
o(m(q)) and so the first term in the above dominates the other two. It implies

(D.56) var((II)) ≤ C2n
2(m(q))2, for some constant C2 > 0.

We combine (D.55)-(D.56) and apply the Markov inequality. It follows that
with probability at least 1− 4n−2C2/C

2
1 ,

(D.57) (II) ≥ −C1n
2m(q)/2.

The second claim follows by plugging (D.54) and (D.57) into (D.53). �

D.3. Proof of Lemma C.1. The proof is similar to that of Lemma 2.1.
By Lemma B.4, there exists an (1/4)-net of Sn−1, denoted as M∗1/4, such

that |M∗1/4| ≤ 9n and supv∈M∗
1/4
v′Av ≥ 2‖A‖ for any n × n matrix A.

Therefore, to show the claim, it suffices to show that for each fixed v ∈M∗1/4,

with probability ≥ 1−O(9−np−2),

(D.58) |v′(ZBB′Z ′ − tr(BB′)In)v| ≤ C√np.

Denote the eigenvalue decomposition of BB′ by V ′ΛV , where Λ is diag-
onal matrix with diagonals λ1 ≥ λ2 ≥ · · · ≥ λp. Fix v, we can write

v′ZBB′Z ′v = v′ZV ′ΛV Z ′v =

p∑
i=1

λiη
2
i , ηi

iid∼ N(0, 1).

The last equation comes from V Z ′v ∼ N(0, Ip). So we have E[v′ZBB′Z ′v] =
tr(BB′) for any fixed v with ‖v‖ = 1. Let Wj = λiη

2
i /λ1 − λi/λ1, then Wj ’s

are independent of each other, E(Wj) = 0, var(Wj) ≤ 2 and E(|Wj |m) ≤
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κ2m. We apply Lemma B.1 with λ = 2
√
n log(9) + 2 log(p). To check the

moment conditions, we note that κ2m = Ez∼N(0,1)(|z|2m) ≤ 2mm! for all
m ≥ 1. It follows that with probability ≥ 1−O(9−np−2),

λ1|
p∑
j=1

Wj | ≤ 2
√
np log(9) + 2p log(p)λ1 ≤ C

√
np.

The last inequality is because λ1 = ‖B‖2 ≤ Lp. This proves (D.58). �

D.4. Proof of Lemma D.1. We start from computing π0. Using the
density of the χ2

n distribution,

π0 =

∫ ∞
n+2
√
qn log(p)

xn/2−1e−x/2dx

2n/2Γ(n/2)
≡ 1

2n/2Γ(n/2)
· (I).

Now, we calculate the integral (I). Write for short

t =
√

2q log(p) and x0 = n+
√

2nt.

With a variable change x = n+
√

2ny, we have

(I) =
√

2nx
n/2−1
0 e−x0/2

∫ ∞
0

(1 +
√

2ny/x0)n/2−1e−
√

2ny/2dy

=
√

2nx
n/2−1
0 e−x0/2

∫ ∞
0

exp
{

(n/2− 1) log(1 +
√

2ny/x0)−
√

2ny/2
}
dy

≡
√

2nx
n/2−1
0 e−x0/2

[
(I1) + (I2) + (I3)

]
,

(D.59)

where (I1) contains the integral from 0 to ct, (I2) contains that from ct to
x0/
√

2n and (I3) contains that from x0/
√

2n to infinity. We will determine
the constant c > 0 later.

Consider (I1). From the Taylor expansion, log(1+a) = a−a2/2+O(a3) for
small a. Moreover, n/x0 = 1−

√
2nt/x0 +O(t2/n), x0 = O(n) and y = O(t).

As a result, for 0 < y < ct, by simple calculations,

(n/2− 1) log(1 +
√

2ny/x0)−
√

2ny/2 = −ty − y2/2 +O(t3/
√
n).

Noting that ea = 1+O(a) for small a, so (I1) is equal to
∫ ct

0 e−ty−y
2/2dy · [1+

O(t3/
√
n)]. By direct calculation,

∫ ct
0 e−ty−y

2/2dy = et
2/2
∫ (1+c)t
t e−y

2/2dy =√
2πet

2/2
[
Φ̄(t)−Φ̄((1+c)t)

]
. By Mills’ ratio, Φ̄(t) = Lpp

−q and Φ̄((1+c)t) =
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Lpp
−(1+c)2q. Therefore, when c is chosen large enough, Φ̄((1 + c)t) = o(1) ·

Φ̄(t)Lpn
−1/2. It follows that

(D.60) (I1) =
√

2πet
2/2Φ̄(t)

(
1 + Lp/

√
n
)
.

Consider (I2). Since log(1 + a) − a ≤ a2/4 for a ∈ [0, 1], when ct < y <
x0/
√

2n,

(n/2− 1) log(1 +
√

2ny/x0)−
√

2ny/2 = −ty − y2/4 +O(tx2
0/(
√
n)3)

As a result, (I2) ≤ (1 + Lpn
−1/2)

∫∞
ct e

−yt−y2/4dy, where
∫∞
ct e

−yt−y2/4dy =

2
√
πet

2
Φ̄((c + 2)t/

√
2) = et

2/2Lp
√
np−[(c+2)2/2−1]q. By choosing c appropri-

ately large, we have

(D.61) (I2) = o(1) · et2/2Lpn−1/2.

Consider (I3). Since log(1 + a) ≤ t for all a ≥ 0, when t > x0/
√

2n,

(n/2− 1) log(1 +
√

2ny/x0)−
√

2ny/2 ≤ −(n/x0)ty ≤ −ty/2.

It follows that (I3) ≤
∫∞
x0/
√

2n e
−ty/2dy = (2/t)e−x

2
0/(2n) = o(1)·et2/2Lpn−1/2.

Combining the above results for (I1)-(I3), we obtain that

π0 = Rn(t) · Φ̄(t)
(
1+Lpn

−1/2
)
, where Rn(t) ≡ 2

√
πnx

n/2−1
0 e−x0/2+t2/2

2n/2Γ(n/2)
.

We plug in x0 = n+
√

2nt and rewriteRn(t) = n
x0

√
π(n/e)n/2

Γ(n/2)

(
1+t

√
2/n

)n/2
e−t
√
n/2+t2/2.

Note that by Taylor expansion, log(1+a) = a−a2/2+O(a3) for a = t
√

2/n.

Therefore, we have Rn(t) = n
x0

√
π(n/e)n/2

Γ(n/2) exp
{
O(t3/

√
n)
}

= 1 + Lpn
−1/2.

This gives
π0 = Φ̄(t)

(
1 + Lpn

−1/2
)
.

Next, we compute π1. Define

r̃ =
(z(1)−

√
nτp)

2

2
√
n log(p)

, W =

n∑
i=2

z2(i).

Then r̃ and W are independent; furthermore, W has a χ2
n−1 distribution.

We rewrite

π1 = E

[
P

(
W − n√

2n
> (
√
q −
√
r̃)
√

2 log(p)

∣∣∣∣r̃)] .
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For a constant c > 0 to be determined, let B1 be the event that |z(1)| ≤√
2c log(p). Then P (Bc

1) = Lpp
−c. Over the event B1, r̃ = r + Lpn

−1/4.
When r > q, utilizing the results for π0, we get

π1 = Φ
(
(
√
r −√q + o(1))

√
2 log(p)

)
(1 + Lpn

−1/2) + Lpp
−c

= 1− Lpp−(
√
r−√q)2 + Lpp

−c.

When r < q.

π1 = Φ̄
(
(
√
q −
√
r + Lpn

−1/4)
√

2 log(p)
)
(1 + Lpn

−1/2) + Lpp
−c

= Φ̄
(
(
√
q −
√
r)
√

2 log(p)
)
(1 + Lpn

−1/4) + Lpp
−c.

We choose c large enough so that Lpp
−c is always dominated by any other

term. This gives the claim for π1. �
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